Climate Resilience through Earth System Foundation Models

Carlos Gomes, Thomas Brunschwiler IBM Research - Europe

Foundational Technology Shift in AI Driving "Platform Dynamics"

Expert Systems

- Manually-crafted symbolic representations and rules
- No use of data and brittle

Machine Learning

- Less brittle but labor intensive
- Demanding data prep and feature engineering

Deep Learning

- Automatically learn if you

have enough labeled data • Enterprise adoption limited by availability of labeled data

Foundation Models

- Learn instrinsic structure from lots of data, no need for labels
- Quickly adopt to enterprise tasks using limited available labeled data

Outline

- Earth Observation FM & Applications
- Weather & Climate FMs vs. Emulators
- Climate Resilience through Earth System FMs
- Outlook: Embedding Engineering

ations alators h System FMs

Earth Observation Foundational Models in collaboration with

Satellite imagery

- Multimodal multiple satellites and bands •
- Temporal regular updates •

Satellite & Aerial Data

Foundation Models – Pre-training

Harmonized Landsat-Sentinel Dataset Sampling

Model architecture

 $\mathsf{MAE} \rightarrow \mathsf{Masked} \ \mathsf{AutoEncoder}$

- Pre-training task: reconstruct
 masked patches → target =
 original data.
- –MSE loss on *masked* patches.

Encoder → Vision transformer (*ViT*) for multispectral *3D data*.

-3D patch embeddings-3D positional encoding

Decoder → Transformer blocks + linear projection layer to match the target patch size.

3D positional encoding

IBM Research

Research interests

Geospatial foundation models using HLS2 data

Team members 38

Organization Card

NASA and IBM have teamed up to create an AI Foundation Model for Earth Observations, using large-scale satellite and remote sensing data, including the Harmonized Landsat and Sentinel-2 (HLS) data. By embracing the principles of open AI and open science, both organizations are actively contributing to the global mission of promoting knowledge sharing and accelerating innovations in addressing critical environmental challenges. With Hugging Face's platform, they simplify geospatial model training and deployment, making it accessible for open science users, startups, and enterprises on multi-cloud AI platforms like watsonx. Additionally, Hugging Face enables easy sharing of the pipelines of the model family, which our team calls <u>Prithvi</u>, within the community, fostering global collaboration and engagement.

Watch Prithvi end to end demo

More information: NASA Blog post, NASA Veda system, IBM Press/Blog post, EIS, Code

ello

(i) About org cards

↑↓ Sort: Recently Updated

Foundation Models – Fine-tuning

One trained Geospatial Foundation Model for many tasks

Detecting burn scares

Detecting floods

Classifying crop species

Land Use Land Change

Observing urban heat

Above ground biomass estimation

EO-FM KPI's on Flood Mapping - fine-tuning analysis

Number of iterations

5000 10000 15000 20000 25000 30000 35000 40000 Number of iterations

	IoU (water)	F1 (water)	mIoU (both classes)	mF1-score (both classes)	${ m mAcc}$ (both classes)
Baseline [55]	24.21	_	-	_	_
ViT-base [19] Swin [60] Swin† [60]	$67.58 \\ 79.43 \\ 80.58$	$80.65 \\ 88.54 \\ 89.24$	$81.06 \\ 87.48 \\ 87.98$	$88.92 \\93.13 \\93.44$	$88.82 \\ 90.63 \\ 92.02$
AFTER 50 EPOCHS Prithvi (not pretrained) Prithvi (pretrained)	$80.67 \\ 81.26$	89.30 89.66	88.76 89.10	$93.85 \\ 94.05$	94.79 95.07
AFTER 500 EPOCHS Prithvi (not pretrained) Prithvi (pretrained)	82.97 82.99	90.69 90.71	90.14 90.16	94.66 94.68	$\begin{array}{c} 94.82\\ 94.60\end{array}$

IBM Research © 2024

Key differentiations

- Pretrained Prithvi accelerates fine-tuning
- Outperforms state-of-the-art 15%
- Performs well in few-shot learning mode
- Generalizes well across global regions

blue: permanent waters, red: flooded area

Welcome Thomas Brunschwiler!

An internal service from IBM Research, prototyping generative AI technology and tooling for watsonx.ai

Inferencing Lab		Fine-tuning Studio	
	A	5	
	Experiment with foundation models	Fine-tune your foundation models with labeled data	
	ß		
	Open inferencing lab \rightarrow	Tune a model →	

Documentation

Access SDKs, model cards, and developer resources

5 6

API Key

Read documentation

Foundation Models - Inference

Hands-On exploration

https://github.com/NASA-IMPACT/hls-foundationos/blob/main/exploration.ipynb

IBM Research / © 2024 IBM Corporation

15

Weather & Climate Foundation Model

Earth System Foundation Models

Downstream tasks

Partners

horizon europe

The AI Alliance

IBM Research © 2024 IBM Corporation

- Changement climatique Canada

HUGGING FACE

AI Model Forecasting – orders of magnitude speed-up

All trained with ERA5 (re-analysis data from ECMWF)

- BUT does not include model training resources
- -> motivates need for Foundation Models

ator	Training Resources	~ V100 GPU Hours
tNet AFNO	16h x 64 A100 GPU	1'664
st	4wk, 32 Cloud TPUv4	147'456
	4 x 16days x 192 V100	294'912

From AI Forecast Emulators to Weather Foundation Models

AI-based forecast emulators are trained to propagate data in a fixed representation into the future. Model

Input: Y(t₀)

Foundation models are trained on a pretext task – e.g., reconstruction of t_{-n} to t_{+n} – to learn patterns in global weather that can be leveraged beyond forecasting.

Encoder

Input: Y(t₀), masked

Benefits of our Transformer Architecture for Weather Modelling

Tokenization + flexible sequence: A pathway to integrating observations

—Point observations (e.g., surface stations) Gridded data

Pretrained FMs facilitate Different Challenges

Once pre-trained encoder can be combined with various task-specific decoders to solve specific applications.

Climate Downscaling

Off-grid Wind Forecasting

Output

Extreme Event Detection

Basemap

8

3

81

0

Θ

May 15 2024 20:00:00 UTC

May 16 2024 00:00:00 UTC

Climate Resilience through Earth System FMs

Potential Model Workflow for Hydrogeologic Risk

Geospatial Foundation Models

IBM Research © 2024 IBM Corporation

Past event observations a) flood extent b) building damage

b) building damage risk Prediction of flood & damage risks

High Resolution Urban Heat Island Estimation

NIH

High Resolution Urban Heat Island Estimation NIH SLR Red 55²-• Reflectance bands: Changes LST Green Satellite spectral and over weeks/months Blue thermal bands (Landsat) • Thermal: Changes hourly **SWIR** • 30m res., 16-day revisit (global) NIR . . . • T2m: Changes hourly 2m air Average Regrid **Reanalysis/Climate** Temp. • Available hourly (global) variables (ERA5) • 9km res.

High Resolution Urban Heat Island Estimation

NIH

High Resolution Urban Heat Island Estimation

Forecasts & Projections

NIH

Weather (1-2 weeks) S2S (2 weeks – 3 months) Seasonal (3 – 6 months) Climate (1 - 10 + years)

ECMWF CMIP6

IBM Research – Zurich Try it out on

Earth System FM Blog

