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Abstract

Searching for small objects in large images is a task that

is both challenging for current deep learning systems and

important in numerous real-world applications, such as re-

mote sensing and medical imaging. Thorough scanning of

very large images is computationally expensive, particu-

larly at resolutions sufficient to capture small objects. The

smaller an object of interest, the more likely it is to be ob-

scured by clutter or otherwise deemed insignificant. We

examine these issues in the context of two complementary

problems: closed-set object detection and open-set target

search. First, we present a method for predicting pixel-level

objectness from a low resolution gist image, which we then

use to select regions for performing object detection locally

at high resolution. This approach has the benefit of not be-

ing fixed to a predetermined grid, thereby requiring fewer

costly high-resolution glimpses than existing methods. Sec-

ond, we propose a novel strategy for open-set visual search

that seeks to find all instances of a target class which may

be previously unseen and is defined by a single image. We

interpret both detection problems through a probabilistic,

Bayesian lens, whereby the objectness maps produced by

our method serve as priors in a maximum-a-posteriori ap-

proach to the detection step. We evaluate the end-to-end

performance of both the combination of our patch selection

strategy with this target search approach and the combi-

nation of our patch selection strategy with standard object

detection methods. Both elements of our approach are seen

to significantly outperform baseline strategies.

1. Introduction

Artificial intelligence (AI), principally via advances in

deep learning (DL), has recently shown great success on an

ever expanding number of tasks. In problems such as im-

age classification [15, 13], object detection [22, 20] and im-

age segmentation [17, 23] as well as in applications such as

medical diagnostics [6, 17], AI approaches have met or ex-

Figure 1. Conventional approaches use image tiling or sliding

windows to ensure coverage while keeping tile dimensions small

enough to be processed by standard object detectors. We propose

to use predicted objectness to achieve the same end while mini-

mizing the total number of high-resolution windows or glimpses

required.

ceeded the capabilities of humans and traditional machine

learning [3]. Among other things, current AI/DL research

has tackled issues such as open-set recognition [25, 10]

(one of the foci of this study), privacy [27], adversarial at-

tacks [7], low-shot learning [19, 5], and AI bias [4].

This study is specifically focused on using convolu-

tional neural networks (CNNs) for object detection. Much

progress has been made on this task through algorithms in-

cluding YOLO and Fast(er)-RCNN [22, 20, 21, 29]. How-

ever, most existing object detectors rely on the assumption

that the objects of interest occupy a significant fraction of

the search area. We instead consider the situation where

objects may be several orders of magnitude smaller than

the image size (e.g. images with thousands of pixels per

side and relevant objects spanning only tens of pixels). This

occurs frequently in remote sensing applications including

visual search of satellite imagery (e.g., looking for vehi-

cles in a parking lot) and microscopy images (e.g., detect-

ing synapses in electron microscopy imaging of brain tis-

sue [28]). To date (and as discussed further in Section 2),

most conventional DL-based object detectors have strug-

gled when applied to remote sensing.
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To further compound the challenges associated with de-

tecting small objects, most machine vision techniques op-

erate on images on the order of a few hundred pixels per

side, for example the 224 × 224 pixel images of Ima-

geNet [8]. Processing very high resolution (vHR) images

requires additional computation, time, and money, partic-

ularly in streaming applications. To be useful, approaches

to the detection problem must efficiently manage trade-offs

among computational cost, memory, and performance in an

application-specific manner.

Thoroughly searching such vHR images for objects ap-

pearing at varying scales motivates the development of un-

conventional approaches. Standard techniques relying on

CNNs involve processing sliding windows of full images.

The computational cost of this process increases quadrat-

ically with the size of the image, incurring large memory

and computational footprints that eventually become pro-

hibitive. In practice, the computational budget may be fixed,

leading to choices about how to prioritize window selection.

Objectives

We thus pursue two aims for this work: to achieve high-

performing object detection in vHR images and to develop

methods that scale according to data and computational

constraints.

We address these aims for two different detection scenar-

ios: (1) closed-set object detection, whereby we search for

instances of a fixed number of pre-identified object classes,

and (2) open-set target-guided search, where the algo-

rithm must find instances of a target class defined by only

a single image. Scenario (1) most closely resembles stan-

dard object detection scenarios, where a model is trained

and tested on a known set of classes. In scenario (2), the

classes are not known ahead of time. During training and

inference, the model is presented with a single target im-

age from which it must infer the target class and then detect

instances of that class in a vHR search image. In this sce-

nario, the target classes are defined by their target images

at each iteration and thus do not need to be constrained to

a fixed number of classes (hence the open set nature of the

problem).

To address the aforementioned challenges with object

detection in vHR images for these two scenarios, we de-

velop an approach to more efficiently “look” for objects be-

longing to classes of interest (Figure 1). Recent work [31]

has tackled aspects of this problem using deep reinforce-

ment learning (DRL). We instead address it through an ap-

proach that identifies regions of high potential objectness.

We use a probabilistic interpretation of object detection in

vHR images whereby predicted objectness maps act as pri-

ors for detection algorithms, allowing us to perform search

in a maximum-a-posteriori (MAP) setting.

2. Related Work

Recent research has tackled the problem of object de-

tection in visual data through the use of convolutional neu-

ral networks. R-CNN [12] and Fast-RCNN [11] rely on

selective search to identify proposal regions, while Faster-

RCNN [22] jointly identifies proposal regions and their

classes. The YOLO family of algorithms [20, 21, 2], on

the other hand, pass the entire image to a detection network.

They produce bounding boxes and object probabilities in a

single pass, leading to superior speed. More recently, Effi-

cientDet [29] used several algorithmic innovations to pro-

vide state-of-the-art detection performance in a quantifiably

more efficient manner. However, like prior methods, Effi-

cientDet struggles to detect small objects in large, cluttered

scenes. While all of these methods perform well on nat-

ural imagery, they are not immediately applicable to vHR

images. vHR images would need to be heavily downsam-

pled or at a minimum tiled just to enable processing through

standard architectures and on conventional GPU hardware.

Early work in applying DL-based object detectors to

overhead imagery [24, 9, 32, 26, 18, 16, 30] has focused on

challenges including very large changes in scale, the need

for rotation invariance, and limited amounts of training data.

While progress has been made in addressing these chal-

lenges, the issue of image resolution has largely been left

to naive windowing/tiling or multi-scale approaches. These

methods show improved detection results on large images

but do not address efficiency concerns.

Recent work [31] has allowed for targeted object detec-

tion in vHR images using DRL. This approach uses a two-

stage selection process on fixed grids of potential search

regions as a way to address efficiency challenges. Each

high-resolution (HR) grid tile is either downsampled or pro-

cessed natively by a conventional detection network, with

a learned policy being used to make the low- vs. high-

resolution determination. The DRL agent is trained to

choose which regions of an image to process at low reso-

lution (LR) and which regions to process at high resolution

(HR) in order to best balance efficiency with detection per-

formance.

Here we provide an approach that allows flexible sam-

pling of HR windows (also referred to as glimpses) as an

alternative to a fixed-grid approach. Our method does not

preclude the use of DRL to sample these glimpses, but our

focus is on finding a representation of vHR images that

eases glimpse selection and subsequent object detection. To

achieve this, we develop a method for estimating objectness

from low-resolution (LR) gist images that then guides our

glimpse-sampling approach. Finally, we demonstrate how

this approach can be used for open-set search in a MAP

framework.
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3. Methods

We discuss complementary approaches to object detec-

tion in vHR overhead images. In particular, we address ob-

ject detection in both closed and open-set scenarios, using

estimates of objectness based on low-resolution gist images

to guide the search and detection processes.

3.1. Efficient Closed­Set Detection

3.1.1 Objectness Estimation

We first develop an approach that allows our model to ex-

amine the full scene at low resolution (and with low compu-

tation cost), producing a saliency map to guide subsequent

high-resolution object detection. Specifically, we train a

deep neural network (DNN) to produce a density map of

objectness; that is, to produce a map that encodes the like-

lihood of regions containing objects from the classes we

wish to detect. In practice, given a high-resolution ground-

truth class-level semantic segmentation, Sc, we generate a

binary segmentation Sb by converting the class-level labels

to binary labels that represent the presence or absence of

an object (e.g., for each pixel, Sb(i, j) = 1 if Sc(i, j) ∈
{1, . . . , C} and Sb(i, j) = 0 otherwise).

To train the prediction model, we generate low-

resolution gist images Ig from the original vHR image IvHR

by resizing from the native resolution (e.g., 4000x4000) to

low-resolution (e.g., 128x128) and similarly scale Sb to get

a gist mask Sg of fixed dimensions, (wgist, hgist). For conve-

nience and following common practice, we assume images

are square (i.e., wgist = hgist = dgist). The scale factor, α, is

defined as

α =
dgist

dvHR

. (1)

As a result of the downsampling, we expect the gist images

to lose some class-level information and potentially even

reduce small objects beyond recognition (e.g., to one pixel).

However our intent is to produce density maps that capture

object likelihood, rather than a true segmentation. We find

that the gist images preserve sufficient context to support

those predictions (e.g., textures, co-occurring larger objects,

etc.).

Using the gist images, we train a U-Net [23] to produce

objectness density maps π from the gist images. Denoting

the U-Net as f , then f : Ig → π where πij ∈ [0, 1] ∀ i, j.

We define our training loss to be the binary cross-entropy

between the true object mask and the prediction,

Lπ = −
∑

i,j∈Sg

yij log(πij)− (1− yij) log(1− πij). (2)

Here yij is the true objectness value at pixel (i, j) and πij is

the objectness prediction at that same location representing

the likelihood that the corresponding location is occupied

by an object of interest.

In the event that the ground-truth segmentation is un-

available, an alternative is to convert bounding box anno-

tations to Gaussian densities of the same shape and normal-

ized to have a peak of 1 at the center. Supplemental experi-

ments demonstrated this to be an effective alternative when

high-quality ground truth is sparse.

3.1.2 Region Selection

Given the objectness maps as a prior, we aim to efficiently

achieve effective object detection through as few high-

resolution glimpses as possible. To disentangle the bene-

fits of the objectness map for detection from the results of

using more sophisticated glimpse-selection strategies (e.g.

DRL), we adopt the following simple yet highly-effective

approach. First, we define the appropriate glimpse image

dimensions as determined by the downstream object detec-

tor. Assuming square input images as before, we use dglimpse

to denote the final glimpse resolution. From this definition,

we can determine the corresponding size of a glimpse in the

gist image via d′glimpse = ceil(α · dglimpse).
Given the glimpse size relative to the gist image, we seek

to define a policy for sampling glimpses that maximizes the

detection of objects of interest. We initially focus on rule-

based policies that are deterministic and interpretable. Our

simple yet effective policy is described in Algorithm 1. The

method iteratively samples glimpses that maximize the to-

tal available objectness. This strategy allows for glimpses

to overlap each other, but can be easily modified by increas-

ing or decreasing the β term (for instance, β = −(d′2glimpse)
prevents any glimpse overlap).

At each step in the loop in Algorithm 1 we search for

where to glimpse next so that the sampled glimpse maxi-

mizes the total objectness contained within it. To speed up

this search, we first compute an integral image of the current

map π:

Sπ(i, j) =
∑

i′≤i,j′≤j

π(i′, j′) ∀ i, j (3)

From this table, we can easily search for the glimpse with

maximum objectness by simply summing over shifted (ac-

cording to d′LR) versions of Sπ and finding the location of

the maximum. Using Python-style notation to illustrate in-

dexing Sπ for the four shift operations, the glimpse with

maximum objectness over all search locations (x, y) can be

found according to:

px,y = argmax
x,y

(Sπ[: −d′LR, : −d′LR] + Sπ[d
′
LR :, d′LR :]) −

(Sπ[: −d′LR, d
′
LR :] + Sπ[d

′
LR :, : −d′LR])

(4)
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Algorithm 1: Glimpse Selection Policy

Result: Selection of a set of glimpses

Input : π : Objectness map prior of dimension dgist

dglimpse : Glimpse dimension in HR

image-space

α : Gist scaling factor

nglimpse : Maximum number of glimpses

β : Objectness penalty term [default=0]

Output: G : Set of selected glimpse locations

1 Compute d′glimpse = ceil(α · dglimpse);

2 Compute σ =
d′

glimpse

4
;

3 Generate Gaussian kernel, k with width σ and

dimension d′glimpse;

4 Compute π′ = conv(π, k);
5 G = {};

6 for i = 1 : nglimpse do

7 Generate Sπ′ according to (3);

8 Compute px,y according to (4);

9 Add px,y to G;

10 Reset objectness at glimpse location

π′[px : px + d′LR, py : py + d′LR] = β;

11 end

12 return G

3.1.3 Object Detection

Once the LR glimpse region has been selected, the corre-

sponding HR region from the vHR image is selected and in-

put to a DL-based object detector (e.g., YOLO) which pro-

duces the list of detections. The object detector is pretrained

to detect a closed set of object classes given tiles of the same

size as the HR glimpses. This glimpse/detection process is

repeated until one of three conditions is met: (1) the en-

tire image has been processed, (2) the cumulative object-

ness covered by the glimpses exceeds a pre-defined thresh-

old (e.g., > 95% objectness covered), or (3) the number

of glimpses processed fulfills a pre-defined computational

budget (e.g., a maximum of 10 glimpses).

3.2. Efficient Open­Set Object Detection and
Target­Guided Search

We now turn to the task of target-based, open-set search.

In this setting the goal is to search the image for tiles (sub-

images) that support the presence of a desired target object,

while relying on only a single example image of that tar-

get (which we denote here as o). During both training and

inference, the detector model is presented with a target im-

age from which it must implicitly infer a previously unseen

target class and a search image in which it must localize in-

stances of the target object and produce a set of tile locations

containing that target.

Consider a set of candidate search locations obtained by

tiling the original image into a set of sub-image tiles and

denote their coordinates as (i, j). To achieve the goal of

optimal open-set search, we use as criteria the likelihood

lo(i, j) that the specific target object be found at that loca-

tion. We estimate this likelihood by comparing the network

embedding representations f of the exemplar object image

o and the tile T (i, j):

lo(i, j) = cos(f(T (i, j)), f(o)). (5)

We use the second-to-last layer of ResNet50 as the embed-

ding function f(.) in computing this deep similarity lo(i, j).
We further consider a refined approach that uses a max-

imum a posteriori criteria, wherein we interpret the object-

ness probability πi,j (in Eq. (2)), integrated over a specific

tile (at coordinates (i, j)), as a prior that any object of in-

terest be present in that tile. The resulting a posteriori prob-

ability po(i, j) that the target object is present in the tile is

then:

po(i, j) = lo(i, j)πi,j . (6)

We use these above metrics to obtain a rank ordering by

deep similarity of tiles to visit. Our search policy is chosen

simply to visit tiles in decreasing order for either lo(i, j)
or po(i, j). We call global searches ordered by likelihood

lo(i, j) G-ML-MSTR (“global search / searching for most

similar to reference”) and global searchers ordered by a-

posteriori probability po(i, j) G-MAP-MSTR.

4. Experiments

4.1. Data

To test our objectness-based approach, we run an evalu-

ation on the DOTA/iSAID overhead dataset [34, 33] which

consists of 2806 overhead images ranging in size from

800x800 to 4000x4000. In order to test the ability of our

method to find objects that are small relative to the size of

the image, we narrow our evaluation to six object classes:

small vehicle, large vehicle, plane, helicopter, ship, and

storage tank (henceforth referred to as DOTA6).

We train all core models on the DOTA training split and

evaluate on the images of the validation split. Of the 458

images in the validation split, we test on only those contain-

ing at least one instance of the objects in DOTA6.

4.1.1 Baseline Object Detectors

In this work, we use a trained YOLOv3 detector operat-

ing on 512x512 tiles. Because we do not make any al-

gorithmic modifications to the HR-detector architecture it-

self, the quality of the detection results hinges on our algo-

rithm’s ability to select HR glimpses to evaluate. As such,
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Figure 2. (left) Ground truth instance annotation for all DOTA classes. (middle) Low-resolution gist objectness map produced by the U-Net

trained on DOTA6. (right) Original image with glimpse (cyan boxes) selections and detections (red dots). For a fixed budget of four HR

windows, this example illustrates the potential for objectness-guided search to search the most likely occupied regions of interest first. Note

that images are for visualization purposes only and are not shown to scale.

Figure 3. Precision, recall, and F1 score by object class in DOTA6 vs. the number of HR glimpses evaluated. Results are separated by

detection method (YOLOv3 vs. best-case oracle). The best case is that each metric reaches 1.0 in the fewest number of glimpses (denoted

as nhr).

our baselines were established to measure the quality of the

glimpse selection. We implemented several policies to sam-

ple glimpses either from a fixed grid or flexibly (allowing

possible overlap of glimpses). Baselines are described in

Table 1.

4.2. Closed­set Objectness­guided Detection

4.2.1 Objectness U-Net

For estimating objectness, we use a U-Net architecture

based on four downsampling and four upsampling blocks,

where each block down-/up-samples the input feature map

by a factor of two and then passes the result through two

blocks of {convolution, batch normalization, ReLU}. In-

puts to the U-Net model also pass through a similar block

before undergoing downsampling. At each downsampling

block the number of channels is doubled, starting at 64 and

ending at 512. Upsampling blocks concatenate the upsam-

pled feature maps with the maps from the skip connection

(achieving twice the original number of channels at the cor-

responding level in the downsampling path) and produce

feature maps with 512 channels at the lowest point of the

U-Net down to 64 channels at the highest point. Our U-

Net accepts inputs of dimensions 128x128x3 and returns a

1-channel objectness prediction of dimension 128x128.

Segmentation masks for the DOTA6 labels were con-

verted to a binary map and our U-Net was trained via back-

propagation using ADAM [14] optimization with a standard

Binary Cross Entropy loss (Eq. (2)) between the objectness

prediction and ground-truth mask.

Policy Description
grid Glimpses spaced uniformly with possible overlap for large nglimpse

grid fixed Non-overlapping tiles ordered randomly

random Overlapping glimpses whose coordinates are sampled uniformly

entropy Glimpses sampled according to entropy (highest to lowest)

unet Objectness-guided search according to Algorithm 1

unet fixed Objectness-guided (highest to lowest) search of non-overlapping tiles

Table 1. Glimpse selection policies

4.2.2 Closed-Set Detection Results

We evaluate our method using two approaches: (1) a

trained, state-of-the-art object detection model (see 4.1.1)

and (2) an oracle detector that correctly detects anything

within a sampled high-resolution glimpse. In so doing we
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Figure 4. Precision, recall, and F1 score averaged over object classes in DOTA6 vs. the number of HR glimpses evaluated. Results are

presented using the oracle detector.The best case is that each metric reaches 1.0 in the fewest number of glimpses (denoted as nhr).

decouple the effects of the glimpsing and object detection

strategies.

Additionally, in order to address computational effi-

ciency, we evaluate detection performance considering

cases with a fixed HR glimpse budget. Results are shown

in Figure 3. We determine true/false detections following

the standard practice of using an Intersection-over-Union

(IoU) threshold of 0.5 between predicted and true bounding

boxes.

Figure 4 shows performance averaged across all DOTA6

classes. Note that while the oracle detector (discussed

later) represents best case performance, it is still unable to

achieve perfect precision since there are cases where sam-

pled glimpses contain partial objects that fail to meet the

IoU detection threshold.

4.3. Open­Set Detection and Target Guided Search

We again use DOTA6 to evaluate our open-set search

strategies against the following baselines: a naive global

sliding window and local searches in predefined regions

maximizing similarity to the target tile, similarity to the ini-

tial location, and similarity to the current tile. The local

search is motivated by the observation that objects of inter-

est tend to cluster in specific regions (e.g. cars clustered in

a parking lot).

The sequences of search trajectories that these ap-

proaches generate are compared – for illustrative purposes

– in the lower panels of Figures 6, 7, and 8. In the top panes

of these figures, we plot the recall value as a function of

the number of search steps. Here we define recall in terms

of the ground truth locations and assume that the algorithm

recognizes an object when it lands upon it (i.e., oracle de-

tection).

An overall comparison of the different strategies over

a set of N=11 images is provided in Figure 5. It can be

seen that the best performance is achieved by the global ML

and MAP-guided approaches, with a clear benefit being ob-

served when the prior π(i, j) in used in the selection of the

next tile.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Agregated for all images:  recall = f(normalized # looks )
G-ML-MSTR (most similar to reference)
G-MAP-MSTR (prior-weighted most similar to reference)
G-SW (sliding window)
L-R (random in local neighborhood)
L-ML-MSTR (most similar to reference - in neighborhood)
L-MSTC (most similar to current - in neighborhood)

Figure 5. Performance (recall) comparison aggregated over all im-

ages for all proposed methods against all baselines described. The

y-axis is recall and the x-axis is the normalized number of looks

(where 1 indicates that all tiles in the image have been searched

and explored.)

5. Discussion

Several observations can be made about our approaches

and results.

In the closed-set paradigm, we find that conventional ob-

ject detectors, such as YOLOv3, exhibit poor performance

in the overhead domain. This is likely due to the differences

in object scale and density in overhead imagery compared to

the ground-level, natural images for which they were devel-

oped. The situation is further complicated by the inherent

variability of the DOTA dataset, which was gathered from

a variety of sensors and under a variety of imaging condi-

tions. DOTA therefore contains significant variation in both

image resolution and Ground Sample Distance (GSD).

In both the closed-set object detection and open-set

target-guided search tasks, our objectness maps provide a

strong prior for improving the efficiency of the search. The

objectness prior improves recall for closed-set detection,
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Figure 6. (top) performance comparison of MSTR-ML with other

baseline approaches: recall vs normalized number of looks. (bot-

tom) illustration of the search trajectory using MSTR-ML.

particularly in the first few glimpses. This attribute is im-

portant given typical computational budgets and because

of the absence of other detection methods for vHR over-

head imagery. In open-set target-guided search, we see that

global searches using similarity to the reference represen-

tation solidly outperform the baselines. A noticeable gain

is also seen when including the objectiveness prior in that

approach.

While we made considerable improvements over base-

line methods, closed-set object detection and open-set

search of overhead imagery remain areas ripe for future re-

search. Areas of future work may include extensions of the

current work in both the closed- and open-set settings by us-

ing objectness along with deep reinforcement learning [31]

and, when carrying out open-set search in the context of

applications in autonomy and robotics applications, the use

of Bayesian filtering [1] to improve smoothness of search

trajectories.

6. Conclusion

This study examines both closed-set object detection and

open-set target search. It proposes a method for predict-

ing pixel-level objectness from low resolution gist images,

0.0 0.2 0.4 0.6 0.8 1.0
normalized # looks

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

image: P1419        recall = f(normalized # looks)
most similar to reference
sliding window
random in neighborhood
most similar to reference - in neighborhood
most similar to current - in neighborhood

Figure 7. (top) performance comparison of MSTR-ML with other

baseline approaches: recall vs normalized number of looks. (bot-

tom) illustration of the search trajectory using MSTR-ML.

which is then used to choose high-resolution regions for ob-

ject detection and in a Bayesian approach for open-set vi-

sual target search. The objectness-guided approach is seen

to have benefits for improving the efficiency of vHR image

processing. This is true both for selecting HR glimpses and

for incorporation as a prior in open set target search. Both

approaches are shown to improve performance when com-

pared to baseline methods.
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