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Abstract

The representations of the Earth’s surface vary from one

geographic region to another. For instance, the appearance

of urban areas differs between continents, and seasonal-

ity influences the appearance of vegetation. To capture the

diversity within a single category, such as urban or vege-

tation, requires a large model capacity and, consequently,

large datasets. In this work, we propose a different perspec-

tive and view this diversity as an inductive transfer learning

problem where few data samples from one region allow a

model to adapt to an unseen region. We evaluate the model-

agnostic meta-learning (MAML) algorithm on classifica-

tion and segmentation tasks using globally and regionally

distributed datasets. We find that few-shot model adaptation

outperforms pre-training with regular gradient descent and

fine-tuning on the (1) Sen12MS dataset and (2) DeepGlobe

dataset when the source domain and target domain differ.

This indicates that model optimization with meta-learning

may benefit tasks in the Earth sciences whose data show a

high degree of diversity from region to region, while tradi-

tional gradient-based supervised learning remains suitable

in the absence of a feature or label shift.

1. Introduction

A growing constellation of satellites, combined with

cloud computing and deep learning, offers an objective

and scalable way to monitor global issues from deforesta-

tion and wildfires to urban development and road flood-

ing [15, 6, 4, 24]. For many of these prediction prob-

lems, the bottleneck to making accurate and timely predic-

tions has shifted away from satellite imagery availability or
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Figure 1: A principal component analysis (PCA) on VGG-16 [26]

features of cropland images from different countries. Represen-

tations of the same class vary geographically; applying models

trained on one geography to another would violate the assumption

in traditional supervised learning that train and test distributions

are equal. Model-agnostic meta learning provides a framework for

inductive transfer learning that adapts the model to a new region

with few data samples.

data processing limits and toward a lack of ground truth la-

bels [34, 31, 25]. At the same time, these tasks share charac-

teristics in remotely sensed imagery—such as ground sam-

pling distance, seasonality, and spectral characteristics—

no matter where on Earth they are taken. This raises the

question of whether prediction in label-scarce regions could

be improved if each model were to benefit from knowl-

edge contained in all the datasets, rather than solving the

same prediction problem across different geographies or

time slices with independent models trained on small dis-

joint datasets.

The concept of using knowledge gained while solving

one problem to aid the solving of another is known in

machine learning as transfer learning [17]. Transferring
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Figure 2: The model-agnostic meta learning (MAML) algorithm

[8] finds initial weights θ from which a model can adapt to a new

geographic region τ with few data samples.

knowledge between tasks or domains is successful when

the problems are different but related [29]. We argue that

the diverse nature of representations on the Earth’s surface

is a prime example of different-but-related tasks. We illus-

trate this in Fig. 1 using representations of cropland from

four different countries. Croplands across the world are dis-

tinct from each other, yet they share characteristics. Trans-

fer learning allows models to both adapt to each distribution

individually and share knowledge across regions: countries

like Angola and Mali, for which smaller labeled datasets

are available, could then benefit from larger labeled datasets

from countries like Brazil and Poland.

Thus far, transfer learning on remote sensing data has

largely focused on fine-tuning pre-trained models and per-

forming domain adaptation (Section 2). In this work, we ex-

plore meta-learning, in which models not only learn from

data to perform tasks but learn how to learn to perform tasks

through experiencing tasks on a variety of datasets. In par-

ticular, we use model-agnostic meta-learning (MAML) for

the problem of inductive transfer-learning, where the gener-

alization is induced by a few labeled examples in the target

domain [17]. A schematic of MAML is shown in Fig. 2 and

the algorithm is described in Section 3.2.

Our main contributions are (1) demonstrating that re-

mote sensing tasks across geographies can be restructured

as one meta-learning problem and (2) evaluating MAML for

few-shot classification and segmentation of multi-spectral

and high-resolution remote sensing images; specifically, the

well-cited benchmark datasets Sen12MS and DeepGlobe.

2. Related Work

Transfer learning can be divided into subcategories de-

pending on the amount of labeled data available in the

source and target domains. Our work is focused on the sce-

nario in which ample labels exist in the source domain, but

few exist in the target domain. We summarize the related

remote sensing methodology accordingly.

In such a setting, one common transfer learning tech-

nique is pre-training a neural network on ImageNet and

fine-tuning [14] it on an application-specific dataset. For

high-resolution remotely sensed imagery, these include air-

plane detection [5], high-resolution land cover classification

[28], and disaster mapping [9]. Xie et al. (2016) [32] ex-

tended this concept by swapping ImageNet for the proxy

task of night-light prediction that allowed them to estimate

poverty in African regions with a limited number of labeled

poverty data points. These approaches require a signifi-

cant amount of problem design, such as the choice of proxy

datasets or model and which parameters to fine-tune, and,

thus, usually focus on a limited number of hand-selected

tasks.

A second class of methods using deep learning for label-

scarce tasks in remote sensing has focused on developing

novel network architectures or loss functions to make learn-

ing more label-efficient. So far, these methods have focused

on optical [11], SAR [21], and hyperspectral image clas-

sification [12]. While they decrease the number of labels

required for any optical, SAR, or hyperspectral task, these

methods do not explicitly endeavor to transfer knowledge

from a data-rich geography to a data-poor one.

Non-deep learning methods for domain adaptation were

summarized by Tuia et al. (2016) [29] and include selecting

invariant features, adapting data distributions, and adapting

classifiers via semi-supervised learning. For the most part,

such methods generalize only across small regions rather

than worldwide, while sometimes requiring a feature space

in which inputs can be modeled as a mixture of Gaussians

or some other predefined distribution.

Lastly, meta-learning is beginning to be explored for re-

mote sensing applications. Alajaji and Alhichri (2020) [1]

describe preliminary results of MAML on few-shot UC

Merced, OPTIMAL-31, and AID RS classification, though

again not with a focus on cross-geography generalization.

3. Meta-learning

Meta-learning [22] considers a large number of related

tasks τ 2 T = {τ (1), . . . , τ (N)} to arrive at a predic-

tive function that can perform well on unseen tasks τ af-

ter seeing a few data samples. Even though meta-learning

has been a topic in machine learning for decades [22, 3],

it has recently gained popularity for few-shot problems

[30, 27, 19] and has been re-introduced under a “model

agnostic” framework [8] with rapid developments in the

field [18, 16, 2].

3.1. Terminology and Definitions

Meta-learning introduces a set of terms that may be new

to some readers, so we clarify them in this section.

A task τ is comprised of a support dataset Dsupport to ad-

just the model parameters to the specific task and a query

dataset Dquery to evaluate the performance. Each dataset

is comprised of inputs {x1,x2, . . . ,xm} and correspond-

ing labels {y1, y2, . . . , ym} from a data distribution. A k-



Algorithm 1: Regular Gradient Descent

p(D): distribution over data points;

α: step size hyperparameters;

randomly initialize φ;

repeat

sample D ⇠ p(D);
evaluate g = rL(fφ,D);
update parameters φ φ� αg;

until convergence;

Algorithm 2: Model-Agnostic Meta-Learning

p(T ): distribution over tasks;

α,β: step size hyperparameters;

randomly initialize θ;

repeat

sample batch of tasks τ ⇠ p(T );
foreach τi 2 τ do

initialize φi with θ;

sample {Dsupport,Dquery} ⇠ p(τi);
evaluate g = rφi

Lτi(fφi
,Dsupport);

adapt parameters φi  φi � αg;

evaluate test loss Lτi(fφi
,Dquery) ;

end

update θ  θ� β
P

τi∼p(τ)rθLτi(fφi
,Dτi

query);

until convergence;

shot, n-way classification task aims to distinguish between

n classes and is trained on k examples per class. Each

task is drawn from a distribution over tasks τ ⇠ p(T ) to

yield a set of tasks {τ (1), τ (2), . . . , τ (N)}. The meta-learner

learns how to learn by training and evaluating on the meta-

training set. Meta-learning hyperparameters are tuned on

the meta-validation set. The meta-test set measures gen-

eralization on new, unseen tasks.

3.2. Model-Agnostic Meta Learning (MAML)

Neural network parameters φ are usually initialized

randomly and optimized iteratively via gradient descent

to perform well on a single dataset, as shown in Algo-

rithm 1. Model-agnostic meta-learning (MAML) extends

gradient descent by optimizing for a model initialization

θ that leads to good performance on a set of related tasks

{τ (1), τ (2), . . . , τ (N)}. We contrast the regular gradient

descent with the MAML optimization algorithm in Algo-

rithms 1 and 2. Meta-training is divided into an inner loop

and an outer loop. In the inner loop, networks initialized

with θ are updated to each task via t steps of gradient de-

scent on Dsupport of each task. This results in models with

parameters φi adapted to each task τ (i). The outer loop

updates θ based on the performance of φi on Dquery of the

meta-training batch. In so doing, MAML requires second-

order gradient calculations. The algorithm looks for a better

θ until convergence, upon which the generalization error is

computed on unseen meta-test tasks.

4. Datasets

We evaluate model-agnostic meta-learning on two public

remote sensing datasets that cover optical and radar data at

medium and very high resolution.

4.1. Sentinel-1/2 Multi-Spectral (Sen12MS) Dataset

The Sentinel-1/2 Multi-Spectral (Sen12MS) [23] dataset

is a novel globally distributed satellite image classification

and segmentation dataset. It contains 280 662 Sentinel 2

(optical) and Sentinel 1 (radar) tiles from 125 distinct re-

gions at four different seasons. The optical and radar im-

ages were resampled to 10 m ground sampling distance

and span 256⇥ 256 px in height and width. The original

dataset uses tile-overlaps of 50%. For this work, we re-

moved the overlap to ensure independence of support and

query datasets, which yielded 200 306 128⇥ 128 px tiles.

We show true color examples and principal component em-

beddings on VGG-16 features of four distinct regions in

Fig. 1. Each image tile is accompanied by a land cover

label with a comparatively coarse resolution of 500 m from

the MODIS Land Cover product MCD12Q1 V6 upsampled

to 10 m. In this work, we use the Sen12MS dataset for

classification and assign the most common pixel-level la-

bel to the image tile. We use the simplified label-scheme

of International Geosphere Biosphere Programme (IGBP)

categories [13] with 10 distinct classes, consistent with the

IEEE Data Fusion Contest 2020 [33]. In Fig. 3a, the 125

globally distributed regions are shown separated into meta-

train, meta-validation, and meta-test sets. Each region con-

tains between 196 and 850 tiles with a region-specific class

distribution. We also show an overview of all tiles of the

region 131 (Marseille) from the summer season true-color

and labels. The individual 128⇥ 128 px tiles are randomly

assigned to the support or query partition of each region.

The objective is to classify each tile with its most frequent

label class. Figure 3b illustrates this on an example of a

2-shot 2-way task. In this case, task datasets Dτ
query and

Dτ
support contain k = 2 randomly chosen tile-label pairs of

n = 2 distinct classes chosen from the available classes in

the region.

4.2. DeepGlobe Land Cover Segmentation Dataset

The DeepGlobe Challenge [7] was introduced at CVPR

2018 to advance state-of-the-art satellite image analysis.

Here, we used the land cover segmentation data to explore

the use of MAML on high-resolution satellite imagery.

The DeepGlobe land cover segmentation dataset is com-

prised of very high resolution (0.5 m) DigitalGlobe Vivid+
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(a) The 125 regions of the Sen12MS dataset. The 25 meta-test regions have been se-

lected based on the hold-out set of the Data Fusion Contest 2020 [33]. The 75 meta-train

and 25 meta-val have been randomly randomly partitioned.
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(b) Example of a Sen12MS 2-way-2-shot task from region 87 and

in the summer season. Ways determines the number of classes per

task while shot the number of samples per class.

Figure 3: The Sen12MS dataset [23] is a public remote sensing dataset of 128 globally distributed regions and four distinct seasons. In this

work, we sample tasks (b) from the dataset that include samples from one region and season aiming at adapting a deep learning model to

one specific region.

images of dimension 2448⇥ 2448 px with three RGB chan-

nels. In total, there are 803 training images, each with

human-annotated semantic segmentation labels covering

seven land cover classes: urban, agriculture, rangeland, for-

est, water, barren, and unknown. For the competition, 171

validation images and 172 test images were also provided.

However, since they do not have corresponding labels, we

did not include them in the following experiments. Across

the training images, the most common class is agriculture

(58 % of pixels), followed by forest (11 %), urban (11 %),

rangeland (8 %), barren (8 %), water (3 %), and unknown

(0.05 %).

We divided the DeepGlobe training set into three meta-

datasets: a meta-training set on which to train MAML, a

meta-validation set on which to tune MAML hyperparame-

ters, and a meta-test set on which to evaluate generalization

(Fig. 4a). Ideally, we would evaluate whether meta-learned

models generalize better to new geographic regions. How-

ever, the DeepGlobe Land Cover dataset does not tag im-

ages with latitude and longitude. In the absence of geo-

graphic information, we split the images in two ways:

1. At random, i.e. the 803 images were sampled uni-

formly at random into a 500-image meta-train, a 150-

image meta-val, and a 153-image meta-test set.

2. Using unsupervised clustering on features extracted

from a pre-trained network. DeepGlobe images were

fed into a VGG-16 network pre-trained on ImageNet,

and for each image, a 4096-dimensional vector was ex-

tracted from the first layer in the classifier. We used

k-means to assign the images into 6 clusters and the

6 clusters were divided at random into the meta-train,

meta-val, and meta-test sets. The resulting datasets

contained 454, 166, and 183 images, respectively.

Figure 6a visualizes the distributions of image features for

the meta-train, meta-val, and meta-test sets under these two

splitting methodologies. The results across the two splits

will illuminate the settings under which MAML improves

upon pre-training and training from scratch.

Each image was further divided into 16 sub-images, each

of dimension 612⇥ 612 px (Fig. 4b). Eight sub-images

were placed in the support set and 8 in the query set. At

meta-train time, k shots of 306⇥ 306 px tiles were sampled

from the support set and q queries were sampled from the

query set. At meta-test time, the entire query set was fed

into the model as 32 tiles to compute metrics (Fig. 4c).

Put succinctly, our DeepGlobe experiments explore

whether a model can learn to segment a large region

(1.2 km⇥ 1.2 km) of high resolution satellite imagery after

seeing only a small labeled section (153 m⇥ 153 m) of it.

5. Models

Model-agnostic meta-learning is an optimization algo-

rithm that uses gradient descent and can be employed for

any neural network architecture. In this work, we chose two

popular models for image classification and segmentation.

5.1. CNN Classification Model

Following other meta-learning approaches [8, 30], we

used a straightforward CNN architecture for the Sen12MS

classification objective. The network consisted of 7 stacked

layers with 64 convolutional 3⇥ 3 px kernels followed by

batch normalization [10], ReLU activation function, and

max-pooling of size 2. The input tensor X 2 R
128×128×15

of joint Sentinel-2 and Sentinel-1 bands is projected to a



Figure 4: The DeepGlobe dataset contains high resolution RGB

satellite imagery with land cover labels segmented by humans. To

repurpose DeepGlobe for meta-learning, we (a) split the images

into meta-train, meta-val, and meta-test sets. Then (b) each image

was split into 16 sub-images, 8 of which were placed in the support

set and 8 in the query set. Under such a setup, (c) we trained

models on the meta-train set to segment the queries after seeing k

shots from the support.

64-dimensional feature vector that maps to the output vec-

tor y ∈ R
10 for each of the classes.

5.2. U-Net Segmentation Model

For the DeepGlobe segmentation task, we employed the

popular U-Net [20] architecture. It is a fully-convolutional

segmentation model with skip connections between encoder

and decoder. We used four downsampling and upsampling

layers so that the input tensor is projected to a hidden repre-

sentation, which is then added to intermediate hidden states

from the encoder (skip connections) while being upsampled

and convolved to an output tensor whereupon each pixel

represents one class label.

6. Experiments

We experimentally evaluated the classification and seg-

mentation performance of deep learning models with the

same architecture trained with regular gradient descent (pre-

trained) Algorithm 1 and MAML Algorithm 2.
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Figure 5: Classification results on Sen12MS. Regular pre-training

with gradient descent leads to good zero-shot performance, while

models trained with the model-agnostic meta learning algorithms

outperform regular pretraining and the randomly initialized base-

line clearly throughout all ten seen examples from a unseen region.

6.1. Sen12MS Classification

We assumed that data from the meta-train regions were

readily available, but at most ten image-label pairs per class

can be seen from the meta-test regions. This corresponds to

a 4-way 10-shot classification scenario with four randomly

selected classes from one region. It reflects use-case of in-

terest to this work, where labeled data is available in some

regions but not in others.

We trained the classification models with MAML on 4-

way 2-shot datasets from the meta-train regions. We treated

each sub-dataset Dsupport and Dquery as a single batch of

N = k · n = 8 samples.

Baselines. We compared the MAML-trained model with

a model that was pre-trained on all available data from

the meta-train regions using regular gradient descent Algo-

rithm 1. We pre-trained this model with the same 4-way

2-shot batches as MAML but used the combined support

and query sets for training. This resulted in a batch size of

16 image label pairs. Finally, we also considered the sce-

nario of having no additional data from meta-train regions.

Here, we initialized the model randomly without any prior

training, and train on each task’s support set from scratch;

we refer to this baseline as the random model.

Evaluation. With the three initial CNN model parame-

terizations, i.e. MAML-trained, pretrained, and random, we

evaluated the ability to adapt to new unseen meta-test re-

gions based on at most ten data samples. For this, we sam-

pled 100 4-way 10-shot tasks from the meta-test regions.

We fine-tuned the models on subsets of Dsupport, while we

report performance metrics on Dquery on all ten examples

per class. The number of samples seen from Dsupport was

varied incrementally from zero-shot to 10-shot. Zero-shot

represents no fine-tuning and shows the performance that

can be obtained solely based on data from the meta-train

regions. Training on batches of 1-shot to 10-shot provides

increasingly more data from the target region to the mod-

els. The meta-val regions were used to determine a suitable

step size α ∈ {0.001, 0.0025, . . . , 0.5, 0.75, 1} and gradient

steps on the same data batch n ∈ {1, 2, 5, 10, 50, 100} for



fine-tuning the pre-trained model. We evaluated these hy-

perparameters via grid search for each shot independently.

Classification Results. In Section 6.1, we report the ac-

curacy scores for an increasing number of shots. The zero-

shot case, without any adaptation to the particular meta-test

region, shows that the regular pre-trained model performed

best with 55 % accuracy and a kappa score of 0.47. With-

out any adaptation on the target-region, MAML predictions

are low in accuracy, which highlights a distinct difference

between meta-learning and pre-training. However, when a

single data sample from the meta-test region is provided

(1-shot), the MAML-trained model (74 % accuracy, 0.68

kappa score) outperforms the pre-trained model (59 % accu-

racy, 0.51 kappa score) by a large margin. The pre-trained

model only shows a comparatively slight increase in accu-

racy (54 % to 66 %) throughout all seen examples while the

MAML-trained model scores 80 % accuracy and 0.76 kappa

score with all 10 shots.

6.2. DeepGlobe Land Cover Segmentation

Our second experiment demonstrates the use of MAML

on the DeepGlobe land cover segmentation dataset. Each

DeepGlobe image was considered its own task and we

trained a U-Net via MAML to segment the query set of

an image after being shown k shots from the support set.

The experiments were designed to investigate the effect on

the generalization of (1) meta-training label quantity (num-

ber of support and query sub-images), (2) meta-test label

quantity (number of shots), and (3) distributional shift be-

tween meta-train and meta-test sets (random split versus

clustered split of meta-datasets). The number of labeled

sub-images in the support and query sets was varied to be

m ∈ {1, 2, 4, 8} and the number of shots used to adapt the

U-Net was in the range k ∈ {1, 2, 3, 4, 5}. Hyperparam-

eters, such as the number of epochs to meta-train MAML

or train a model from scratch, were selected using perfor-

mance on the meta-validation set.

Baselines. Similar to the Sen12MS evaluation, we com-

pared MAML to two baselines: (1) a U-Net pre-trained on

the meta-training set and fine-tuned on k shots in each meta-

test task, and (2) randomly initialized U-Nets trained inde-

pendently from scratch on k shots in each meta-test task. To

make comparisons fair, we showed the pre-trained model

the same amount of data as seen by MAML. If MAML

was meta-trained on m support tiles and m query tiles and

adapted using k shots, the baseline U-Net was pre-trained

on 2m tiles per image and fine-tuned on k shots per meta-

test tile, and the randomly initialized model was trained on

k shots. The U-Net architecture was shared among MAML

and both baselines.

Evaluation. The performance of all models was evalu-

ated on the query tiles of an unseen meta-test set of images.

The location of the k shots for each meta-test image was

(a) The DeepGlobe images were split into meta-datasets (left) at random,

or (right) in clusters based on a lower dimensional representation. Tile

representations extracted from a pretrained VGG-16 are plotted along their

first 2 principal components. The label distributions of each meta-dataset

are shown below.

(b) The effect of meta-train support size on segmentation results (mIoU)

for (left) randomly split meta-datasets and (right) clustered split meta-

datasets. Results are shown for 1 meta-test shot.

(c) The effect of number of adaptation shots on segmentation results. Re-

sults are shown for a support size of 8.

Figure 6: Segmentation results on DeepGlobe, with two ways of

splitting the images into meta-datasets.

sampled at random from its support set and fixed across all

models for direct comparison. The models were evaluated

by means of pixel-wise accuracy and the mean intersection

over union (mIoU) score across the meta-test queries. For

elaboration on the formula used to compute mIoU, please

refer to the DeepGlobe publication [7].

Random Meta-Dataset Split Results. When the meta-

datasets were randomly split, the pre-trained model per-

formed better than MAML and the randomly initialized

model. This was especially true at smaller meta-training set

sizes (Fig. 6b). In other words, MAML requires a large set

of meta-training tasks in order to perform well on new tasks.

As the number of shots seen by the meta-learner increases,

MAML catches up to the pre-trained model (Fig. 6c). In

these experiments, we did not observe fine-tuning of the

pre-trained model to improve its performance.

Figure 7a visualizes the predictions of MAML and the



(a) Random meta-dataset splits

(b) Clustered meta-dataset splits

Figure 7: Example segmentation predictions by MAML, a pre-

trained U-Net, and U-Nets trained from scratch.

baselines on 1-shot learning for two images: one where

MAML performs well and one where it fails. MAML ap-

pears heavily influenced by the choice of the 1 shot, while

the pre-trained model is biased toward predicting agricul-

ture (the most common class). The model trained from

scratch is even more heavily influenced by the choice of

the 1 shot, as this is the only data it sees during training.

The success of pre-training can be attributed to the com-

plete overlap of meta-train and meta-test distributions, seen

in Fig. 6a. In the setting where p(X, y) are identical in

the source domain and target domain, a model trained on

the source domain transfers perfectly to the target domain.

These results also expose MAML’s weaknesses when meta-

train size is small: it is not able to retain information about

land cover types as effectively as a straightforward super-

vised model.

Clustered Meta-Dataset Split Results. When the meta-

datasets were split along clusters, the meta-train and meta-

test distributions overlapped less (Fig. 6a) but could still be

considered to arise from the same data-generating distribu-

tion. Whereas the meta-train set contains mostly agriculture

pixels, the meta-test set contains predominantly forest. Fig-

ures 6b and 6c show, first and foremost, that this meta-test

set is more difficult than the randomly split meta-test set for

all three models. However, MAML is able to adapt to this

distributional shift more successfully than the pre-trained

model. Example segmentations shown in Fig. 7b reveal that

MAML’s flexibility to adaptation can again be both helpful

and detrimental: helpful when the 1 shot is representative

(a) Adaptation of the MAML-trained CNN model to episodes from differ-

ent regions.
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port set.

Figure 8: The adapted weights φτ for task τ vary from region to

region (a). The loss surface along the direction of initial weights θ

to φτ (b) is more convex and allows larger gradient step sizes for

model-agnostic meta learning compared to regular pretraining.

of the image, but detrimental when it is not. We see that

the pre-trained model carries its bias toward agriculture into

its meta-test set predictions, whereas MAML does not ap-

pear to retain a strong enough prior to recognize agriculture

without being provided a shot containing that class.

6.3. Visualization of Model Adaptation

In the introduction and Fig. 1, we showed the regional di-

versity of representations on the Earth’s surface using PCA

on pre-trained VGG-16 image features. In Section 3 and

Fig. 2, we assumed that a neural network would achieve

optimal performance with a different set of weights φ∗ for



each geographic region. In this experiment, we empirically

confirmed this hypothesis with two evaluations on meta-test

regions of the Sen12MS dataset. In Section 6.3.1, we visu-

alize the adapted MAML weights for two distinct geogra-

phies. Then in Section 6.3.2 we compare the loss surfaces of

a MAML-trained and a pre-trained model along one adap-

tation trajectory. The two evaluations are meant to provide

the reader with some intuition of what MAML is doing in

different regions and how this differs from pre-training.

6.3.1 Region-wise Adaptation

We studied the adaptation of MAML-model parameters θ

trained on 2-shot 4-way tasks of Section 6.1. We sampled

1000 1-shot 4-way classification tasks from the meta-test re-

gions for the four most common classes (forests, grassland,

savanna, urban) and split these into a support and query par-

tition at ratio of 4:1. For each training task, we evaluated the

gradient and adapted the model using gradient descent with

step size 0.75 to new parameters for each task φτ . We visu-

alized this adaptation by flattening all model parameters to

a 231 818-dimensional vector and using PCA to map the pa-

rameters to the first two principal components. We colored

this embedding by region and drew lines from the initial

weights θ to the adapted task-specific weights φτ in Fig. 8.

The adapted model-weights differ from region to region in

embedding space, as can be seen in the examples of Poland

and South Sudan. This empirically shows that a different set

of model parameters is optimal for two different regions.

6.3.2 Loss Surface along Support Gradient

Next, for four example query tasks, we evaluated the loss

along a line from the initial parameters θ to task-adapted

parameters φ with the MAML-trained model and the pre-

trained model. For this evaluation, we selected one sup-

port set and four query sets from the same region and sea-

son. The gradient g was evaluated on the support set, and

different model weights φα were obtained along the gradi-

ent direction using φα = θ + αg with different step sizes

αMAML 2 [0, 1], αpre 2 [0, 0.15] proportional to the opti-

mal step sizes for MAML and pretrained model. We cal-

culated the query loss using the model fφα
for each of the

four queries at different step sizes α. This draws a one-

dimensional slice of the loss-surface along the gradient di-

rection determined by the support set. In Fig. 8b, we show

this loss surface for the MAML-trained model and the pre-

trained classification model. Without adaptation, at α = 0,

the MAML-trained model evaluates a high loss compared

to the pre-trained model. This is consistent with the com-

paratively poor zero-shot results from Fig. 5. With increas-

ing step size, however, we observe that the MAML loss de-

creases consistently while the pre-trained loss remains sim-

ilar or increased for larger step sizes. The MAML-trained

model achieves low loss in a large range of step sizes from

0.1 to 1 for all query sets, while a narrow range of step sizes

between 0 and 0.05 lead to better accuracies on some tasks

from the pre-trained model initialization.

In general, the loss surface of the MAML-trained model

follows a convex curve for all of the test examples, while

the loss surface of the pre-trained model is non-convex with

local minima. This experiment illustrates the difference be-

tween meta-learning and pre-training: the two methods lead

to very different model parameters. The loss surface of a

meta-learned model is smooth and convex in the gradient di-

rection of a novel task — in other words, when the MAML

algorithm optimizes for an initialization θ that can adapt

well to new tasks, it seeks out these smooth, convex regions

in the loss landscape. By contrast, for the pre-trained model,

there are cases like query sets 2 and 4 in which it appears

beneficial not to adapt to the specific task’s region.

7. Discussion and Conclusion

In this work, we evaluated the model-agnostic meta-

learning (MAML) algorithm for few-shot problems in land

cover classification to adapt deep learning models to indi-

vidual regions with few data examples. Existing models

use regular gradient descent to pre-train a model on a large

body of data and use this pre-trained model as an initial-

ization for datasets with fewer examples. We compared

these two approaches on land cover classification on the

Sen12MS dataset of optical and radar images from glob-

ally distributed regions and the DeepGlobe dataset with

very high-resolution imagery in few regions. The re-

sults on Sen12MS in Section 6.1 demonstrate that MAML-

optimization can outperform regular gradient descent and

pre-training of models when the dataset includes a distinct

regional diversity. The DeepGlobe results in Section 6.2 il-

lustrate the advantage MAML offers when the source do-

main differs from the target domain in transfer learning

but also highlight MAML’s weaknesses in retaining prior

knowledge and under-performing in ideal (identical source

and target domain) settings. In Section 6.3, we evaluated

the loss surfaces for pre-trained and MAML-trained mod-

els and showed that the loss surface was more convex for

MAML-trained models when adapting to new unseen data.

We believe that the meta-learning framework can lead

deep learning in Earth observation to a new direction: away

from finding incrementally better model architectures for

specific use-cases and toward unifying strategies that more

closely reflect the reality on the Earth’s surface. Much work

remains to be done to improve MAML performance by re-

taining stronger priors on land cover classes, as well as

to explore other meta-learning paradigms (e.g. prototypical

networks).
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