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Abstract

Road transportation is one of the largest sectors of

greenhouse gas (GHG) emissions affecting climate change.

Tackling climate change as a global community will require

new capabilities to measure and inventory road transport

emissions. However, the large scale and distributed nature

of vehicle emissions make this sector especially challeng-

ing for existing inventory methods. In this work, we develop

machine learning models that use satellite imagery to per-

form indirect top-down estimation of road transport emis-

sions. Our initial experiments focus on the United States,

where a bottom-up inventory was available for training our

models. We achieved a mean absolute error (MAE) of 39.5

kg CO2 of annual road transport emissions, calculated on a

pixel-by-pixel (100 m2) basis in Sentinel-2 imagery. We also

discuss key model assumptions and challenges that need to

be addressed to develop models capable of generalizing to

global geography. We believe this work is the first pub-

lished approach for automated indirect top-down estimation

of road transport sector emissions using visual imagery and

represents a critical step towards scalable, global, near-

real-time road transportation emissions inventories that are

measured both independently and objectively.

1. Introduction

Transportation contributed 28% of anthropogenic green-

house gas (GHG) emissions in the U.S. for 2018, higher

than any other sector (electricity generation, the second

highest, contributed 27%) [3, 27]. The primary source of

transportation sector emissions are vehicles, which account

for 82% of emissions. Globally, road transport is also a sig-

nificant contributor as it accounted for approximately 12%

of GHG emissions in 2016 [29]. Addressing GHG emis-

sions at a global scale will require reductions in emissions

across many sectors, and perhaps most significantly to road

transport.

Mitigating the impact of global warming will require

transportation emissions to be taken into account. Accord-

ing to the goals established by the Paris Agreement, reduc-

ing transportation sector emissions is essential to maintain-

ing global warming within 1.5◦ or 2◦C [39]. Quantifying

the distribution of on-road transportation emissions is vital

to this reduction effort as inventories help identify trends,

track mitigation efforts, and inform policy decisions.

Multiple efforts are developing detailed bottom-up on-

road emission inventories for the U.S. [17, 22]. These

projects are limited from expanding globally due to the re-

liance on vehicle traffic and road data that is not readily

available on a global scale. EDGAR sought to improve on

the scope of emissions data by providing a global inven-

tory for transportation that uses road density as a proxy to

downscale emissions geographically [31]. However, some

emission estimates for urban centers in EDGAR deviated

from other bottom-up inventories [17] by 500%, indicating

that road density is not a sufficient proxy for global high-

resolution inventories.

Our work seeks to build upon these previous on-road

emissions inventory methods. Our approach, illustrated in

Figure 1, leverages deep learning methods for indirect esti-

mation of on-road emissions, at a global scale, with minimal

region-specific tuning effort. Our models leverage satellite

imagery as their primary input, enabling them to support

increased spatial resolution and temporal frequency of on-

road GHG estimates.

2. Related Work

We provide an overview of the bottom-up measurement

methodologies of road transport emissions inventories and

emissions estimation using top-down remote sensing tech-

nologies. The UNFCCC requires Annex I countries to pro-

vide yearly bottom-up GHG emission inventories [1] us-

ing standardized methodology from the IPCC [15]. These

bottom-up inventories are generated using activity data

(e.g., amount of fuel purchased) and emission factors (quan-

tity of GHGs emitted per activity unit). Transportation

emissions are calculated considering vehicle types and uses

in order to provide robust and proper estimates.

EDGAR is a global-scale inventory that follows the
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Figure 1: An overview of our process for learning to regress road transport GHG emissions. Primary inputs to our model

include Sentinel-2 satellite imagery (RGB bands only) and road networks from map data, but we also perform experiments

using Orbiting Carbon Observatory-2 (OCO-2) data at 1◦ x 1◦ resolution (≈100 km x 100 km), NOAA CarbonTracker

(CT) data, and LandScan population estimates. The ground truth for our experiments is derived from the Database of Road

Transportation Emissions (DARTE) [17], which provides annual bottom-up CO2 estimates at a spatial resolution of 1 km2.

We crop and interpolate all inputs and ground truth to the resolution of the Sentinel-2 input imagery (10 m ground sample

distance). We train a MA-Net [16] that learns to regress per-pixel CO2 values, which includes a Position-wise Attention

Block (PAB) and a Multi-scale Fusion Attention Block (MFAB). This process enables us to improve the spatial resolution of

DARTE estimates, and provide estimates for the specific point in time that the Sentinel-2 imagery was collected.

IPCC methodology and thus acts as independent validation

against self-reported figures, as well as a uniform compar-

ison between countries [31, 35]. EDGAR data is available

on monthly timescales on a country and sectoral basis [9] or

as a 1◦ gridded global annual product. For the road trans-

portation sector, country or sub-country sectoral emissions

are downscaled spatially according to road density.

Recent works, primarily focused the U.S., investigate on-

road GHG emissions. Gately et al. [17], for example, use re-

ported vehicular traffic (VHT) data combined with Census

TIGER [34] road network information to estimate regional

on-road emissions and disaggregate them among mapped

road networks.

The “Vulcan Product” is a national-scale, multi-sectoral,

hourly inventory from 2010-2015 with a resolution of

1 km2 [22]. In this work, transportation emissions are based

on EPA county-level on-road emissions estimates, which

are further downscaled using data from the Federal High-

way Administration. Gurney et al. also introduced HES-

TIA [23], a city-scale produce that uses additional city-

specific data sources to improve inventory accuracy.

While these road transportation inventories use bottom-

up methods, there are methods of measuring emissions that

can be utilized to create inventories of the transportation

sector. For example, spectral measurements are commonly

used to directly measure the presence of GHGs by calcu-

lating atmospheric absorption features. This can be accom-

plished readily using ground-based sensors [38, 45], which

are incorporated in some of the aforementioned bottom-

up approaches. However, more recently, the availability

of spectral-based satellite observations has been increas-

ing [10, 11, 5]. While these systems have been used for

direct GHG assessment as early as 1987 [6], only recently

have technological advancements increased the appeal and

accessibility of these systems. However, spectral-based

satellite observations still remain fairly coarse in their spa-

tial resolution and temporal frequency. We investigate us-

ing these observations as model inputs, but they may also

be beneficial for validating finely-gridded sectoral estimates

after some spatial aggregation.

Satellite imagery has also been used to estimate GHG

emissions indirectly. Oda et al. [36, 37] demonstrate that vi-
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sual features, in this case night lights, can be used to disag-

gregate national emissions and create high-resolution emis-

sions estimates grid. Couture et al. [8] present initial works

towards using visible steam plumes to estimate the oper-

ational state of power plants, leading to plant emissions.

Zheng et al. [49] also show that convolutional neural net-

works (CNNs) can learn to estimate ground-level PM2.5, a

measure of mostly invisible air pollution, from 3-5m res-

olution visible-spectrum PlanetScope imagery [28]. With

some additional metadata, including weather information,

they show that their model can achieve MAE on the order of

20%. We take inspiration from these recent efforts in order

to create the first global, near-real-time road transportation

emissions inventory.

3. Data & Methods

Data is perhaps the most critical component to develop-

ing a successful approach for top-down road transport emis-

sions estimation. Vehicles are small, abundant, and fre-

quently on the move, which makes them especially chal-

lenging to directly observe. Direct measurement of road

transport emissions in a top-down manner would require

substantial infrastructure and technological development to

monitor and track all vehicles. For example, accomplish-

ing this with Earth observation satellites would require new

technological advancements addressing spatial resolution,

night-time capability, and scalability for continuous moni-

toring. Currently, many relevant Earth observation systems

are incapable of directly observing periods of peak vehicu-

lar activity (i.e., early morning or late afternoon commutes)

because they operate in sun-synchronous orbits, such as

NASA’s Afternoon Constellation [42]. Additionally, many

of these systems do not have sufficient spatial resolution to

resolve vehicles. PlanetScope imagery [28], at 3-5 m res-

olution, seems to be near the limit of what can be used for

monitoring vehicles [13, 7].

To address these limitations, we investigate leveraging

various alternative data sources that we hypothesize can be

used to indirectly estimate road transport emissions. These

data sources and how we use them in our models are de-

scribed in the following subsections.

3.1. Road Transport Emissions

Our models learn to regress road transportation CO2

emissions using supervised training with the Database of

Road Transportation Emissions (DARTE) [17]. DARTE

provides annual (1980-2017) bottom-up CO2 estimates at

a spatial resolution of 1 km2 covering the conterminous

United States. DARTE leverages the Highway Performance

Monitoring System, which provides road segments with the

following properties: annual average daily traffic (AADT),

functional class, urban/rural context, and county. Road seg-

ment lengths were combined with AADT to calculate the
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Figure 2: Histogram of DARTE road transport CO2 emis-

sions estimates for 2017

annual vehicle miles travelled (VMT) per segment, which

was partitioned into five vehicle types (passenger cars, pas-

senger trucks, buses, single-unit trucks, and combination

trucks). A calibrated fuel economy and VMT by vehi-

cle type were used to calculate motor gasoline and diesel

fuel consumption, which was smoothed and scaled so that

intra-state values summed to the reported state totals. These

motor gasoline and diesel fuel consumption estimates were

then converted to CO2 emissions on an annual basis. For

this initial work we only use DARTE data for 2017, the dis-

tribution of which is shown in Figure 2.

3.2. Visual Imagery

Visible-spectrum satellite imagery is the primary in-

put for our models. We use Sentinel-2 Level-2A prod-

ucts [14, 18] at 10 m x 10 m (100 m2) spatial resolu-

tion. Level-2A captures bottom-of-atmosphere reflectance

and incorporates radiometric calibration and orthorectifica-

tion corrections from previous product stages. Sentinel-2

collects 13 spectral bands with band centers ranging from

approximately 443 nm to 2190 nm. We only use bands 4,

3, and 2 from each Sentinel-2 image, which roughly corre-

spond to visible red, green, and blue channels, respectively.

These bands are stacked to form a single 3-channel RGB

image, which is also referred to as a true color composite.

As satellite imagery is the primary input to our model,

we maintain the coordinate reference system (CRS) used

by Sentinel-2 Level-2A products and map all auxiliary in-

puts and ground-truth measurements to this CRS. With the

exception of road data, which is mapped to each swath, all

other auxiliary inputs and ground-truth measurements are

mapped to Sentinel-2 imagery on a tile-by-tile basis. In

other words, during training we dynamically extract a more

manageable subset of each Sentinel-2 swath, which we re-

fer to as a tile, and simultaneously extract all correspond-

ing auxiliary inputs and ground-truth measurements that fall
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within the bounds of this tile. To account for potential blank

regions in each tile, a blank-region mask is created and used

to zero out the corresponding regions from all auxiliary in-

puts and ground truth.

Swaths of Sentinel-2 imagery consist of 10800 x 10800

pixels covering approximately 11,664 km2. A maximum

of 5 Sentinel-2 swaths for each location in our dataset are

temporally sampled from the summer (June 1st through

September 30th) of 2017 to minimize the impact of sea-

sonal changes and occlusion due to weather. To spatially

tile the data, we use a systematic unaligned sampling pro-

cess [12]. The Sentinel-2 swaths are first equally divided

into an 11x11 grid and then we use this grid as a starting

point from which a random sub-tile-sized offset is calcu-

lated. The combination of a grid intersection and random

offset determine the 1024 x 1024 pixel tile (approximately

105 km2) of a Sentinel-2 swath that will be extracted for

training. The advantage of using this systematic unaligned

sampling during the training process is that it maintains an

even sampling of tiles from each swath while also introduc-

ing a form of data augmentation by not continually sam-

pling identical images.

Once Sentinel-2 tiles have been sampled, and before they

are input into our models, we apply standard ImageNet nor-

malization and float conversion (intensity ∈ [0, 1]). Auxil-

iary inputs, if any, are then concatenated as additional chan-

nels in these tile images1.

3.3. Roads

Road network data is used as an input to our model for

three reasons: 1) it is used to generate bottom-up road trans-

port emissions estimates, 2) their presence should be cor-

related with road transport emissions, and 3) it should be

possible to obtain road network data globally either by us-

ing segmentation models applied to satellite data [46] or by

sourcing it from governments or open-source databases like

OSM [25].

To incorporate road network data, we use Rasterio [19]

to create GeoTIFFs co-registered with our Sentinel-2

swaths. These GeoTIFFs use road network data extracted

from shapefiles provided by the Census TIGER system [34].

Several road categories are provided by Census TIGER, but

we only use data with MAF/TIGER Feature Class Codes

(MTFCC) S1100 (primary road), S1630 (ramp), S1200

(secondary road), and S1400 (local road), which correspond

to most of the public road infrastructure (e.g., excluding

parking, service roads, and off-road trails). Primary road

and ramp categories are merged to form the red channel of

each GeoTIFF, while secondary roads and local roads form

the green and blue channels, respectively. These road im-

ages match the CRS used by our Sentinel-2 swaths and are

1We do not mask clouds, but intend to explore it in future work.

computationally inexpensive to dynamically sample dur-

ing training as Sentinel-2 imagery is tiled. Sample input

Sentinel-2 and road imagery can be seen in Figure 4.

3.4. CO2

The benefits of using additional satellite and ground-

based measurements of CO2 concentrations were also ex-

amined in this work. The Orbiting Carbon Observatory-2

(OCO-2) satellite from NASA measures column-averaged

CO2 dry air mole fraction (XCO2
) in a sun-synchronous or-

bit with a 16 day revisit period [11]. To reduce the level

of effort in integrating this data into our model, and to

address spatial, temporal, and data quality deficiencies in

the OCO-2 Level 2 product [20], we focus on the interpo-

lated OCO-2 Level 3 dataset from the University of Wollon-

gong [48]. To create the Level 3 product, fixed-rank Kriging

is applied with a 16 day moving window in order to create

global, daily, CO2 concentration estimates. Tabulated Level

3 products were first converted to global, annually-averaged

GeoTIFFs for easier integration into the data processing

pipeline. Due to the lower 1◦ x 1◦ (≈100 km x 100 km, de-

pending on latitude) spatial resolution of the OCO-2 Level 3

product, typically only a single OCO-2 measurement covers

an entire Sentinel-2/DARTE tile (≈10 km x 10 km). Thus,

this value is used for all input image pixels in the form of

an additional input channel.

Ground-based CO2 measurements were also explored

in order to determine whether measurements taken closer

to road-level offered any measurable improvement in

emissions estimation accuracy. NOAA’s CarbonTracker

project [38] offers monthly-averaged CO2 mole fraction es-

timations at 1◦ x 1◦ spatial resolution over North America,

and at varying levels of the atmosphere [30]. These concen-

trations are derived from their optimized surface flux prod-

uct that incorporates 460 observation datasets from across

the globe, recorded on the ground, in aircraft, and on-

board ships. Concentrations are available at 26 geopoten-

tial heights, but we use values closest to the ground with an

average altitude of 445 m. Similar to OCO-2, an annual av-

erage GeoTIFF is created and a single CarbonTracker value

is used as an additional channel for each input tile.

3.5. Population

Population is likely to be correlated with road transport

emissions, as vehicles are still primarily operated by peo-

ple and there were 1.88 vehicles per household as of 2001-

2007 [2]. As such, we investigated incorporating population

data into our model as an additional channel input. There

are several sources of population data, with the most accu-

rate source likely coming from a governmental censuses.

However, our eventual goal for this work is to estimate

road transport emissions globally, in a top-down manner,

and without reliance on extensive data collection from local
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Figure 3: Plot showing city locations sampled from the con-

terminous United States (CONUS) for training (blue) and

validation (orange).

governments.

It is possible to achieve reasonable accuracy by estimat-

ing population from overhead imagery [24]. For this effort,

we require annual (or sub-annual) gridded population esti-

mates that can be paired with Sentinel-2 and DARTE data.

LandScan estimates [41] provided by Oak Ridge National

Laboratory meet this need. LandScan offers annual global

population distribution GeoTIFFs from 2000 through 2019.

For this effort, we use their 2017 product.

Each LandScan GeoTIFF contains ambient (24-hour av-

erage) population distribution estimates at a roughly 1 km2

spatial resolution. We incorporate these population esti-

mates by extracting tiles co-registered with our Sentinel-2

imagery and then concatenating them as an additional chan-

nel input to our model. Bilinear interpolation is used during

both the CRS resampling process and for any upsampling

needed to match the Sentinel-2 tile resolution. To ensure

population consistency before and after this processing pro-

cedure, we normalize the resampled population tile to en-

sure that its total population matches the population total of

the same region before resampling. Sample population data

can be seen in Figure 4.

3.6. Dataset Partitioning

The dataset we created for this work was constructed

from data (e.g., satellite imagery, roads, etc.) depicting

3753 cities for training and 118 cities for validation, as vi-

sualized in Figure 3. These cities are isolated to the conter-

minous United States (covering over 8 Mkm2).

Since the U.S. is vast and contains many sparsely popu-

lated regions, we construct our dataset by targeting regions

that are most likely to have roads. We accomplish this by

first creating a list of cities from the United States Cities

Database [33], which is an aggregation of data collected by

the U.S. Geological Survey and U.S. Census Bureau. Next,

we designate cities for the validation split by identifying the

nearest neighboring city to 108 airports across the U.S. [44],

where at least one city is selected for each state. Since air-

ports tend to be spatially dispersed across the U.S., the cities

set aside for the validation set reflect many of the diverse

geographies across the U.S.

With validation cities identified, we construct the train-

ing split by removing all cities within a 120 km radius of

the centerpoint of any validation city. This process prevents

potential overlap in imagery across dataset splits. However,

overlap between cities was permitted within the training set

or within the validation set. We then down-select from this

filtered list, iterating over each state and omitting all cities

not included in the 35 most populated cities, the 35 least

populated cities, and 30 randomly-selected remaining cities.

Should a state not have 100 cities in total, all cities are se-

lected. The resulting dataset partitions yield an approximate

ratio of 32:1 training to validation cities. This imbalance be-

tween the dataset splits is necessary because as the number

of validation cities grows, the total spatial area allocated for

training cities can shrink significantly due to the no-overlap-

across-datasets constraint. As a result, we limit the number

of validation cities to enable an increase in the size of the

training set, while also ensuring that each dataset split is

representative of the entire CONUS.

After partitioning the cities, we can begin to load tile

tuples (i.e., co-registered data across our various sources)

for training our models. However, as we load tiles we can

encounter conditions that are not ideal for training machine

learning models. If 50% or more of a DARTE tile contains

invalid data then we filter the tuple. Similarly, if more than

20% of a Sentinel-2 tile is empty then we filter the tuple.

We also filter out any tiles associated with data read errors.

After these filtering processes, we are left with 297,296

tiles (over 31 Mkm2) for training and 45,224 tiles (over

4.7 Mkm2) for validation. We further split our validation

tiles into a random subset of 1000 tiles that are used to val-

idate each epoch during model training and select optimal

model weights, as well as 44,224 testing tiles that are used

to generate the results in Tables 1 and 2.

3.7. Architecture

The two base architectures we used in our experiments

were U-Net [40] and MA-Net [16]. U-Nets have been a

popular choice for the winning solutions of several pub-

lic challenges and datasets focused on per-pixel classifica-

tion and regression in both medical imaging (where they

were conceived) and satellite imagery [4, 46, 21]. Both

ResNet-34 [26] and EfficientNet-B3 [43] backbones were

tested. Given that DARTE data has a lower resolution than

Sentinel-2 imagery (1 km2 vs 100 m2), we also decided to

modify the standard U-Net to perform reduced upsampling

within the network. Given that inputs to the network had a

1024 x 1024 resolution, we only kept enough upsampling

layers to result in an output size of 128 x 128, which is
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Method RMSLE MAE MAPE

RN-34 U-Net 0.661 38.9 50%

EN-B3 U-Net 0.710 51.2 47%

EN-B3 Reduced U-Net 0.836 2669.0 214%

EN-B3 MA-Net 0.616 39.5 55%

Table 1: Comparison of results across varying neural net-

work architectures trained on Sentinel-2 and road network

data, including ResNet-34 (RN-34) and EfficientNet-B3

(EN-B3) backbone U-Nets, a Reduced U-Net architecture,

and an MA-Net architecture. MAE is in units of kg CO2

per 100 m2.

closer to the native DARTE resolution for a crop of the same

geographic region. We refer to this architecture as the “Re-

duced U-Net”. Given the shared success of U-Nets in both

the medical imaging and satellite imagery domains, we also

decided to test the MA-Net architecture due to its recent

success in tumor segmentation applications.

All model architecture and backbone implementations

used in this work were built upon the implementations of

[47]. With each model using a ReLU activation for its final

layer to regress positive per-pixel CO2 values. Addition-

ally, the RAdam [32] optimizer was used with learning rate

of 10−3, β1 = 0.9, β2 = 0.999, and ǫ =10−8.

3.8. Loss functions

We experimented with different procedures for normal-

izing the DARTE data (e.g., 0-1 normalization, mean-std

normalization, quantile transformation, K-bins discretiza-

tion, etc.) along with different loss functions. We found the

normalization approaches offered little benefit, while root

mean square logarithmic error (RMSLE) and mean absolute

percentage error (MAPE) loss functions were more promis-

ing. We believe this is likely due to large variations and

outliers in road transport emissions across varying geogra-

phies, as illustrated in the histogram of DARTE emissions

data in Figure 2. For example, many rural areas have few

roads and relatively little road transport emissions. Con-

versely, dense cities have high road densities and road trans-

port emissions. Furthermore, city emissions can vary dra-

matically depending on factors such as public transit usage.

RMSLE is commonly used for regression tasks where

the underlying ground truth data distribution is exponential

or has many outliers, expressed as follows:

RMSLE =

√

√

√

√

1

n

n
∑

i=1

(log(Pi + 1)− log(GTi + 1))2. (1)

Our mean absolute percentage error (MAPE) metric is

slightly modified from the typical MAPE equation to im-

Method RMSLE MAE MAPE

S2 1.030 55.9 65%

R 0.730 43.3 64%

S2+R 0.616 39.5 55%

S2+OCO2 1.050 55.1 88%

S2+R+LS 0.739 49.9 47%

S2+R+OCO2 0.709 49.3 46%

S2+R+OCO2+CT 0.817 52.6 46%

Table 2: Comparison of MA-Net results for models trained

with varying inputs, including Sentinel-2 visual imagery

(S2), road imagery (R), LandScan (LS) population esti-

mates, Orbiting Carbon Observatory-2 (OCO2) Level 3

data, and CarbonTracker data (CT). MAE is in units of kg

CO2 per 100 m2.

prove numerical stability as the ground truth (GT ) ap-

proaches 0, which is defined as:

MAPE =
100

n

n
∑

i=1

|(GTi + 1)− (Pi + 1)|

GTi + 1
. (2)

In each equation, n represents the number of pixels in

each tile, i represents the pixel index, P represents the pre-

dicted emissions output from our model, and GT represents

the upsampled ground-truth emissions from DARTE.

In our experiments, we achieved the best performance

by training using an RMSLE loss function. One added ben-

efit to using RMSLE in the context of emissions estima-

tion is that RMSLE is biased towards overestimating. In

other words, underestimates incur a larger cost than over-

estimates. In the context of mitigating climate change, it is

safer to overestimate emissions and take more drastic ac-

tion than necessary as opposed to underestimating emis-

sions and not taking sufficient action.

4. Results & Discussion

We evaluate multiple segmentation architectures and

backbones against our reduced Sentinel-2 and roads dataset

to obtain the results shown in Table 1. An MA-Net ar-

chitecture with EfficientNet-B3 backbone achieves the best

results with an RMSLE of 0.616, while ResNet-34 and

EfficientNet-B3 backboned U-Nets achieve slightly better

MAE and MAPE.

We believe one of the biggest challenges associated with

training these models comes from the spatial resolution mis-

match between our predictions and the ground truth. Fig-

ure 4 qualitatively illustrates that our EfficientNet-B3 back-

bone MA-Net model is capable of learning that road trans-

port emissions are highest on roads. Taking notice of the

the bright yellow region near the bottom-center of the “Pre-

dicted Emissions” image. Instead of reproducing the blurry
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Figure 4: Example results from the seven models listed in Table 2. Emissions colorbars are in units of kg CO2 per 100 m2,

and LandScan population is in units of people per 100 m2. Roads are colored according to their category: primary road and

ramp (red), secondary (green), and local (blue).

yellow region of emissions located at the same region in

the “Ground Truth Emissions” image, this model can pre-

dict large emissions with fine-grained structure matching

the roads present in the scene. However, by calculating error

in a pixel-wise fashion, the model is penalized for learning

this fine-grained structure. In other words, if the model cor-

rectly estimates low emissions from nearby farmland, it will

be penalized due to the fact that our ground truth contains

large emissions values in that area.

One potential solution for this spatial resolution mis-

match is to compare model predictions at the same reso-

lution as the ground truth. Our Reduced U-Net architecture

represents a first attempt to accomplish this. Rather than

outputting 1024 x 1024 pixel predictions that matches the

spatial resolution of its input, our Reduced U-Net outputs a

128 x 128 prediction to more closely match the spatial res-

olution of our ground truth. Unfortunately, as can be seen

in Table 1, this approach does not perform well, resulting

in significantly higher RMSLE, MAE, and MAPE. We hy-

pothesize that the poor performance of this model is due, at

least in part, to the reduction of skip connections, especially

from high-resolution layers, which may be necessary to ex-

ploit the small and subtle visual features (e.g., roads, build-

ings, etc.) in our imagery. We suspect that simply adding

additional downsampling layers after the segmentation ar-

chitecture may perform better, but leave this experiment for

future work.

In Section 3, we outline several data sources that we

believe may improve our model’s accuracy and ability to

generalize. As shown in Table 2, we trained multiple

EfficientNet-B3 MA-Net models on varying permutations

of these input data sources. Sample results from these mod-

els can be seen in Figure 4. The best performing model

was trained using Sentinel-2 imagery and road network

7



data. This model outperformed both the Sentinel-2 only and

Roads-only models, as we expected. However, results from

models trained with additional inputs from OCO-2, Land-

Scan, and CarbonTracker all underperform compared to the

model using only Sentinel-2 and road data. We hypothe-

size that this may also be related to the spatial resolution

mismatch, except in this instance not only is there a mis-

match between the inputs and our ground truth but there is

a mismatch between different input data sources. Road data

is actually rasterized to match the spatial resolution of the

input Sentinel-2 data, whereas all other input data sources

have different underlying resolutions. It is possible that this

spatial resolution mismatch between input data sources in-

troduces an additional challenge by implying certain image

regions are more similar than the higher-resolution data in-

dicates. Late fusion or other techniques that account for this

mismatch may need to be investigated to improve exploita-

tion of these inputs.

Another aspect to consider in reviewing our model re-

sults is the overall difficulty of our dataset. The included

cities and neighboring regions contain diverse geographies

and 5 of the 6 Köppen-Geiger climate zone types, which

can be visually representative of many regions across the

globe. Additionally, as shown in Figure 3, our validation

split sequesters many of the largest east and west-coast

cities from training. Many of these cities represent signifi-

cant outliers, both visually and in terms of their emissions,

compared to most other U.S. cities. However, the chal-

lenge of this dataset may also offer insight towards global

generalizability. Road transport emissions estimation meth-

ods must learn to generalize not only across diverse visual

backgrounds, but also across diverse architectures, popula-

tion densities, and transport systems located across small,

medium, and large cities.

A similar point can also be made concerning our data

sampling procedure. The population density or urbaniza-

tion distribution of tiles in our dataset is likely skewed,

matching the real world distribution. However, for the

purposes of training a model that can estimate urban road

transport emissions as accurately as rural road transport

emissions, it may be necessary to oversample the less-

frequently-occuring urban areas, especially as estimating

urban road transport emissions is likely to be a more chal-

lenging task.

One final consideration related to the generalizability of

these models is their ability to handle data outside the tem-

poral range used during training. Data availability is the

primary limiting factor in this regard, as currently DARTE

data is only available up to 2017 and Sentinel-2 data is only

sparsely available before 2017. As additional bottom-up

data becomes available, or if we switch to other satellite

data sources such as Landsat, we will be able to compare

model performance against multiple different timeframes.

Multi-year mobility or other public datasets related to trans-

portation patterns could provide insights into temporal gen-

eralizability. Hourly Vulcan products [22] could also enable

training models to estimate emissions over smaller periods

of time that are more directly linked with visual snapshots.

Nevertheless, there is certainly a large amount of uncer-

tainty and room for improvement associated with the ability

of these models to generalize temporally.

5. Conclusion

We present the first published automated approach for

estimating road transport sector emissions in a top-down

fashion using visual satellite imagery. Using primarily

Sentinel-2 imagery and road network data over the conter-

minous United States, we train an MA-Net segmentation

model to regress road transport emissions on a pixel-by-

pixel basis using an RMSLE loss. Our model achieves an

MAE of 39.5 kg CO2 per 100 m2.

Significant challenges remain to operationalize this tech-

nology. Model accuracy must be improved and estima-

tion uncertainty quantified to provide actionable informa-

tion for regional governments and municipalities. The lim-

ited availability of accurate and global road transportation

emissions data must be overcome, including concerns of

model transfer and regional bias. It remains to be seen if

changes in government policy and human behavior over an-

nual timescales will be captured by our models, although

this hypothesis will be testable as data from 2020 emerges.

Despite these challenges, we believe this work represents

a critical step towards building scalable, global, near-real-

time road transportation emissions inventories that can pro-

vide independent and objective feedback as the global com-

munity tackles climate change.
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