Introduction to Quantum Mechanics

Artur Miroszewski

Quantum Cosmos Lab, Jagiellonian University

4th High Performance and Disruptive Computing in Remote Sensing School

Quantum Cosmos Lab

- 09:30 11:00 Introduction to quantum mechanics
- 11:00 11:30 Break
- 11:30 13:00 Introduction to quantum computation
- 13:00 14:30 Lunch
- 14:30 15:30 Quantum machine learning
- 15:30 16:00 Break
- 16:00 17:00 Quantum algorithms for Remote Sensing

Introduction to quantum mechanics

- Review on complex numbers
- Hilbert space
- Postulates of quantum mechanics
- Unitary evolution
- Simple Quantum Gates

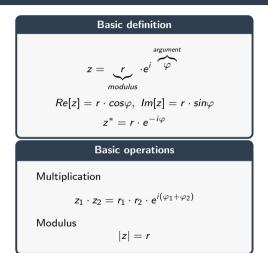
Quiz

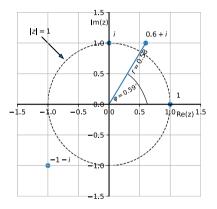
Join at menti.com | use code 6454 3204

Complex numbers - basics

Basic definition	Basic operations
$z = \underbrace{a}_{\text{real part}} + i \underbrace{b}_{\text{imaginary part}}$ $Re[z] = a, Im[z] = b$ $i^2 = -1 \rightarrow \sqrt{-1} = i$ Complex conjugation	Addition $z_1 + z_2 = (a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2)$ Multiplication $z_1 \cdot z_2 = (a_1 + ib_1) \cdot (a_2 + ib_2) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$ Modulus $ z = \sqrt{z \cdot z^*} = \sqrt{a^2 + b^2}$
$z^* = a - ib$	Example
$Re[z] = \frac{1}{2}(z + z^{*})$ $Im[z] = \frac{1}{2}(z - z^{*})$	z = 2 - 3i $Re[z] = 2, \ Im[z] = -3$ $z^* = 2 + 3i, z = \sqrt{4 + 9} = \sqrt{13}$

Complex numbers - polar form





Complex matrices

Basic definitions

$$a, b, c, d \in \mathbb{C}, M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 $M^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, M^* = \begin{bmatrix} a^* & b^* \\ c^* & d^* \end{bmatrix},$ $M^\dagger = (M^T)^* = (M^*)^T = \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix}$ $(M_1 \cdot M_2)_{ij} = \sum_k (M_1)_{ik} \cdot (M_1)_{kj}$

In general

$$M_1 \cdot M_2
eq M_2 \cdot M_1$$

 $[M_1, M_2] = M_1 \cdot M_2 - M_2 \cdot M_2$

Hermitian matrix

- $H = H^{\dagger}$
- Generalization of symmetric matrices
- All eigenvalues real

Unitary matrix

•
$$U \cdot U^{\dagger} = \mathbb{I}$$

- $U^{-1} = U^{\dagger}$
- Generalization of orthogonal matrices

•
$$|det(U)| = 1$$
, $det(U) = e^{i\varphi}$

Postulate I

In quantum mechanics the state of a physical system is represented by a vector in a Hilbert space \mathcal{H} : a complex vector space with an inner product.

(This course - only finite dimensional Hilbert spaces)

Dirac notation

Vector: 'ket'
$$|\psi\rangle$$
 Dual vector: 'bra' $\langle\varphi|$
Customarily, for $d = dim(\mathcal{H})$:
 $|0\rangle = \begin{bmatrix} 1\\0\\ \vdots\\0 \end{bmatrix} d, |1\rangle = \begin{bmatrix} 0\\1\\ \vdots\\0 \end{bmatrix}, \dots, |d-1\rangle = \begin{bmatrix} 0\\0\\ \vdots\\1 \end{bmatrix}$
 $\langle 0| = [1 \ 0 \ \dots \ 0], \langle \psi| = (|\psi\rangle)^{\dagger}$

Postulates of quantum mechanics: Postulate I

Hilbert space

A Hilbert space ${\mathcal H}$ is a complex inner product space.

• Linear combination (superposition):

$$|\psi\rangle = \sum_{i=0}^{d-1} \alpha_i |i\rangle, \ |\varphi\rangle = \sum_{i=0}^{d-1} \beta_i |i\rangle,$$

• Inner product (bra-ket):

$$\langle i|j
angle = \delta_{ij}$$

 $\langle \psi|arphi
angle = \sum_{ij} lpha_i^* eta_j \langle i|j
angle = \sum_i lpha_i^* eta_i$

• Assumption of normalization:

$$||\psi||^2 = \langle \psi |\psi\rangle = 1$$

State examples

$$|\psi\rangle = \sum_{i=0}^{d-1} \alpha_i |i\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{d-1} \end{bmatrix}$$

$$|arphi_1
angle = rac{1}{\sqrt{30}}\left(|0
angle + 2i|1
angle + 3|2
angle + 4i|3
angle
ight)$$

$$|arphi_2
angle = rac{1}{2}\left((1+i)|0
angle + i|1
angle + |2
angle
ight)$$

$$\begin{aligned} |\varphi_1\rangle &= \frac{1}{\sqrt{30}} \begin{bmatrix} 1\\2i\\3\\4i \end{bmatrix}, \ |\varphi_2\rangle &= \frac{1}{2} \begin{bmatrix} 1+i\\i\\1\\0 \end{bmatrix} \\ \langle\varphi_1|\varphi_2\rangle &= \frac{1}{2\sqrt{30}} \left((1+i) + 2 + 3 + 0 \right) = \frac{6+i}{2\sqrt{30}} \end{aligned}$$

Postulate I - State examples

'Matrix' multiplication

$$egin{aligned} &\langle arphi_1 | arphi_2
angle = (|arphi_1
angle)^\dagger | arphi_2
angle = \ &= rac{1}{\sqrt{30}} [1, -2i, 3, -4i] \cdot rac{1}{2} egin{bmatrix} 1 + i \ i \ 1 \ 0 \end{bmatrix} = rac{6+i}{2\sqrt{30}} \end{aligned}$$

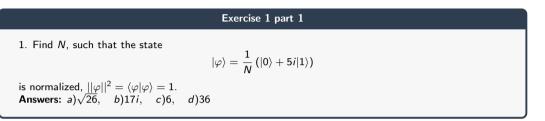
Exercise 1

1. Find N, such that the state

$$|arphi
angle = rac{1}{N}\left(|0
angle + 5i|1
angle$$

is normalized,
$$||arphi||^2 = \langle arphi| arphi
angle = 1$$

2. Is N unique?



Exercise 1 part 1 1. Find N, such that the state $|\varphi\rangle = \frac{1}{N} (|0\rangle + 5i|1\rangle)$ is normalized, $||\varphi||^2 = \langle \varphi | \varphi \rangle = 1$. Answers: $a)\sqrt{26}$, b)17i, c)6, d)36

$$\langle \varphi | \varphi
angle = rac{1}{N^*} (\langle 0| - 5i\langle 1|) \cdot rac{1}{N} (|0
angle + 5i|1
angle) = rac{26}{|N|^2} = 1 \Rightarrow |N| = \sqrt{26}$$

	Exercise 1 part 2
2. Is <i>N</i> unique? Answers: <i>a</i>) <i>Yes</i> ,	b)No

Exercise 1 part 1 1. Find N, such that the state $|\varphi\rangle = \frac{1}{N} (|0\rangle + 5i|1\rangle)$ is normalized, $||\varphi||^2 = \langle \varphi | \varphi \rangle = 1$. Answers: a) $\sqrt{26}$, b)17i, c)6, d)36

$$\langle \varphi | \varphi
angle = rac{1}{N^*} (\langle 0| - 5i\langle 1|) \cdot rac{1}{N} (|0\rangle + 5i|1\rangle) = rac{26}{|N|^2} = 1 \Rightarrow |N| = \sqrt{26}$$

Exercise 1 part 2

2. Is *N* unique? **Answers:** *a*)*Yes*, *b*)*No*

> No, we only know the modulus of N, but the phase is arbitrary, $N = \sqrt{26}e^{i\alpha}$. Customarily, we choose N real, $N = \sqrt{26}$.

Postulate I - Qubit

Qubit

Two state system:

$$|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$$

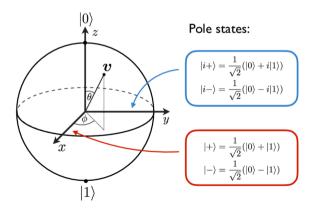
From normalization condition $|\alpha|^2+|\beta|^2=1$ Examples:

$$\begin{split} |0\rangle, \ \alpha &= \mathbf{1}, \beta = \mathbf{0} \\ |1\rangle, \ \alpha &= \mathbf{0}, \beta = \mathbf{1} \\ |+\rangle &= \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ |-\rangle &= \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \\ |i+\rangle &= \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle) \\ |i-\rangle &= \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle) \end{split}$$

Postulate I - Qubit

State on the Bloch sphere

$$|\psi
angle = cos(heta/2)|0
angle + e^{iarphi}sin(heta/2)|1
angle$$



Tensor product

Hilbert space of a composite system is the tensor product of the Hilbert spaces for the subsystems.

$$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2, \ \dim(\mathcal{H}) = \dim(\mathcal{H}_1) \cdot \dim(\mathcal{H}_2)$$

Customarily:

$$|i\rangle \otimes |j\rangle = |i\rangle |j\rangle = |i|j\rangle$$

For qubits:

$$\begin{split} |\psi\rangle &= \alpha_0 |0\rangle + \alpha_1 |1\rangle, |\varphi\rangle &= \beta_0 |0\rangle + \beta_1 |1\rangle \\ |\psi\rangle \otimes |\varphi\rangle &= \alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle \\ |\psi\rangle \otimes |\varphi\rangle &= \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} \otimes \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \alpha_0 \beta_0 \\ \alpha_0 \beta_1 \\ \alpha_1 \beta_0 \\ \alpha_1 \beta_1 \end{bmatrix} \end{split}$$

Entangled states

States of the form $|\psi\rangle\otimes|\varphi\rangle$ are product states, all others are entangled states.

Consider:

$$|\Phi^+
angle=rac{1}{\sqrt{2}}(|00
angle+|11
angle)$$

Interpretation:

A product state $|\psi\rangle\otimes|\varphi\rangle$ has the meaning that system ψ has the property $|\psi\rangle$ and system φ the property $|\varphi\rangle$. For an entangled state one typically cannot assign definite properties to the individual systems ψ and φ .

Which of the following states is entangled?

 $|\psi
angle = |00
angle - |01
angle - |10
angle + |11
angle, \; |\phi
angle = |00
angle + |01
angle - |10
angle + |11
angle$

a) Both are entangled,

- b) Only $|\psi\rangle$,
- c) Only $|\phi\rangle$,
- d) None.

Which of the following states is entangled?

 $|\psi
angle = |00
angle - |01
angle - |10
angle + |11
angle, \ |\phi
angle = |00
angle + |01
angle - |10
angle + |11
angle$

- a) Both are entangled,
- b) Only $|\psi\rangle$,
- c) Only $|\phi\rangle$,
- d) None.

Solution

 $|\psi
angle = |00
angle - |01
angle - |10
angle + |11
angle,$

remember the formula $(a - b)^2 = a^2 - ab - ba + b^2$? Mixed terms are negative, hence $|\psi\rangle = (|0\rangle - |1\rangle) \otimes ((|0\rangle - |1\rangle))$ - not entangled. We would expect that there will be even negative terms if all basis states are present. $|\phi\rangle = |00\rangle + |01\rangle - |10\rangle + |11\rangle$ - entangled. Changing the <u>relative</u> phase leads to different states. Only global phase does not matter!

Postulate IIa

Every measurable physical quantity A is described by a Hermitian matrix A acting in the state space \mathcal{H} . The result of measuring a physical quantity A must be one of the eigenvalues of the corresponding matrix A.

Postulate IIb

When the physical quantity \mathcal{A} is measured on a system in a normalized state $|\psi\rangle$, the probability of obtaining an eigenvalue (denoted a_n) of the corresponding observable \mathcal{A} is given by the amplitude squared of the appropriate state (projection onto corresponding eigenvector).

$$Pr[a_n] = |\langle a_n | \psi \rangle|^2,$$

where $A|a_n\rangle = a_n|a_n\rangle$.

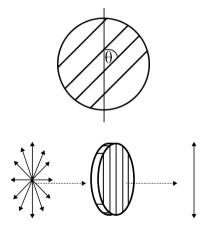
Hermitian matrices as observables

Hermitian matrices have real eigenvalues. Although we work with complex numbers, the measurement outcome is real, like in classical physics.

Pauli matrices and computational basis

$$\begin{split} X &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \\ Z|0\rangle &= 1|0\rangle, \ Z|1\rangle = -1|1\rangle \\ X|0\rangle &= |1\rangle, \ X|1\rangle = |0\rangle \\ X|+\rangle &= 1|+\rangle, \ X|-\rangle = -1|-\rangle \\ Y|i+\rangle &= 1|i+\rangle, \ Y|i-\rangle = -1|i-\rangle \end{split}$$

Postulate I+II - Experiment pt. 1

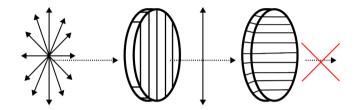


- Two orthogonal polarizations of light, vertical and horizontal, introduce a basis: $|\nu\rangle,|h\rangle$
- Two dimensional Hilbert space: $\mathcal{H} = span(|v\rangle, |h\rangle), \ \langle v|h\rangle = 0$
- Any polarization photon state: | heta
 angle=cos(heta)|v
 angle+sin(heta)|h
 angle
- The action of the polarizer:
 - ◊ The intensity of light after a polarizer is proportional to the probability that the photon had a correct polarization

$$Pr[v] = |\langle v | \theta \rangle|^2, Pr[h] = |\langle h | \theta \rangle|^2$$

For unpolarized light (Malus' law 1809) $\diamond Pr[v|unpolarized] = \int |\langle v|\theta \rangle|^2 d\theta = \int cos^2(\theta) d\theta = \frac{1}{2}$

Postulate I+II - Experiment pt. 2

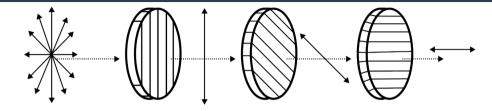


- 1. Checking the polarization filters: apply two filters orthogonally.
- 2. After the first polarizer the light is in state $|v\rangle$
- 3. The second polarizer projects the state on the horizontal orientation eigenvector $|h\rangle$,

$$Pr[h|v] = |\langle h|v \rangle|^2 = 0$$

The light vanishes in this setup.

Postulate I+II - Experiment pt. 3



1. Insert tilted polarizer ($\theta = 45^{\circ}$), $|45^{\circ}\rangle = \frac{1}{\sqrt{2}}|\nu\rangle + \frac{1}{\sqrt{2}}|h\rangle$ $+ |-45^{\circ}\rangle = \frac{1}{\sqrt{2}}|\nu\rangle - \frac{1}{\sqrt{2}}|h\rangle$

$$| v
angle = rac{1}{\sqrt{2}} | 45^\circ
angle + rac{1}{\sqrt{2}} | - 45^\circ
angle$$

2. After the first polarizer we have state $|\nu\rangle,$ after the second

$$Pr[45^{\circ}|v] = |\langle 45^{\circ}|v \rangle|^2 = |rac{1}{\sqrt{2}}|^2$$

3. After the final polarizer

$$Pr[h|45^{\circ}] = |\langle h|45^{\circ} \rangle|^2 = |rac{1}{\sqrt{2}}|^2$$

4. The intensity in the whole process

$$Pr[v|unpolarized]Pr[45^{\circ}|v]Pr[h|45^{\circ}] = \frac{1}{8}$$

Postulate III

The time evolution of the state vector $|\psi(t)\rangle$ is governed by the Schrödinger equation, where $\mathscr H$ is the observable associated with the total energy of the system (called the Hamiltonian)

$$i\hbarrac{d}{dt}|\psi(t)
angle=\mathscr{H}|\psi(t)
angle$$

Postulate III

The time evolution of a closed system is described by a unitary transformation on the initial state.

 $|\psi(t)
angle = U(t;t_0)|\psi(t_0)
angle$

Exercise 3
Assume that we have a unitary U_{cl} such that it is able to copy an <u>arbitrary</u> one-qubit state to the second register
$U_{cl}\left(\ket{\psi}\otimes\ket{0} ight)=\ket{\psi}\otimes\ket{\psi}$
What is the result of the action of U_{cl} on the state $(\alpha 0\rangle + \beta 1\rangle) \otimes 0\rangle$? Answers: a) $\alpha^2 00\rangle + \alpha\beta 01\rangle + \alpha\beta 10\rangle + \beta^2 11\rangle$ b) $\alpha 00\rangle + \beta 11\rangle$

Solution?

Both answers seem to be correct...

- First apply U_{cl} , then multiply $U_{cl} ((\alpha|0\rangle + \beta|1\rangle) \otimes |0\rangle) = (\alpha|0\rangle + \beta|1\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle) = \alpha^2|00\rangle + \alpha\beta|01\rangle + \alpha\beta|10\rangle + \beta^2|11\rangle$
- First multiply, then apply U_{cl} $U_{cl}\left((\alpha|0\rangle + \beta|1\rangle) \otimes |0\rangle\right) = U_{cl}\left(\alpha|00\rangle + \beta|10\rangle\right) = U_{cl}\left(\alpha|00\rangle\right) + U_{cl}\left(\beta|01\rangle\right) = \alpha|00\rangle + \beta|11\rangle$

Solution?

Both answers seem to be correct...

- First apply U_{cl} , then multiply $U_{cl}((\alpha|0\rangle + \beta|1\rangle) \otimes |0\rangle) = (\alpha|0\rangle + \beta|1\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle) = \alpha^2|00\rangle + \alpha\beta|01\rangle + \alpha\beta|10\rangle + \beta^2|11\rangle$
- First multiply, then apply U_{cl} $U_{cl}\left((\alpha|0\rangle + \beta|1\rangle) \otimes |0\rangle\right) = U_{cl}\left(\alpha|00\rangle + \beta|10\rangle\right) = U_{cl}\left(\alpha|00\rangle\right) + U_{cl}\left(\beta|01\rangle\right) = \alpha|00\rangle + \beta|11\rangle$

No-cloning theorem

There is no unitary operator U on $\mathcal{H}\otimes\mathcal{H}$ such that for all normalized states $|\phi\rangle_A$ and $|e\rangle_B$ in \mathcal{H}

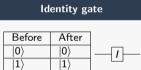
$$U(|\phi\rangle_A|e\rangle_B) = e^{i\alpha(\phi,e)}|\phi\rangle_A|\phi\rangle_B$$

for some real number α depending on ϕ and e.

Matrix representation in a basis

Operation from $|i\rangle$ to $|j\rangle$

 $U_{ii} = |j\rangle\langle i|$



$$|0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$
 $X = |0\rangle\langle 0| + |1\rangle\langle 1| =$

$$\begin{array}{l} X = |0\rangle\langle 0| + |1\rangle\langle 1| = \\ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{array}$$

$$|0\rangle = \begin{bmatrix} 0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 1 \end{bmatrix}$$

 $X = |0\rangle\langle 0| + |1\rangle\langle 1| =$

Operation from $|i\rangle$ to $|j\rangle$

 $U_{ii} = |j\rangle\langle i|$

NOT gate

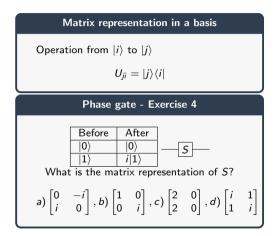
$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

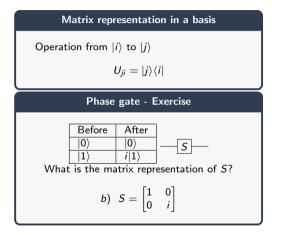
 $\mathbf{x} = |1\rangle\langle 0| + |0\rangle\langle 1| =$

$$x = \frac{1}{0} + \frac{0}{1} = 0$$

 $= \begin{bmatrix} 1 \end{bmatrix}$ 0

Hadamard gate Before After $\frac{1}{\sqrt{2}}(|0 angle+|1 angle)$ $|0\rangle$ Н $|1\rangle$ $H = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \langle 0| + \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \langle 1| = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$ • Hermitian and Unitary $H \cdot H^{\dagger} = H \cdot H = \mathbb{I}$ • Changes basis HXH = Z Hadamard transform $H^{\otimes n}(|0\rangle)^{\otimes n} = H \otimes \cdots \otimes H|0\ldots 0\rangle = \frac{1}{\sqrt{2^n}} \sum_{i=0}^{2^n-1} |i\rangle$





Parameterized gates

Gates as an exponentiation of gates

We (theoretically) can perform arbitrary continuously parameterized gates

$$R_X(\theta) = e^{-iX\frac{\theta}{2}}$$

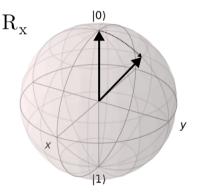
$$R_X(\theta) = \begin{bmatrix} \cos(\theta/2) & -i\sin(\theta/2) \\ -i\sin(\theta/2) & \cos(\theta/2) \end{bmatrix}$$

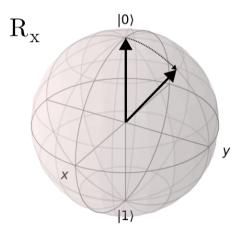
$$R_Y(\theta) = e^{-iY\frac{\theta}{2}}$$

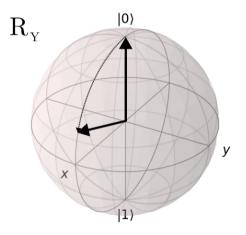
$$R_Y(\theta) = \begin{bmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{bmatrix}$$

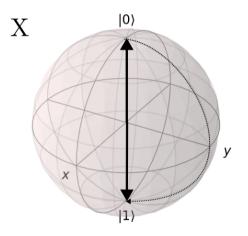
$$R_Z(\theta) = e^{-iZ\frac{\theta}{2}}$$

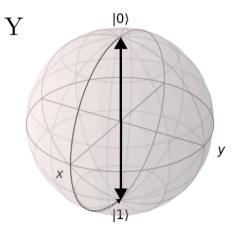
$$R_Z(\theta) = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$

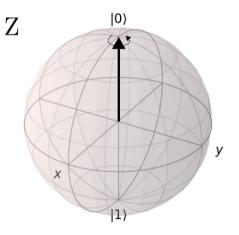


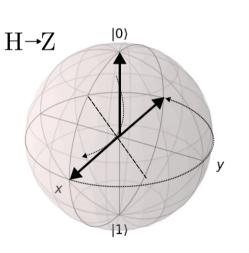












C	Matrix representation
CNOT truth table	$ 00 angle = egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}, 01 angle = egin{bmatrix} 0 \ 1 \ 0 \ 0 \ 0 \end{bmatrix}, 10 angle = egin{bmatrix} 0 \ 0 \ 1 \ 0 \ 1 \ 0 \end{bmatrix}, 11 angle = egin{bmatrix} 0 \ 0 \ 0 \ 1 \ 0 \ 1 \end{bmatrix}$
$\begin{array}{ c c c c c c c c }\hline Before & After \\\hline C & T & C & T \\\hline 0\rangle & 0\rangle & 0\rangle & 0\rangle \\\hline 0\rangle & 1\rangle & 0\rangle & 1\rangle \\\hline 1\rangle & 0\rangle & 1\rangle & 1\rangle \\\hline 1\rangle & 1\rangle & 1\rangle & 0\rangle \\\hline \end{array}$	$CNOT = 00 angle\langle 00 + 01 angle\langle 01 + 11 angle\langle 10 + 10 angle\langle 11 = \ = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$

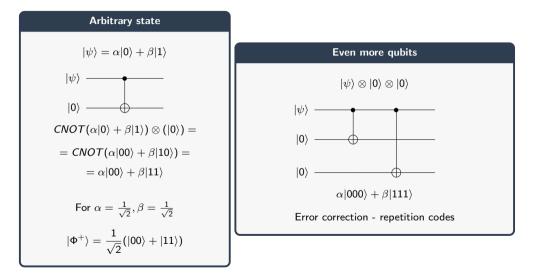
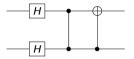
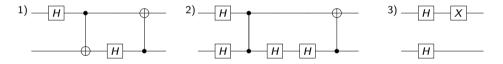


diagram	Matrix representation
C T CNOT truth table	$ 00 angle = egin{bmatrix} 1 \ 0 \ 0 \ \end{bmatrix}, 01 angle = egin{bmatrix} 0 \ 1 \ 0 \ 0 \ \end{bmatrix}, 10 angle = egin{bmatrix} 0 \ 0 \ 1 \ 0 \ \end{bmatrix}, 11 angle = egin{bmatrix} 0 \ 0 \ 0 \ 1 \ \end{bmatrix}$
$\begin{array}{ c c c c c c c }\hline Before & After \\ \hline C & T & C & T \\ \hline 0\rangle & 0\rangle & 0\rangle & 0\rangle \\ \hline 0\rangle & 1\rangle & 0\rangle & 1\rangle \\ \hline 1\rangle & 0\rangle & 1\rangle & 0\rangle \\ \hline 1\rangle & 1\rangle & 1\rangle & - 1\rangle \\ \hline \end{array}$	$egin{aligned} \mathcal{CZ} &= 00 angle \langle 00 + 01 angle \langle 01 + 11 angle \langle 11 - 11 angle \langle 11 = \ &= egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \end{bmatrix} \end{aligned}$

Exercise 4 Quantum circuit equivalence

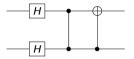


Which of the following quantum circuits are equivalent to the one above?

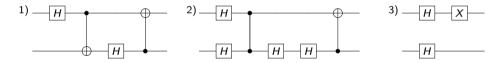


Answers: a) All, b) Only 2, c)1 and 2, d) Only 3

Exercise 4 Quantum circuit equivalence



Which of the following quantum circuits are equivalent to the one above?



Answers: a) All, b) Only 2, c)1 and 2, d) Only 3

 $HH = \mathbb{I}, HXH = Z$