Monitoring Earth Climate Variables with Statistical Inference

Gustau Camps-Valls

Image Processing Laboratory (IPL)
Universitat de València, Spain
⊠ gustau.camps@uv.es | ♥ http://isp.uv.es

Outline

- Part 1: Earth observation from space
- Part 2: EO needs statistical learning
- Part 3: Advances in variable prediction and understanding
 - 1 Temporal structures
 - 2 Learning the covariance
 - 3 Warping the function
 - 4 Heteroscedasticity
 - 5 Multi-output regression
 - 6 Computational efficiency
 - 7 Sensitivity analysis
 - 8 From regression to causation
 - 9 GPs in your smartphone
 - 10 GPs for weather forecasting
- Part 4: Conclusions: references, code, ads

Part 1: Earth observation from space

We monitor the Earth constantly ...

NASA Exploration Center, California

EUMETSAT Operations, Darmstadt

... and with many satellite sensors ...

Credits: http://www.enmap.de/

... and many more almost ready to come!

ESA Sentinels, NASA A-train, EnMAP, FLEX, MTG-IRS, HyspIRI, MEOS, ZASat, HIS, HERO, etc.

Multispectral Typerspectral

- Hyperspectral signals allow finer material characterization
- Absorption, depth, re-emissions and modulated spectral features
- Identification of chemical components and bio-chemical processes
- Estimation of bio-geo-physical parameters

What can we do with these signals?

- Visible / NIR / MIR only day, no clouds
 - Vegetation dynamics and covers
 - Geological maps (structure, mineralogy, oil)
 - Agriculture, urban, forests use
 - Ocean temperature, fitoplancton
 - Meteorology of clouds
 - Layer dynamics
- Thermal Infrared day and night
 - Clouds temperature and height
 - Forest fires
 - Temperature maps
 - Plumes
 - Heat islands
- Active microwaves day and night
 - Surface characterization, structure of trees and leaves
 - Moisture, deformation by earthquakes, ...
 - Military applications

A standard image processing chain:

 \bullet High spectral resolution \rightarrow moderate spatial resolutions

- \bullet High spectral resolution \rightarrow moderate spatial resolutions
- High dimensional: multi-temporal, angular and source

- \bullet High spectral resolution \rightarrow moderate spatial resolutions
- High dimensional: multi-temporal, angular and source
- Non-linear feature relations

- \bullet High spectral resolution \rightarrow moderate spatial resolutions
- High dimensional: multi-temporal, angular and source
- Non-linear feature relations
- Non-Gaussian data distributions

- \bullet High spectral resolution \rightarrow moderate spatial resolutions
- High dimensional: multi-temporal, angular and source
- Non-linear feature relations
- Non-Gaussian data distributions
- Dependent noise, uneven sampling

- \bullet High spectral resolution \rightarrow moderate spatial resolutions
- High dimensional: multi-temporal, angular and source
- Non-linear feature relations
- Non-Gaussian data distributions
- Dependent noise, uneven sampling
- Few supervised (labeled) information is available (high cost)

- \bullet High spectral resolution \rightarrow moderate spatial resolutions
- High dimensional: multi-temporal, angular and source
- Non-linear feature relations
- Non-Gaussian data distributions
- Dependent noise, uneven sampling
- Few supervised (labeled) information is available (high cost)
- Tons of data to process in (near) real-time

We live at the intersection ...

Part 2: Statistical learning

- Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis
- Statistical learning theory deals with the problem of finding a predictive function based on data
- Given a set of input-output pairs $\mathcal{D} = \{(\mathbf{x}_i, y_i) | i = 1, ..., N\}$, learn a function $f(\cdot)$ that predicts outputs for new inputs well, $y^* = f(\mathbf{x}^*)$

Earth Observation needs Statistical Learning

- Identify objects and detect changes
- Stimate the content of bio-geo-physical prameters
- S Assess relative relevance of variables
- Infer (causal) relations between variables and observations

(b) 2005 Surface Temperature Anomaly (°C)

Last decade was dominated by kernel methods ...

Last decade was dominated by kernel methods ...

- RS problems are typically nonlinear
- KMs are efficient in high-dimensional low-sampled problems
- KMs allow combination of multi- source/temporal/angular data
- KMs are simple and clean to design, understand and apply
- We have 130 years of solid mathematics, theorems, and bounds

- Estimate biophysical parameters is key to monitor our Planet
- Monitoring land is the most challenging (and interesting) problem:
 - Phenological stage of crops and forests
 - Health status (e.g., development, productivity, stress)
- Implications on agriculture, biofuels and food
- Models typically resort to *in situ* data + remote sensing data

Goal: Transform measurements into biophysical parameter estimates

Data:

- Input data:
 - satellite/airborne spectra
 - in situ (field) radiometers
 - simulated spectra from RTMs
- Output results: estimation of a bio/geo-physical parameter

Taxonomy of retrieval methods

• The *statistical* inversion models: parametric and non-parametric.

- Parametric models rely on physical knowledge of the problem and build explicit parametrized expressions that relate a few spectral channels with the bio-geo-physical parameter(s) of interest.
- Non-parametric models are adjusted to predict a variable of interest using a training dataset of input-output data pairs.
- **2** *Physical* inversion models: try to reverse RTMs.
 - After generating input-output (parameter-radiance) datasets, the problem reduces to, given new spectra, searching for similar spectra in the dataset and assigning the most plausible ('closest') parameter.
- *Hybrid* inversion models try to combine the previous approaches.

• Parametric models based on band ratios are typically used:

- Simple
- Understandable
- Fast

• Problems:

- Too general and simplistic, not suited to all scenarios
- Require prior information (and solid physical knowledge)

• Nonlinear, nonparametric regression typically performs better:

- More flexible, adaptive
- No assumptions about data relations
- Many methods: neural networks, random forests, SVR ...

What is a Gaussian process?

- It is a probability density over functions
- It is defined by
 - A mean function $m(\mathbf{x})$
 - A covariance function $k(\mathbf{x}, \mathbf{x}')$
- It is expressed as

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k_{\theta}(\mathbf{x}, \mathbf{x}'))$$

• The joint pdf of any subset of points of $f(\mathbf{x})$ is a Gaussian:

$$\begin{bmatrix} f(\mathbf{x}_1) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} m(\mathbf{x}_1) \\ \vdots \\ m(\mathbf{x}_N) \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix} \right)$$

Gaussian processes regression in a nutshell

- Input-output data: $\{\mathbf{x}_n \in \mathbb{R}^D, y_n\}_{n=1}^N$
- Observation model:

$$y_n = f(\mathbf{x}_n) + \varepsilon_n, \ \varepsilon_n \sim \mathcal{N}(0, \sigma^2)$$

- Test point \mathbf{x}_* with corresponding output y_*
- Posterior over the unknown output:

$$p(\mathbf{y}_*|\mathbf{x}_*, \mathcal{D}) = \mathcal{N}(\mathbf{y}_*|\mu_{\mathsf{GP}*}, \sigma_{\mathsf{GP}*}^2)$$
$$\mu_{\mathsf{GP}*} = \mathbf{k}_{\mathsf{f}*}^\top (\mathbf{K} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y} = \mathbf{k}_{\mathsf{f}*}^\top \boldsymbol{\alpha}$$
$$\sigma_{\mathsf{GP}*}^2 = \sigma^2 + k_{**} - \mathbf{k}_{\mathsf{f}*}^\top (\mathbf{K} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{k}_{\mathsf{f}*}.$$

• Marginal likelihood (aka evidence)

$$\log p(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^{\top} (\mathbf{K} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y} - \frac{1}{2} \log |\mathbf{K} + \sigma^2 \mathbf{I}_n| - \frac{N}{2} \log(2\pi)$$

• Slow: $\mathcal{O}(N^2)$ storage and $\mathcal{O}(N^3)$ computing cost

GPR

- Nonlinear regression tool
- No assumption about the data relations
- Serious competitor to other nonparametric methods
- Provides confidence intervals
- Learns the relevance of the input bands
- Allows for flexible kernels that encode priors
- Automatic tuning of parameters

An illustrative real example: Retrieve vegetation chlorophyll content

- *In situ* leaf-level *ChI* measured with a calibrated CCM-200 Chlorophyll Content Meter in the field
- CHRIS images (62 bands, 400-1050 nm, 34m nadir res.) -corrected geometrically and atmospherically

Method	Formulation	ME	RMSE	MAE	R
GI	R_{672}/R_{550}	12.97	28.77	26.58	0.74
mNDVI	$(R_{800}-R_{680})/(R_{800}+R_{680}-2R_{445})$	1.20	9.27	7.06	0.79
mNDVI ₇₀₅	$(R_{750}-R_{705})/(R_{750}+R_{705}-2R_{445})$	1.22	9.13	6.30	0.80
mSR ₇₀₅	$(R_{750}-R_{445})/(R_{705}+R_{445})$	2.52	10.94	7.99	0.76
NDVI	$(R_{800}-R_{670})/(R_{800}+R_{670})$	1.72	9.85	7.34	0.78
NDVI2	$(R_{750}-R_{705})/(R_{750}+R_{705})$	1.81	9.56	6.79	0.80
OSAVI	$1.16(R_{800}-R_{670})/(R_{800}+R_{670}+0.16)$	1.72	9.85	7.34	0.78
PRI	$(R_{531}-R_{570})/(R_{531}+R_{570})$	25.58	35.96	32.14	0.77
PRI2	$(R_{570}-R_{539})/(R_{570}+R_{539})$	37.84	39.19	37.84	0.76
PSRI	$(R_{680}-R_{500})/R_{750}$	28.07	37.10	34.18	0.80
RDVI	$(R_{800} - R_{670})/\sqrt{(R_{800} + R_{670})}$	2.12	10.67	8.21	0.76
SIPI	$(R_{800}-R_{445})/(R_{800}-R_{680})$	17.18	31.54	28.62	0.76
SR1	R_{750}/R_{700}	3.16	11.76	8.49	0.75
SR3	R_{750}/R_{550}	0.87	9.78	7.51	0.75
SR4	R_{672}/R_{550}	12.97	28.77	26.58	0.74
VOG	R_{740}/R_{720}	0.61	9.68	7.44	0.76
LR	ℓ_2 least squares	4.56	11.52	8.94	0.77
LASSO	ℓ_1 least squares	3.46	12.39	9.56	0.73
TREE	Pruning, min. split $= 30$	0.14	6.98	4.59	0.86
NN	Sigmoid links, one hidden layer	0.93	9.19	6.49	0.77
KRR	RBF kernel	0.73	6.22	5.24	0.89
GPR	Anisotropic RBF kernel	1.69	6.57	5.19	0.95

simpleR: http://www.uv.es/gcamps/code/simpleR.html

- High confidences (west) were the most sampled fields
- Low confidences (center) in underrepresented areas e.g. dry barley, harvested barley, and bright bare soils

Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

Part 3: Advances in variable prediction and understanding

Structured, non-stationary and multiscale

• Typical kernel (covariance) function:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \nu \exp\left(-\sum_{f=1}^{F} \frac{(\mathbf{x}_i^f - \mathbf{x}_j^f)^2}{2\sigma_f^2}\right) + \sigma_n^2 \delta_{ij}$$

Combine kernels:

Time-based covariance for GP regression

• Standard local relations:

$$k_1(\mathbf{x}_i, \mathbf{x}_j) = \nu \exp\left(-\sum_{f=1}^F \frac{(\mathbf{x}_i^f - \mathbf{x}_j^f)^2}{2\sigma_f^2}\right) + \sigma_n^2 \delta_{ij}$$

• Stationary covariance to capture (inexact) periodicity:

$$k_2(t_i, t_j) = \gamma \exp\left(-rac{2\sin^2[\pi(t_i - t_j)]}{\sigma_t^2}
ight) imes \exp\left(-rac{(t_i - t_j)^2}{2\sigma_d^2}
ight)$$

• Combine kernels: $k([\mathbf{x}_i, t_i], [\mathbf{x}_j, t_j]) = k_1(\mathbf{x}_i, \mathbf{x}_j) + k_2(t_i, t_j)$

Time-based covariance for GP regression

Prediction of Daily global solar irradiation

Source	Data	Units	min-max
Cimel	Aerosol	-	0.01-1.38
sunphotometer	Optical Depth		
Brewer	Total Ozone	Dobson	242.50-443.50
spectrophotometer			
Atmospheric	Total Precip.	mm	1.33-41.53
sounding	Water		
GFS	Cloud amount	%	2-79.2
Pyranometer	Measured global solar irradiation	kJ/m ²	4.38-31.15

Method	ME	RMSE	MAE	ρ
RLR	0.27	4.42	3.51	0.76
RLR _t	0.25	4.33	3.42	0.78
SVR	0.54	4.40	3.35	0.77
SVR _t	0.42	4.23	3.12	0.79
GPR	0.14	3.22	2.47	0.88
GPR _t	0.13	3.15	2.27	0.88
TGPR	0.11	3.14	2.19	0.90

[Salcedo and Camps-Valls, GRSL 2014]

Parameter-free covariance

PCK: Probabilistic cluster kernel:

- 1: Run EM-GMM clustering T times with K clusters
- 2: Obtain the posterior probability vector $\pi_i(t, k)$ for \mathbf{x}_i :
- 3: Compute:

$$\mathcal{K}(\mathbf{x}_i,\mathbf{x}_j) = \frac{1}{Z} \sum_{t=1}^T \sum_{k=2}^K \pi_i(t,k)^\top \pi_j(t,k) \quad i,j=1,\ldots,n$$

4: Done!

[Izquierdo and Camps-Valls, NEUCOM, 2013]

Parameter-free covariance

[Izquierdo and Camps-Valls, NEUCOM, 2013]

Parameter-free covariance

Figure : Estimation maps for Chl, LAI and FCV using CHRIS/PROBA data.

Warped GPR: Learning the output transformation

- No more ad-hoc transformations of the observed variable
- Data can be "warped" to look more like a GP:

$$y_i = \mathbf{g}(f(\mathbf{x}_i) + \varepsilon_i)$$

• Warped GP places another prior for $g(\mathbf{x}) \sim \mathcal{GP}(f, c(f, f'))$

$$g^{-1}(y_i)=y_i+\sum_{\ell=1}^L a_\ell ext{ tanh}(b_\ell(y_i+c_\ell)), \quad a_\ell, \ b_\ell\geq 0,$$

- Evidence is analytical, posterior mean is easy to find
- Improved results and some knowledge about the target

METHOD	ME	RMSE	MAE	R
GPR	0.285	2.312	0.451	0.618
WGPR	0.298	2.344	0.445	0.638

Heteroscedastic GPR

- Heteroscedasticity: Signal and noise relations exist
- Standard GP prior does not capture these relations, $\varepsilon_n \sim i.i.d$
- The GP prior is

 $f(\mathbf{x}) \sim \mathcal{GP}(\mu_0 \mathbf{1}, k_{\boldsymbol{\theta}_f}(\mathbf{x}, \mathbf{x}'))$

• Good results, but unreasonable uncertainties!

Heteroscedastic GPR

- Heteroscedasticity: Signal and noise relations exist
- Change the GP prior over ε_n to $\varepsilon_n \sim \mathcal{N}(0, e^{\mathbf{g}(\mathbf{x}_n)})$
- We place an additional GP prior

 $f(\mathbf{x}) \sim \mathcal{GP}(\mu_0 \mathbf{1}, k_{\boldsymbol{\theta}_f}(\mathbf{x}, \mathbf{x}')) \qquad g(\mathbf{x}) \sim \mathcal{GP}(\mu_0 \mathbf{1}, k_{\boldsymbol{\theta}_g}(\mathbf{x}, \mathbf{x}'))$

Improved results and some knowledge about the noise

Multioutput GPR

- A model to predict several variables simultaneously
- Constrain the outputs to be physically-meaningful
- Posterior over the unknown output:

$$p(y_*|\mathbf{x}_*, \mathcal{D}) = \mathcal{N}(y_*|\mu_{\mathsf{GP}*}, \sigma_{\mathsf{GP}*}^2)$$
$$\mu_{\mathsf{GP}*} = \mathbf{k}_{\mathsf{f}*}^\top (\mathbf{K} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{Y} = \mathbf{k}_{\mathsf{f}*}^\top \mathbf{A}$$

• Just efficiency, no actual cross-relations

Multioutput GPR

- Constrain the outputs to be physically-meaningful
- Response vector as a linear combination of a set of M latent GPs
- Gives a block covariance matrix $[\tilde{\mathbf{K}}_{ij}^m] = k_m(\mathbf{x}_i, \mathbf{x}_j), \ m = 1, \dots, M$

$$p(y_*|\mathbf{x}_*, \mathcal{D}) = \mathcal{N}(y_*|\mu_{\mathsf{GP}*}, \sigma_{\mathsf{GP}*}^2)$$
$$\mu_{\mathsf{GP}*}^m = \tilde{\mathbf{k}}_{\mathbf{f}*}^\top (\tilde{\mathbf{K}} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{Y} = \tilde{\mathbf{k}}_{\mathbf{f}*}^\top \mathbf{A}$$

• Promising results in biophysical parameter retrieval

Sparse spectrum Gaussian Processes Regression (SSGPR)

- Speeding up GP is mandatory
- Sparse spectrum GP = standard GP with covariance:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \sum_{m=1}^{M} \cos(\mathbf{w}_m^{ op}(\mathbf{x}_i - \mathbf{x}_j)), \quad M \text{ basis functions}$$

- Computation time goes from $\mathcal{O}(N^3)$ to $\mathcal{O}(M \cdot N^2)$
- Storage goes from $\mathcal{O}(N^2)$ to $\mathcal{O}(M \cdot N)$

Sparse spectrum Gaussian Processes Regression (SSGPR)

- Inversion of PROSAIL radiative transfer model
- PROSAIL models leaf properties and canopy bidirectional reflectance
- 10⁶ points; train with 400,000 samples and cosine basis
- Prediction of 7 vegetation variables

Table : Configuration parameters of the simulated data.

Parameter	Sampling	Min	Max
RTM model: Prospect 4			
Leaf Structural Parameter	Fixed	1.50	1.50
C_{ab} , chlorophyll a+b $[\mu g/cm^2]$	U(14, 49)	0.067	79.97
C _w , equivalent water thickness [mg/cm ²]	U(10, 31)	2	50
C _m , dry matter [mg/cm ²]	U(5.9, 19)	1.0	3.0
RTM model: 4SAIL			
Diffuse/direct light	Fixed	10	10
Soil Coefficient	Fixed	0	0
Hot spot	Fixed	0.01	0.01
Observer zenit angle	Fixed	0	0
LAI, Leaf Area Index	U(1.2, 4.3)	0.01	6.99
LAD, Leaf Angle Distribution	U(28, 51)	20.04	69.93
SZA, Solar Zenit Angle	U(8.5, 31)	0.082	49.96
PSI, Azimut Angle	U(30, 100)	0.099	179.83

Sparse spectrum Gaussian Processes Regression (SSGPR)

- Inversion of PROSAIL radiative transfer model
- PROSAIL models leaf optical properties model and canopy bidirectional reflectance
- 1 million points; train with 400,000 samples and cosine basis

Sensitivity analysis

- Derivatives of the predictive mean $\phi(\mathbf{x})$ wrt features
- Sensitivity of feature *j* is defined as

$$s_{j} = \int \left(\frac{\partial \phi(\mathbf{x})}{\partial \mathbf{x}_{j}}\right)^{2} p(\mathbf{x}) d\mathbf{x} = ... = \frac{1}{N} \sum_{q=1}^{N} \left(\sum_{p=1}^{N} \frac{\alpha_{p}(\mathbf{x}_{p,j} - \mathbf{x}_{q,j})}{\sigma_{j}^{2}} k(\mathbf{x}_{p}, \mathbf{x}_{q})\right)^{2}$$

• Gross Primary Production (GPP) is the largest global CO₂ flux driving several ecosystem functions

GPP	ME	RMSE	MAE	ρ
LR	-0.01	1.83	1.30	0.78
MLP	+0.04	1.92	1.39	0.73
SVR	+0.01	1.80	1.23	0.78
GPR	+0.03	1.76	1.16	0.80

Sensitivity analysis

- Derivatives of the predictive mean $\phi(\mathbf{x})$ wrt features
- Sensitivity of feature *j* is defined as

$$s_j = \int \left(\frac{\partial \phi(\mathbf{x})}{\partial \mathbf{x}_j}\right)^2 p(\mathbf{x}) d\mathbf{x} = \dots = \frac{1}{N} \sum_{q=1}^N \left(\sum_{p=1}^N \frac{\alpha_p(\mathbf{x}_{p,j} - \mathbf{x}_{q,j})}{\sigma_j^2} k(\mathbf{x}_p, \mathbf{x}_q)\right)^2$$

[Jung & Camps-Valls, 2015]

From regression to causation

Hoyer (2008) regression-based framework:

- Perform nonlinear regression from $x \rightarrow y$ (and vice-versa, $y \rightarrow x$)
- Independent forward residuals? $(y f(x)) \parallel y$
- Independent backward residuals? $(x g(y)) \perp x$
- p-value of independence tells the right direction of causation

Method	<i>p</i> _f	p _b	Conclusion
GP	2.88×10^{-2}	$3.54 imes 10^{-12}$	$alt \to temp$
WGPR	$7.47 imes 10^{-4}$	9.28×10^{-11}	alt \rightarrow temp
VHGPR	2.94×10^{-16}	$8.83 imes 10^{-23}$	$alt \to temp$
GP	3.86×10^{-61}	$1.57 imes10^{-119}$	$PPFD(tot) \rightarrow NEP$
WGPR	$2.09 imes 10^{-52}$	4.18×10^{-112}	$PPFD(tot) \rightarrow NEP$
VHGPR	5.09×10^{-61}	2.51×10^{-108}	$PPFD(tot) {\rightarrow} NEP$
GP	$1.59 imes10^{-11}$	$1.24 imes10^{-79}$	$PPFD(diff) \rightarrow NEP$
WGPR	$1.16 imes 10^{-12}$	$9.00 imes 10^{-79}$	$PPFD(diff) \rightarrow NEP$
VHGPR	2.94×10^{-13}	$9.90 imes10^{-78}$	$PPFD(diff) \rightarrow NEP$
GP	$2.05 imes 10^{-8}$	$1.56 imes 10^{-112}$	$PPFD(dir) \rightarrow NEP$
WGPR	1.30×10^{-15}	3.33×10^{-111}	$PPFD(dir) \rightarrow NEP$
VHGPR	4.53×10^{-16}	$1.12 imes 10^{-115}$	$PPFD(dir) \to NEP$

[Camps-Valls, 2012]

Explicit mapping LAI with GPR and your smartphone

- Leaf area index (LAI) characterizes plant canopies
- LAI: one-sided green leaf area per unit ground surface area
- LAI: Key variable to analyze plants-atmosphere interaction
 - amount of radiation intercepted
 - plant water requirements
 - CO₂ sequestration
 - · assimilation of exogenous information in simulation models
 - forecasting purposes
- Hemispherical photography estimates LAI from upward-looking fisheye photographs taken beneath the plant canopy

[Campos and Camps-Valls, 2015]

Explicit mapping LAI with GPR and your smartphone

- Leaf area index (LAI) characterizes plant canopies
- LAI: one-sided green leaf area per unit ground surface area
- LAI: Key variable to analyze plants-atmosphere interaction
 - amount of radiation intercepted
 - plant water requirements
 - CO₂ sequestration
 - · assimilation of exogenous information in simulation models
 - forecasting purposes
- Ceptometers invert light transmittance models, but expensive, heavy, maintenance

[Campos and Camps-Valls, 2015]

Explicit mapping LAI with GPR and your smartphone

- Leaf area index (LAI) characterizes plant canopies
- LAI: one-sided green leaf area per unit ground surface area
- LAI: Key variable to analyze plants-atmosphere interaction
 - amount of radiation intercepted
 - plant water requirements
 - CO₂ sequestration
 - · assimilation of exogenous information in simulation models
 - forecasting purposes
- PocketLAI app: Segmentation (color-based, sky conditions), accelerometer, Poisson model for random leaves spatial distribution

[Campos and Camps-Valls, 2015]

GPR for weather forecasting

- Meteorological satellites carry infrared sounders, e.g. AIRS or IASI
- Big data: terabytes/day, IASI pixels are 8000-dim, 100 atmos. levels
- We run multioutput GPR for predicting temperature, moisture and ozone concentration (among other parameters)
- Gain in RMSE (1.5K), CPU time (seconds vs hours), and cloud detection

[[]Laparra, Calbet and Camps-Valls, 2015]

GPR for weather forecasting

- GPR largely improves PLR results over land (+1.5K)
- · Big numerical and statistical differences in all regions

[Laparra, Calbet and Camps-Valls, 2015]

GPR for weather forecasting

Part 4: Conclusions

Conclusions

- Advances in climate variable estimation from space
- Look at the signal structure and act!
- Bayesian nonparametrics is a proper framework
 - Solid Bayesian foundation
 - Excellent prediction capabilities
 - Encoding of prior knowledge and structures
 - Deal efficiently with uncertainties
- GPR allows feature ranking and causal inference
- Code, papers, demos: http://isp.uv.es/

Conclusions

- Advances in climate variable estimation from space
- Look at the signal structure and act!
- Bayesian nonparametrics is a proper framework
 - Solid Bayesian foundation
 - Excellent prediction capabilities
 - Encoding of prior knowledge and structures
 - Deal efficiently with uncertainties
- GPR allows feature ranking and causal inference
- Code, papers, demos: http://isp.uv.es/

Thanks! Tuia, Jenssen, Jung, Reichstein, Laparra, Mooij, Schölkopf, Peters, Verrelst, Lázaro-Gredilla, Titsias, Pérez-Cruz, Calbet, Muñoz-Marí, Moreno, Salcedo, Izquierdo, Campos

Visit http://isp.uv.es/

- Global monitoring of crop photosynthesis with chlorophyll fluorescence, PNAS 2014.
- Prediction of Daily Global Solar Irradiation, IEEE-GRSL 2015.
- Kernel Framework for Supervised Subspace Learning, IEEE SPM 2013
- Advances in Hyperspectral Image Classification, IEEE SPM 2014
- Gaussian processess Uncertainty Estimates in Experimental Sentinel-2 LAI, ISPRS, 2013
- Gaussian process retrieval of chlorophyll content, IEEE JSTARS, 2013
- Retrieval of Canopy Parameters using Gaussian Processes Techniques, IEEE TGRS, 2012
- Learning with the Kernel Signal To Noise Ratio, IEEE PAMI, 2015
- Sensitivity Analysis of Chlorophyll content prediction, IEEE TGRS, 2015
- Retrieval of Biophysical Parameters with Heteroscedastic GP, IEEE GRSL, 2014
- Ranking drivers of global carbon and energy fluxes over land, IEEE IGARSS, 2015
- Biophysical parameter retrieval with warped Gaussian processes, IEEE IGARSS, 2015
- Large-scale random features kernel regression , IEEE IGARSS, 2015
- Nernel methods for Remote Sensing Data Analysis, Wiley and Sons, 2009
- Kernel methods for Digital Signal Processing, Wiley and Sons, 2015