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Abstract

In the past few years supervised and adversarial learn-

ing have been widely adopted in various complex computer

vision tasks. It seems natural to wonder whether another

branch of artificial intelligence, commonly known as Rein-

forcement Learning (RL) can benefit such complex vision

tasks. In this study, we explore the plausible usage of RL

in super resolution of remote sensing imagery. Guided by

recent advances in super resolution, we propose a theo-

retical framework that leverages the benefits of supervised

and reinforcement learning. We argue that a straightfor-

ward implementation of RL is not adequate to address ill-

posed super resolution as the action variables are not fully

known. To tackle this issue, we propose to parameterize

action variables by matrices, and train our policy network

using Monte-Carlo sampling. We study the implications of

parametric action space in a model-free environment from

theoretical and empirical perspective. Furthermore, we an-

alyze the quantitative and qualitative results on both remote

sensing and non-remote sensing datasets. Based on our ex-

periments, we report considerable improvement over state-

of-the-art methods by encapsulating supervised models in a

reinforcement learning framework.

1. Introduction

Despite significant progress in complex environ-

ments [39, 40, 31], Deep Reinforcement Learning (DRL)

has not received much needed attention from remote sens-

ing community. In this study, we intend to bridge this

gap by providing a DRL framework to tackle single image

super-resolution in the context of satellite image processing.

Reinforcement Learning (RL) is a sequential decision

making process that focuses on maximizing long-term ex-

pected return by interacting with the environment itera-

tively [44]. In the process of maximizing reward, func-

tion approximation plays a vital role [45]. In the recent

years, several function approximators have been proposed

to estimate key ingredients of RL: action value function (Q-

function) and state value function (V-function). These func-

tions are estimated differently in two broader categories of

reinforcement learning methods: model-based and model-

free.

Both model-based and model-free methods have their

own merits and demerits. Model-based methods build a

representative model of the environment and then sample

rewards and transitions based on this approximation to es-

timate value functions. As per recent studies [32], model-

based methods are more efficient in discrete environment

due to low sample complexity. On the other hand, model-

free methods learn the value functions by rollout samples

obtained directly via interaction with the environment [44].

While model-free methods are suitable for continuous and

complex Markov Decision Processes (MDPs) in general,

these methods suffer from high sample complexity [33]. In

this study, we primarily focus on model-free reinforcement

learning as we do not have a model of the super-resolution

environment.

Model-free control algorithms, such as Monte-Carlo

(MC) and Temporal Difference (TD) have shown appeal-

ing results in numerous decision making processes [44, 20].

In most of these MDPs, there are two commonly used func-

tion approximators: value based and policy based. While

value based function approximation is efficient in low di-

mensional or discrete action space, it does not scale well

to continuous action space. In addition, it is less effective

in learning stochastic policies. On the contrary, the policy

based approximators can learn stochastic policies in high

dimensional continuous action space. However, the policy

based methods typically converge to local rather than global

optimum and have high variance in the estimation.

Several policy based algorithms have been proposed over

the years, such as REINFORCE [52], Actor-Critic [50, 21],

Proximal Policy Optimization [43, 42], and Supervised

Policy Update [48]. A straightforward implementation of

these algorithms is not sufficient for single image super-

resolution. Most of these algorithms require adequate in-
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formation about the action space in order to estimate an op-

timal policy. For instance, the control variables are known

in most continuous action space based RL environments,

though the values of these variables are estimated based on

stochastic policy. Contrary to that, there are several real

world control problems in which it is difficult to explicitly

model the variables of action space. In such environments,

we propose a way to find optimal control policy by allowing

the agent to take parametric actions. To put more succinctly,

the action variables are represented by matrices and the val-

ues within the matrices characterize magnitude of that ac-

tion. Of particular interest, reinforcement learning based

super resolution is one such environment where an actor is

expected to transit from a low resolution state to a high res-

olution state via sequence of actions. In this environment,

the sequential parametric actions are taken by shallow neu-

ral networks and a reward is received only at the end of an

episode provided the terminating state falls within an ǫ-ball

of the high resolution state. In this process, the policy net-

work guides the agent by providing probabilistic confidence

on the performed actions in each episode.

Many researchers have applied DRL in challenging com-

puter vision problems [10, 11]. Caicedo et al. [10] used a

set of actions as a part of sequential decision making pro-

cess and rewarded the agent when the transformed bounding

box had optimum overlap with target bounding box. Cao

et al. [11] exploited global inter-dependency of images to

hallucinate missing high frequency details using attention-

aware RL agent. Our work differs from these previous ap-

proaches in a sense that we do not use explicit set of action

variables, such as move left or move right with continuous

action values, i.e., the amount of movement in these direc-

tions. Instead, we use parametric action variables which

allows to perform relevant actions with continuous action

values. The underlying hypothesis is that a particular com-

bination of these parameters may lead to a certain action

which otherwise would not have been apparent in discrete

action space. In other words, a particular combination may

allow the agent to take an action that results in edge detec-

tion, or another combination may give rise to color feature

extraction. Here, the action variable could be edge detec-

tion with sharpness of these edges represented by action

values. Thus, our primary contribution in this study is to

propose a novel reinforcement learning framework to per-

form the complex task of super resolution. Further, we in-

tend to provide theoretical and empirical evidence of the

proposed framework that is shown to outperform state-of-

the-art methods in remote sensing.

The rest of the paper is organized as follows. In Sec-

tion 2, we briefly discuss about prior and concurrent works

done to address the problem under investigation. Section 3

contains the preliminary settings of DRL followed by Sec-

tion 4 which describes the proposed method in detail. We

provide theoretical evidence in Section 5 along with empir-

ical experiments in Section 6. At the end, we draw conclud-

ing remarks and suggest future line of research in Section 7.

2. Related Work

Recent advances in deep learning has created a surge

in single image super resolution. Starting with the pio-

neering work of Dong et al. [14], deep learning based su-

per resolution has been actively explored and often out-

performs state-of-the-art methods on various benchmark

datasets [37, 4, 56, 6, 24, 46, 1, 7]. Thereafter, Lai et al. [28]

proposed a deep Laplacian pyramid network for fast and

accurate super resolution. It progressively upsampled the

coarse resolution band to decompose the difficult task into

relatively simple sub-problems. Among other supervised

learning framework, Anwar et al. [2] proposed Densely

Residual Laplacian Network (DRLN) that achieved state-

of-the-art results on almost all benchmarks. Further, Ledig

et al. [30] introduced an adversarial framework to push the

reconstructed images towards natural manifold of realistic

data. Wang et al. [49] improved upon this idea and designed

a generative model which achieved higher perceptual qual-

ity. A detailed discussion on recent developments in super

resolution can be found in [51, 3].

Remote sensing image super resolution is becoming in-

creasingly popular. Particularly intriguing is the complex

spatial distribution of remote sensing imagery which makes

super resolution a relatively hard problem. Beyond aca-

demic interests, multi-band images are especially useful in

wide variety of domains including agriculture [27], surveil-

lance [47] and land cover classification [13]. In addition,

the fundamental ideas developed in computer vision com-

munity are becoming prevalent in certain applications based

on remotely sensed multi-band imagery [5, 15, 36, 19, 25].

After decades of research devoted in supervised and ad-

versarial learning, it seems natural to wonder whether an-

other branch of artificial intelligence, namely Reinforce-

ment Learning (RL) would benefit the super resolution

community. There has been little study of DRL in single

image super resolution [53, 54]. Yu et al. [53] have taken a

step along this interesting direction of research by dynami-

cally selecting a toolchain for progressive restoration. Fur-

ther, Yu et al. [54] devised a framework by combining deep

learning with REINFORCE to restore non-remote sensing

images under noisy environment. In this study, we further

explore the plausible usage of DRL in the context of satel-

lite image super resolution. We provide theoretical results

supported by experimental evidence to corroborate our hy-

pothesis.



3. Preliminaries and Notations

A Markov Decision Process (MDP) is defined as a tuple

(S,A,R, P, γ), where S is the continuous or discrete state

space, A is the continuous or discrete action space, R is the

immediate reward function, P is the transition probability,

and γ ∈ (0, 1) is the discount factor. The goal of an agent

is to find an optimal policy π∗ that maximizes its expected

reward,

π∗ = argmax
π∈Π
J (π) , (1)

where Π is the set of policies and J (π) is the policy evalu-

ation metric defined by,

J (π) = Eτ∈π

[

T+1
∑

t=1

γt−1rt

]

. (2)

Here, T represents the time step of terminal

state in each episode and τ is the trajectory,

(s0, a0, r1, s1, a1, r2, . . . , sT , aT , rT+1) sampled from

policy π. As we are focusing on model-free approaches,

the state and action value functions (V and Q) are approx-

imated based on sampled trajectories unlike model-based

approaches where full width backup is taken into consider-

ation as the transition dynamics is accessible. In common

policy optimization strategy, the policy π is parameterized

by θ where the objective is to find optimal set of parameters

θ∗ that maximizes expected reward,

θ∗ = argmax
θ
J (θ) , (3)

J (θ) =
∑

s∈S

dπθ (s)
∑

a∈A

πθ (s, a)Rs,a, (4)

where dπθ (s) is a stationary distribution of Markov chain

for πθ and Rs,a is the reward function for state s and action

a. The policy parameters are updated by θ ← θ+∆θ, where

∆θ is computed by the famous likelihood trick [52],

∆θ = ∇θJ (θ) = E [Rs,a∇θ log πθ (s, a)] . (5)

There are several variants of equation (5) that emphasize

on faster convergence to optimal solution and robust pol-

icy estimation. To study and analyze the proposed idea at a

fundamental level, we choose a simple and effective policy

gradient strategy, namely MC-REINFORCE [52] as given

in equation (5). However, the proposed approach is not lim-

ited to MC-REINFORCE, and would certainly benefit from

recent advances in policy optimization.

4. Methodology

The idea of parameterizing action space/variables is in-

spired by the notion of building a model of the environment

in model-based RL. In a model-based RL, the transition

dynamics (P ) and reward function (R) are parameterized

assuming that the state space (s) and action space (a) are

known. The proposed approach is slightly different from

this model-based approach in a sense that we parameterize

the action space (a) and learn the policy in a model-free

way using MC sampling.

4.1. Representation Learning

Here, we discuss about efficient representation of each

state in our MDP as it plays a vital role in solving

MDPs [44]. Instead of naively representing each state, we

use Convolutional Neural Network (CNN) as feature extrac-

tor due to its tremendous success in learning latent represen-

tation. The feature extractor network, Φ(s) parameterized

by θf operates on each state, s ∈ R
H×W×C ,

s̃ = Φ(s; θf ), s̃ ∈ R
H×W×C̃ , (6)

where H, W, C, and C̃ represent height, width, input chan-

nels, and number of feature maps, respectively. The output

of neural network, Φ(s; θf ) is computed by,

Φ(s; θf ) := FEn (FEn−1 (. . . (FE0 (s)))) , (7)

where FE represents Feature Extraction block consisting

of one convolution and one LeakyReLU unit. Here, n rep-

resents number of FE blocks.

4.2. Actor Network

The Actor Network (AN), Ωθa(.) parameterized by θa
performs parametric actions on the latent representation of

state space, s̃. Each action is parameterized by a shallow

neural network consisting of a single Residual Block (RB).

To span the dynamic range of each state, we use a cus-

tomized RB, as given by equation (8), in contrast to the one

proposed in [22].

RB(x) = x+ λh(x), (8)

where h(x) is a sequential neural network consisting of

{convolution, ReLU, and convolution} units. Here, λ rep-

resents the scaling factor. The agent performs sequence of

actions, aRB
n (.) and the intermediate states are computed

by,

s̃n = aRB
n (s̃n−1), n = 1, 2, . . . , N, (9)

where N represents total number of action variables in our

MDP. Here, s̃0, s̃n, and s̃N represent the latent represen-

tation of the initial, intermediate, and arrived state, respec-

tively. Different combinations of these parameters present

in each kernel of these action variables lead to different ac-

tions necessary to achieve the desired goal. The latent rep-

resentation of arrived state, s̃N is passed through a cascade



of Transition Blocks (TB) in order to map latent space into

state space, as given in equation (10).

ŝ = TBm (TBm−1 (. . . (TB0 (s̃N )))) (10)

Here, ŝ ∈ R
H×W×C , and each TB consists of one convo-

lution and one LeakyReLU unit. Since the agent receives

reward at the end of each episode, we only convert the final

latent representation, s̃N to state space, ŝ for minimizing

time complexity.

4.3. Siamese Policy Network

Here, we provide a justification for parameterizing pol-

icy network using Siamese architecture. The standard pol-

icy network, πθp(s, a) parameterized by θp provides a dis-

tribution over actions, a given a state, s. Thus, the policy

network provides a probabilistic view of how good it is to

take an action at a given state. In other words, it imposes a

confidence on the agent’s actions at a particular state. If the

sequence of actions triggers a transition such that the final

state falls within an ǫ-ball of the goal state, then the confi-

dence level on agent’s actions is enhanced. In such scenar-

ios, the policy gradient approach increases the likelihood of

taking these relevant actions.

To estimate the confidence on agent’s actions, we pro-

pose to use Siamese neural network architecture [9]. The

Siamese Policy Network (SPN), Ψθp(ŝ, s
∗) measures the

discrepancy between arrived state, ŝ and goal state, s∗. The

SPN is stochastic in nature due to which it does not require

the environment to be noisy in order to perform sufficient

exploration. The two branches of Siamese neural network

take ŝ and s∗ as inputs, projects them into feature space us-

ing shared parameters across both branches, and correlate

them in feature space to better estimate their discrepancy,

Ψθp(ŝ, s
∗) = Φθp(ŝ) ∗ Φθp(s

∗) + b, (11)

where b ∈ R and Φθp(.) represents the CNN in each branch

with shared parameters θp. The probabilistic confidence is

then computed by sigmoidal activation unit,

πθp (s, a) =
1

1 + exp(−Ψθp(ŝ, s
∗))

. (12)

The arrived state (ŝ) is a function of implicit actions, a con-

taining aRB
n , n = 1, 2, . . . N . In the super-resolution envi-

ronment, the model receives reward only at the final state

based on its Euclidean distance from target state.

4.4. Siamese Policy On Actor

The proposed method, which we call Siamese Policy On

Actor (SPOA), encapsulates representation learning, AN,

and SPN to provide an end to end DRL framework for im-

age super resolution. Motivated by the findings of Goodfel-

low et al. [18], we propose to allow two networks, namely

actor and policy to supplement each other in the learning

process so as to find a global optimum.

In the current setting, we consider occurrence of each ob-

servable state to be equally likely, i.e., dπθ (s) ∼ U, where

U denotes uniform distribution. We define reward function,

Rs,a as negative mean squared error between ŝ and s∗. The

agent receives reward at the end of an episode and it is max-

imum when ‖ŝ− s∗‖
2

falls within an ǫ-ball around s∗. We

use n = 3 FE blocks in representation learning, N = 3
RBs, m = 3 TBs in AN, and 3 blocks of {convolution,

LeakyReLU} units in SPN.

5. Theoretical Results

In this section, we elaborate on the supplementary train-

ing procedure. We independently train AN and SPN in a

least expensive way before training SPOA. Thus, we ensure

that the arrived state does not reside far away from initial

state, which otherwise would make it unattainable.

Lemma I: Training AN

Let θfa = {θf , θa} and J (θfa) denote the expected return

accumulated by the agent with a given policy πθp ,

J (θfa) = E [Rs,a] = E
[

−(ŝ− s∗)2
]

. (13)

The parameters are updated by, θfa ← θfa +∆θfa where,

∆θfa = E
[

−2 (ŝ− s∗) ∇θfa

(

TB[m]

(

Ωθa

(

Φθf (s)
)))]

.

(14)

Here, [m] represents a set of {0, 1, . . . ,m}.
By stochastic gradient ascent, the update equation (14)

becomes

∆θfa = −α (ŝ− s∗)∇θfa

(

TB[m]

(

Ωθa

(

Φθf (s)
)))

,

(15)

where α denotes step size.

Lemma II: Training SPN

Let J (θp) denotes the expected return accumulated by the

agent with fixed set of parameters ( θfa), then

J (θp) = Eθp [r] =
∑

s∈S

dπθ (s)
∑

a∈A

πθ (s, a)Rs,a. (16)

Using stochastic gradient ascent, the parameters are updated

using the famous likelihood trick [44] as given by

θp ← θp +∆θp, ∆θp = ∇θpJ (θp) = βRs,a∇θp log πθ (s, a) ,

(17)

where β denotes step size.

Theorem I: Training SPOA

Let θ = {θf , θa, θp} and J (θ) denotes the expected return.

The parameters of SPOA (θ) are updated by θ ← θ + ∆θ

where,

∆θ = ∆θp +∆θfa. (18)



Proof:

J (θ) = E [r] =
∑

s∈S

dπθp (s)
∑

a∈A

πθp (s, a)Rs,a

∆θ = ∇θJ (θ)

=
∑

s∈S

dπθp (s)
∑

a∈A

∇θ

(

πθp (s, a)Rs,a

)

=
∑

s∈S

dπθp (s)
∑

a∈A

(

Rs,a∇θπθp (s, a) + πθp (s, a)∇θRs,a

)

=
∑

s∈S

dπθp (s)
∑

a∈A

Rs,a∇θpπθp (s, a)

+
∑

s∈S

dπθp (s)
∑

a∈A

πθp (s, a)∇θfa
Rs,a

=
∑

s∈S

dπθp (s)
∑

a∈A

Rs,aπθp (s, a)∇θp log πθp (s, a)

+
∑

s∈S

dπθp (s)
∑

a∈A

πθp (s, a)∇θfa
Rs,a

= E
[

Rs,a∇θp log πθp (s, a)
]

+ E
[

∇θfa
Rs,a

]

Using stochastic gradient ascent, ∆θ becomes,

∆θ = βRs,a∇θp log πθp (s, a)

− α (ŝ− s∗)∇θfa

(

TB[m]

(

Ψθa

(

Φθf (s)
)))

.
(19)

From Lemma I and Lemma II, equation (19) becomes,

∆θ = ∆θp +∆θfa. (20)

The pseudo code of SPOA is given in Algorithm 1.

We sample batches of experiences and use replay buffer to

update the SPOA parameters for the entire batch.

6. Experiments

6.1. Datasets and Study Area

Here, we describe the datasets used to analyze the perfor-

mance of the proposed methodology in two folds. First, we

develop the theoretical foundation, and validate the pipeline

experimentally on 1000 images of CelebA [34] and 3000

patches (64x64) of Indian Remote Sensing satellite (IRS-

1C). While these datasets help us verify the efficacy of

proposed theoretical formulation, it is hard to infer the

generalization ability from them. For this reason, we ex-

tend our analysis to large scale remote sensing images of

WorldView-2. With 80-20 split we use 40000 patches of

WorldView-2 over Washington having Ground Sampling

Distance (GSD) 1.84m.

6.2. Implementation Details

Data Preparation: In this study, the scaling factor be-

tween Low Resolution (LR) and High Resolution (HR) im-

ages is set to 4x. To prepare training data, we crop 64x64

patches from the training HR images. Following Dong et

Result: SPOA parameters, θ

initialize θ;

for episode = 1,2,...,E do

initialize empty replay buffer D;

while D not full do

Sample initial state, s0 ∼ U;

Sample corresponding goal state, s∗;

end

for actor=1,2,...,A do

Take parametric sequential actions on D;

Compute ∆θfa =
−α (ŝ− s∗)∇θfa

(

TB[m]

(

Ωθa

(

Φθf (s)
)))

;

Update θfa ← θfa +∆θfa;

end

for policy=1,2,...,P do
Given actor parameters θfa, follow

parametric policy πθp(s, a) on D;

Compute ∆θp = βRs,a∇θp log πθ (s, a);
Update θp ← θp +∆θp;

end

for spoa=1,2,...,S do

Follow policy with implicit actions on D;

Compute new ∆θp and ∆θfa;

Compute ∆θ = ∆θp +∆θfa;

Update θ ← θ +∆θ;

end

end

Algorithm 1: Monte-Carlo Siamese Policy On Actor

al. [14], the LR training patches are obtained by downsam-

pling the HR patches by a factor of 4 using bicubic kernel.

For data augmentation, we randomly choose one of the fol-

lowing techniques: rotation by 90 degree, horizontal flips or

vertical flips.

Network Architecture: During development stage, we

use SRCNN [14] as the backbone of the actor network to

establish the theoretical foundation. To assimilate the per-

formance of SPOA built upon deeper architectures, we ex-

plore various state-of-the-art methods. Motivated by recent

advances, we use DRLN [2] with a network depth of 4 cas-

cading residual-in-residual blocks in our final AN. For the

policy network, we use convolutional layers with kernel size

(3,3), followed by LeakyReLU activation with a negative

slope of 0.1. All trainable parameters are initialized using

Xavier method [17].

Training Details: The interpolated image and the cor-

responding high resolution image represent the initial and

goal state in our MDP, respectively. In each episode, we

sample from uniformly distributed initial state space. We set

total episodes to 100000 and replay buffer size, D = 10. For

training, we use different step sizes, i.e., α = 1e− 4 & β =
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Figure 1. Learning dynamics. The blue curve shows actual reward

gathered per episode. The red curve shows windowed average of

actual reward per episode. We use a forward window of size 10.

1e − 7 and Adam optimizer [26]. A least expensive solu-

tion is chosen to update AN, SPN, and SPOA, i.e, A = 1,

P = 1, and S = 1. We use a common system configuration

with 2x Tesla K40 in all our experiments. The SPOA learn-

ing algorithm has been implemented with PyTorch [41].

Evaluation metrics: The resultant super resolved im-

ages are evaluated using four commonly used image quality

metrics: PSNR [23], SSIM [23], SRE [29], and SAM [55].

However, according to Ledig et al. [30], these distortion

measures fundamentally go against human perception of

image quality. For this reason, to assimilate perceptual

quality, we use no reference measures like NIQE [38] and

Ma’s score [35]. Using these measures, we compute the

Perceptual Index (PI) of an image as specified in the PIRM-

SR challenge [7].

6.3. Analysis on CelebA

Figure 1 shows gradual development in accumulating

rewards over multiple episodes. The agent initially per-

forms random actions, which are sampled from the pro-

posed stochastic SPN, in the form of exploration. This is ev-

ident from Figure 1(a), where the accumulated reward is not

so surprisingly very low in the earlier episodes. The agent

however discovers relevant actions as the interaction with

the environment progresses and simultaneously, SPOA in-

creases the likelihood of these particular actions. The agent,

therefore, observes a steady growth in gathering rewards,

as shown in Figure 1(b). Once the agent figures out rele-

vant actions, it repeatedly performs those actions in order to

accumulate maximum rewards. Thereby, it reaches in the

proximity of goal state from most of the initial states in al-

most every episodes, as shown in Figure 1(c).

Further, we compare SPOA with BiCubic and SR-

CNN [14] in both training and testing datasets. It is worth

mentioning that both SRCNN and SPOA share similar ar-

chitecture to assert direct comparison between these two

learning algorithms. Nevertheless, one can implement more

sophisticated architectures in the proposed framework to

gain optimal benefits. In Figure 2, we compare the recon-

structed images of BiCubic, SRCNN and SPOA both qual-

itatively and quantitatively using PSNR (dB) and SSIM.

As per the analysis, the reconstructed image by SPOA has

higher structural similarity with existing high resolution

data and also, it contains relatively less noise in each pixel.

Further, this shows the efficacy of hierarchical composition

Ground Truth BiCubic SRCNN SPOA(our)

26.25/0.84 29.6/0.92 30.12/0.94PSNR (dB)/ SSIM

29.73/0.9228.98/0.9025.91/0.82PSNR (dB)/ SSIM

Figure 2. Qualitative analysis on CelebA. Comparison with ex-

isting high resolution data. The proposed DRL based approach,

SPOA performs favourably against compared approaches.
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Figure 3. Mean state transition analysis. The implicit actor reaches

goal state from almost every initial state.

of local constituent functions, such as implicit actor net-

works to learn a compact continuous mapping.

6.4. Analysis on IRS­1C

Here, we analyze the performance of SPOA on IRS-1C

imagery. As shown in Figure 3, the distance between ini-

tial state and goal state gradually decreases as the train-

ing progresses. Finally, the implicit actor reaches at the

corresponding goal state starting from almost every initial

state. In addition, Figure 4 shows consistent improvement

of SPOA over SRCNN both qualitatively and quantitatively.

6.5. Comparison with State­of­the­art

To gain further insight about generalization ability of

SPOA, we start our discussion by comparing the proposed

framework with state-of-the-art methods. It is to be noted

that we use SRCNN in SPOA for the sole purpose of build-

ing overall pipeline. However, our final framework is built

upon DRLN [2]. To discern the usefulness of the proposed

method, we study its performance on large scale remote

sensing imagery of WorldView-2. In this regard, we an-

alyze the super-resolved images in terms of both percep-

tion and distortion metrics [8]. As given in Table 1, DRLN

achieves state-of-the-art result among prior approaches on

WorldView-2. While the proposed SPOA(DRLN) performs



Figure 4. Qualitative analysis on IRS-1C. SPOA performs reason-

ably well on IRS-1C imagery.

Metrics PSNR SSIM SRE SAM NIQE Ma’s PI

BiCubic 57.51 0.9939 46.48 17.25 5.50 3.77 5.86

SRCNN [14] 59.15 0.9964 48.10 14.14 5.73 4.88 5.42

LapSRN [28] 59.31 0.9964 48.08 13.98 5.08 5.96 4.56

DRLN [2] 59.32 0.9964 48.10 13.97 4.21 6.03 4.08

SPOA(DRLN) 58.89 0.9960 47.94 14.69 3.65 6.60 3.52

SPOA(DRLN)+SA 59.33 0.9966 48.20 13.81 5.02 5.54 4.74

SPOA(DRLN)+SA+VGG 59.22 0.9963 48.23 14.13 4.30 6.20 4.05

SPOA(DRLN)+VGG 58.98 0.9961 47.94 14.60 4.16 6.56 3.80

GT - - - - 2.05 7.01 2.52

Table 1. Comparison with state-of-the-art methods.

sub-optimally in terms of distortion metrics, it achieves

higher perceptual quality in terms of NIQE, Ma’s score, and

PI. Consistent with the theoretical justification of Blau et

al. [8], we observe perception-distortion tradeoff similar to

adversarial networks [49]. Moreover, the perception met-

ric values of SPOA(DRLN) are relatively closer to Ground

Truth (GT) as compared to state-of-the-art methods. Since

SPOA derives its foundation from reinforcement learning

paradigm, which is quite different from adversarial learn-

ing, it will certainly be interesting to study the theoretical

basis of such similarity in perception-distortion tradeoff [8].

6.5.1 Ablation Study

In addition, we explore several variants of SPOA to gain

intuition about its ability to achieve better distortion qual-

ity. We start our discussion by incorporating Self-Attention

(SA) units [57] in SPOA. Attending to relevant parts of an

image is an interesting line of research. Recent study shows

significant improvement in image quality due to attention

mechanisms [12, 57, 16]. For this reason, we augment

SPOA by adding self-attention units that work in tandem

with existing Laplacian channel attention units. As given

in Table 1, SPOA(DRLN)+SA outperforms DRLN in terms

of distortion metrics. Furthermore, we study whether addi-

tion of VGG loss [30] results in better perceptual quality.

Though introduction of VGG loss does not boost perfor-

mance beyond SPOA, it certainly improves the perceptual

quality of SPOA(DRLN)+SA.

6.5.2 Analysis on WorldView-2

To this end, we studied quantitatively how reinforcement

learning driven SPOA benefits super resolution. Here, we

discuss further by correlating the perception-distortion met-

rics with qualitative measures. As can be inferred from

the Natural Color Composite (NCC) and individual bands

in Figure 5, SPOA outperforms state-of-the-art methods in

terms of perceptual quality. While compared methods lack

continuity in linear features, SPOA seems to preserve con-

tinuity reasonably well. Even though SSIM values are com-

parable, evidently the quality of super resolved images is

not at par with each other. This is consistent with the obser-

vation of Blau et al. [8]. It can be observed from Figure 5

that the sharpness and continuity of features are prominent

in SPOA. In addition, SPOA produces more high frequency

details which tend to improve the naturalness of super re-

solved images while other methods [28, 2] either fail to cap-

ture these details or introduce unwanted artifacts. From the

individual bands of various signatures in Figure 5, one can

obtain a better visual assessment of image quality.

7. Concluding Remarks and Future Scope

In this study, we explored the plausible usage of rein-

forcement learning to address complex supervised learning

problems. We designed a DRL based Monte-Carlo policy

gradient approach to solve model-free MDPs where ade-

quate information about action variables is not discernible.

Guided by our theoretical justification, we introduced a

Siamese policy network with implicit action space. Further,

we demonstrated the efficacy of the proposed method in a

super resolution environment where action variables are not

apparent. Using both remote sensing and non-remote sens-

ing imagery, we studied the perception-distortion tradeoff.

To satisfy the requirement on multitude of tasks, we intro-

duced two methods: one that achieved state-of-the-art re-

sults in distortion and another, in visual perceptual quality.

A few noteworthy extensions of this paper are as follows:

1. Extension of SPOA to wide variety of problems cur-

rently solved using supervised learning.

2. Instead of building upon MC-REINFORCE, one can

explore the broad spectrum of reinforcement learning

algorithms in this framework.

3. Further, one can study how well SPOA figures out ma-

trix representation of actions by hiding known action

variables in RL benchmarks.
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Figure 5. Qualitative analysis on WorldView-2. SPOA outperforms compared methods in perceptual quality, and also generates more

natural textures while mitigating unpleasant artifacts, e.g., discontinuity of linear features.

This study demonstrated the plausibility of DRL in solv-

ing supervised problems as sequential decision making pro-

cesses. The efficacy of SPOA in this regard broadens the

horizon of DRL, suggesting further investigation in this vi-

able research direction might prove beneficial.
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