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Foundational Technology Shift in AI Driving “Platform Dynamics”

Expert Systems
• Manually-crafted symbolic 

representations and rules
• No use of data and brittle

Machine Learning
• Less brittle but labor intensive
• Demanding data prep and 

feature engineering

Deep Learning
• Automatically learn if you 

have enough labeled data
• Enterprise adoption limited by 

availability of labeled data

1980s 1980s to ~2010 Big data Massive labeled data 
+
Compute

Foundation Models
• Learn instrinsic structure from 

lots of data, no need for labels
• Quickly adopt to enterprise 

tasks using limited available 
labeled data

Self-supervision at scale
+
Massive unlabeled data 
+
Compute

2017+
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• Earth Observation FM & Applications
• Weather & Climate FMs vs. Emulators
• Climate Resilience through Earth System FMs
• Outlook: Embedding Engineering

Outline



Satellite & Aerial Data

Foundation Model 
(Spatiotemporal Transformer) 

...
Disaster recovery & environmental monitoring use cases

Task Specific 
Model

Task Specific 
Model

Task Specific 
Models

Land Use 
Change

Biomass 
Estimation

Flood & Fire 
Mapping
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Satellite imagery
• Multimodal - multiple satellites and bands
• Temporal – regular updates

Geospatial Foundation Model

Earth Observation Foundational Models in collaboration with
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Pre-training

Foundation Models – Pre-training

Data Source

Sampling Filtering and Pre-
processing

Self-supervised 
Learning

Data diversity 
requirements

Data quality 
requirements

Model architecture + 
hyperparameters

Encoder
Decoder

Reconstructed 
Input

Pre-trained 
Foundation Models
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Harmonized Landsat-Sentinel Dataset Sampling
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Missing data

Clouds

3660 pixels

36
60

 p
ix

el
s

“good”
224 x 224 patch

Diversity in pre-training data
• sampling based on geospatial statistics

30m resolution
5 day revisit time

IBM Research



Model 
architecture

MAE → Masked AutoEncoder

– Pre-training task: reconstruct 
masked patches → target = 
original data.

– MSE loss on masked patches.

Encoder → Vision transformer 
(ViT) for multispectral 3D data.

– 3D patch embeddings
– 3D positional encoding

Decoder → Transformer blocks 
+ linear projection layer to 
match the target patch size. 

ViT architecture + 
3D Patch embedding + 
3D positional encoding
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Pre-training

Foundation Models – Fine-tuning

Data Source

Sampling Filtering and Pre-
processing

Self-supervised 
Learning

Data diversity 
requirements

Data quality 
requirements

Model architecture + 
hyperparameters

Encoder
Decoder

Reconstructed 
Input

Pre-trained 
Foundation Models

Fine-tuning

Task Specific 
Labeled Data

Supervised 
Learning

Encoder weights

Type of Task + 
hyperparameters
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One trained Geospatial Foundation Model for many tasks
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Detecting burn scares

Classifying crop species

Observing urban heat

Detecting floods

Above ground 
biomass estimation

Regression

Binary Semantic segmentation

Multiclass Semantic segmentation Land Use Land Change
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Earth Observation 
Foundation Model Encoder



EO-FM KPI’s on Flood Mapping - fine-tuning analysis
Data EfficiencyEncoder Weights

100%: 252 images 
87.5%: 32 images 

Key differentiations
• Pretrained Prithvi accelerates fine-tuning
• Outperforms state-of-the-art 15%
• Performs well in few-shot learning mode
• Generalizes well across global regions

blue: permanent waters, red: flooded area
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Pre-training

Foundation Models - Inference

Data Source

Sampling Filtering and Pre-
processing

Self-supervised 
Learning

Data diversity 
requirements

Data quality 
requirements

Model architecture + 
hyperparameters

Encoder
Decoder

Reconstructed 
Input

Pre-trained 
Foundation Models

Fine-tuning

Task Specific 
Labeled Data

Supervised 
Learning

Encoder weights

Type of Task + 
hyperparameters

Inference

Filtering and Pre-
processing

Encoder/decoder 
weights

Prompt

Encoder

Decoder

Output
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Hands-On exploration

IBM Research / © 2024 IBM Corporation 15

https://github.com/NASA-
IMPACT/hls-foundation-
os/blob/main/exploration.ipynb

https://github.com/NASA-IMPACT/hls-foundation-os/blob/main/exploration.ipynb
https://github.com/NASA-IMPACT/hls-foundation-os/blob/main/exploration.ipynb
https://github.com/NASA-IMPACT/hls-foundation-os/blob/main/exploration.ipynb
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Weather & Climate 
Foundation Model
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Earth System Foundation Models
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Landsat, Sentinel, etc
(visible, radar etc.)

Satellite Earth-Observation 
Foundation Model

Weather Observations & Reanalysis &
Forecasts Data

Weather & Climate Foundation                    
Model 

Disaster 
response

Vegetation 
management

Asset
monitoring ... Downscaling Extreme events Renewable 

forecasting
…

Downstream tasks

Development
Partners
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AI Model Forecasting – orders of magnitude speed-up

BUT does not include model training resources

AI emulator Training Resources ~ V100 GPU 
Hours

FourCastNet AFNO 16h x 64 A100 GPU 1’664

GraphCast 4wk, 32 Cloud TPUv4 147’456

Pangu 4 x 16days x 192 V100 294’912

All trained with ERA5 (re-analysis data from ECMWF)

-> motivates need for Foundation Models
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Speed-Up

18



Foundation models are trained on a 
pretext task – e.g., reconstruction of 
t-n to t+n – to learn patterns in global 
weather that can be leveraged 
beyond forecasting.

AI-based forecast emulators are 
trained to propagate data in a fixed 
representation into the future.
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From AI Forecast Emulators to Weather Foundation Models
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Loss 
including 
climatology 
as prior



Benefits of our Transformer Architecture for Weather Modelling 

Tokenization:
A pathway to multi-resolution models

Flexible sequence length:
A pathway to multi-regional models
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Point observations (e.g., surface stations)
Gridded data

Tokenization + flexible sequence:
A pathway to integrating observations
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Pretrained FMs facilitate Different Challenges

Regression
Climate
Downscaling

Regression

Segmentation

Off-grid
Wind Forecasting

Extreme Event 
Detection

Once pre-trained 
encoder can be 
combined with various 
task-specific decoders 
to solve specific 
applications.

Input Encoder Decoder Output

…
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Climate Resilience 
through 

Earth System FMs



Potential Model Workflow for Hydrogeologic Risk

Topography

Land use

Soil type

Hydrological 
model

Event 
detection

Precipi-
tation

Downscaled 
climate 
predictions

Past event observations
Geospatial 

Foundation Models

Fine-tuned 
model for land 
use change

Cl
im

at
e 

FM
EO

 F
M Fine tuning
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Geospatial risk 
model

Local event 
observations

Fine-tuned 
model for flood 
and damage 
detection

Groundwater
Pluvial flood

Da
m

ag
e 

pr
ob

ab
ili

ty

Impact 
Functions

Prediction of flood & damage risks

a) flood extent b) building damage

a) flood risk maps b) building damage risk



• Reflectance bands: Changes 
over weeks/months

• Thermal: Changes hourly
• 30m res., 16-day revisit (global)

12°C

40°C

Satellite spectral and 
thermal bands (Landsat)

Reanalysis/Climate 
variables (ERA5)

• T2m: Changes hourly
• Available hourly (global)
• 9km res.
• Different variables

Time

Red
Green 
Blue 
SWIR 
NIR
…

SLR
LST

2m air 
Temp.

T2m

Overpass
10:30am

21 Apr, 2024

Overpass
10:31am

8 May, 2024

Now

Average
Regrid

High Resolution Urban Heat Island Estimation

Diurnal cycle

Night Night

Day
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• Reflectance bands: Changes 
over weeks/months

• Thermal: Changes hourly
• 30m res., 16-day revisit (global)

12°C

40°C

Satellite spectral and 
thermal bands (Landsat)

Reanalysis/Climate 
variables (ERA5)

• T2m: Changes hourly
• Available hourly (global)
• 9km res.
• Different variables

Time

Red
Green 
Blue 
SWIR 
NIR
…

SLR
LST

2m air 
Temp.

T2m

Overpass
10:30am

21 Apr, 2024

Overpass
10:31am

8 May, 2024

Now

Average
Regrid

EOFM

Training example

EOFM

Training example
Spectral

T2m LST

Spectral

T2m LST

High Resolution Urban Heat Island Estimation

Diurnal cycle

Night Night

Day
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• Reflectance bands: Changes 
over weeks/months

• Thermal: Changes hourly
• 30m res., 16-day revisit (global)

12°C

40°C

Satellite spectral and 
thermal bands (Landsat)

Reanalysis/Climate 
variables (ERA5)

• T2m: Changes hourly
• Available hourly (global)
• 9km res.
• Different variables

Time

Red
Green 
Blue 
SWIR 
NIR
…

SLR
LST

2m air 
Temp.

T2m

Overpass
10:30am

21 Apr, 2024

Overpass
10:31am

8 May, 2024

Now

Average
Regrid

EOFM

Inference
Spectral

T2m LST

High Resolution Urban Heat Island Estimation
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• Reflectance bands: Changes 
over weeks/months

• Thermal: Changes hourly
• 30m res., 16-day revisit (global)

Satellite spectral and 
thermal bands (Landsat)

Reanalysis/Climate 
variables (ERA5)

• T2m: Changes hourly
• Available hourly (global)
• 9km res.
• Different variables

Red
Green 
Blue 
SWIR 
NIR
…

SLR
LST

Forecasts & Projections

Weather (1-2 weeks)
S2S (2 weeks – 3 months)
Seasonal (3 – 6 months)
Climate (1 – 10+ years)

2m air 
Temp.

Average
Regrid

12°C

40°C

Time

T2m

Overpass
10:30am

21 Apr, 2024

Overpass
10:31am

8 May, 2024

Now

ECMWF
CMIP6

High Resolution Urban Heat Island Estimation
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IBM Research – Zurich Try it out on 

Earth System
FM Blog


