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Course material

09:30 - 11:00 Introduction to quantum mechanics
11:00 - 11:30 Break

11:30 - 13:00 Introduction to quantum computation
13:00 - 14:30 Lunch

14:30 - 15:30 Quantum machine learning

15:30 - 16:00 Break

16:00 - 17:00 Quantum algorithms for Remote Sensing

Introduction to quantum mechanics
e Review on complex numbers
e Hilbert space
e Postulates of quantum mechanics
e Unitary evolution

e Simple Quantum Gates

2/39



Join at menticom | use code 6454 3204




Complex numbers - basics

Basic operations

Basnc definition

Addition
z= a +i b z1+20 = (a1 +iby) + (a2 + ib2) = (a1 +a2) + i(by + b2)
real part imaginary part Lo ;
Multiplication

Re[z] = a, Im[z] = b
2= 15+ 1=i
Modulus

Complex conjugation |lz| = Vz-z* = v a® + b?

1
Re[Z]:5(2+Z*) z=2-3j

2120 = (a1+ib1)-(a2+ib2) = (ara2—b1b2)+i(a1ba+azby)

Relz] =2, Im[z] = —
*=243i |zl =vV4+9=13

Tl = %(z — 2%
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Complex numbers - polar form

Basic defin

ion

argument
z= r - ¢
~—~
modulus

Multiplication

Lz =1 -y el(P1e2)
Modulus

|zl =r

Re[z] = r - cosyp, Im[z] = r - sinp

z¢=r-e’'¥
———_EI—EI————.
Basic operations

Im(2),
lzl=1 i 0.6+i
\\ JES VR SR
o (SN
S/ N
7 0.5
l’ gw \
%) A
/ 0/0’ !
; . —¢ - — .
-15 10 -05  ofo 0,5 {0Re(z) 15
—0.5
1—i Tl L
® B
15
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Complex matrices

Basic definitions
’

a,b,c,deC,M:{a g
¢ o H=Ht
mT — [a C:| M — [a* b*} e Generalization of symmetric matrices
- K - * * )
b d o d e All eigenvalues real
* *
/W:M”:M*T:[a C*},
oo 5]
(M1 - M) :;(Ml),-k~(M1)kj s U.U =1
-1 _ gt
In general U =vU
e Generalization of orthogonal matrices
My - Mo # Mo - My o |det(U)| =1, det(U) = e/®

[My, Ma] = My - My — My - My
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Postulates of quantum mechanics: Postulate |

Postulate |

In quantum mechanics the state of a physical
system is represented by a vector in a Hilbert
space H: a complex vector space with an inner
product.

(This course - only finite dimensional Hilbert
spaces)

N —————————————————————————————————————————
Dirac notation

Vector: ‘ket’ 1)) Dual vector: ‘bra’ (o]
Customarily, for d = dim(H):

1 0 0
0 1 0
|0y = dy=|[.[....][d-1)=
0 0 1

(0 =[10 ... 0] (@ = ()
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Postulates of quantum mechanics: Postulate |

[ EEEmm ) —

Hilbert space
@0
A Hilbert space H is a complex inner product d—1 ax
space. [¥) = Zaim = .
e Linear combination (superposition): i=0 :
od—1
d—1
[y = aili), Z@ .
i=0 lp1) = R(|0)+2i|1>+3|2>+4i|3))
e Inner product (bra-ket): 1
. lp2) = 5 (1 +1)[0) +i]1) +[2))
(ilj) = & 2
1 147
(Wle) = Za Bililiy =D aiBi DY L
i le1) = v | 3 le2) = 5 1
e Assumption of normalization: 4i 0
I = (lp) =1 - 1+)+2+3+0) =21
(#1lp2) 2\ﬁ (A+1) = 2v30
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Postulate | - State examples

‘Matrix’ multiplication

(p1le2) = (lo1)Fl2) =

1+
1 1] 6+ i

= —_[1,-2i,3,—4i] - = =
\/30[ ] 2 é 2/30

Exercise 1

1. Find N, such that the state
) = = (10) + 5il1))
= — i
PIEN

is normalized, ||¢||? = (p|p) = 1.

2. Is N unique?
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Exercise 1

Exercise 1 part 1

1. Find N, such that the state
1
=— (|0 5i|1
lo) = & (10) +5il1))

is normalized, ||¢||? = (¢|p) = 1.
Answers: a)V/26, b)17i, c¢)6, d)36
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Exercise 1

Exercise 1 part 1

1. Find N, such that the state
1
=— (|0 5i|1
lo) = & (10) +5il1))

is normalized, ||¢||? = (¢|p) = 1.
Answers: a)V/26, b)17i, c¢)6, d)36

1 . 1 . 26
(pliod = 5= (0 = 5i(1]) - (10} +5il1)) = 75 =1 [N] = V26

Exercise 1 part 2

2. Is N unique?
Answers: a)Yes, b)No
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Exercise 1

Exercise 1 part 1

1. Find N, such that the state
1
=— (|0 5i|1
lo) = & (10) +5il1))

is normalized, ||¢||? = (¢|p) = 1.
Answers: a)V/26, b)17i, c¢)6, d)36

1 . 1 . 26
(pliod = 5= (0 = 5i(1]) - (10} +5il1)) = 75 =1 [N] = V26

Exercise 1 part 2

2. Is N unique?
Answers: a)Yes, b)No

No, we only know the modulus of N, but the phase is arbitrary, N = 1/26e/®.
Customarily, we choose N real, N = 1/26.
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Postulate | - Qubit

Two state system:
1) = a|0) + B|1)

From normalization condition |a|?>+|3|? = 1
Examples:

[0), «a=1,8=0
|1)7 a=0,8=1

I+) = —=(10) + 1))

[-) = —=(10) — [1))
li+) = —=(]0) + i|1))

li—) = —=(]0) — i|1))

S - ol Sl
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Postulate | - Qubit

State on the Bloch sphere

[¥) = cos(6/2)|0) + '“sin(6/2)|1)

Pole states:

~
(I0> +il1))
li-) = 7 (l0) —i[1))
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Postulate | - Composite systems

Tensor product

Hilbert space of a composite system is the tensor product
of the Hilbert spaces for the subsystems.

H =H1Q Ha, dim(H) =dim(H1) - dim(H2)
Customarily:
[y @ i) = 1)) = 1i j)
For qubits:
[¥) = 0[0) + ca[1),[p) = Bol0) + £1|1)
[¥) ® |¢) = a0fo|00) 4 apB1]01) + a180|10) + a1 5111)
aofo

9) ® o) = [zﬂ © [gﬂ _ | aosr

a10
a1
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Postulate | - Composite systems

Entangled states

States of the form |¢) ® |p) are product
states, all others are entangled states.

Consider:

1
|o*) = $(|00> +111))

Interpretation:

A product state |¢) ® |p) has the mean-
ing that system v has the property |¢)) and
system ¢ the property |p). For an entan-
gled state one typically cannot assign defi-
nite properties to the individual systems
and .
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Entangled states - exercise 2

Exercise 2

Which of the following states is entangled?

) = 100) — [01) — [10) + [11), [¢) = |00) + |01) — |10) + |11)

a) Both are entangled,
b) Only [¢),

c) Only |¢),
d) None.
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Entangled states - exercise 2

Exercise 2

Which of the following states is entangled?

) = 100) — [01) — [10) + [11), [¢) = |00) + |01) — |10) + |11)

a) Both are entangled,
b) Only [¢)),

c) Only |¢),
d) None.

Solution

) = 100) —[01) — |10) + [11),

remember the formula (a — b)2 = a®> — ab — ba + b?? Mixed terms are negative, hence
) = (10) —11)) @ ((|0) — [1))) - not entangled.

We would expect that there will be even negative terms if all basis states are present.
|¢) =|00) + |01) — |10) + |11) - entangled.

Changing the relative phase leads to different states. Only global phase does not matter!
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Postulates of quantum mechanics: Postulate |l

Postulate lla

Every measurable physical quantity A is de-
scribed by a Hermitian matrix A acting in
the state space H.

The result of measuring a physical quantity
A must be one of the eigenvalues of the cor-
responding matrix A.

-—
Postulate Ilb

When the physical quantity A is measured
on a system in a normalized state [¢), the
probability of obtaining an eigenvalue (de-
noted a,) of the corresponding observable A
is given by the amplitude squared of the ap-
propriate state (projection onto correspond-
ing eigenvector).

Prlan] = |{an|9))[?,

where A|an) = an|an).

r
\.
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Postulates of quantum mechanics: Postulate |l

Hermitian matrices as observables

Hermitian matrices have real eigenvalues.
Although we work with complex numbers,
the measurement outcome is real, like in
classical physics.

-—

Pauli matrices and computational basis

Z|0) = 1|0), Z|1) = —1|1)
X|0) = 1), X|1) = [0)
X|+) =14), X|-) =-1|-)
Yi4+) = 1)i4), Y]i-) = —1|i-)
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Postulate |+Il - Experiment pt. 1

E) e Two orthogonal polarizations of light, vertical and horizontal,

introduce a basis: |v), |h)

e Any polarization photon state: |8) = cos(0)|v) + sin(0)|h)

e Two dimensional Hilbert space: H = span(|v), |h}), (v|h) =0
‘

e The action of the polarizer:

o The intensity of light after a polarizer is proportional to
the probability that the photon had a correct polarization

Prlvl = [(v]0)[?, Pr[h] = |(h6)[?

e For unpolarized light (Malus’ law 1809)
o Prlv|unpolarized] = [ |(v|0)2d6 = [ cos?(6)do = %
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Postulate |+Il - Experiment pt. 2

1. Checking the polarization filters: apply two filters orthogonally.
2. After the first polarizer the light is in state |v)

3. The second polarizer projects the state on the horizontal orientation eigenvector |h),
Prihlv] = [(h|v)[> =0

The light vanishes in this setup.

19/39



Postulate |+II - Experiment pt. 3

1. Insert tilted polarizer (6 = 45°),
45°) = J5lv) + i)
+ =)= T - T

v) = L5145%) + 1| - 45°)
2. After the first polarizer we have state |v), after

the second

Pr[45°|v] = |(45°|v)|* = | —=|?

ik

3. After the final polarizer

Pr[hl45°] = [(h|45°)[” = | —|*

ik

4. The intensity in the whole process

1
Prv|unpolarized] Pr[45°|v]Pr[h|45°] = 3
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Postulates of quantum mechanics: Postulate IlI

Postulate 111

The time evolution of the state vector
|(t)) is governed by the Schrddinger
equation, where S is the observable asso-
ciated with the total energy of the system
(called the Hamiltonian)

ih S (1)) = A 19(e)

 eeeeeeeeee————
Postulate 111

The time evolution of a closed system is
described by a unitary transformation on
the initial state.

[¥(t)) = U(t; o) [¥(to))
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Another exercise

Exercise 3

Assume that we have a unitary U, such that it is able to copy an arbitrary one-qubit state to the second
register

Ua (I9) ®10)) = [¥) @ [4)

What is the result of the action of U, on the state («|0) + 3]1)) ® |0)?
Answers:

a) @?|00) + aB|01) + oB|10) + B2|11)

b) «|00) + 3]11)
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No-cloning theorem

Both answers seem to be correct. ..

e First apply U, then multiply

Uq ((2]0) + BI1)) ® |0)) = («]0) + BI1)) ® (a|0) + B]1)) = a?|00) + a5|01) + af|10) + 52|11)
e First multiply, then apply Uy

Uci ((a]0) + B|1)) ® 10)) = Ucr (]00) + B]10)) = Ucr (|00)) + Uer (8|01)) = |00) + B|11)
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No-cloning theorem

Both answers seem to be correct. ..
e First apply U, then multiply
U ((|0) + B|1)) ® [0)) = (]0) + BI1)) ® («[0) + B1)) = a?|00) + «B|01) + B3|10) + B2|11)
e First multiply, then apply Uy
Uci ((2|0) + B[1)) ® [0)) = Uci (|00) + B|10)) = Uq (|00)) + Ug (8|01)) = «|00) + B|11)

No-cloning theorem

There is no unitary operator U on H ® H such that for all normalized states |¢)4 and |e)p in H

U(l¢)ale)g) = €9 |p)al6) g

for some real number o depending on ¢ and e.
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One-qubit unitary gates

Matrix representation in a basis

Operation from |i) to |j)

Ui = i) (il
Identity gate

Before | After

X =10)0] + [1)(1] =

-} 9
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One-qubit unitary gates

Matrix representation in a basis

Operation from |i) to |j)

X = [1)(0] + [0)(1] =

3
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One-qubit unitary gates

Hadamard gate

Before Alfter
0) —(10) +11)) [H]
PG
H= =0+ o+ =00 - mal= o= [ ]
e Hermitian and Unitary
H-H' =H - H=1
e Changes basis
HXH = Z
e Hadamard transform
T
HE(|0))®"=H®---® H|0...0) = 7 ; b)
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One-qubit unitary gates

Matrix representation in a basis

Operation from |i) to |j)

Phase gate - Exercise 4

Before | After

0) [0)

) i)
What is the matrix representation of S7

At Slals Jof ol ]

J
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One-qubit unitary gates

Matrix representation in a basis

Operation from |i) to |j)

Phase gate - Exercise

Before | After

0) [0)

) i)
What is the matrix representation of S7

05l 9
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Parameterized gates

Gates as an exponentiation of gates

We (theoretically) can perform arbitrary con- R
tinuously parameterized gates X

Rx(6) = e~ %%

[ cos(8/2) —i sin(6/2)
Rx(0) = [_,' sin(0/2)  cos(6/2) }

Ry(6) = e="'%

0/2) —sin(6/2
Ry (6) = {(:;((9//2)) czs((G//2))}

Rz(a) _ e—iZ% \ —

—i0/2 0
Rz(e) = |: 0 ei9/2i|
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Quantum computing as unitary rotations
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Quantum computing as unitary rotations

Ry
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Quantum computing as unitary rotations

X
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Quantum computing as unitary rotations

Y
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Quantum computing as unitary rotations

Z
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Quantum computing as unitary rotations
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Controlled NOT gate

C A Matrix representation

T 1 0 0 0
0 1 0 0
0 0 0 1
CNOT truth table
Before After
C T C T CNOT = |00)(00| + |01)(01] + |11)(10] + |10)(11| =
0) 0) 0) 0) 1 0 0 O
0 1) 110 1) o1 00
1) 0) 1) 1) ~ /0 0 0 1
H Wi 1o 0 0 1 0
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CNOT gate - action on an arbitrary quantum state

=+
W %) ®[0) @ [0)
0 —&—— )
CNOT (a|0) + B|1)) ® (|0)) =
0) &
= CNOT («|00) 4+ 3]10)) =
= a|00) + B|11) |0) 7
«|000) + $3|111)
F -1 g— 1
o ﬁ,ﬂ v2 Error correction - repetition codes
1
Yy —
|o7) = ﬁ(IOO) +111))
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Controlled Z gate

diagram Matrix representation

& ' 1 0 0 0
0 1 0 0
0 0 0 1
CNOT truth table
Before After
C T T T CZ = |00)(00| 4 |01)(01| + |11)(11| — |11)(11]| =
0) 0) 0) 0) 1 0 0 O
0) 1) 0) 1) 0 1 0 O
10 |11 0) “lo o 1 o0
1) 1) 1) —[1) 0 0 0 -1
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Exercise 4 Quantum circuit equivalence

rany
%

b

Which of the following quantum circuits are equivalent to the one above?

® 3
—H—{H——

Answers: a) All, b) Only 2, ¢)1 and 2, d) Only 3

2)

H—{A]

rahY
\'%

J
:
b
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Exercise 4 Quantum circuit equivalence

rany
%

b

Which of the following quantum circuits are equivalent to the one above?

® 3
—H—{H——

Answers: a) All, b) Only 2, ¢)1 and 2, d) Only 3

2)

H—{A]

rahY
\'%

J
:
b

HH =1, HXH =Z
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