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Abstract

We propose an embarrassingly simple but very ef-

fective scheme for high-quality dense stereo reconstruc-

tion: (i) generate an approximate reconstruction with your

favourite stereo matcher; (ii) rewarp the input images with

that approximate model; (iii) with the initial reconstruction

and the warped images as input, train a deep network to

enhance the reconstruction by regressing a residual cor-

rection; and (iv) if desired, iterate the refinement with the

new, improved reconstruction. The strategy to only learn the

residual greatly simplifies the learning problem. A standard

Unet without bells and whistles is enough to reconstruct

even small surface details, like dormers and roof substruc-

tures in satellite images. We also investigate residual recon-

struction with less information and find that even a single

image is enough to greatly improve an approximate recon-

struction. Our full model reduces the mean absolute error

of state-of-the-art stereo reconstruction systems by >50%,

both in our target domain of satellite stereo and on stereo

pairs from the ETH3D benchmark.

1. Introduction

Dense stereo reconstruction is a classical task of com-

puter vision with a rich history and an elementary build-

ing block of 3D perception. The problem statement is sim-

ple: given two images with overlapping fields of view and

known relative pose, find a 3D scene that is photo-consistent

with both views. Efficient solutions exist and form the ba-

sis for a wide range of operational systems, ranging from

large-scale topographic reconstruction to industrial machine

vision and mobile robotics.

For many practical applications, maximising photo-

consistency across all pixels is not enough to solve dense

stereo. Rather, one must also impose a suitable prior on

the 3D scene. Classical stereo algorithms [19, 12] typi-

cally include an explicit preference for piece-wise smooth

surfaces. Since that prior is rather unspecific and knows

very little about the structure of the observed scene, the

resulting surface models must in practice still be cleaned
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Figure 1. Instead of learning stereo reconstruction from scratch,

our ResDepth network is trained to refine an initial depth (respec-

tively, height) map with the help of stereo images. Our main mes-

sage is that stereo guidance greatly improves the refined depth.

up. For example, in topographic mapping, it is common

to enhance building shapes with heuristic rules; in mobile

robotics, reflecting glass must be detected and cleaned up

in post-processing; etc.

The need to capture complex, soft prior expectations

about the world, which are hard to formulate explicitly, nat-

urally calls for a machine learning approach. Indeed, sev-

eral authors have recently proposed to learn stereo match-

ing, i.e., to design a deep encoder-decoder network that

maps the input images to a depth map [24, 17, 7, 36]. We ar-

gue that, while conceptually elegant, such a purely learning-

based solution may be inefficient because it has to learn

many things from data that are already well captured by ex-

isting stereo methods. Importantly, classical stereo match-

ing algorithms are very robust in the sense that their outputs

are usually correct as a coarse, global estimate of the scene

surface but may suffer from local biases and errors. Their

main shortcoming is a lack of prior knowledge about the

observed world beyond simplistic (piece-wise) smoothness.

In this paper, we thus advocate a residual learning strat-

egy. We reconstruct an approximate surface with a standard



stereo matcher—we use a conventional one, but it could be

a learned one too—that may have certain biases but robustly

produces passable stereo models. We then train a deep net-

work to upgrade that initial estimate by regressing an ad-

ditive residual correction, see Fig. 1. The input to the pro-

posed ResDepth network are two input images warped onto

the initial depth (respectively, height) map and the initial

depth map itself. In this way, the network has access to not

only the images but also to the initial surface model and can

concentrate on the part of the problem for which it is most

needed: its task becomes to intervene where the assump-

tions built into the initial stereo algorithm fail and a more

intricate prior is needed that must be learned from data. In-

tuitively, our network leverages the correlation between in-

tensity patterns in the warped synthetic images and depth

patterns in the initial reconstruction. Wherever the warped

images are not photo-consistent or depth and texture dis-

continuities do not coincide, the network refines the initial

depth by applying an additive residual correction. Regress-

ing residual corrections that are mostly small is much eas-

ier than learning the entire depth estimation process—this

is just another of the ubiquitous optimisation strategies to

start from an approximate solution and refine it. Further, it

is also easier to choose the right prior locally for a specific

region whose 3D geometry is already roughly known. For

instance, a house-sized protrusion in a city model is a strong

indication that the surface might conform to a common roof

shape. Finally, the proposed approach makes it easy to tune

the reconstruction to the user’s needs. E.g., one can train

ResDepth to remove trees from the initial surface model

simply by supervising it with a city model without trees.

Such a filter would be a lot more difficult to construct with-

out an initial reconstruction to guide both tree detection and

”inpainting” of the correct ground height. An alternative in-

terpretation of our method is as a learned enhancement filter

for depth maps guided by the original image content.

In summary, our contributions are: (i) We propose Res-

Depth—a residual network that leverages stereo guidance to

improve an initial depth obtained from conventional stereo

matchers. ResDepth is effective, efficient, and applicable

to large-scale scenes. (ii) In our target domain of satellite

stereo reconstruction, we show significant improvements

over state-of-the-art, including a 2.5× reduction of the me-

dian error, more accurate building shapes and outlines, and

faithful reconstruction of surface details like dormers.

2. Related Work

Conventional Stereo Matching Traditional stereo methods

find a dense set of correspondences that have high photo-

consistency, while at the same time forming a (piece-wise)

smooth surface. The key issue is to efficiently approximate

the smoothness prior using for instance graph cuts [19], dy-

namic programming [12] or the PatchMatch method [6]. To

handle high-resolution images, e.g., in aerial mapping, these

methods are often employed iteratively in a spatial pyra-

mid scheme [29], whose later iterations can be seen as a

refinement of a coarser initial solution. Other stereo algo-

rithms are by design iterative, including many variational

schemes [33, 27] and methods based on mesh surfaces [21].

Deep Stereo Matching In the last few years, the focus

has been on stereo methods that harness the power of deep

learning. While early attempts only learned to measure

patch similarity within a conventional optimisation [40],

more recent methods use encoder-decoder architectures to

directly output disparity maps [24, 17, 7]. Some of the latest

methods can also handle high-resolution images [37, 39].

Most closely related to our work are recent, rather complex

stereo architectures like [26, 23, 16] that internally split the

computation into a first, coarse disparity estimation and a

subsequent refinement. However, these methods do not in-

vestigate the influence of the refinement step in isolation

and seem to imply that end-to-end, deep integration of the

cascade is crucial. We show that this is not strictly nec-

essary and concentrate on a detailed analysis of the refine-

ment part. The critical step for high-quality reconstructions

appears to be the learned refinement, which can be accom-

plished with a simple standard architecture that needs much

less training data. As initialisation, standard stereo meth-

ods are sufficient. In our target domain of satellite imaging,

conventional matchers still dominate deep stereo networks,

e.g., in the IARPA Multi-View Stereo 3D Mapping Chal-

lenge 2016 [15] all top-performers are variants of semi-

global matching [12], ahead of deep methods like [36].

Filtering and Refinement of Depth Maps Several works

have looked at ways to improve an initial 3D surface. [38, 5]

iteratively deform a surface mesh to maximise photo-

consistency. [9] exploit monocular image information to de-

tect and refine regions of incorrect disparity, whereas [16]

use a left-right comparison to guide the refinement. Un-

like [9, 16], we prefer not to select regions to be refined ex-

plicitly, which creates a point of failure. Instead, we update

everywhere, with update 0 where not needed. In the context

of topographic mapping, it is common to refine buildings

by fitting parametric models [10, 20].

Guided Depth and Disparity Enhancement We see pre-

vious works such as [26, 1] as most closely related to ours.

While these methods adopt a coarse-to-fine scheme for the

refinement, we leverage a large receptive field and exploit

local and global long-range context to estimate a one-shot

residual update at the resolution of the input. [1] propose a

recurrent residual network guided by a single image to re-

fine initial disparities and claim that a binocular setup would

not be helpful. In contrast, we build a two-view system and

experimentally show that stereo guidance does improve per-
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Figure 2. ResDepth-stereo network architecture for satellite images. Each convolutional layer except the last one is followed by batch

normalization and ReLU activation function. The numbers in parentheses indicate kernel size, stride, and the number of kernels. Note

the long residual connection that directly adds the input depth to the output of the last decoder layer to force the network to learn residual

depths instead of absolute depths. For close-range data, we add two down- and upsampling levels to account for the larger input patch size.

formance. [26] use binocular image guidance and the dif-

ference between the left and warped right view as additional

input to the refinement network. We refrain from using the

latter input as this information is not meaningful for im-

ages captured under strong lighting differences—like satel-

lite images from different days. Furthermore, we do not use

an explicit correlation layer. Recently, [2] propose to learn

a general prior for enhancing digital elevation models, in-

cluding a version guided by a single ortho-image [3, 4].

3. Method

Our goal is dense surface reconstruction by stereo match-

ing. Rather than designing a deep encoder-decoder network

that learns to map the input images to a depth map in an end-

to-end manner, we start with a coarse reconstruction and

train a deep network to upgrade that initial estimate by re-

gressing an additive residual correction. Our residual depth

regression network ResDepth is based on a simple Unet [28]

and uses stereo information as guidance, see Fig. 2.

Our method starts from images with overlapping fields

of view and known camera poses. For simplicity, the fol-

lowing explanations assume a binocular stereo setup. Note

that extending ResDepth to a fixed number of views >2 is

straightforward by simply adding more input channels to

the network. We describe our technical approach from a

general point of view and highlight conceptual details tai-

lored to our target domain of satellite stereo.

3.1. Initial Reconstruction

To play to the strength of convolutional networks, the

coarse initial reconstruction should be parametrised over

a regular 2D grid. In general, the reconstruction is repre-

sented as a depth map in the camera coordinate system of

one of the views. In the special case of aerial or satellite

imaging, a more natural choice is a digital elevation model

(DEM), i.e., a raster of height values along the gravity axis.

3.2. Image Rectification

For further processing in ResDepth, the images should

be aligned with the initial depth map. The first view used to

parametrise the depth map is aligned by design. The pixel-

wise alignment of the second view is achieved by rewarping

the image to the camera coordinate system of the first view

using the initial disparity. For satellite images, this corre-

sponds to independently ortho-rectifying the images.

Note that rewarping compensates the influence of the

viewing geometry to an even greater extent than epipolar

rectification. The disparities in the warped images are, by

construction, small everywhere except at large depth errors.

Thus, no model capacity is wasted on learning stereo recon-

struction across a wide range of permissible disparities.

If the reconstruction were perfect, the two input views

would be perfectly aligned after rewarping, and hence max-

imally photo-consistent. Therefore, discrepancies between

the two warped images provide a signal of how to improve

the depth. The only regions where a correct depth map

would not achieve photo-consistency are those that are oc-

cluded in one view. We deliberately do not perform ray-

casting to account for occlusions during the rewarping pro-

cess. Instead, we render duplicate textures if the corre-

sponding rays intersect the surface twice, leading to photo-

metrically inconsistent, systematically displaced copies of

nearby textures. The rationale is that these very systematic

patterns provide even stronger evidence about the surface

shape than empty pixels. This effect is particularly visible

for tall buildings in satellite images (see Fig. 2).



3.3. Network Architecture

Fig. 2 depicts the network architecture of ResDepth. We

found that a fairly standard Unet [28] works well. We use

5 levels for satellite images (input patch size 128×128) and

7 levels for close-range images (input patch size 512×512),

such that in both cases the bottleneck has dimensions

512×4×4. Each encoder level consists of the sequence

3×3 conv – batch norm – ReLU – 2×2 max pool. The de-

coder levels are similar, except that max-pooling is replaced

by up-convolution with stride 1

2
. All inputs are stacked into

a single multi-channel image and fed to the network.

The main motivation for our residual stereo method is to

reconstruct crisp crease edges and depth discontinuities and

to align them with the image content. In that context, an

important feature of a Unet-type architecture is the exhaus-

tive set of skip connections from encoder to decoder levels

of the same resolution, which make sure no high-frequency

detail is lost. Recall that in our case we add a long residual

connection that directly adds the input depth to the output

of the last Unet layer, so that the network only learns what

must be added to the input depth to get to the ground truth.

3.4. Network Variants

Our method can be regarded as an image-guided depth

enhancement filter. That view leads to the question of how

much each input channel contributes to the refined depth,

and whether all inputs are indeed needed to achieve the de-

sired effect. Moreover, there may be situations where not

all inputs are available, e.g., one may be faced with the task

of improving an existing DEM for which one has access to

a single image only but not to the stereo coverage.

Therefore, we construct several ResDepth variants that

differ in number and combination of input modalities but

are otherwise identical. In particular, we keep the network

architecture fixed and train each variant using the same

training settings and data. We then compare the perfor-

mance to systematically investigate how the input modal-

ities affect the quality of the refined depth. The network

configuration based on stereo guidance represents our full

model, which we refer to as ResDepth-stereo.

ResDepth-mono does not use the second input image,

similar to [1, 3, 4]. Therefore, it has no access to stereo dis-

parities but can still use the monocular image information to

enhance the depth map. Potentially, this includes both low-

level and high-level information. Low-level image edges

may serve to sharpen and localise depth edges and jumps,

in the spirit of the guided filter [11]. High-level information

implicit in the image, like semantics and layout, can also be

valuable, e.g., it may serve to distinguish large trees from

small buildings.

ResDepth-0 does not use any image information at all.

It merely learns a prior on the structure of depth images

and corrects unlikely configurations of depth values without

conditioning on image evidence, as in [2]. In the above

analogy, it can be thought of as a clever, learned bilateral

filter [35] with the additional capability to recognise and

exploit long-range correlations such as straight gable lines.

As a sanity check for the claim that residual depth is eas-

ier to learn than full stereo matching, we formulate a variant

without the initial depth map as input. I.e., the Unet is fed

the two warped images only and trained to output the full

depth map. For simplicity, note that we use the same warp-

ing as for ResDepth variants that include the initial depth

map. Thus, the task is, in fact, easier than stereo matching

from scratch. We refer to this variant as Unet-stereo.

In the opposite direction, an interesting extension is to

iterate the residual correction. ResDepth-stereoiter uses the

output depth of ResDepth-stereo as input, warps the input

images with the new, improved depth map, and trains an-

other ResDepth-stereo network to further reduce the new,

smaller depth errors. We note that, in principle, it is pos-

sible to concatenate the two ResDepth-stereo networks and

train them end-to-end since the image warping is differen-

tiable. While shared weights across unrolled network itera-

tions [14] are certainly more elegant, it is unlikely that doing

so will in practice lead to better results.

Further, we design a more sophisticated ResDepth-stereo

variant that generalises across viewing directions and light-

ing conditions between views. This property is particularly

interesting for the task of updating an existing DEM with a

stereo pair that might not comply with the viewing or light-

ing conditions of the images used during training. We prag-

matically realise the generalised ResDepth-stereo variant by

independently combining the same DEM patch with differ-

ent ortho-rectified stereo pairs during training.

4. Experimental Evaluation

4.1. Satellite Images

Our main application is large-scale urban 3D modelling

from high-resolution satellite images. Stereo methods ap-

plied to satellite imagery produce digital elevation models

(DEM) with sub-meter spatial resolution [25, 8, 22]. De-

spite the impressive resolution, reconstructions based on

satellite images are comparatively noisy, blurred, and of-

ten incomplete due to restrictions on the viewing directions.

This, in turn, makes downstream modeling difficult. We see

ResDepth as a simple yet effective way to improve satellite

stereo reconstructions by combining stereo correspondence

with learned priors for building shapes and layout, treatment

of vegetation, systematic shadow patterns, etc.

We use WV-2 and WV-3 images acquired over Zurich,

Switzerland (see Fig. 3). The area covered is 1.5×1.5 km2

and includes industrial and residential districts. The images

were captured between 2014 and 2018, with 1.5 months as

the shortest time interval between acquisitions.
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Figure 3. Satellite position (red marker) for each image acquisition

over Zurich, Switzerland. The circular orientation refers to the

azimuth angle and the radial direction to the off-nadir angle. The

acquisitions are sorted and labelled in ascending order (from older

to newer acquisitions). We show the partitioning of the stereo pairs

that conform to our selection criteria (see text for details) into two

mutually exclusive groups A (green) and B (blue). Stereo pairs

are connected by a line.

Initial Reconstruction As usual in satellite imaging, only

the panchromatic channel is used for reconstruction since it

is recorded at a higher resolution (ground sampling distance

of 0.46 m at nadir). We use a re-implementation of state-

of-the-art hierarchical semi-global matching [29] tailored to

satellite images to generate the initial DEM. Its grid spacing

is 0.25 m, leading to a total of ≈ 3.7 · 107 pixels.

Image Selection Based on [8], we use a simple heuristic to

define the stereo pair used as input to ResDepth. Starting

from all possible pairs, we first eliminate all pairs whose in-

tersection angle is smaller than 10 or larger than 28 degrees

or that contain an image with an incidence angle beyond

40 degrees. From the remaining stereo pairs, we choose the

one with the smallest time difference (modulo 180 days).

To test generalisation, we split the selected stereo pairs

into two mutually exclusive groups A and B such that each

group contains along-track and across-track stereo pairs, see

Fig. 3. We use the stereo pairs in A for training and the ones

in B for testing (and vice versa).

Ground Truth We use the publicly available 2.5D CAD

city model of Zurich [41] to render the ground truth DEM

of the same area. The city model was assembled semi-

automatically by merging airborne laser scans, building and

road boundaries (including bridges) from national mapping

data, and roof models derived by interactive stereo digitisa-

tion. The height accuracy is specified as ±0.2 m on build-

ings and ±0.4 m on general terrain. The model is based

on data collected before 2015, and hence, differs from the

state visible in the images in a handful of places. For evalua-

tion, we thus ignore areas with obvious temporal differences

due to construction activities. Note that the city model does

not include vegetation. Consequently, ResDepth implicitly

learns to filter out trees present in the initial model.

Network Training We vertically split the geographic area

into five mutually exclusive stripes and use three stripes for

training, one for validation, and one for testing. We use

training patches with 128×128 pixel dimensions (32×32 m

in world coordinates). Terrain heights are globally nor-

malised by centering to mean height 0 and scaled by the

global standard deviation of the heights. To increase the

amount of training data and to avoid biases due to the to-

pography (sloped, south-facing terrain), we perform data

augmentation by randomly rotating training patches with

α ∈ {90◦, 180◦, 270◦} as well as horizontal and vertical

flipping (see the extended report [34] for details).

We train the network in a fully supervised manner by

minimising the pixel-wise absolute distance to ground truth

depth maps (i.e., the ℓ1-loss). We use the adam opti-

mizer [18] with base learning rate 10−5, batch size 20, and

weight decay of 10−5.

4.2. ETH3D

We also test ResDepth on close-range stereo pairs from

the high-resolution multi-view ETH3D dataset [32]. For

the experiment, we downsample the images to a size of

886×590 pixels, remove radial distortion, and convert them

to grayscale. We limit ourselves to indoor scenes, and man-

ually pick a set of binocular stereo pairs with high overlap

and reasonable baselines. We use the PatchMatch stereo [6]

implementation of COLMAP [30, 31] to compute initial

depths. Since there is no natural 2D coordinate system for

ortho-rectification, we refine the depth map of the first im-

age and warp the second image accordingly.

Network Training The data is split into training, validation,

and test portions such that their fields of view are mutually

exclusive, i.e., scene parts visible in the test set are never

seen in the training or validation part. Because of the much

larger depth range (relative to the baseline), we operate in

inverse depth, i.e., pixel-wise depth values d are converted

to 1/d and scaled by the baseline for training and predic-

tion. For the evaluation, we convert back to metric depth, as

this is our target quantity. We train the ResDepth-stereo net-

work on patches of size 512×512 cropped randomly from

all training images. Gray-values are normalised to [0 . . . 1]
and scaled inverse depth values are centred to the mean of

the patch. Patches are horizontally flipped at random for

data augmentation. We again use adam, with base learning

rate 10−5, batch size 4, and weight decay of 10−5.

4.3. Results

As error metrics, we use mean absolute error (MAE),

root mean square error (RMSE), and median absolute error

(MedAE). For the satellite data, we compute the error met-



Overall Building pixels Terrain pixels w/o water

MAE RMSE MedAE MAE RMSE MedAE MAE RMSE MedAE

Initial DEM 2.81 4.49 1.43 2.44 3.93 1.33 3.08 4.81 1.58

Median filtered 2.75 4.41 1.39 2.39 3.87 1.31 3.00 4.72 1.53

Unet-stereo 7.79 9.31 6.77 8.69 10.14 8.20 7.43 9.04 6.34

ResDepth-0 1.43 2.85 0.61 2.14 3.95 0.85 1.01 1.95 0.53

ResDepth-mono 1.20 2.37 0.57 1.67 3.18 0.72 0.89 1.62 0.51

ResDepth-stereo 1.11 2.22 0.54 1.58 3.06 0.69 0.81 1.50 0.48

ResDepth-stereoiter 1.05 2.20 0.50 1.60 3.17 0.66 0.75 1.39 0.45

ResDepth-stereo (A → train, B → test) 1.38 2.86 0.57 1.90 3.65 0.75 1.07 2.27 0.50

ResDepth-stereo (B → train, A → test) 1.30 2.68 0.56 1.96 3.71 0.77 0.91 1.78 0.49

Table 1. Quantitative results on Zurich satellite data (in [m]). We evaluate the mean absolute error (MAE), the root mean square error

(RMSE), and the median absolute error (MedAE). Residuals beyond ±20 m are discarded before computing statistics to account for

temporal changes between ground truth and images. Building masks for object-specific metrics are dilated by 2 pixels (0.5 m) to avoid

aliasing at vertical walls. Results are averaged for ResDepth variants that are evaluated on multiple stereo pairs (last two rows).

rics also separately for buildings and terrain. Water bodies

are excluded from the evaluation.

Ablation Study We first compare different DEM refine-

ment strategies using a single satellite stereo pair. The ini-

tial DEM has a MAE of 2.81 m and a MedAE of 1.43 m, see

Tab. 1. For completeness, we also show the RMSEs, which

are between 1.5× and 2× higher than MAEs because of

outliers but follow the same trend. Example regions from

the DEM are shown in Fig. 4. The DEM is rather noisy.

The comparatively high noise level is typical for satellite-

derived models due to the limited sensor resolution, the

large sensor-to-object distance, and the image quality.

As a baseline for a ”cleaned” DEM, we follow a popular

strategy implemented in several photogrammetry packages

and apply a median filter (kernel size 5×5) to denoise the

DEM. This decreases the MAE only marginally and has lit-

tle visual effect. The learned stereo baseline Unet-stereo

fails completely with a MAE of 7.8 m. I.e., with the same

encoder-decoder architecture and the same amount of train-

ing data as used for ResDepth, it is not possible to learn full

stereo matching end-to-end.

As expected, ResDepth-0 without any image evidence

mostly acts as a context-aware, intelligent smoothing fil-

ter. Notably, it is already much better than the median fil-

ter baseline, reducing the MAE to 1.4 m and the MedAE to

0.6 m. Among others, it has learned the preference for ver-

tical walls. Naturally, it is not able to add details missed by

the original stereo matcher. Building outlines remain wob-

bly, and roofs are blobby or sagging (Fig. 4, 4th row).

ResDepth-mono combines a coarse initial DEM with a

single image, which works surprisingly well. Even without

stereo observations, the correlation between intensity pat-

terns in the image and depth patterns in the reconstruction

contains a lot of useful information. Substructures on roofs

emerge that were not visible in the input DEM, and straight

lines and rectangular footprints are more faithfully repro-

duced (Fig. 4, 5th row). The MAE drops by 0.2 m compared

to ResDepth-0. We speculate that also in other (learned or

hand-crafted) pipelines that iteratively refine the reconstruc-

tion, a large portion of the improvement in later processing

stages might come from this monocular ”transfer” of crisp

image structures, rather than from actual stereo correspon-

dence.

ResDepth-stereo further improves the reconstruction.

Visually, the difference is, in fact, larger than suggested

by the quantitative improvement of 0.1 m in MAE, as

building shapes become crisper and additional roof details

emerge (Fig. 4, 6th row). The iterative optimisation of

ResDepth-stereoiter yields only small quantitative gains but

visibly sharper and more detailed 3D geometry (Fig. 4, 7th

row). Even small dormers are discernible and spurious

bumps on roads disappear. Uncommon building structures

are sometimes over-smoothed (e.g., the saw-tooth roof in

Fig. 4, 4th column), probably because they are not repre-

sented in the training data. The final MedAE of our best

result after two rounds of ResDepth is 0.5 m, the MAE is

roughly 1.0 m. These values are quite remarkable given the

image resolution of ≈ 0.5 m and the uncertainty of the satel-

lite poses on the order of 0.5 m on the ground.

Generalisation Across Images In practice, the train and

test regions will be seen in different images, so the model

must also generalise across changes in lighting and view-

ing directions. When applied in that scenario, ResDepth-

stereo pays only a small performance penalty and still im-

proves significantly over the input DEM (Tab. 1, last two

rows). The overall MAE increases by 0.2 to 0.3 m. We note

that these results, while using different, separate satellite

images, are still for the city of Zurich and are expected to

deteriorate as one moves to other geographic locations with

different urban planning and architectural style. Yet, given

enough training data, it seems realistic to learn a model that

generalises across locations and variations of urban style.
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Figure 4. Visual comparison of different ResDepth variants over selected areas of Zurich. Heights are color-coded from blue to red.



Input view Ground truth COLMAP (unfiltered) ResDepth-stereo ResDepth-stereo (raw)

Figure 5. Example results for ETH3D indoor scenes. Pixels without valid ground truth depth are displayed in black (except in the right-

most column, which shows the unmasked ResDepth prediction). For reference, we compare the unmasked maps produced by ResDepth

(rightmost column) to the dense matcher of COLMAP with heuristic filtering turned off to obtain dense depth maps.

Generalisation to Other City Regions We apply

ResDepth-stereo without further fine-tuning to geographi-

cally more distant parts of Zurich to quantify how well Res-

Depth generalises across a city. Due to space restrictions,

we provide these results in the extended report [34].

ETH3D We show quantitative results in Tab. 2 and visual

examples in Fig. 5. We follow the same evaluation proto-

col as [13] and compare our dense, refined depth maps with

unfiltered dense depth maps of COLMAP. This comparison

should be taken with a grain of salt: most of the error of

COLMAP is due to areas that are masked out if its internal

filter is switched on. I.e., COLMAP is aware of the prob-

lems and would discard them if permitted, at the cost of

lower completeness. ResDepth consistently improves over

the COLMAP baseline, in some scenes considerably. On

average, the MAE decreases from 0.35 m to 0.15 m. While

those numbers are very encouraging, the visual impact of

ResDepth is smaller in the close-range scenario. In the ur-

ban modelling case, the images and the ground truth DEM

contain a lot of structures that it can learn to exploit, like

building shapes, rooflines, trees, etc. Objects in the close-

range images are much larger (relative to the pixel size),

there are few discontinuities, and even over fairly large

neighbourhoods, the prevalent structure is planarity. Res-

Depth does manage to correct quite a bit of detail w.r.t. the

COLMAP input, e.g., the chairs in the 1st row and the area

around the sofa in the 2nd row in Fig. 5. But the main driver

of its good performance appears to be that it has learned

the sensible, yet unspectacular prior to associate featureless,

homogeneous image regions with planar surfaces (e.g., the

table in the 1st row and the floor in the 2nd row in Fig. 5).

5. Conclusion

We have presented an astonishingly simple, yet highly

effective way to use deep networks for dense 3D reconstruc-

Depth-

stereo

pairs

ResDepth-stereo COLMAP (unfilt.)

MAE RMSE MAE RMSE

Delivery area 4 0.21 0.75 0.24 0.94

Kicker 4 0.16 0.42 0.41 1.11

Office 3 0.13 0.22 0.55 1.21

Pipes 3 0.19 0.60 0.45 1.30

Relief 4 0.18 0.85 0.28 1.11

Relief 2 4 0.12 0.57 0.17 0.82

Terrains 4 0.07 0.20 0.45 1.42

Overall 26 0.15 0.57 0.35 1.13

Table 2. Quantitative results on ETH3D indoor scenes (in [m]).

Residuals beyond ±10 m are discarded before computing statis-

tics, since they usually occur only outside of the stereo overlap.

tion: instead of replacing existing (hand-crafted or learned)

stereo matchers with a deep network, we complement them.

The network receives as input both an initial DEM and the

stereo images and estimates a depth correction that is added

to the DEM to improve it. We have shown that this strat-

egy can reduce the errors of state-of-the-art stereo matchers

more than 2×, with a standard Unet architecture without

any special modifications and a moderate amount of train-

ing data. The computational cost is one forward-pass per

tile, with tile size depending on GPU memory. Inference

for our test area takes less than 2 sec. The main burden is

offline ortho-rectification.

In future work, we plan to test the ResDepth idea also for

multi-view stereo, which is straightforward since all views

are warped to the same image coordinate system. Further-

more, it may be possible to train ResDepth in such a way

that it gradually refines the reconstruction over multiple it-

erations, with the same set of weights.

At a meta-level, we see ResDepth as a reminder to keep

things simple and a strong baseline that should not be over-

looked when designing more sophisticated stereo networks.
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