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Part 1: Earth observation from space
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Earth Observation from space

We monitor the Earth constantly ...

NASA Exploration Center, California EUMETSAT Operations, Darmstadt



Earth Observation from space

... and with many satellite sensors
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n from space Applications essing chain Challenges

... and many more almost ready to come!

Global Environmental Satellite Observation Network

ESA Sentinels, NASA A-train, EnMAP, FLEX, MTG-IRS, HyspIRI,
MEQOS, ZASat, HIS, HERO, etc.
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Observation

Surface

Spatial

Spectral dimension

dimensions

Radiance

Each pixel is defined in
aN-dimensional space,
in which each dimension
represents a wavelength
or frequency, and is used
to identify the material
contained in the pixel




Earth Observation from space
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Multispectral Hyperspectral

@ Hyperspectral signals allow finer material characterization
@ Absorption, depth, re-emissions and modulated spectral features
@ ldentification of chemical components and bio-chemical processes

@ Estimation of bio-geo-physical parameters
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What can we do with these signals?

Geology
@ Mineral
detection

@ Cover .
homogeneity

Precision agriculture

@ Crop stress
location

@ Crop
productivity

Defense

@ Target detection
@ Mine detection

Forestry

@ Infected trees

@ Status |
monitoring

@ Forest clearing

4

Atmosphere
@ Air quality,
pollutants

@ Global/local
change

Sea/ice/coastal

@ Oil spills
monitoring

@ Water quality

Land management
@ Crop monitor-
ing/phenology

@ Land use/cover
change

Public safety

@ Logistics &
operations

@ Fire risk, floods

Regulation & Policy
making

@ Urban growth

@ Settlements,
population
movements

Applications
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Applications

@ Visible / NIR / MIR — only day, no clouds
o Vegetation dynamics and covers
o Geological maps (structure, mineralogy, oil)
o Agriculture, urban, forests use
o Ocean temperature, fitoplancton
o Meteorology of clouds
Layer dynamics
@ Thermal Infrared — day and night
o Clouds temperature and height
o Forest fires
o Temperature maps
o Plumes

o Heat islands
@ Active microwaves — day and night
o Surface characterization, structure of trees and leaves
o Moisture, deformation by earthquakes, ...
e Military applications




Earth Observation from space Applications Processing chain Challenges

A standard image processing chain:

TRANSMISSION

CODING
FUSION FEATURE DENOISING | &
EXTRACTION g
REGRESSION | |CLASSIFICATION| . (RS

UNMIXING ’




Challenges

Characteristics of remote sensing data

@ High spectral resolution — moderate spatial resolutions
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Challenges

Characteristics of remote sensing data
@ High spectral resolution — moderate spatial resolutions

@ High dimensional: multi-temporal, angular and source

1978 1990 g g 2000
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Challenges

Characteristics of remote sensing data
@ High spectral resolution — moderate spatial resolutions
@ High dimensional: multi-temporal, angular and source

@ Non-linear feature relations

1978 1990 g g 2000
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Challenges

Characteristics of remote sensing data
@ High spectral resolution — moderate spatial resolutions
@ High dimensional: multi-temporal, angular and source
@ Non-linear feature relations

@ Non-Gaussian data distributions

1975 1990 g g 2000

16 /63



Challenges

Characteristics of remote sensing data
@ High spectral resolution — moderate spatial resolutions
@ High dimensional: multi-temporal, angular and source
@ Non-linear feature relations
@ Non-Gaussian data distributions
°

Dependent noise, uneven sampling
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Challenges

Characteristics of remote sensing data

High spectral resolution — moderate spatial resolutions
High dimensional: multi-temporal, angular and source
Non-linear feature relations

Non-Gaussian data distributions

Dependent noise, uneven sampling

Few supervised (labeled) information is available (high cost)

1975 1990 g g 2000

18 /63



Challenges

Characteristics of remote sensing data
High spectral resolution — moderate spatial resolutions
High dimensional: multi-temporal, angular and source

Non-linear feature relations

Dependent noise, uneven sampling

°
°

°

@ Non-Gaussian data distributions

°

@ Few supervised (labeled) information is available (high cost)
°

Tons of data to process in (near) real-time
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Challenges

We live at the intersection ...

Image
Processing

Signal

Computer |
Processing

Vision

Machine
Leaming



Part 2: Statistical learning



Statistical learning

Trevor Hastie
Rabert Tibshirani

Jerome Friedman

Data Mining, Inference, and Prediction

@ Statistical learning theory is a framework for machine learning
drawing from the fields of statistics and functional analysis

@ Statistical learning theory deals with the problem of finding a
predictive function based on data

@ Given a set of input-output pairs D = {(x;,y;)|i =1,..., N}, learn a
function f(-) that predicts outputs for new inputs well, y* = f(x*)
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Statistical learning

Earth Observation needs Statistical Learning

@ Identify objects and detect changes
@ Estimate the content of bio-geo-physical prameters
© Assess relative relevance of variables

@ Infer (causal) relations between variables and observations

(b) 2005 Surface Temperature Anomaly (°C)

i
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tatistical learn

Last decade was dominated by kernel methods ...
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atistical learn

Last decade was dominated by kernel methods ...

PR

Kernel Methods
for Remote Sensing
Data Analysis

Remote Sensing

Advances i SignalProcesing and

Explitaton Techriues

WILEY

Dispringer

RS problems are typically nonlinear

MMUML/\N&LMH’UUL PUBLISHERS

Remote Sensing Image
Processing

Gustavo Camps-Valls
Devis Tuia
Luis Gémez-Chova
Sandra Jiménez
Jesiis Malo

SYNTHESIS LECTURES ON

IMAGE, VIDEO & MULTIMEDIA PROCESSING

KMs are efficient in high-dimensional low-sampled problems

KMs allow combination of multi- source/temporal/angular data

KMs are simple and clean to design, understand and apply

We have 130 years of solid mathematics, theorems, and bounds
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Bio-geo-physical parameter retrieval

Estimate biophysical parameters is key to monitor our Planet

Monitoring land is the most challenging (and interesting) problem:

o Phenological stage of crops and forests
o Health status (e.g., development, productivity, stress)

Implications on agriculture, biofuels and food

Models typically resort to in situ data + remote sensing data
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Bio-geo-physical parameter retrieval

Goal: Transform measurements into biophysical parameter estimates

EO data Machine Learning Predictions

Y
WO L N ’

Data:
@ Input data:

o satellite/airborne spectra
o in situ (field) radiometers
e simulated spectra from RTMs

@ Output results: estimation of a bio/geo-physical parameter
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Statistical learning Bio-geo-physical parameter retrieval Approaches GPR

Taxonomy of retrieval methods
@ The statistical inversion models: parametric and non-parametric.

o Parametric models rely on physical knowledge of the problem and
build explicit parametrized expressions that relate a few spectral
channels with the bio-geo-physical parameter(s) of interest.

o Non-parametric models are adjusted to predict a variable of interest
using a training dataset of input-output data pairs.

@ Physical inversion models: try to reverse RTMs.

o After generating input-output (parameter-radiance) datasets, the
problem reduces to, given new spectra, searching for similar spectra
in the dataset and assigning the most plausible (‘closest’) parameter.

© Hybrid inversion models try to combine the previous approaches.



Approaches

@ Parametric models based on band ratios are typically used:
e Simple
o Understandable
o Fast

@ Problems:

e Too general and simplistic, not suited to all scenarios
e Require prior information (and solid physical knowledge)

@ Nonlinear, nonparametric regression typically performs better:

o More flexible, adaptive
o No assumptions about data relations
o Many methods: neural networks, random forests, SVR ...
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Statistical learning Bio-geo-physical parameter retrieval Approaches GPR

What is a Gaussian process?
@ It is a probability density over functions
o It is defined by

e A mean function m(x)
e A covariance function k(x, x")

@ It is expressed as
f(x) ~ GP(m(x), ke(x,x))
@ The joint pdf of any subset of points of f(x) is a Gaussian:

f(x1) m(xy) k(x1,x1) -+ k(x1,xp)
Y f 7 : , :

F(xn) m(xn) Koxwoxa) - k(xw,xn)



Statistical learning Bio-geo-physical parameter retrieval Approaches GPR

Gaussian processes regression in a nutshell
o Input-output data: {x, € RP, y,}N

@ Observation model:
Yn = f(Xn) + €n, €0~ N(0,0?)

@ Test point x, with corresponding output y.

@ Posterior over the unknown output:

p(y*|x*,D) :N(Y*|MGP*,O'(2;P*)
picrs = ke (K4 021,) 7ty = ki,
02p, = 02 + kyw — ki, (K + 021,) Yk,

@ Marginal likelihood (aka evidence)
1 1 N
log p(y) = —EyT(K +0%l,)y — 5 log |K + o?1,| — > log(27)

@ Slow: O(N?) storage and O(N3) computing cost
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Nonlinear regression tool

No assumption about the data relations

Serious competitor to other nonparametric methods
Provides confidence intervals

Learns the relevance of the input bands

Allows for flexible kernels that encode priors

Automatic tuning of parameters
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An illustrative real example: Retrieve vegetation chlorophyll content
@ In situ leaf-level Chl measured with a calibrated CCM-200
Chlorophyll Content Meter in the field
@ CHRIS images (62 bands, 400-1050 nm, 34m nadir res.) —corrected
geometrically and atmospherically

76258 77258 78258




Statistical learning Bio-geo-physical parameter retrieval Approaches GPR

Method [ Formulation [[ME[ RMSE MAE R

Gl Re72/ Rss0 12.97 28.77 26.58 0.74
mNDVI (Rs00-Res0)/ (Rsoo+ Rego-2 Raas ) 1.20 9.27 7.06 0.79
mNDVlzgs (R750—R705)/(R750+R705—2R445) 1.22 9.13 6.30 0.80
mSR705 (R750—R445)/(R705+R445) 2.52 10.94 7.99 0.76
NDVI (Rs00-Re70)/(Rsoo+ Re70) 1.72 9.85 7.34 0.78
NDVI2 (Ryzs0-R70s)/(R7s0+R70s) 1.81 9.56 6.79 0.80
OSAVI 1.16( Rgoo-Re70)/( Reoo+Re70+0.16) | 1.72  9.85 7.34 0.78
PRI (R531—R570)/(R531+R570) 25.58 35.96 32.14 0.77
PRI2 (Rs70-Rs39)/(Rs70+ Rs39) 37.84 39.19 37.84 0.76
PSRI (Res0-Rs00)/ Rzso 28.07 37.10 34.18 0.80
RDVI (Rggg - R670)/\/ (Rgog -+ R670) 212 10.67 8.21 0.76
SIPI (Rs00-Ra45)/ (Rsoo-Reso) 17.18 31.54 28.62 0.76
SR1 R7s50/ R0o 316 11.76 8.49 0.75
SR3 R750/ Rsso 0.87 9.78 7.51 0.75
SR4 Re72/ Rsso 12.97 28.77 26.58 0.74
VOG R740/ R20 0.61 9.68 7.44 0.76
LR £, least squares 456 1152 894 0.77
LASSO ¢ least squares 3.46 1239 956 0.73
TREE Pruning, min. split = 30 0.14 6.98 459 0.86
NN Sigmoid links, one hidden layer 0.93 9.19 6.49 0.77
KRR RBF kernel 0.73 6.22 5.24 0.89
GPR Anisotropic RBF kernel 1.69 6.57 5.19 0.95

simpleR: http://www.uv.es/gcamps/code/simpleR.html
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Statistical learr Bio-geo-physical parameter retrieval Approaches GPR

Chl,, [ug/cm’] St Dev Chl,, [ug/cm’]
E T b4
0 5 10 15 20 25 30 35 40 45 50 55 60 65 0 5 10 15 20 25 30 35 40 45 50 55

TR

@ High confidences (west) were the most sampled fields

@ Low confidences (center) in underrepresented areas
e.g. dry barley, harvested barley, and bright bare soils
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Part 3: Advances in variable prediction
and understanding
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Structured, non-stationary and multiscale

@ Typical kernel (covariance) function:

Foolgf _ yF)2
xI —x!
k(xi,xj) =vexp| — Z % + 025
f=1 f

AP N

@ Combine kernels:

L Quadratic oo docally
WAV functions periodic
0 . o
. s . MYV
Squared- local Periodic repeating 0 MV
exp (SE) variation (PER) structure YA AN
Liv pen  Periodic SE 4 ppn  Periodic
\ with trend with noise
—
0|
L 0
Linear linear Rational- multi-scale
o o o Livxgp  mereasing L growing
(L) functions  quadratic(RQ) variation RSB splitede

[Gahramani, 2013]
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Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

Time-based covariance for GP regression

@ Standard local relations:
f £\2
(x; —x;)

F
J 2
ki(xi,x;) = vexp ( - Z M) + 076
f=1 f
@ Stationary covariance to capture mexact) periodicity:

(
2sin?[r(t; i~ )
(o t) _vexp< [U(tt)l) < exp ( (f%;))
) = ki(xi, x;) + ko(ti, t)

e Combine kernels: k([x;, t;], [x}, t]

30

»
&

8
3
w

Solar irradiation
= o
P

S

100 200 300 400 500 ) 10" 10°
Period (Days/Cycle)

[Salcedo and Camps-Valls, GRSL 2014]
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Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

Time-based covariance for GP regression

Prediction of Daily global solar irradiation

[ Source [ Data [ Units [ min-max
Cimel Aerosol - 0.01-1.38
sunphotometer Optical Depth
Brewer Total Ozone Dobson 242.50-443.50
spectrophotometer
Atmospheric Total Precip. mm 1.33-41.53
sounding Water
GFS Cloud amount % 2-79.2
Pyranometer Measured global kJ/m2 4.38-31.15
solar irradiation

[ Method | ME | RMSE | MAE | p |

RLR 0.27 4.42 3.51 0.76
RLR; 0.25 4.33 3.42 0.78
SVR 0.54 4.40 3.35 0.77
SVR; 0.42 4.23 3.12 0.79
GPR 0.14 3.22 2.47 0.88
GPR; 0.13 3.15 2.27 0.88
TGPR 0.11 3.14 2.19 0.90

[Salcedo and Camps-Valls, GRSL 2014]

# Predictions
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PCK

Parameter-free covariance

PCK: Probabilistic cluster kernel:
1: Run EM-GMM clustering T times with K clusters
2: Obtain the posterior probability vector m;(t, k) for x;:
3: Compute:

T K
K(xi,x;) ZZ it k) Tm(t k) ij=1,...,n
t=1 k=2

4: Donel!

[1zquierdo and Camps-Valls, NEUCOM, 2013]
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PCK

Parameter-free covariance

&

Original Data RBF Fisher

Jensen-Shannon PCK

[1zquierdo and Camps-Valls, NEUCOM, 2013]
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PCK

Parameter-free covariance

Chl [ug/cm’] LAl [m?/m?] fCover [%]

Figure : Estimation maps for Chl, LAl and FCV using CHRIS/PROBA data.

[Izquierdo and Camps-Valls, IEEE TGARS, 2013]



Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

Warped GPR: Learning the output transformation

@ No more ad-hoc transformations of the observed variable
@ Data can be “warped” to look more like a GP:

yi = g(f(xi) +€i)
@ Warped GP places another prior for g(x) ~ GP(f,c(f, "))

L
g (i) =vi+ Y artanh(by(yi + ), as, b >0,
=1
@ Evidence is analytical, posterior mean is easy to find
@ Improved results and some knowledge about the target

0

GPR 0.285 2.312 0.451 0.618

METHOD | ME RMSE MAE R /
WGPR | 0.298 2.344 0.445 0.638 ,

Warping, y=10

—5%
— 10%|
—20%|
|— a0

[Lazaro, 2013; Camps-Valls, 2014]
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Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

Heteroscedastic GPR

@ Heteroscedasticity: Signal and noise relations exist
@ Standard GP prior does not capture these relations, €, ~ i.i.d
@ The GP prior is

f(x) ~ gP(/j,ol,kgf(X,X/))

@ Good results, but unreasonable uncertainties!
150

100
50 xx%&:xx
METHOD [ ME RMSE MAE R i AT

GPR [0285 2312 0.451 0618 - Yo Ty
WGPR |0.298 2.344 0.445 0638 B

-100 i‘%,;

-150

-200

0 10 20 30 40 50 60

[Lazaro, 2012; Camps-Valls, 2014]
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Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

Heteroscedastic GPR

@ Heteroscedasticity: Signal and noise relations exist
@ Change the GP prior over ¢, to &, ~ N(0, e&(*"))
@ We place an additional GP prior

f(x) ~ GP(uol, ke, (x,x)) g(x) ~ GP(uol, ko, (x,X))

@ Improved results and some knowledge about the noise

150

100
METHOD | ME RMSE MAE R L
GPR [0.285 2312 0.451 0.618 - LT SR
WGPR | 0.298 2.344 0.445 0638 %%f: 2
VHGPR |0.271 2309 0.442 0.684 ' Bl

-150

200, 10 20 30 40 50 60

[Lazaro, 2012; Camps-Valls, 2014]
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MGPR

Multioutput GPR

@ A model to predict several variables simultaneously
@ Constrain the outputs to be physically-meaningful

@ Posterior over the unknown output:

p(yelxe; D) = N(yulpicra, ogp.)
pep. = ki (K+0%1,) 1Y = ki, A

@ Just efficiency, no actual cross-relations

fCover

[Camps-Valls, 2012]
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MGPR

Multioutput GPR

@ Constrain the outputs to be physically-meaningful
@ Response vector as a linear combination of a set of M latent GPs
@ Gives a block covariance matrix [RfJ"] = km(xj, %), m=1,...,.M
p(yslxe, D) = N (vl Gpss oep.)
T~ ~T
o, = ke, (R +021,) 1Y = ke, A

@ Promising results in biophysical parameter retrieval

fCover

[Camps-Valls, 2015]
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Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

Sparse spectrum Gaussian Processes Regression (SSGPR)

@ Speeding up GP is mandatory

@ Sparse spectrum GP = standard GP with covariance:
k(x;, x;) Zcos w, (x;i —x;)), M basis functions

e Computation time goes from O(N3) to O(M - N?)
@ Storage goes from O(N?) to O(M - N)

METHOD| ME RMSE R CPU [g]
GPR ]0.285 2.312 0.618 1.150
SSGPR |0.296 2.194 0.684 0.530

Normalized Mean Squared Error
Mean Negative Log-Probabili

SPGP.
5~ SSGP fixed spectral points.

-v-5sGP

- = - Full GP on 10000 data points

S w0 o w0 s o o 0 20 % 10 200 00 50 750 120
Number of basis functions Number of basis functions

[Lazaro, 2008; Camps-Valls, 2014]



Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

Sparse spectrum Gaussian Processes Regression (SSGPR)

@ Inversion of PROSAIL radiative transfer model

@ PROSAIL models leaf properties and canopy bidirectional reflectance
@ 106 points; train with 400,000 samples and cosine basis

@ Prediction of 7 vegetation variables

Table : Configuration parameters of the simulated data.

[Parameter [Sampling [Min [Max |
RTM model: Prospect 4

Leaf Structural Parameter Fixed 1.50 [1.50
C.p, chlorophyll a+b [ug/cm?] U(14,49) |0.067|79.97
Cu, equivalent water thickness [mg/cm?]|14(10,31) |2 50
Cpn, dry matter [mg/cm?] 1(5.9,19) |{1.0 |3.0
RTM model: 4SAIL

Diffuse/direct light Fixed 10 |10
Soil Coefficient Fixed 0 0

Hot spot Fixed 0.01 |0.01
Observer zenit angle Fixed 0 0

LAI, Leaf Area Index U(1.2,4.3)(0.01 |6.99
LAD, Leaf Angle Distribution 1(28,51) |20.04(69.93
SZA, Solar Zenit Angle (8.5, 31) |0.082(49.96
PSI, Azimut Angle 14(30, 100) |0.099|179.83

[Laparra and Camps-Valls, 2015]
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SSGPR

Sparse spectrum Gaussian Processes Regression (SSGPR)

@ Inversion of PROSAIL radiative transfer model

@ PROSAIL models leaf optical properties model and canopy
bidirectional reflectance

@ 1 million points; train with 400,000 samples and cosine basis

LAl LAD SZA PSl
1 1.05, 1.04
q
w w w w
Los Lo g R €10
o o o o
o o 5095 5 1.02
206 Lo6 2 2
g g n z—é 0.9) !_E) 1.01
504 504 5 S
S S P So085 ) S
Q D
O'% 00 2000 °% 0 2000 % o0 2000 %% 1000 2000
# features # features # features # features
Cab Cw Cm B
1 ¥ 10
w w ‘ w
gos Z0s 208 , X
4 3 4 = 10
o 0.6 o o 0.6] & ./Ve—‘
g 0.4 506 2 o % /
g0 g 2 -4 O 4° —--IR
S 0% p S04 So. 8 -8~ GPR, 2000
= = = =@~ SSGPR, 400000
0 0. o 107 y
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000
# features # features # features # features

[Laparra and Camps-Valls, 2015]
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Sensitivity analysis

@ Derivatives of the predictive mean ¢(x) wrt features
@ Sensitivity of feature j is defined as

sj—/(ag)(:))zp(x)dx—. NZ(Z Wk(xp,xq)>2

J

@ Gross Primary Production (GPP) is the largest global CO, flux
driving several ecosystem functions

3500

3000

GPP ME RMSE MAE p

LR -0.01 1.83 130 0.78
MLP | +0.04 192 139 0.73
SVR | +0.01 1.80 1.23 0.78
GPR | +0.03 1.76 116 0.80

2500

2000

1500

1000

500

[Jung & Camps-Valls, 2015]
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Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

Sensitivity analysis

@ Derivatives of the predictive mean ¢(x) wrt features

@ Sensitivity of feature j is defined as

5 = / (a§£7)>2p(x)dx = .= ,i,EN: <§N: a"(""’;g"‘7’1)/<(xp,xq))2

q=1 p=1 J
GPR lengthscales GPR sensifivity map
o =
MIR H—‘ MIR }
EVI }' i i1 EVI
NDVI 5‘—‘ NDVI E'—c
LST-Night 5—~ LST-Night| z'_‘ ~
MSC-Day 5—' : MSC-Day| 5—‘
LST-Day E|—~ LST-Day| E—‘ ~ g
NDWI + NDWI +
0 0.2 0.4 0.6 08 1 0 01 02 03 04 05 06 07 08

[Jung & Camps-Valls, 2015]



Structure PCK WGPR VHGPR MGPR SSGPR SGPR Causal Phone Meteo

From regression to causation

Hoyer (2008) regression-based framework:
@ Perform nonlinear regression from x — y (and vice-versa, y — x)
@ Independent forward residuals? (y — f(x))1Ly
@ Independent backward residuals? (x — g(y))Lx

@ p-value of independence tells the right direction of causation

Method pf Pb Conclusion
GP 2.88x 102 | 3.54 x 10~ 2 alt — temp
WGPR | 7.47 x 107*| 9.28 x 10711 alt — temp
VHGPR|2.94 x 1071%| 8.83 x 1072 alt — temp
GP 3.86 x 101 [1.57 x 10~ ° [ PPFD(tot)— NEP

(
a0 305 300 o0 00 a0 WGPR [2.00 x 107°%4.18 x 10~ M* | PPFD(tot)— NEP
® aliude ® aliude VHGPR 5.09 x 10~ |2.51 x 10~'% | PPFD(tot)— NEP
(
(
(

>

temperature

o o

IS5

GP 1.59 x 10~ 1] 1.24 x 10~ [PPFD(diff)— NEP
WGPR |1.16 x 107'?| 9.00 x 10~"° |PPFD(diff)— NEP
VHGPR [2.94 x 10~ '%| 9.90 x 10~"® | PPFD(diff)— NEP

-200 -

R 00— GP 2.05 x 107 % [1.56 x 10~ 2 [ PPFD(dir)— NEP
temperature @ temperature WGPR |1.30 x 107%%|3.33 x 10! | PPFD(dir)— NEP
VHGPR [4.53 x 107%¢|1.12 x 10~!!® | PPFD(dir)— NEP

[Camps-Valls, 2012]
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Explicit mapping LAl with GPR and your smartphone

@ Leaf area index (LAI) characterizes plant canopies
@ LAI: one-sided green leaf area per unit ground surface area
@ LAI: Key variable to analyze plants-atmosphere interaction
e amount of radiation intercepted
o plant water requirements
o CO; sequestration
e assimilation of exogenous information in simulation models
o forecasting purposes
@ Hemispherical photography estimates LAl from upward-looking

fisheye photographs taken beneath the plant canopy

[Campos and Camps-Valls, 2015]
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Explicit mapping LAl with GPR and your smartphone

@ Leaf area index (LAI) characterizes plant canopies
@ LAI: one-sided green leaf area per unit ground surface area
@ LAI: Key variable to analyze plants-atmosphere interaction
e amount of radiation intercepted
o plant water requirements
o CO; sequestration
e assimilation of exogenous information in simulation models
o forecasting purposes
@ Ceptometers invert light transmittance models, but expensive,

heavy, maintenance

[Campos and Camps-Valls, 2015]
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Explicit mapping LAl with GPR and your smartphone

@ Leaf area index (LAI) characterizes plant canopies

@ LAI: one-sided green leaf area per unit ground surface area

@ LAI: Key variable to analyze plants-atmosphere interaction

amount of radiation intercepted

plant water requirements

CO, sequestration

assimilation of exogenous information in simulation models
forecasting purposes

@ PocketLAl app: Segmentation (color-based, sky conditions),
accelerometer, Poisson model for random leaves spatial distribution

199735

() vl

[Campos and Camps-Valls, 2015]



GPR for weather forecasting

@ Meteorological satellites carry infrared sounders, e.g. AIRS or IASI
o Big data: terabytes/day, IASI pixels are 8000-dim, 100 atmos. levels

@ We run multioutput GPR for predicting temperature, moisture and
ozone concentration (among other parameters)

@ Gain in RMSE (1.5K), CPU time (seconds vs hours), and cloud

detection
'
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[Laparra, Calbet and Camps-Valls, 2015]
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GPR for weather forecasting
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@ GPR largely improves PLR results over land (41.5K)
@ Big numerical and statistical differences in all regions

[Laparra, Calbet and Camps-Valls, 2015]
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GPR for weather forecasting

PLR

[Laparra, Calbet and Camps-Valls, 2015]
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Part 4: Conclusions



Conclusions
@ Advances in climate variable estimation from space
@ Look at the signal structure and act!
o Bayesian nonparametrics is a proper framework

e Solid Bayesian foundation

o Excellent prediction capabilities

e Encoding of prior knowledge and structures
o Deal efficiently with uncertainties

@ GPR allows feature ranking and causal inference
o Code, papers, demos: http://isp.uv.es/
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Conclusions

Advances in climate variable estimation from space

Look at the signal structure and act!

Bayesian nonparametrics is a proper framework
e Solid Bayesian foundation
o Excellent prediction capabilities
e Encoding of prior knowledge and structures
o Deal efficiently with uncertainties

GPR allows feature ranking and causal inference

Code, papers, demos: http://isp.uv.es/

Thanks! Tuia, Jenssen, Jung, Reichstein, Laparra, Mooij, Schélkopf,
Peters, Verrelst, Lazaro-Gredilla, Titsias, Pérez-Cruz, Calbet,
Mufioz-Mari, Moreno, Salcedo, lzquierdo, Campos
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Visit http://isp.uv.es/
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