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Abstract

Vegetation management of power grids is essential for

reliable distribution of services, prevention of forest fires

and disruption of electricity due to tree fall. In this paper,

we introduce a vegetation analysis system that utilizes in-

formation from GIS data, aerial and satellite imagery to

estimate vegetation profile within a buffer zone. This veg-

etation profile is further combined with operational param-

eters of the grid to develop a survival model which predicts

the outage risk of a power-line in an electrical grid. Using

historical data, we show that the risk scores thus obtained

are significantly better at developing trimming schedules for

grid power-lines, compared to existing available methods.

1. Introduction

Aerial and satellite image analysis is becoming increas-

ingly important in addressing the challenges related to

disaster management, infrastructure and urban planning,

Transmission and Distribution (T&D) maintenance. Util-

ity companies are under immense pressure to maintain their

frail T&D infrastructure with limited resources. In this pa-

per, we focus on solving vegetation management problem

which is critical to preventing catastrophic events such as

forest fires and large scale outages due to vegetation en-

croachment.

Utility companies perform two types of tree trimming

activities on power-lines to address vegetation encroach-

ment: (a) scheduled or planned trimming (b) hot-spot or un-

planned trimming. Scheduled trimming is performed based

on a schedule designed by inspector based on operation
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Figure 1. An illustration comparing the prevalent and our proposed

approach to vegetation management.

knowledge or ad-hoc combination of operations variables

such as number of customer impacted or number of outages

experienced on a given power-line without the knowledge

of actual state of vegetation on the ground. Hot-spot trim-

ming is performed on-need basis when customers complain

about encroachment or due to adverse weather event.

Currently, a vegetation manager determines the risk as-

sociated with each power-line and creates a trimming sched-
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ule based on historical outages and operational data [26].

This approach is subjective, biased and fails to incorporate

the actual vegetation encroachment on the ground, thereby

resulting in a sub-optimal trimming schedule which further

leads to higher vegetation related outages as well as higher

maintenance cost [10]. Figure 1 shows the current approach

to vegetation management and the motivation for our pro-

posed approach.

In recent times, utility companies have started investi-

gating the adoption of LiDAR-based vegetation manage-

ment [11,26]. While LiDAR provides high accuracy and fi-

delity for vegetation encroachment, they are still not widely

adopted due to high cost associated with data collection and

processing. On the other hand, satellite and aerial imagery

provides a compelling solution with the benefit of large-

scale coverage at lower cost. Even though our proposed ap-

proach leverages aerial and satellite imagery in this paper, it

can easily incorporate LiDAR-based vegetation information

when available.

In this paper, we propose a machine learning frame-

work (Figure 1) to address tree trimming problem using sur-

vival modeling which combines GIS data, aerial and satel-

lite imagery, and other operational parameters to estimate

the outage risk which can be used to derive an optimal

scheduling. The same framework can also address the is-

sue of spot trimming to identify the most risky power-lines

which may be in need of trimming prior to their scheduled

trim time.

Vegetation segmentation in large scale aerial and satel-

lite imagery can be challenging due to the lack of anno-

tated data. In the absence of large budget for annotation

task, we propose a two-stage approach to training the CNN

model for vegetation modeling using semi supervised strat-

egy. Our experiments shows that with just a few number

of annotated samples, we can train a CNN vegetation seg-

mentation model which generalizes well for the entire lo-

cal grid territory. Another challenge related to vegetation

segmentation in freely available aerial imagery data (NAIP

dataset - 1m resolution) is the low resolution of trees. In the

NAIP dataset, a typical tree width spans a range of 10-35m

on the ground which translates to 10-35 pixels, and twice

that value for WorldView-3 satellite at 0.5m resolution. We

propose a modified segmentation approach based on [40] to

address the issues of “small” tree pixels by avoiding pooling

operations in encoding layers.

Risk associated with vegetation-related outages on a

power-line is also dependent on several other operational,

environmental and reliability factors besides tree encroach-

ment. For example, vegetation encroachment on a short

power-line serving 20,000 customer is more important to

trim earlier than a long power-line serving 10 customers.

Certain power grids are more prone to vegetation-related

outages due to weather conditions than others. To model

the risk associated with each power-line, machine learning

approach will have to incorporate these additional variables

in prioritising trimming. We propose a survival modeling

based generic framework to model this requirement. Sur-

vival modeling can incorporate weather, operational Key

Performance Indicators (KPIs) and other reliability factors

in conjunction with vegetation encroachment from aerial

and satellite imagery to provide a holistic outage risk score

combining these factors.

In this paper, our main contributions are as follows:

• We combine aerial, satellite, and GIS data to define

tree encroachment around power-line segments for a

large-scale analysis. Our vegetation analysis can be

done at multiple scales (i.e. power-line segment, a

feeder, or a full circuit level)

• We utilize semi-supervised approach to reduce anno-

tation burden. We utilize weak classifier to generate

pseudo labels which are then fed into segmentation

network for learning.

• We use Cox proportional hazard survival modeling

technique to combine the vegetation KPIs with other

reliability and operational attributes of a power-line as

well as the prior trimming schedule to assign a risk to

quantify the likelihood of a future outage of a power-

line.

1.1. Prior Work

Recently, aerial and satellite imagery are gaining an in-

creased attention from various research communities for

solving real world problems such as disaster response, ur-

ban planning, precision agriculture, and autonomous driv-

ing [12]. With increasing blackouts due to to vegetation

encroachments for power-lines, it is necessary to maintain

clearance within the right-of-way (ROW) buffer zone to

ensure uninterrupted distribution of electricity. Therefore,

utility companies are exploring the use of such rich data to

improve reliability and reduce cost of maintaining grid as-

sets [22].

Researchers have investigated the task of vegetation seg-

mentation and tree encroachments from various sensing

modalities. For a comprehensive overview of the modali-

ties and algorithms developed for vegetation segmentation

and tree encroachment before the proliferation of deep neu-

ral networks, we refer the reader to following survey pa-

pers [28] [2]. Convolutional Neural Networks have shown

tremendous success in semantic segmentation tasks and a

lot of recent works have focused around using deep neu-

ral networks for vegetation segmentation. [23] proposed a

multi-task learning framework for pan-sharpening and se-

mantic segmentation of trees in a 25 km2 0.3m resolution

WorldView-3 satellite data. [25,27,32,35] proposed several
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Figure 2. Residual U-Net architecture used for vegetation segmentation

CNN based architectures for land cover segmentation which

can be extended to vegetation segmentation. In [33], a deep

learning-based detection framework that utilizes the images

obtained from vision sensors mounted on power transmis-

sion towers was proposed. The method includes three cas-

caded modules: detection of vegetation regions using Faster

R-CNN, detection of power lines based on the Hough trans-

form, and detection of vegetation encroachment using depth

from stereo. While the method was able to detect power-

lines and tree encroachment, it relies on ground-based sen-

sors close to the area of interest which hinders the ability to

cover large scale area for encroachment analysis.

A large scale study, similar to ours in terms of scale,

was conducted in [3] where the authors performed tree-

cover delineations using NAIP imagery. The study used

150 handcrafted statistical features computed from super-

pixel regions found using region growing algorithm. The

features per pixel are then classified using a fully-connected

feed forward neural network. A conditional Random Fields

(CRF) step is then applied to incorporate contexts for re-

gion consistency. While their work spanned a large scale

area, they used handcrafted features which may not gener-

alize well.

A lot of the prior work have focused on vegetation re-

lated risk modeling in the context of adverse weather. [38]

used LiDAR to identify high risk trees and combined prior

trim and infrastructure data with vegetation related informa-

tion using random forest to identify high risk power lines in

the event of a storm. Similarly, [6] proposes a outages pre-

diction model using regression trees based on weather pre-

diction outputs, soil information, vegetation, electric utility

assets, and historical power outage data. However, none of

these approaches address the issue of vegetation manage-

ment from trimming perspective.

Survival models for risk modeling has been used for

several decades in multiple applications like cancer sur-

vival [7, 39], predictive maintenance and remaining useful

life of industrial systems [34,36] but our work is among the

first to apply it to vegetation trimming problem.

[15] studied the vegetation related outages under two

categories: growth-related and weather-related outages.

Two types of models for the two tasks, namely Time se-

ries and nonlinear machine learning regression models, are

proposed to conduct the outage prediction using vegeta-

tion, prior outages, weather and geographical data. The

work most relevant to ours is [13] where a Gaussian con-

ditional random field approach was proposed to combine

operational, weather and vegetation related parameters for

optimal tree trimming. The tree segmentation was obtained

through super-pixel clustering and assignment approach.

However, to the best of our knowledge, there is no prior

work which combines aerial and satellite imagery with ad-

vanced deep neural network-based computer vision tech-

niques and survival models to develop an end-to-end veg-

etation management system.

2. Vegetation Analysis

In this section, we will discuss in more details our ap-

proach for vegetation segmentation in aerial and satellite

imagery.

2.1. Vegetation Segmentation

We treat this problem as a two class segmentation prob-

lem as our focus is solely on vegetation encroachment.

However, proposed approach can be extended to multiple

classes. Several semantic segmentation architectures have

been proposed in literature. We use the Residual U-Net ar-

chitecture from [40] for vegetation segmentation. The net-

work is shown to work well for road segmentation in aerial

imagery and parameters work well for semantic classes with
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small footprints such as individual trees. We have minor

modifications to the network, found empirically, in number

of filters but the architecture is shared with the reference.

Figure 2 shows the network architecture of our proposed ap-

proach. We use equally weighted binary cross-entropy and

Figure 3. Result of our data annotation strategy(a) Sample Train

data (b) Sample Manual annotation (c) Sample Unlabeled data (d)

Sample Pseudo label

dice loss as the loss function to minimize. Additional details

related to training is given in the experiment section. In the

next section, we will discuss the semi-supervised learning

approach to reduce the annotation requirement and improve

networks robustness against unseen territories.

Image annotation is a tedious and expensive task. Given,

we are performing vegetation segmentation on a large ter-

ritory, it is hard to annotate different variety of vegetation

across the territory. In order to ameliorate the lack of large

annotation dataset, we leverage a two-stage learning strat-

egy with a human in the loop to annotate our aerial and

satellite imagery. Initially, we manually label a small set of

images. In our case, we labeled 60 images of 512 × 512
pixels. Then, using this small set of labeled images, we use

a random forest [4] to introduce two sources of randomness

to help control over-fitting. The first is bagging, where each

tree is grown using a bootstrap sample of training data, and

the second one is random feature splitting where the best

split at each node is chosen from a random sample of fea-

tures instead of all. In our case, we trained 200 decision

trees estimators with a batch size of 100 pixels with unlim-

ited depth. We consider two random features at each node.

To train the model, we used a set of hand-crafted features

such as Gabor filters, mean, min , max, and the variance

at each pixel with 5 neighborhood window. After training

the random forest on the manually labeled data, we then use

this model to automatically annotate a larger set of 2k im-

ages that are then used to train our deep learning along with

the manually labeled data. Figure 3 shows a manually an-

notated image and the prediction of the random forest clas-

sifier.

2.2. Vegetation KPIs

In order to estimate outage risk associated with vege-

tation, we need to estimate certain KPIs like area of veg-

etation encroachment, length of encroachment, etc. with

respect to the utility grid and structures. These KPIs will

then feed to our machine learning model to estimate outage

risk along with other operational, environmental and relia-

bility parameters. Usually, 5m distance on either side of the

power line is considered no encroachment or ROW zone.

Any vegetation encroaching within the right-of-way is con-

sidered unsafe and needs to be trimmed. We first perform

tree segmentation on all the tiles extracted from the aerial

imagery for the territory. We then combine all the tiles

together to create a single vegetation probability map for

the whole territory. The GIS information is then overlayed

on the probability map to define right of way by placing

a 5m buffer on either side of the power line. The power-

line itself is composed of a set of line segments. For each

line segment, we can compute vegetation area and length

of vegetation encroachment with an oriented bounding box

defining the right-of-way zone. These Key Performance In-

dicators (KPIs) at individual section of a power-line repre-

sents the segment-level vegetation risk. Inspector can use

this information to identify regions where there are signifi-

cant encroachment occurring within a power line. This in-

formation together with other variables can help identify fu-

ture potential outages associated with each power-line and

plan the trimming optimally. In the next section, we will

describe our survival modeling based approach which can

seamlessly combine vegetation related KPIs with other vari-

ables for risk estimation.

Figure 4 shows an overview of our vegetation segmen-

tation on a sample patch from NAIP dataset and the corre-

sponding vegetation KPIs.

3. Risk Modeling Using Survival Models

In this section, we introduce survival model as a risk es-

timation methodology and illustrate how it can be used to

model outage risk of power-lines as a function of vegeta-

tion KPI and other attributes.

3.1. Survival Models: Basic principles

Survival models are a class of statistical models which

obtains estimates of time of a particular event of interest

(like death, failure, outage etc.) i.e. survival times. The

key property of a survival model is the ability to incorpo-

rate censored data i.e. if an individual does not have an

event till the observation time, they are described as cen-

sored. It means that after the data is collected, the individual

may or may not have an event. This special property makes

survival models more appealing to estimate event times as

compared to standard regression based methods (where we

would have to drop the censored data).

Some definitions related to survival modeling are as fol-

lows [24, 37]:

• Survival function is the probability that the event of

interest occurred after specified time t.

S(t) = P (T > t),
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(a) (b) (c) (d)

Figure 4. Overview of our vegetation segmentation and KPI estimation. (a) an image tile from NAIP aerial imagery. (b) shows the result

of our vegetation segmentation overlaid on the image. (c) a zoomed-in region showing the power lines along with right-of-way non-

encroachment buffer zone (defined by blue color lines). (d) Shows each power-line segment color coded from blue to pink in proportion to

the the area of vegetation encroachment. More pink indicates more vegetation overlap and more blue indicates the opposite.

where T is the survival time.

• Cumulative death distribution is F (t) = 1 − S(t)

and the death density function is f(t) = dF (t)
dt

• Hazard function is the likelihood of the event occur-

ring at time t, given no event occurred before t.

h(t) = lim
∆t→0

P (t ≤ T ≤ t+∆tT ≥ t)

∆t
(1)

= lim
∆t→0

F (t+∆t)− F (t)

∆t · S(t)
(2)

=
f(t)

S(t)
(3)

Concretely, each data-point in the data-set used to de-

velop survival models is a tuple (X, y, δ) where X is the

feature vector (also called as covariates), δ is an indica-

tor variable which is 1 for uncensored instance and 0 for

a censored instance, and y is the time of event (survival

time or failure time in some literature) for uncensored in-

stances or the observation time for censored instances. This

is unlike a supervised regression or classification problem

where each data-point contains a tuple of 2 points. In ad-

dition to specialized models like Cox Proportional Hazard

model [5], several machine learning methods like logis-

tic regression [39], support vector machines [30], random

forests [19], neural networks [16,21] have been modified to

obtain a transfer function which estimates the survival func-

tion or hazard function as a function of the feature vector 1

3.2. Cox Proportional Hazards (PH) Model

Cox PH model is a semi-parametric model which models

the hazard function h(t,X) as a product of the time com-

ponent λ0(t) and the feature component η(X)

h(t, x) = λ0(t)η(x), (4)

where

1There are non-parametric methods like Kaplan-Meir estimate [20]

which do-not take into account the feature vector.

• λ0(t) is the unspecified baseline function and,

• η(x) is the risk due to the features modeled as

exp (
∑

wiXi).

Note that we have defined the hazard function as a function

of the feature vector X . The key point is that there is a

natural way in which the hazard changes with time, which is

the same for any two individuals. The difference in the risk

is due to the features associated with each individual. The

parameters {wi}’s are estimated by maximizing the partial

likelihood using the Newton Raphson’s method.

3.3. Connecting Survival Models and Risk Model
ing of Power Lines

The key goal of our vegetation management system is to

develop a multi-variate model which can estimate the risk

of each power-line. The 3 types of attributes available for

each power-line to develop the risk model are explained:

1. Reliability attributes [1] like customers impacted (CI),

number of outages (NO), customer average interrup-

tion duration index (CAIDI), system average interrup-

tion duration index (SAIDI) and system average in-

terruption frequency index (SAIFI), of previous year,

given an indication of risk for the current year.

2. Environmental attributes like vegetation KPIs (as de-

scribed in Section 2) and weather attributes like wind

gust, precipitation and temperature [8].

3. Operational attributes like number of customers,

overhead coverage of the power-line and time since the

last trim.

Assumptions

Before explaining the modeling methodology, we highlight

two key assumptions below.

1. The first of January for each year is the instant of ob-

servation and decision-making (i.e. all data prior to
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that day can be used to estimate the future outage risk

of each power-line for that year).

2. Each power-line is trimmed every 4 years. We assume

the risk is reset after each trim i.e. the power-line is

“reborn”. Also, the maximum life of a power-line is 4

years 2.

In the next discussion, we show how the data collected

from power lines fits naturally to the requirements of sur-

vival model paradigm. For any power-line (F ) on the 1st of

January of any year (t), the training data tuple consists of

(XF (t− 1), yF (t), δF (t)) where X(t − 1) is the vector of

reliability, environmental and operational values from pre-

vious years, δF (t) is an indicator which is 1 if an outage

occurred for that power-line in the year t and yF (t) is the

number of days between the last trim and outage, if an out-

age occurred else it is the number of days between the last

trim and end of the year or the trim date. We observe that

the data is in a format similar to the one required to train

survival models (explained in Section 3.1). Collecting sim-

ilar data for multiple power-lines over the training period,

we estimate the parameters of a Cox proportional hazard

model using an implementation provided in [17]. The key

reason for preferring the Cox proportional hazard model is

the easy interpretability: the contribution of the attributes

to the “hazard” can be easily obtained from the magnitude

of the estimated coefficients ŵi in (4). Additionally, the

factorization of the baseline hazard and the feature contri-

bution makes it trivial to compute a time-independent risk

score (
∑

i
ŵiXi) (it is non-trivial for other methods).

4. Experimental Results

4.1. Dataset

Our study area covers 1760mi2 within two states in the

US. We collected 100 georeferenced NAIP and Worldview-

3 tiles where each tile covers a 3.7× 4.66 sq. miles. NAIP

imagery consists of 4 bands and is acquired at a 1m ground

sample distance (GSD), while the Worldview-3 imagery

consists of 8 multi-spectral bands along with SWIR and

CAVIS bands with GSD ranging from 0.3m to 10m. From

both sources, we used only 4 bands, namely Red, Green,

Blue, and Near-IR. Along with the imagery data, we also

utilized georeferenced GIS data indicating the location and

the extent of each power-line in the area of interest. Due

to the proprietary nature of the GIS data, the location is,

therefore, undisclosed.

2A natural question which can be raised is that why can’t we make

the prediction every month (or every day)? Even though our methodology

can be naturally extended, we provide a yearly risk for 2 main reasons.

Firstly, from a decision-making point of view, the vegetation inspector will

want a list of high risk power-lines at the beginning of the year to plan the

maintenance schedules. Secondly, it would require getting the images at a

higher temporal frequency which can be expensive.

4.2. Performance of Vegetation Segmentation

We trained our segmentation model using a small set of

1860 images. However, we increased the training data by

augmenting using various strategies such as flipping, rotat-

ing, adjusting brightness and contrast, as well as saturation

adjustment. Our model was trained for 50 epochs with a

batch size of 8, and a learning rate of 0.0001 using Adam

optimizer. To reduce the effect of over-fitting, we applied

polyak averaging using exponential decay of the last 10

checkpoints, and applying label smoothing to the ground

truth data. We evaluated the performance of our segmenta-

tion approach using two separate metrics. We evaluated the

performance of our segmentation approach on a validation

set of 200 images. We achieved a mIoU score of 97.2%.

We also evaluated the performance of our segmentation in

ROW zone against a proprietary LiDAR-based ground truth

tree masks. Our approach obtained a mIoU score of 86%

against LiDAR data. This shows that our approach can pro-

vide comparable results w.r.t LiDAR data for tree segmen-

tation within the buffer zone.

4.3. Evaluation of Risk Modeling

4.3.1 Data Preparation

In order to validate the performance of the risk model-

ing method, we use the data from a utility company on a

population of 2000 power-lines located in a single geo-

graphical area. The reliability feature vector used were a

weighted sum of CI, number of outages (NO) and SAIDI

for the previous 2 years where the weight for the previ-

ous year was 2/3 and the weight for the year before was

1/3. For example, for 2019, the reliability features of a

power-line is [ 23CI(2018) + 1
3CI(2017), 2

3NO(2018) +
1
3NO(2017), 2

3SAIDI(2018) + 1
3SAIDI(2017)]. This

was appended with vegetation KPIs computed in Section

2 as well as the overhead mileage of each power-line. The

temporal component required for the survival modeling is

computed as discussed in Section 3.3.

The data between 2016 and 2018 is used to train the

model whereas data in 2019 is used to evaluate the perfor-

mance of our model.

4.3.2 Evaluation

Discriminate measures are typically used to to validate the

performance of risk models [9, 29, 31] models. These mea-

sures capture how well can the model discriminate between

the “low” and “high” risk entities.

Ground truth: low and high risk: Identifying actual high

and low risk power-lines (pl) is a subjective business deci-

sion. Based on expert feedback, two definitions of identi-

fying high and low risk power-lines for a given year were

decided
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• DEF 1: If CI>120 then the power-line is high risk else

if CI<5 it is low risk, else they are removed from eval-

uation.

• DEF 2: If NO>2 then the power-line is high risk else

if NO<1 it is low risk, else they are removed from

evaluation.

A key thing to note is that this are retrospective definitions

and can only be used to conduct evaluation on historical

data.

Baseline: Previous Year CI The business historically used

previous years’ CI as a risk measure RCI i.e. to fore-

cast and schedule planned and unplanned maintenance for

2019 on 1 January 2019, corresponding value of CI from

2018 is used as a risk measure. Thus if for a power-line,

RCI(2019) = CI(2018) > τCI then the power-line is pre-

dicted to be high risk for 2019, else it is predicted to be low

risk.

Our Method: Survival Risk score We used the risk score

Rsu computed by the survival model i.e. on 1 January

2019, we use the data from previous years to compute risk

Rsu(2019) and if Rsu(2019) > τsu, the power-line is pre-

dicted to be high risk for 2019. The values of τsu and τCI

can be chosen according to business considerations based

on the precision-recall (PR) or receiver operating character-

istic curve. (ROC) [18].

Precision, Recall, False Positive Rate (FPR) an True Pos-

itive Rate (TPR): Adapting the standard definitions from a

confusion matrix, we define

recall =
# pl predicted & actually high risk in 2019

# pl actually high risk in 2019
,

precision =
# pl predicted & actually high risk in 2019

# pl predicted high risk in 2019
,

FPR =
# pl predicted & not high risk in 2019

# pl actually not high risk in 2019
.

In Figure 5, we compare the precision-recall curves as

well receiver operating characteristic curve (ROC) [18] for

DEF1 by varying τsu and τCI . Similar results are also

observed for DEF2.

4.3.3 Analysis of Survival Model

In this section, we analyze the fitted survival model in some

detail.

Training Loss: In Figure 6, we shows the evolution of

the loss (negative log partial likelihood) and the gradients

while fitting the model parameters using Newton Raphson

method.

Risk Groups: Using a suitable threshold on the risk score,

we divide the power-lines into two groups,“high risk” and

Figure 5. PR and ROC curves comparison between the baseline

and survival model based risk scoring.

Figure 6. Evolution of training loss and the gradient.

“low risk”. The distribution of the scores as well as the high

and low risk groups are shown in Figure 7.

Figure 7. Distribution of risk scores and classifying them into high

risk and risk.

Individual Predictions: In Figure 9, we observe that for the

power-line which we predicted high risk, the survival func-

tion drops sharply and it suffers an outage within 7 months.

Conversely, for the power-line which we predicted to be low

risk, the survival function drops slowly and there was not

outage till the time of recording the data (when that power-

line was 30 months since the last trim).
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Figure 8. Actual vs Predicted- Number of power-lines experienc-

ing an outage as a function of months since last trim.

Figure 9. Individual survival functions for 2 power-lines: one

which was predicted risk and other which was predicted low risk.

The vertical line is the time (since last trim) of the outage or the

censored time.

4.3.4 Discussion

In this section, we discuss certain key insights and learning

from the evaluation of our risk model.

Performance Improvement: We clearly observe from the

results in Figure 5 the numeric gains of our method over

baseline methods. The overall ROC-area under the curve

is superior by 7%. Additionally, if the business requires a

minimum recall of 75%, the survival model based risk can

achieve a precision of 90% compared to a 80% precision

achieved using the baseline method.

Survival Model vs Classification/Regression Problem:

An obvious question arising is “Why cannot we use clas-

sification/regression methodology?”. This is a valid ques-

tion and we provide the following reasons on why survival

models make a better choice.

• A classification problem requires a a-priori labeling

of high-risk and low-risk power-lines. Thus whenever

business dictates a change of definition depending on

the geographical location or year, the model needs to

be re-trained. An interesting discussion on the similar

use of survival models over classification for cancer

prognosis is discussed in [7].

• Another obvious choice is a regression on the time to

event. However, this leads to issues on censored data

i.e. those power-lines which at the time of data collec-

tion have not had any outage. As explained in Section

3.1, survival models provides a unique method to in-

corporate censored data.

• From a philosophical sense, this agrees with our in-

tuition on how power-lines suffer outage: The factor-

ization of the Cox PH model combines a natural time

varying deterioration in power-lines (increase in risk)

with risk inducing external factors to estimate an over-

all risk.

5. Conclusion and Future Work

In this paper, we propose a novel vegetation management

system which combines information from GIS data, aerial

and satellite imagery to estimate vegetation profile, which is

further combined with operational and reliability attributes

of a power-line using a survival model to estimate a risk

score. We envisage 2 main applications of this risk score.

First, provide a list of power-lines in decreasing order of risk

which can then be combined with spatial clustering to iden-

tify optimal scheduled trimming schedules. This is neces-

sary as it involves significant resource cost to move around

equipment for trimming. Hence the trimming team would

ideally like to first cover a geographical area which has a

high proportion of high risk power-lines. Second, provide

a list of very high risk power-lines to for unscheduled/spot

trimming. This allows to reduce the number of outages and

thereby reduce the number of customers impacted.

Often, vegetation related outages are caused not only

due to growth but also due extreme weather events [14].

Integrating weather forecasts is an important future line

of work to develop a comprehensive vegetation manage-

ment which can provided combined risk score using both

weather forecasts and vegetation density. Another impor-

tant line of work is to compare the Cox PH method with

advanced deep neural network based survival models like

[16, 21].

References

[1] IEEE Guide for Electric Power Distribution Reliabil-

ity Indices. IEEE Std 1366-2012 (Revision of IEEE

Std 1366-2003), pages 1–43, May 2012. Conference

Name: IEEE Std 1366-2012 (Revision of IEEE Std

1366-2003). 4325

4328



[2] Junaid Ahmad, Aamir Saeed Malik, Likun Xia, and

Nadia Ashikin. Vegetation encroachment monitoring

for transmission lines right-of-ways: A survey. Elec-

tric Power Systems Research, 95:339–352, 2013. 4322

[3] Saikat Basu, Sangram Ganguly, Ramakrishna R

Nemani, Supratik Mukhopadhyay, Gong Zhang,

Cristina Milesi, Andrew Michaelis, Petr Votava, Ralph

Dubayah, Laura Duncanson, et al. A semiautomated

probabilistic framework for tree-cover delineation

from 1-m naip imagery using a high-performance

computing architecture. IEEE Transactions on

Geoscience and Remote Sensing, 53(10):5690–5708,

2015. 4323

[4] Leo Breiman. Random forests. Machine learning,

45(1):5–32, 2001. 4324

[5] N. E. Breslow. Analysis of Survival Data under

the Proportional Hazards Model. International Sta-

tistical Review / Revue Internationale de Statistique,

43(1):45–57, 1975. Publisher: [Wiley, International

Statistical Institute (ISI)]. 4325

[6] D. Cerrai, D. W. Wanik, M. A. E. Bhuiyan, X. Zhang,

J. Yang, M. E. B. Frediani, and E. N. Anagnostou.

Predicting storm outages through new representations

of weather and vegetation. IEEE Access, 7:29639–

29654, 2019. 4323

[7] Hung-Chia Chen, Ralph L. Kodell, Kuang Fu Cheng,

and James J. Chen. Assessment of performance

of survival prediction models for cancer prognosis.

BMC Medical Research Methodology, 12(1):102, July

2012. 4323, 4328

[8] P. Chen, T. Dokic, N. Stokes, D. W. Goldberg, and M.

Kezunovic. Predicting weather-associated impacts in

outage management utilizing the gis framework. In

2015 IEEE PES Innovative Smart Grid Technologies

Latin America (ISGT LATAM), pages 417–422, 2015.

4325

[9] R. B. D’Agostino and Byung-Ho Nam. Evaluation of

the Performance of Survival Analysis Models: Dis-

crimination and Calibration Measures. In Handbook

of Statistics, volume 23 of Advances in Survival Anal-

ysis, pages 1–25. Elsevier, Jan. 2003. 4326

[10] Ashiss Kumar Dash. Vegetation Management:

Artificial Intelligence to Preempt Forest Fires.

https://www.tdworld.com/vegetation-

management / article / 20973359 /

vegetation - management - artificial -

intelligence - to - preempt - forest -

fires, Nov 11, 2019. 4322

[11] Nick Day. LiDAR for Distribution Vegetation

Management. https : / / www . tdworld .

com/vegetation- management/article/

20972795 / lidar - for - distribution -

vegetation-management, Jul 01, 2019. 4322

[12] Ilke Demir, Krzysztof Koperski, David Lindenbaum,

Guan Pang, Jing Huang, Saikat Basu, Forest Hughes,

Devis Tuia, and Ramesh Raskar. Deepglobe 2018: A

challenge to parse the earth through satellite images.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops,

June 2018. 4322

[13] T. Dokic and M. Kezunovic. Predictive risk manage-

ment for dynamic tree trimming scheduling for distri-

bution networks. IEEE Transactions on Smart Grid,

10(5):4776–4785, 2019. 4323

[14] Milad Doostan, Reza Sohrabi, and Badrul Chowdhury.

A Data-Driven Approach for Predicting Vegetation-

Related Outages in Power Distribution Systems.

arXiv:1807.06180 [cs, stat], Mar. 2019. arXiv:

1807.06180. 4328

[15] Milad Doostan, Reza Sohrabi, and Badrul Chowdhury.

A data-driven approach for predicting vegetation-

related outages in power distribution systems. Inter-

national Transactions on Electrical Energy Systems,

30(1):e12154, 2020. e12154 ITEES-19-0274.R1.

4323

[16] Stephane Fotso. Deep Neural Networks for Sur-

vival Analysis Based on a Multi-Task Framework.

arXiv:1801.05512 [cs, stat], Jan. 2018. arXiv:

1801.05512. 4325, 4328

[17] Stephane Fotso et al. PySurvival: Open source pack-

age for survival analysis modeling, 2019–. 4326

[18] Patrick J. Heagerty and Yingye Zheng. Survival model

predictive accuracy and ROC curves. Biometrics,

61(1):92–105, Mar. 2005. 4327

[19] Hemant Ishwaran, Udaya B. Kogalur, Eugene H.

Blackstone, and Michael S. Lauer. Random survival

forests. The Annals of Applied Statistics, 2(3):841–

860, Sept. 2008. arXiv: 0811.1645. 4325

[20] E. L. Kaplan and Paul Meier. Nonparametric Estima-

tion from Incomplete Observations. Journal of the

American Statistical Association, 53(282):457–481,

June 1958. 4325

[21] Jared Katzman, Uri Shaham, Jonathan Bates, Alexan-

der Cloninger, Tingting Jiang, and Yuval Kluger.

DeepSurv: Personalized Treatment Recommender

System Using A Cox Proportional Hazards Deep Neu-

ral Network. BMC Medical Research Methodology,

18(1):24, Dec. 2018. arXiv: 1606.00931. 4325, 4328

[22] Mladen Kezunovic, Pierre Pinson, Zoran Obradovic,

Santiago Grijalva, Tao Hong, and Ricardo Bessa. Big

data analytics for future electricity grids. Electric

Power Systems Research, 189:106788, 2020. 4322

4329



[23] Andrew Khalel, Onur Tasar, Guillaume Charpiat,

and Yuliya Tarabalka. Multi-task deep learning for

satellite image pansharpening and segmentation. In

IGARSS 2019-2019 IEEE International Geoscience

and Remote Sensing Symposium, pages 4869–4872.

IEEE, 2019. 4322

[24] David G Kleinbaum and Mitchel Klein. Survival anal-

ysis. Springer, 2010. 4324

[25] Tzu-Sheng Kuo, Keng-Sen Tseng, Jia-Wei Yan, Yen-

Cheng Liu, and Yu-Chiang Frank Wang. Deep aggre-

gation net for land cover classification. In Proceedings

of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR) Workshops, June 2018. 4322

[26] Brian Kurinsky. Power line corridor vegetation man-

agement: Clearing a path to reliable electric service

using lidar. Maryville, Missouri, Oct, 2013. 4322

[27] Chun Liu, Doudou Zeng, Hangbin Wu, Yin Wang,

Shoujun Jia, and Liang Xin. Urban land cover clas-

sification of high-resolution aerial imagery using a

relation-enhanced multiscale convolutional network.

Remote Sensing, 12(2), 2020. 4322

[28] Leena Matikainen, Matti Lehtomäki, Eero Ahokas,
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