
DALES: A Large-scale Aerial LiDAR Data Set for Semantic Segmentation

Nina Varney, Vijayan K. Asari and Quinn Graehling

Department of Electrical Engineering, University of Dayton

{varneyn1, vasari1, graehlingq1}@udayton.edu

Abstract

We present the Dayton Annotated LiDAR Earth Scan

(DALES) data set, a new large-scale aerial LiDAR data

set with over a half-billion hand-labeled points spanning 10

km2 of area and eight object categories. Large annotated

point cloud data sets have become the standard for evalu-

ating deep learning methods. However, most of the existing

data sets focus on data collected from a mobile or terres-

trial scanner with few focusing on aerial data. Point cloud

data collected from an Aerial Laser Scanner (ALS) presents

a new set of challenges and applications in areas such as

3D urban modeling and large-scale surveillance. DALES

is the most extensive publicly available ALS data set with

over 400 times the number of points and six times the res-

olution of other currently available annotated aerial point

cloud data sets. This data set gives a critical number of ex-

pert verified hand-labeled points for the evaluation of new

3D deep learning algorithms, helping to expand the focus

of current algorithms to aerial data. We describe the na-

ture of our data, annotation workflow, and provide a bench-

mark of current state-of-the-art algorithm performance on

the DALES data set.

1. Introduction

The recent surge in autonomous driving and its use of Li-

DAR as part of the sensor suite has resulted in an enormous

boost in research involving 3D data. Previously, the cost of

LiDAR was a barrier to its widespread usage, but this barrier

has been removed with the introduction of low-cost LiDAR.

As the price of these devices continues to drop, there will

be more research into developing algorithms to process Li-

DAR data, with the most prominent task being the semantic

segmentation of LiDAR scenes. Semantic segmentation is

a low-level product required for a variety of applications,

including wireless signal mapping, forest fire management,

terrain modeling, and public utility asset management.

Conducting deep learning on point clouds adds addi-

Figure 1: Random sections taken from the tiles of our

DALES data set. Each point is labeled by object category;

ground (blue), vegetation (dark green), power lines (light

green), poles (orange), buildings (red), fences (light blue),

trucks (yellow), cars (pink), unknown (dark blue)

tional layers of complexity. The additional dimensional-

ity greatly increases the number of parameters in the net-

work. At the same time, the unstructured nature of the point

cloud makes it incompatible with the convolutions deployed

in traditional 2D imagery. PointNet++ and its predecessor

PointNet [17, 18] attempt to rectify this issue by mapping

the 3D points into a higher dimensional feature space. This



structured feature space allows the network to operate di-

rectly on the 3D points themselves instead of transforming

them into an intermediate representation, such as voxels.

Since the debut of PointNet, there has been a huge advance-

ment and interest in the development of deep learning net-

works to work with unordered points.

The increased interest in working with LiDAR data, as

well as advancement in methodology to operate directly on

3D points, has created a need for more point cloud data sets.

There has been a wide range of data sets released for se-

mantic segmentation from ground-based laser scanners, ei-

ther static Terrestrial Laser Scanners (TLS) or Mobile Laser

Scanners (MLS). These ground-based data sets include the

Paris-Lille-3D, Sydney Urban Objects, and Semantic 3D

data sets [7, 19, 21]. However, there is a significant gap

when considering the available aerial LiDAR data sets. For

comparison, the ISPRS 3D Semantic Labeling data set [20]

is the primary available airborne data set with just over one

million points.

There are several critical differences between aerial laser

scanners (ALS) and other types of laser scanners. The first

is the sensor orientation: ground-based laser scanners have

a lateral sensor orientation, while aerial laser scanners col-

lect data from a nadir orientation. This difference in sen-

sor position means that, for the same scene, the resulting

point clouds have significant differences both in point loca-

tion and areas of occlusion. For example, buildings can be

represented by the facade or the roof, depending on the ori-

entation of the sensor. Another key difference is the point

resolution: ground-based scanners, especially static scan-

ners, have a much higher resolution but tend to lose resolu-

tion at areas further away from the scanner.

In comparison, the resolution in aerial LiDAR is lower

overall but more consistent across a large area. The applica-

tions and object types also differ between ground-based and

aerial sensors. Ground-based sensors have relatively small

scenes, with a maximum range of around 200 meters. In

contrast, airborne sensors can collect broad swaths of data

over miles, making it appropriate for surveying, urban plan-

ning, and other Geographic Information System (GIS) ap-

plications. Finally, aerial LiDAR can be significantly more

expensive due to the cost of both the sensor and the collec-

tion.

The above differences stress the importance of develop-

ing an ALS data set similar to those already existing for

ground-based sensors. Inspired by the initial work of the

ISPRS 3D Semantic Labeling data set, our goal is to present

a critical number of labeled points for use within the context

of a deep learning algorithm. Our objective is to expand the

focus of current semantic segmentation algorithm develop-

ment to include aerial point cloud data.

We present the Dayton Annotated LiDAR Earth Scan

(DALES) data set, a semantic segmentation data set for

aerial LiDAR. DALES contains forty scenes of dense, la-

beled aerial data spanning eight categories and multiple

scene types including urban, suburban, rural, and commer-

cial. This data set is the largest and densest publicly avail-

able semantic segmentation data set for aerial LiDAR. We

focus on object categories that span a variety of applica-

tions. We work to identify distinct and meaningful object

categories that are specific to the applications, avoiding re-

dundant classes, like high and low vegetation. We have

meticulously hand labeled each of these point clouds into

the following categories: ground, vegetation, cars, trucks,

poles, power lines, fences, buildings, and unknown. Figure

1 shows examples of object labeling. We split the data set

into roughly 70% training and 30% testing. For ease of im-

plementation, we provide this data set in a variety of input

formats, including .las, .txt, and .ply files, all structured to

match the input formats of other prominent data sets.

In addition to providing the data, we evaluated six state-

of-the-art algorithms: KPConv [8], ConvPoint [2], Point-

Net++ [18], PointCNN [11], ShellNet [28] and Superpoint

Graphs [10]. We evaluated these algorithms based on mean

Intersection Over Union (IoU), per class IoU, Class Con-

sistency Index (CCI), and overall accuracy. We also make

recommendations for evaluation metrics to use with point

cloud data sets. Our contributions are as follows:

• Introduce the largest publicly available, expert labeled

aerial LiDAR data set for semantic segmentation

• Test state-of-the-art deep learning algorithms on our

benchmark data set

• Suggest additional evaluation metrics to measure algo-

rithm performance

2. Related Work

The development of any supervised deep learning

method requires a high quality labeled data set. Tradition-

ally, the field has relied on benchmark data sets to judge the

success of a network and compare performance across dif-

ferent methods. Large-scale benchmark data sets, such as

ImageNet [9] and COCO [12], have become the standard

for 2D imagery, containing pre-separated training and test-

ing data to evaluate performance between methods. This

has expanded into other data types, including point clouds

[1, 3, 4, 5, 6, 15, 24, 25, 27].

LiDAR provides rich spatial data with a higher level of

accuracy than other sensors, like RGB-D. Also, the cost of

LiDAR sensors has decreased dramatically in recent years.

As time goes on, more architectures have switched to us-

ing LiDAR data for training and testing. This switch to Li-

DAR data has meant a drastic increase in the demand for

large-scale data sets captured with laser scanners. Table 1

presents a non-exhaustive list of some of the most popular

laser scanning data sets. Most of these data sets, such as



Table 1: Comparison of 3D Data Sets

Name Sensor Platform RGB Number of Points Number of Classes

DALES (Ours) aerial ✗ 505M 8

ISPRS [20] aerial ✗ 1.2M 9

Sydney Urban Objects [19] mobile ✗ 2.3M 26

IQmulus [26] mobile ✗ 300M 22

Oakland [14] mobile ✗ 1.6M 44

Paris-rue-Madame [23] mobile ✗ 20M 17

Paris-Lille-3D [21] mobile ✗ 143M 50

Semantic 3D [7] static ✓ 4000M 8

Sydney Urban Objects, Paris-rue-Madame, and Paris-Lille-

3D [14, 19, 21, 23] provide point cloud data from a sensor

mounted on a moving vehicle traveling through urban en-

vironments. These MLS data sets have a much lower point

density than a static sensor.

One publicly available 3D data set, Semantic 3D [7],

contains outdoor scene captures with a notably high den-

sity of points. The scenes, collected with a TLS or static

scanner, depict several different urban environments rang-

ing from churches to small buildings, reaching a total of

4 billion points. Semantic 3D also provides eight labeled

classes: man-made terrain, natural terrain, high vegetation,

low vegetation, buildings, hardscape, scanning artifacts, and

cars. This data set was groundbreaking and provided one of

the first significant benchmarks in high-density outdoor 3D

data sets. Although dense data sets exist for ground and

mobile sensors, they cannot be used for aerial LiDAR ap-

plications because of fundamental differences in the sensor

orientation, resolution consistency, and areas of occlusion.

Research in the field of aerial LiDAR requires a new type

of annotated data, specific to aerial sensors.

The ISPRS 3D Semantic Labeling data set [20] provides

one of the only annotated data sets collected from an ALS

sensor. These scenes depict point cloud representations of

Vaihingen, Germany, consisting of three views with nine la-

beled point categories: power line, low vegetation, impervi-

ous surfaces, car, fence/hedge, roof, facade, shrub, and tree.

The point clouds for each of these captures has a point den-

sity of 5-7 ppm and around 1.2 million points total. Though

this data set was notable in providing one of the first sets

of high quality labeled point cloud data captured from an

aerial view, both the resolution and number of points are

insufficient for deep learning applications.

3. DALES: The Data Set

We offer a semantic segmentation benchmark made ex-

clusively of aerial LiDAR data. For each point within an

unordered point set, a class label can be inferred. We review

the data collection, point density, data preparation, prepro-

cessing, 3D annotation, and final data format.

3.1. Initial Data Collection

The data was collected using a Riegl Q1560 dual-

channel system flown in a Piper PA31 Panther Navajo.

The entire aerial LiDAR collection spanned 330 km2 over

the City of Surrey in British Columbia, Canada and was

collected over two days. The altitude was 1300 meters,

with a 400% minimum overlap. The final data projection

is UTM zone 10N, the horizontal datum is NAD83, and

the vertical datum is CGVD28, using the metro Vancou-

ver Geoid. Trimble R10 GNSS receivers collected ground

control points with an accuracy within 1-2 cm.

Each area collected a minimum of 5 laser pulses per me-

ter in the north, south, east, and west direction, providing a

minimum of 20 ppm and minimizing occlusions from each

direction. An accuracy assessment was performed using the

ground control points along with a visual inspection, match-

ing the corners and hard surfaces from each pass. The mean

error was determined to be ± 8.5 cm at 95% confidence for

the hard surface vertical accuracy.

Along with the projected LiDAR information, a Digi-

tal Elevation Model (DEM) or bare earth model was calcu-

lated by a progressive triangulated irregular network (TIN)

interpolation using Terrascan software. The DEM was

then manually checked for inconsistencies and also cross-

referenced with ground control points from the original col-

lection. The final DEM resolution is 1 meter.

3.2. Point Density

One of the main differences between a static sensor and

an aerial sensor is the existence of multiple returns. The

distance between the object and the sensor causes the di-

ameter of the pulse to be much larger than it would be in

a ground or mobile-based sensor. The large diameter may

cause the pulse to hit several different objects at distinct

distances from the sensor. For this reason, a single laser



pulse can result in multiple points in the final point cloud,

allowing these sensors to achieve greater resolution, espe-

cially in high-frequency areas such as vegetation. In this

data collection, we track as many as four returns from one

single pulse. While this phenomenon increases spatial res-

olution during collection, it also introduces a unique differ-

ence from ground-based LiDAR and highlights a need for

additional data sets to improve deep learning models. In this

particular data set, the minimum guaranteed resolution dur-

ing collection was 20 ppm for first returns (i.e., one point

per pulse). We measured an average of 50 ppm, after initial

noise filtering, when including all returns.

3.3. Data Preparation

We focused our initial labeling effort on a 10 km2 area.

The final data set consists of forty tiles, each spanning 0.5

km2. On average, each tile contains 12 million points and

has a resolution of 50 ppm. Unlike other data sets, our

scenes do not have any overlap with neighboring tiles, so

no portion of the scene is replicated in any other part of the

data set, making each scene distinctly unique.

We examine all of the original tiles and cross-reference

them with satellite imagery to select an appropriate mix-

ture of scenes. Although the area is limited to a single mu-

nicipality, there is a good mix of scenes and a variety of

landscapes to avoid potential over-fitting. We consider four

scene types; commercial, urban, rural, and suburban, which

we define primarily by the type and number of buildings

contained within each scene:

• Commercial: warehouses and office parks
• Urban: high rise buildings, greater than four stories
• Rural: natural objects with a few scattered buildings
• Suburban: concentration of single-family homes

3.4. Preprocessing

Aerial LiDAR is subject to sparse noise within the point

cloud. Noise can come from atmospheric effect, reflective

surfaces, or measurement error. Despite an initial noise re-

moval in the Terrascan software, we still found some errant

noise, especially at high altitudes. Noise can have disas-

trous effects when performing semantic segmentation, espe-

cially with approaches that make use of voxels where a sin-

gle noise point can explode the amount of memory needed

for processing. De-noising is performed using a statistical

outlier removal [16] to remove sporadic points. This filter

removes an average of only 11 points per tile but drastically

reduces the overall bounding box in the Z direction, result-

ing in a reduction of 50%.

3.5. Object Categories

We selected our object categories with a focus on appeal-

ing to a wide variety of applications, including utility moni-

toring, urban planning, mapping, and forestry management.

We consider eight object categories, which have a wide va-

riety of shapes and sizes. We choose our object categories to

be distinct and err on the side of fewer categories to avoid

object classes that are too similar to one another, such as

high and low vegetation or man-made terrain versus natu-

ral terrain. The categories are as follows: buildings, cars,

trucks, poles, power lines, fences, ground, and vegetation.

We also include a category of unknown objects which en-

compass objects that were hand-labeled but did not have a

critical mass of points to be effectively labeled by a deep

learning algorithm. This unknown category included some

classes such as substations, construction equipment, play-

grounds, water, and bridges. Unknown points were labeled

with a 0 and left in the scene for continuity. We do not

consider unknown points in the final assessment. Figure 5

shows a cross-section of a tile, labeled by object category. A

non-exhaustive list of the types of objects included in each

category is below:

• Ground: impervious surfaces, grass, rough terrain
• Vegetation: trees, shrubs, hedges, bushes
• Cars: sedans, vans, SUVs
• Trucks: semi-trucks, box-trucks, recreational vehicles
• Power lines: transmission and distribution lines
• Poles: power line poles, light poles and transmission

towers
• Fences: residential fences and highway barriers
• Buildings: residential, high-rises and warehouses

3.6. 3D Annotation

We obtained a high accuracy DEM from the original

data collection and used it to initially label all points within

0.025 meters vertical distance of the DEM as ground points.

After the ground points were labeled and removed, we cal-

culated a local neighborhood of points using K Nearest

Neighbors [13]. We established a surface normal for each

point using the method from [22]. This surface normal

identifies planar objects that will most likely be buildings.

Using this as a starting point, manual analysis is required

for refinement. About 80% of building points are labeled

using the surface normals, and the rest are hand-selected

by human annotators. All objects outside of the building

and ground category are exclusively hand-labeled, focusing

on labeling large objects first and then iteratively selecting

smaller and smaller objects. Satellite imagery, although not

time synced, is also used to provide contextual information

that may be useful to the annotator. Finally, we used the

DEM to calculate height from ground for each point, which

can also provide additional information to the human an-

notator. After initial annotation, the scene is confirmed by

a minimum of two different annotators to ensure labeling

quality and consensus between object categories.

After an initial hand labeling, we sorted the data set by

object category and re-examined to check for labeling qual-



Figure 2: Example of our DALES tiles. Semantic classes are labeled by color; ground (blue), vegetation (dark green), power

lines (light green), poles (orange), buildings (red), fences (light blue), trucks (yellow), cars (pink), unknown (dark blue)

Figure 3: Point distribution across object categories

ity and consistency across labels. We used Euclidean clus-

tering to provide a rough idea of the number of object in-

stances. Additionally, after labeling, we decided to include

extremely low vegetation (< 0.2 meters) in the ground class

to avoid confusion between object classes. The ground class

encompasses both natural terrain, like grass, and man-made

terrain, like asphalt.

3.7. Final Data Format

The final data format consists of forty tiles, 0.5 km2

each, in the Airborne Laser standardized format (LAS 1.2).

We provide the easting, northing, Z, and object category

in their original UTM Zone 10N coordinates. We make the

original coordinates available for those that may want to ex-

plore a fused data approach. For consistency with other data

sets, we provide the same data as .ply files (Paris-Lille-3D

data set), and .txt and .label files (Semantic 3D data set). For

these files, the points follow the same order, but they con-

tain X, Y, and Z, we set the minimum point at (0,0,0). We

have randomly split the data into training and testing with

roughly a 70/30 percentage split with 29 tiles for training

and 11 for testing. Examples of the final labeled tiles are

shown in Figure 2

4. Benchmark Statistics

We examine the data set in terms of content and com-

plexity and make an initial assessment of the difficulty of

this benchmark. Figure 3 shows the approximate point dis-



Figure 4: Surface normal correlation per classes

tribution per class. The training and testing scenes have a

similar distribution, except the unknown category, which we

do not consider. As is expected, the ground class has the

most points, taking up almost 50% of the entire data set.

This distribution would be the case for almost any scene,

except for a dense urban city.

Vegetation is the second-largest class, with around 30%

of the entire point set. We expect this distribution because

not only is vegetation a commonly occurring category, but

we also decided to keep multiple returns in the data set.

Poles have the fewest total points, making them one of

the most difficult objects to classify. We performed a rough

Euclidean clustering and estimated around 1100 unique

pole objects in our data set; however, the nadir perspective

of the sensor makes it difficult to capture many points on

poles. The data set has around 340 points per pole object;

these are the smallest and most challenging to detect. Ad-

ditionally, every class aside from ground, vegetation, and

buildings makes up less than 1% of the data set. Object cat-

egory disparity is a signature of aerial LiDAR data and is

the biggest challenge when processing data.

Expanding on the problem of context and class dispar-

ity, many methods, such as PointNet and those based on it,

take a set number of points from a fixed bounding box. A

smaller bounding box may not have enough scene informa-

tion to correctly identify the points, while a larger bounding

box may not have enough points per object to detect smaller

objects. This bounding box limitation is an additional chal-

lenge for methods that focus on ground-based sensors.

To get an initial assessment of the similarity between

shapes in our object categories, we calculated the surface

normal on a per point basis by using least-squares plane es-

timation in a local area. The normal orientations are flipped,

utilizing the sensor location as the viewpoint. We created a

histogram of these surface normals for each class and com-

puted the correlation across all categories. Figure 4 shows

the correlation heat map. Although surface normals do not

totally describe the object relationships, we can see several

places where strong associations occur, such as between

buildings, trucks, and ground. It can be noted that because

we choose several commercial areas, the truck object cat-

egory includes mostly semi-trucks and box trucks, which

share many geometric features with buildings. The truck

category is challenging to detect due to its strong correla-

tion with other larger object categories.

5. Evaluation

5.1. Metrics

We follow the evaluation metrics of similar MLS and

TLS benchmarks and use the mean IoU as our main metric.

We first define the per class IoU as:

IoU i =
cii

cii +
∑

j 6=i

cij +
∑

k 6=i

cki
(1)

The mean IoU is simply the mean across all eight

categories, excluding the unknown category, of the form:

IoU =

N∑

i=1

IoU i

N
(2)

We also report the overall accuracy. The measurement

of overall accuracy can be deceiving when examining a

data set with a significant disparity between categories.

High accuracy numbers do not necessarily mean a good

result across all categories, but we report it for consistency

with other point cloud benchmarks. The overall accuracy

can be calculated as follows:

OA =

∑N

i=1
cii

N∑

j=1

N∑

k=1

cjk

(3)

We assess the results in terms of their box and whisker

plots and observe the distribution between the lower and

upper quartile. When evaluating the success of an algo-

rithm, we wish to ensure that the results have both a high

mean IoU and a low standard deviation across all classes.

We examine the lower and upper quartiles as a measure of

the robustness in the performance of a method. Finally, we

establish a metric called Class Consistency Index (CCI),

which we define as the complement of the in-class variance

over the mean IoU, shown below:



Figure 5: Cross section of a DALES tile. Semantic classes are labeled by color; ground (blue), vegetation (dark green), power

lines (light green), poles (orange), buildings (red), fences (light blue), trucks (yellow), cars (pink), unknown (dark blue)

IoU

Method OA mean ground buildings cars trucks poles power lines fences veg

KPConv [8] 0.978 0.811 0.971 0.966 0.853 0.419 0.750 0.955 0.635 0.941

PointNet++ [18] 0.957 0.683 0.941 0.891 0.754 0.303 0.400 0.799 0.462 0.912

ConvPoint [2] 0.972 0.674 0.969 0.963 0.755 0.217 0.403 0.867 0.296 0.919

SuperPoint [10] 0.955 0.606 0.947 0.934 0.629 0.187 0.285 0.652 0.336 0.879

PointCNN [11] 0.972 0.584 0.975 0.957 0.406 0.048 0.576 0.267 0.526 0.917

ShellNet [28] 0.964 0.574 0.960 0.954 0.322 0.396 0.200 0.274 0.600 0.884

Table 2: Overview of the selected methods on the DALES data set. We report the overall accuracy, mean IoU and per class

IoU, for each category. KPConv outperforms all other methods on our DALES data set. We also note that all methods had a

large variance between object categories.

Figure 6: Algorithm per class IoU performance distribution

CCI = 1−
σ2

|IoU |
(4)

We also examine the CCI versus the mean IoU in the form

of an Algorithm Performance Map. A robust algorithm has

both a high mean IoU and a high CCI, indicating that it

not only has high performance but that the performance is

uniform across each class.

5.2. Algorithm Performance

We selected six benchmark algorithms and tested their

performance on our data set. We chose the algorithms

based on their strong performance on similar MLS and TLS

benchmarks, focusing specifically on deep learning meth-

ods that perform well in Semantic 3D and Paris-Lille-3D.

We also examined the top performers in the ISPRS data

set, but because these methods were not state-of-the-art, we

did not select any of those methods. We selected only al-

gorithms that have published results and available codes.

The six networks we selected are PointNet++, KPConv,

PointCNN, ConvPoint, ShellNet, and Superpoint Graphs.

Table 2 shows the networks and their performance on the

DALES data set. For each network, we used the code from



Figure 7: Algorithm Performance Map across six tested

benchmark algorithms

the original authors GitHub, and we optimized the training

loss by tuning over a minimum of four runs with various pa-

rameters for each network. The best result from the multiple

training runs are selected as the algorithms performance.

Overall, we find many similarities between the networks.

The ground, vegetation, and building categories had strong

performances over all of the networks. This strong perfor-

mance is likely due to the abundance of points and exam-

ples of these categories in the data set. Alternatively, trucks,

fences, and poles have a much lower IoU, which correlates

to the number of points in each category.

The KPConv architecture has a notably strong perfor-

mance on our data set with a mean IoU of 81.1%, over

10% higher than other networks. One difference between

the KPConv architecture and other methods (except for Su-

perpoint Graphs), is that KPConv did not rely on the selec-

tion of a fixed number of points within a bounding box. This

method of batch selection makes it difficult to select a wide

enough bounding box to adequately get scene context while

also having enough points to identify small objects. In this

configuration for a TLS or MLS sensor, large objects such

as building walls run perpendicular to the bounding box, al-

lowing the bounding box to contain other crucial contextual

information. In our case, the large objects are building roofs

that run parallel to the X and Y bounding box. In this case,

a single object can take up the entire bounding box, making

the points challenging to identify without additional con-

text. We increased the size of the bounding box and also the

number of points in each batch. However, this significantly

increased memory and run time.

We observed consistently low performances in the truck

object category. As discussed above, this category contains

mostly semi-trucks and box trucks located in commercial

areas. We show that the trucks have a high surface nor-

mal correlation to both the ground and building categories,

both of which have significantly more training examples.

This point distribution issue explains the poor performance

in this object category across all methods and identifies an

area for further improvement.

We also examine the box and whisker plots when evalu-

ating network performance. From Table 2, all networks per-

form well in our three most dominant categories: ground,

vegetation, and buildings. However, performance begins

to vary drastically as the number of points, and object size

decreased. These differences in per class IOU results are

demonstrated in Figure 6. We also plot an Algorithm Per-

formance Map shown in Figure 7 and show that KPConv

has the highest rating based on our mapping, both in mean

IoU and CCI. We can also use the Algorithm Performance

Map to make distinctions between methods with similar

mean IoU performance.

We welcome the authors of the benchmarked algorithms

to submit the results from their implementations. We hope

that this data set is useful for the entire research community,

and we look forward to additional submissions from other

researchers. We deliver the full annotated data set, sepa-

rated into training and testing. We also provide a website

with options for downloading the data, as well as a leader

board for submitting and tracking published results. The

full DALES data set is available at go.udayton.edu/

dales3d.

6. Conclusion

We presented a large scale ALS benchmark data set con-

sisting of eight hand-labeled classes and over half a billion

labeled points, spanning an area of 10 km2. This data set is

the most extensive publicly available aerial LiDAR data set

of its kind. We evaluated the performance of six state-of-

the-art algorithms on our data set. The results of the perfor-

mance on this data set show that there is room for improve-

ment in current methods, especially in their ability to eval-

uate semantic segmentation in classes of different physical

sizes and number of points. We hope that this benchmark

can be a resource for the research community and help ad-

vance the field of deep learning within aerial LiDAR. For

future work, we will continue this labeling effort to include

more classes and eventually encompass the entire 330 km2

area and present this data as a challenge to the earth vision

community.

7. Acknowledgement

The data set presented in this paper contains Informa-

tion licensed under the Open Government License – City of

Surrey.



References

[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3D semantic

parsing of large-scale indoor spaces. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1534–1543, 2016. 2

[2] Alexandre Boulch. ConvPoint: Continuous convolutions for

point cloud processing. arXiv preprint arXiv:1904.02375,

2019. 2, 7

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-

D data in indoor environments. International Conference on

3D Vision (3DV), 2017. 2

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:

Richly-annotated 3D reconstructions of indoor scenes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5828–5839, 2017. 2

[5] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? The KITTI vision benchmark

suite. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 3354–3361. IEEE, 2012. 2

[6] David Griffiths and Jan Boehm. Synthcity: A large scale syn-

thetic point cloud. arXiv preprint arXiv:1907.04758, 2019.

2

[7] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan D Weg-

ner, Konrad Schindler, and Marc Pollefeys. Semantic3D.

net: A new large-scale point cloud classification benchmark.

arXiv preprint arXiv:1704.03847, 2017. 2, 3

[8] Thomas Hugues, Charles R Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J

Guibas. KPConv: Flexible and deformable convolution for

point clouds. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 6411–6420, 2019. 2, 7

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012. 2

[10] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4558–4567, 2018. 2, 7

[11] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan

Di, and Baoquan Chen. PointCNN: Convolution on X-

transformed points. In Advances in neural information pro-

cessing systems, pages 820–830, 2018. 2, 7

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

European Conference on Computer Vision, pages 740–755.

Springer, 2014. 2

[13] Antonio Mucherino, Petraq J Papajorgji, and Panos M Parda-

los. K-nearest neighbor classification. In Data mining in

agriculture, pages 83–106. Springer, 2009. 4

[14] Daniel Munoz, J Andrew Bagnell, Nicolas Vandapel, and

Martial Hebert. Contextual classification with functional

max-margin Markov networks. In 2009 IEEE Conference on

Computer Vision and Pattern Recognition, pages 975–982.

IEEE, 2009. 3

[15] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob

Fergus. Indoor segmentation and support inference from

RGBD images. In European Conference on Computer Vi-

sion, 2012. 2

[16] Abdul Nurunnabi, Geoff West, and David Belton. Outlier

detection and robust normal-curvature estimation in mobile

laser scanning 3D point cloud data. Pattern Recognition,

48(4):1404–1419, 2015. 4

[17] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 652–660,

2017. 1

[18] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. PointNet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in Neural Infor-

mation Processing Systems, pages 5099–5108, 2017. 1, 2,

7

[19] Alistair James Quadros. Representing 3D shape in sparse

range images for urban object classification. 2013. 2, 3

[20] Franz Rottensteiner, Gunho Sohn, Jaewook Jung, Markus

Gerke, Caroline Baillard, Sebastien Benitez, and Uwe Bre-

itkopf. The ISPRS benchmark on urban object classification

and 3D building reconstruction. ISPRS Annals of the Pho-

togrammetry, Remote Sensing and Spatial Information Sci-

ences I-3 (2012), Nr. 1, 1(1):293–298, 2012. 2, 3

[21] Xavier Roynard, Jean-Emmanuel Deschaud, and François

Goulette. Paris-Lille-3D: A large and high-quality ground-

truth urban point cloud dataset for automatic segmentation

and classification. The International Journal of Robotics Re-

search, 37(6):545–557, 2018. 2, 3

[22] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point

Cloud Library (PCL). In IEEE International Conference on

Robotics and Automation, pages 1–4. IEEE, 2011. 4

[23] Andrés Serna, Beatriz Marcotegui, François Goulette, and

Jean-Emmanuel Deschaud. Paris-rue-Madame database: a

3D mobile laser scanner dataset for benchmarking urban de-

tection, segmentation and classification methods. 2014. 3

[24] N. Silberman and R. Fergus. Indoor scene segmentation us-

ing a structured light sensor. In Proceedings of the Inter-

national Conference on Computer Vision- Workshop on 3D

Representation and Recognition, 2011. 2

[25] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.

Sun RGB-D: A RGB-D scene understanding benchmark

suite. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 567–576, 2015. 2

[26] Bruno Vallet, Mathieu Brédif, Andrés Serna, Beatriz Mar-

cotegui, and Nicolas Paparoditis. TerraMobilita/iQmulus ur-

ban point cloud analysis benchmark. Computers & Graphics,

49:126–133, 2015. 3

[27] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

ShapeNets: A deep representation for volumetric shapes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1912–1920, 2015. 2



[28] Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung. Shell-

Net: Efficient point cloud convolutional neural networks us-

ing concentric shells statistics. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1607–

1616, 2019. 2, 7


