
LandCover.ai: Dataset for Automatic Mapping of Buildings, Woodlands, Water

and Roads from Aerial Imagery

Adrian Boguszewski

Linux Polska

Warsaw, Poland

adrian.boguszewski@linuxpolska.pl

Dominik Batorski

Interdisciplinary Centre for Mathematical and Computational Modelling

University of Warsaw, Poland

batorski@uw.edu.pl

Natalia Ziemba-Jankowska

Linux Polska

Warsaw, Poland

natalia.ziemba-jankowska@linuxpolska.pl

Tomasz Dziedzic

Linux Polska

Warsaw, Poland

tomasz.dziedzic@linuxpolska.pl

Anna Zambrzycka

Agency for Restructuring and Modernisation of Agriculture

Warsaw, Poland

anna.zambrzycka@arimr.gov.pl

Abstract

Monitoring of land cover and land use is crucial in nat-

ural resources management. Automatic visual mapping can

carry enormous economic value for agriculture, forestry, or

public administration. Satellite or aerial images combined

with computer vision and deep learning enable precise as-

sessment and can significantly speed up change detection.

Aerial imagery usually provides images with much higher

pixel resolution than satellite data allowing more detailed

mapping. However, there is still a lack of aerial datasets

made for the segmentation, covering rural areas with a res-

olution of tens centimeters per pixel, manual fine labels,

and highly publicly important environmental instances like

buildings, woods, water, or roads.

Here we introduce LandCover.ai (Land Cover from

Aerial Imagery) dataset for semantic segmentation. We col-

lected images of 216.27 km2 rural areas across Poland, a

country in Central Europe, 39.51 km2 with resolution 50 cm

per pixel and 176.76 km2 with resolution 25 cm per pixel

and manually fine annotated four following classes of ob-

jects: buildings, woodlands, water, and roads. Additionally,

we report simple benchmark results, achieving 85.56% of

mean intersection over union on the test set. It proves that

the automatic mapping of land cover is possible with a rel-

atively small, cost-efficient, RGB-only dataset. The dataset

is publicly available at https://landcover.ai/

1. Introduction

Monitoring and assessment of land cover and land use

are essential in natural resources management. Remote

sensing data and image processing techniques have been

widely used to provide a land description and change detec-

tion in urban and countryside areas. Detailed information

about land use or land cover is a valuable source in various

fields, such as urban planning [30, 43], change detection

[17], vegetation monitoring [2], or even military reconnais-

sance. Changes in land cover are important as an indica-

tor of environmental change [38, 37], forest cover dynam-

ics [32], and degradation [21] as well as one of the meth-

ods of biodiversity monitoring [31]. This type of data can

be used to investigate processes that take place in the land-

scape, such as flows between various land covers [16] al-

lowing to study the rate of urbanization, deforestation, agri-

cultural intensity, and other man-made changes.



The majority of those studies use multispectral satellite

imagery. Though such data are useful for many purposes,

the resolution of available free satellite data is generally

between 10 and 30 m [39] and high-resolution commer-

cial satellite images are rather expensive. The aerial pho-

tographs, often done by local and state government, usually

have a pixel size of 25-50 cm or even lower.

Aerial imagery used as a proper assessment of land par-

cel content carries high economic values for agricultural

and public administration. Taxes and government subsidies

depend on the nature of the parcel usage e.g. plantations

or buildings. However, human activity results in frequent

changes in the appearance and usage of parcels. To discover

these changes, new aerial orthophotos are required. Then it

is necessary to indicate and vectorize all objects that have

emerged or disappeared. For example, public agencies pay-

ing subsidies need to detect changes in classes of objects not

eligible for the payments. From the business point of view,

buildings, trees (including forests), water and roads are the

most common objects. These classes are also affected by

the dynamics of change over time.

Typically, the change detection process is carried out

manually or using simple image classification (object or

pixel [5, 23, 6, 2]). Most GIS-based programs provide a

large number of such tools. The operator browses individ-

ual orthophotos images and physically indicates the ”new”

objects. The whole process usually takes months through-

out the country. Our own experience shows that for the area

of over 312 000 km2 this workflow is very time-consuming

and results in a significant error level (on average above

30% over multiple years). Consequently, it is expensive to

manually encode large areas of land [17]. Therefore, it be-

comes necessary to develop an efficient automatic tool to

shorten the processing time and ensure higher accuracy.

The classical computer vision approach, based on man-

ually crafted feature extractors and rules, is insufficient in

case of high variance and large scale of data and effects

in the high effort and poor scalability. Deep learning with

convolutional neural networks (CNN) has started to play a

critical role in automatic change detection on aerial images

[22, 27, 28, 35]. The unique composition of features such as

scalability, affordability, and performance allows for quick

and accurate monitoring of much larger regions. Moreover,

it provides the possibility to detect changes over time e.g.

by comparing the semantic segmentation of particular ar-

eas for different moments. Unfortunately, the deep learning

approach usually requires large datasets with ground truth

annotations.

While aerial images are readily obtainable, the efforts to

generate high-quality datasets are limited by the enormous

effort required to create accompanying annotations. Simi-

lar to other domains, the lack of natural annotated datasets

is a limiting factor in the use of computer vision to land

cover segmentation. A few fine-annotated datasets have

been released recently [1, 10, 9, 26]. On the other hand,

[20] uses RGB orthophotos from Google Maps together

with weakly labeled training data automatically derive from

OpenStreetMap to detect buildings and roads.

However, none of the above provide segmentation of

buildings, woodlands, water, and roads simultaneously. To

address this issue, we introduce LandCover.ai (Land Cover

from Aerial Imagery) dataset suitable for semantic seg-

mentation, which contains four manually annotated classes

mentioned above. We collected images of 216.27 km2 of

lands across Poland, a medium-sized country in Central

Europe, 39.51 km2 with resolution 50 cm per pixel and

176.76 km2 with resolution 25 cm per pixel. Furthermore,

we provide some results of a baseline model as a benchmark

for comparison.

2. Related works

As mentioned, deep convolutional neural networks offer

significant speedup over the previous manual work but re-

quire properly annotated data. Most segmentation datasets

focus primarily on common objects or street views [12, 25],

but aerial or satellite imagery requires a different perspec-

tive and an adequate set of classes. There are some datasets

with aerial and satellite images.

One of the earliest satellite datasets is UC-Merced [41]

with 30 cm per pixel resolution and 21 categories like build-

ings, forest, and even rivers. However, it is prepared for

a classification of whole images, which is insufficient for

the segmentation task. Other similar datasets like WHU-RS

Dataset [24], RSSCN7 [18], AID [40], NWPU-RESISC45

[14], and PatternNet [44], which are mostly collected from

Google Maps, are for image classification also.

On the other hand, DOTA [3] and iSAID [42] are aerial

datasets made for multi-class detection and instance seg-

mentation respectively. Even though they have many cat-

egories (15 classes like vehicles, bridges, ships, but also

courts and game fields), they are inadequate for public agen-

cies’ responsibilities like natural resources management.

Datasets created only for buildings or vegetation seg-

mentation are useful but not entirely sufficient in land cover

change detection. Those datasets include the Massachusetts

Buildings Dataset [28], the Inria Aerial Image Labeling

Dataset [26], the AIRS Automatic Mapping of Buildings

Dataset [9], the Agriculture-Vision a Large Aerial Image

Database for Agricultural Pattern Analysis [10], and the

Tree Cover dataset for the year 2010 of the Metropolitan

Region of São Paulo [36].

ISPRS Vaihingen and Potsdam datasets [1] are manu-

ally annotated, but they are relatively small (fewer than 5

km2 of labeled data). Although they have the most com-

mon classes, water class is missing. Moreover, they mainly

cover urban areas.



Figure 1. Locations of selected orthophotos. The images were

taken from areas of diverse morphological, agrarian, and vegeta-

tion conditions.

Chesapeake Bay Land Cover Dataset [33] is very large

(∼160,000 km2, 2% of the USA), but has a lower resolution

(1 m) than desired and seems to be automatically annotated.

There are many useful classes (e.g. water, tree canopy, im-

pervious roads) but the category ”building” is missing.

Some popular aerial datasets are made with unmanned

aerial vehicles (UAVs) imagery. There are even UAVs video

datasets like ERA [29], UCLA Aerial Eve [4], or Okutama-

Action [34], but made for event recognition, therefore they

are not applicable.

3. The dataset

We decided to create a simple RGB-only dataset, fully

manually annotated, large, and diverse enough to train a

model for accurate semantic segmentation.

3.1. Data acquisition

The dataset consists of images selected from aerial pho-

tos used to develop the digital orthophoto covering the

whole of Poland. All images come from the public geodetic

resource and are compiled to update reference data of the

land parcel identification system (LPIS). Digital orthopho-

tos are made in cartesian ”1992” (EPSG:2180) co-ordinate

spatial reference system. Pictures were taken in spatial res-

olution of 25 or 50 cm per pixel with three spectral bands

RGB. They come from different years (2015 - 2018) and

flights. The photo-flying season in Poland begins in April

and lasts until the end of September. Therefore, the acquired

photos are characterized by a wide variety of optical condi-

tions. They include images of different saturation, angles of

sunlight, and shadow lengths. Simultaneously, the photos

are from varying periods of the vegetation season. It makes

this dataset robust and more applicable.

Figure 2. Diversity of selected images. Different regions, seasons,

time of day, weather, lighting conditions, etc.

For the sake of maximum diversity of the dataset, we

manually selected 41 orthophoto tiles from different coun-

ties located in all regions (as shown in Figure 1). Every tile

has about 5 km2. There are 33 images with resolution 25 cm

(ca. 9000 × 9500 px) and 8 images with resolution 50 cm

(ca. 4200 × 4700 px), what gives 176.76 km2 and 39.51

km2 respectively and 216.27 km2 overall. Figure 2 shows

samples of chosen images.

3.2. Land cover characteristics

The selected areas are located in Poland, i.e., in Central

Europe. The majority of Poland spreads in the eastern part

of the North European Plain. The country’s geographic re-

gions extend latitudinally, gradually passing from the low-

lands in the north and center to highlands and mountains

in the south of the country. The landscape is dominated by

agricultural areas with a varied agrarian structure (60%) as

well as coniferous, deciduous, and mixed forests (29.6%).

The Polish forest cover is similar to the average of Euro-

pean (excluding Russia) and North American (both about

33% of the area). Due to favorable climatic conditions,

Poland’s dominant forest type is coniferous forest (68.4%,

where pine accounts for 58%). There are 38 urban agglom-

erations with more than 100 000 inhabitants, including one

that exceeds 1 million. The extensive postglacial lake dis-

tricts occupy the north of Poland, but numerous pounds are

also scattered in the rest of the country.



Figure 3. Class ”building” means roof and all visible walls.

Figure 4. Narrow roads are annotated using polylines.

3.3. Classes

We decided to annotate the images using four classes:

building (1), woodland (2), water (3), and road (4) due to

their usefulness and importance for public administration

cases.

Building. An object standing permanently in one place.

Greenhouses are excluded. Our images are not true or-

thophotos, so each building is annotated as roof and visible

walls as shown in Figure 3.

Woodland. Land covered with trees standing in proxim-

ity. Single trees and orchards are excluded.

Water. Flowing and stagnant water including ponds and

pools. Ditches and dry riverbeds are excluded.

Road. The infrastructure used for road transport includ-

ing parking and unpaved roads, and rail transport including

tracks.

Background. Area not classified to any class. It can in-

clude e.g. fields, grass, pavements, and all objects excluded

from above.

3.4. Annotations

Annotations are made manually with VGG Image Anno-

tator (VIA) [15] by a group of people using polygon shape

and polyline (only for narrow roads) as shown in Figure 4.

Firstly we split every image into 2500 × 2500 px tiles for

convenience. Tiles do not overlap, so the last tile in ev-

ery row and all tiles in the last row are a little smaller. To

provide a high-quality dataset, we implemented a rigorous

procedure, so annotations are rather fine. A second per-

son reviewed every finished tile. After that, all results were

merged, and the segmentation mask was generated for each

image, as shown in Figure 5. The road mask was created by

replacing a polyline with a polygon shape with fixed thick-

ness.

Statistics are as follows. There are 12280 buildings

(1.85 km2), 72.02 km2 of woodlands, 13.15 km2 of water,

3.5 km2 of roads and 125.75 km2 of background in total.

3.5. Comparison to related datasets

Table 1 presents the comparison of the statistics between

the proposed dataset and closely related aerial datasets: In-

ria [26], AIRS [9], Massachusetts [28], Agriculture-Vision

[10], Tree Cover [36], ISPRS Potsdam and Vaihingen [1],

and Chesapeake Conservancy [33]. The older ones have a

worse resolution (Tree Cover, Massachusetts). Even newer

high-resolution datasets usually cover one class e.g. build-

ings (Inria, AIRS). ISPRS Potsdam and Vaihingen are high

resolution but cover an urban area only. Agriculture-Vision

and Chesapeake Conservancy were not available at the time

of our dataset creation. Furthermore, they do not have build-

ing class. Despite Chesapeake is really large, it has auto-

matic labels, which are coarse. Moreover, none of them ex-

cept Potsdam and Vaihingen are located in Europe, where

land cover (e.g. forest type) can be different.

In summary, there is no dataset with particular classes

(buildings, trees, water, roads) covering a rural area with

a resolution of tens centimeters per pixel and manual fine

labels.

4. Experiments

In order to know how general semantic segmentation net-

works perform on our dataset and to check if LandCover.ai

can be useful, we decided to create a baseline model. We

chose one of state-of-the-art architectures - DeepLabv3+ [8]

using modified Xception71 [8, 11, 13] with Dense Predic-

tion Cell (DPC) [7] as a backbone. Additionally, we per-

formed a few more experiments to check if data augmenta-

tion and some model modifications can improve results and,

if so, how much.



Figure 5. Close-ups of the images and their corresponding reference masks. Buildings are dark gray, woodlands are middle gray, water is

light gray and roads are white.

Dataset Location Classes
Coverage

(km2)

Resolution

(cm/px)
Annotations

Inria USA/Austria buildings 810 30 semi-automatic

AIRS
Christchurch

(New Zealand)
buildings 457 7.5 semi-automatic

Massachusetts

Buildings
Boston (USA) buildings 340 100 automatic

Massachusetts Roads Boston (USA) roads 2600 100 automatic

Tree Cover São Paulo (Brazil) trees 8000 100 automatic

Agriculture-Vision USA
9 (excluding

buildings and trees)
∼560 10/15/20 manual

ISPRS Potsdam Potsdam (Germany) 5 (excluding water) ∼1.4 5 manual

ISPRS Vaihingen Vaihingen (Germany) 5 (excluding water) ∼3.4 9 manual

Chesapeake

Conservancy

Chesapeake Bay

(USA)

13 (excluding

buildings)
∼160,000 100 automatic

LandCover.ai (ours) Poland

buildings,

woodlands, water,

roads

216 25/50 manual

Table 1. Comparison of similar aerial datasets for semantic segmentation. All of them have RGB channels except Agriculture-Vision and

ISPRS Potsdam and Vaihingen, which additionally have a near-infrared (NIR) band. Chesapeake Conservancy has 6 infrared channels

also. Further, Agriculture-Vision, ISPRS Potsdam and Vaihingen coverage are estimated, as they do not provide this information.

4.1. Data preparation

Firstly we split 41 images and their corresponding masks

into 512×512 tiles, getting rid of smaller ones (these on the

right and bottom edges), and we shuffled them. Then we

organized it as follows: 15% (1602) of tiles became test set,

15% (1602) of tiles became validation set, and the last 70%

(7470) became train set. We provide lists of the filenames

with the dataset.

4.2. Data augmentation

We believe that proper augmentation, which simulates

different flights and diverse land cover conditions, could be

useful, so we applied an offline augmentation to the train-

ing set with imgaug [19]. We added nine augmented copies

for every tile, randomly changing the following parame-



Figure 6. First sample in every row is the original image. The

next, augmented images try to simulate various: seasons, lighting

conditions, haziness, sizes of objects, etc.

ters: hue, saturation, grayscale, contrast, brightness, sharp-

ness, adding noise, doing flipping, rotation, cropping, and

padding. Therefore, we reached 74700 samples in the train-

ing set. Figure 6 presents sample augmentations.

4.3. Training

To train the network, we utilized a single NVIDIA Ti-

tan RTX GPU with 24GB of memory. We used Xception71

DPC pretrained on Cityscapes [12] to initialize weights and

set decoder output stride = 4. Then we performed a few ex-

periments changing encoder output stride from 16 to 4 along

with batch size and atrous rates accordingly. We provided

appropriate loss weights to counteract unbalanced area sizes

of particular classes also. The other hyperparameters re-

mained as default (as described in [8]).

To evaluate the model, we use the mean intersection over

union (mIoU), which is the standard metric for semantic

segmentation. The mIoU is the average of intersection over

union (IoU) across all classes. And IoU is defined as the

area of overlap between the ground truth and predicted class

divided by the area of their union.

We finished the training when there was no significant

gain of mIoU on the validation set.

4.4. Results

In table 2, we report the results obtained on the test set

using IoU metrics. Figure 7 shows close-ups of images,

labels, and result segmentation.

Roads and buildings are the most challenging classes for

semantic segmentation, as they are often narrow (roads)

or small (buildings). Hence they have fewer inner pixels,

which are easier to classify correctly. In that case, impre-

cise edges cause greater error. Moreover, they are some-

times obscured by other objects like trees.

The baseline DeepLabv3+ model reaches 81.81% of

mIoU of the entire test set. Smaller output stride provides

better results, finally giving 84.09%. Augmentation further

improves the metrics by 1.47% reaching 85.56%.

The results prove that automatic mapping from aerial im-

ages is possible with deep learning and a relatively small

dataset.

5. Conclusions

In this work, we present a unique RGB-only Land-

Cover.ai dataset with aerial data typical for Central Europe,

manually annotated for four classes: buildings, woodlands,

water, and roads. The dataset is high resolution (tens cen-

timeters per pixel), covers various rural areas and contain

images with various optical conditions and periods of the

vegetation season. In order to prove the usefulness of the

dataset, we provide the results of a few baseline experiments

using a state-of-the-art deep learning model - DeepLabv3+.

As we demonstrate, the dataset can be used to create

tools for automatic mapping using neural networks. This

allows for improving the efficiency and accuracy of iden-

tifying changes in land use and land cover. Therefore, it

can be beneficial in various domains, such as administra-

tion, agriculture, forestry, and water resource management.

Moreover, LandCover.ai fills an important gap as there was

a lack of open aerial datasets useful for this type of applica-

tion.

In the future, we plan to develop LandCover.ai by adding

more classes e.g. fields, ditches, as well as splitting existing

general classes like water into detailed e.g. lake, river, pond,

and pool.

We make this dataset publicly available to encourage its

future development and use.
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