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Course material

09:30 - 11:00 Introduction to quantum mechanics

11:00 - 11:30 Break

11:30 - 13:00 Introduction to quantum computation

13:00 - 14:30 Lunch

14:30 - 15:30 Quantum machine learning

15:30 - 16:00 Break

16:00 - 17:00 Quantum algorithms for Remote Sensing

Introduction to quantum mechanics

• Review on complex numbers

• Hilbert space

• Postulates of quantum mechanics

• Unitary evolution

• Simple Quantum Gates
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Quiz
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Complex numbers - basics

Basic definition

z = a︸︷︷︸
real part

+i b︸︷︷︸
imaginary part

Re[z] = a, Im[z] = b

i2 = −1 →
√
−1 = i

Complex conjugation

z∗ = a− ib

Re[z] =
1

2
(z + z∗)

Im[z] =
1

2
(z − z∗)

Basic operations

Addition

z1 + z2 = (a1 + ib1)+ (a2 + ib2) = (a1 + a2)+ i(b1 + b2)

Multiplication

z1·z2 = (a1+ib1)·(a2+ib2) = (a1a2−b1b2)+i(a1b2+a2b1)

Modulus
|z| =

√
z · z∗ =

√
a2 + b2

Example

z = 2− 3i

Re[z] = 2, Im[z] = −3

z∗ = 2 + 3i , |z| =
√
4 + 9 =

√
13
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Complex numbers - polar form

Basic definition

z = r︸︷︷︸
modulus

·e i
argument︷︸︸︷
φ

Re[z] = r · cosφ, Im[z] = r · sinφ

z∗ = r · e−iφ

Basic operations

Multiplication

z1 · z2 = r1 · r2 · e i(φ1+φ2)

Modulus
|z| = r
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Complex matrices

Basic definitions

a, b, c, d ∈ C,M =

[
a b
c d

]
MT =

[
a c
b d

]
,M∗ =

[
a∗ b∗

c∗ d∗

]
,

M† = (MT )∗ = (M∗)T =

[
a∗ c∗

b∗ d∗

]
,

(M1 ·M2)ij =
∑
k

(M1)ik · (M1)kj

In general

M1 ·M2 ̸= M2 ·M1

[M1,M2] = M1 ·M2 −M2 ·M1

Hermitian matrix

• H = H†

• Generalization of symmetric matrices

• All eigenvalues real

Unitary matrix

• U · U† = I

• U−1 = U†

• Generalization of orthogonal matrices

• |det(U)| = 1, det(U) = e iφ
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Postulates of quantum mechanics: Postulate I

Postulate I

In quantum mechanics the state of a physical
system is represented by a vector in a Hilbert
space H: a complex vector space with an inner
product.

(This course - only finite dimensional Hilbert
spaces)

Dirac notation

Vector: ‘ket’ |ψ⟩ Dual vector: ‘bra’ ⟨φ|
Customarily, for d = dim(H):

|0⟩ =


1
0
...
0


 d , |1⟩ =


0
1
...
0

,. . . , |d − 1⟩ =


0
0
...
1


⟨0| = [1 0 . . . 0], ⟨ψ| = (|ψ⟩)†
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Postulates of quantum mechanics: Postulate I

Hilbert space

A Hilbert space H is a complex inner product
space.

• Linear combination (superposition):

|ψ⟩ =
d−1∑
i=0

αi |i⟩, |φ⟩ =
d−1∑
i=0

βi |i⟩,

• Inner product (bra-ket):

⟨i |j⟩ = δij

⟨ψ|φ⟩ =
∑
ij

α∗
i βj ⟨i |j⟩ =

∑
i

α∗
i βi

• Assumption of normalization:

||ψ||2 = ⟨ψ|ψ⟩ = 1

State examples

|ψ⟩ =
d−1∑
i=0

αi |i⟩ =


α0

α1

...
αd−1



|φ1⟩ =
1

√
30

(|0⟩+ 2i |1⟩+ 3|2⟩+ 4i |3⟩)

|φ2⟩ =
1

2
((1 + i)|0⟩+ i |1⟩+ |2⟩)

|φ1⟩ = 1√
30


1
2i
3
4i

, |φ2⟩ = 1
2


1 + i
i
1
0


⟨φ1|φ2⟩ =

1

2
√
30

((1 + i) + 2 + 3 + 0) =
6 + i

2
√
30
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Postulate I - State examples

‘Matrix’ multiplication

⟨φ1|φ2⟩ = (|φ1⟩)†|φ2⟩ =

=
1

√
30

[1,−2i , 3,−4i ] ·
1

2


1 + i
i
1
0

 =
6 + i

2
√
30

Exercise 1

1. Find N, such that the state

|φ⟩ =
1

N
(|0⟩+ 5i |1⟩)

is normalized, ||φ||2 = ⟨φ|φ⟩ = 1.

2. Is N unique?
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Exercise 1

Exercise 1 part 1

1. Find N, such that the state

|φ⟩ =
1

N
(|0⟩+ 5i |1⟩)

is normalized, ||φ||2 = ⟨φ|φ⟩ = 1.
Answers: a)

√
26, b)17i , c)6, d)36

⟨φ|φ⟩ =
1

N∗ (⟨0| − 5i⟨1|) ·
1

N
(|0⟩+ 5i |1⟩) =

26

|N|2
= 1 ⇒ |N| =

√
26

Exercise 1 part 2

2. Is N unique?
Answers: a)Yes, b)No

No, we only know the modulus of N, but the phase is arbitrary, N =
√
26e iα.

Customarily, we choose N real, N =
√
26.
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Postulate I - Qubit

Qubit

Two state system:

|ψ⟩ = α|0⟩+ β|1⟩

From normalization condition |α|2+|β|2 = 1
Examples:

|0⟩, α = 1, β = 0

|1⟩, α = 0, β = 1

|+⟩ =
1
√
2
(|0⟩+ |1⟩)

|−⟩ =
1
√
2
(|0⟩ − |1⟩)

|i+⟩ =
1
√
2
(|0⟩+ i |1⟩)

|i−⟩ =
1
√
2
(|0⟩ − i |1⟩)
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Postulate I - Qubit

State on the Bloch sphere

|ψ⟩ = cos(θ/2)|0⟩+ e iφsin(θ/2)|1⟩
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Postulate I - Composite systems

Tensor product

Hilbert space of a composite system is the tensor product
of the Hilbert spaces for the subsystems.

H = H1 ⊗H2, dim(H) = dim(H1) · dim(H2)

Customarily:

|i⟩ ⊗ |j⟩ = |i⟩|j⟩ = |i j⟩

For qubits:

|ψ⟩ = α0|0⟩+ α1|1⟩, |φ⟩ = β0|0⟩+ β1|1⟩

|ψ⟩ ⊗ |φ⟩ = α0β0|00⟩+ α0β1|01⟩+ α1β0|10⟩+ α1β1|11⟩

|ψ⟩ ⊗ |φ⟩ =
[
α0

α1

]
⊗

[
β0
β1

]
=


α0β0
α0β1
α1β0
α1β1


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Postulate I - Composite systems

Entangled states

States of the form |ψ⟩ ⊗ |φ⟩ are product
states, all others are entangled states.

Consider:

|Φ+⟩ =
1
√
2
(|00⟩+ |11⟩)

Interpretation:
A product state |ψ⟩ ⊗ |φ⟩ has the mean-
ing that system ψ has the property |ψ⟩ and
system φ the property |φ⟩. For an entan-
gled state one typically cannot assign defi-
nite properties to the individual systems ψ
and φ.
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Entangled states - exercise 2

Exercise 2

Which of the following states is entangled?

|ψ⟩ = |00⟩ − |01⟩ − |10⟩+ |11⟩, |ϕ⟩ = |00⟩+ |01⟩ − |10⟩+ |11⟩

a) Both are entangled,
b) Only |ψ⟩,
c) Only |ϕ⟩,
d) None.

Solution

|ψ⟩ = |00⟩ − |01⟩ − |10⟩+ |11⟩,

remember the formula (a− b)2 = a2 − ab − ba+ b2? Mixed terms are negative, hence
|ψ⟩ = (|0⟩ − |1⟩)⊗ ((|0⟩ − |1⟩)) - not entangled.
We would expect that there will be even negative terms if all basis states are present.
|ϕ⟩ = |00⟩+ |01⟩ − |10⟩+ |11⟩ - entangled.
Changing the relative phase leads to different states. Only global phase does not matter!
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Postulates of quantum mechanics: Postulate II

Postulate IIa

Every measurable physical quantity A is de-
scribed by a Hermitian matrix A acting in
the state space H.
The result of measuring a physical quantity
A must be one of the eigenvalues of the cor-
responding matrix A.

Postulate IIb

When the physical quantity A is measured
on a system in a normalized state |ψ⟩, the
probability of obtaining an eigenvalue (de-
noted an) of the corresponding observable A
is given by the amplitude squared of the ap-
propriate state (projection onto correspond-
ing eigenvector).

Pr [an] = |⟨an|ψ⟩|2,

where A|an⟩ = an|an⟩.
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Postulates of quantum mechanics: Postulate II

Hermitian matrices as observables

Hermitian matrices have real eigenvalues.
Although we work with complex numbers,
the measurement outcome is real, like in
classical physics.

Pauli matrices and computational basis

X =

[
0 1
1 0

]
,Y =

[
0 −i
i 0

]
,Z =

[
1 0
0 −1

]
Z |0⟩ = 1|0⟩, Z |1⟩ = −1|1⟩

X |0⟩ = |1⟩, X |1⟩ = |0⟩

X |+⟩ = 1|+⟩, X |−⟩ = −1|−⟩

Y |i+⟩ = 1|i+⟩, Y |i−⟩ = −1|i−⟩
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Postulate I+II - Experiment pt. 1

• Two orthogonal polarizations of light, vertical and horizontal,
introduce a basis: |v⟩, |h⟩

• Two dimensional Hilbert space: H = span(|v⟩, |h⟩), ⟨v |h⟩ = 0

• Any polarization photon state: |θ⟩ = cos(θ)|v⟩+ sin(θ)|h⟩
• The action of the polarizer:

⋄ The intensity of light after a polarizer is proportional to
the probability that the photon had a correct polarization

Pr [v ] = |⟨v |θ⟩|2,Pr [h] = |⟨h|θ⟩|2

For unpolarized light (Malus’ law 1809)
⋄ Pr [v |unpolarized ] =

∫
|⟨v |θ⟩|2dθ =

∫
cos2(θ)dθ = 1

2
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Postulate I+II - Experiment pt. 2

1. Checking the polarization filters: apply two filters orthogonally.

2. After the first polarizer the light is in state |v⟩
3. The second polarizer projects the state on the horizontal orientation eigenvector |h⟩,

Pr [h|v ] = |⟨h|v⟩|2 = 0

The light vanishes in this setup.
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Postulate I+II - Experiment pt. 3

1. Insert tilted polarizer (θ = 45◦),
|45◦⟩ = 1√

2
|v⟩+ 1√

2
|h⟩

+ | − 45◦⟩ = 1√
2
|v⟩ − 1√

2
|h⟩

|v⟩ = 1√
2
|45◦⟩+ 1√

2
| − 45◦⟩

2. After the first polarizer we have state |v⟩, after
the second

Pr [45◦|v ] = |⟨45◦|v⟩|2 = |
1
√
2
|2

3. After the final polarizer

Pr [h|45◦] = |⟨h|45◦⟩|2 = |
1
√
2
|2

4. The intensity in the whole process

Pr [v |unpolarized ]Pr [45◦|v ]Pr [h|45◦] =
1

8
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Postulates of quantum mechanics: Postulate III

Postulate III

The time evolution of the state vector
|ψ(t)⟩ is governed by the Schrödinger
equation, where H is the observable asso-
ciated with the total energy of the system
(called the Hamiltonian)

iℏ
d

dt
|ψ(t)⟩ = H |ψ(t)⟩

Postulate III

The time evolution of a closed system is
described by a unitary transformation on
the initial state.

|ψ(t)⟩ = U(t; t0)|ψ(t0)⟩
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Another exercise

Exercise 3

Assume that we have a unitary Ucl such that it is able to copy an arbitrary one-qubit state to the second
register

Ucl (|ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩

What is the result of the action of Ucl on the state (α|0⟩+ β|1⟩)⊗ |0⟩?
Answers:
a) α2|00⟩+ αβ|01⟩+ αβ|10⟩+ β2|11⟩
b) α|00⟩+ β|11⟩
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No-cloning theorem

Solution?

Both answers seem to be correct. . .

• First apply Ucl , then multiply
Ucl ((α|0⟩+ β|1⟩)⊗ |0⟩) = (α|0⟩+ β|1⟩)⊗ (α|0⟩+ β|1⟩) = α2|00⟩+ αβ|01⟩+ αβ|10⟩+ β2|11⟩

• First multiply, then apply Ucl

Ucl ((α|0⟩+ β|1⟩)⊗ |0⟩) = Ucl (α|00⟩+ β|10⟩) = Ucl (α|00⟩) + Ucl (β|01⟩) = α|00⟩+ β|11⟩

No-cloning theorem

There is no unitary operator U on H⊗H such that for all normalized states |ϕ⟩A and |e⟩B in H

U(|ϕ⟩A|e⟩B) = e iα(ϕ,e)|ϕ⟩A|ϕ⟩B

for some real number α depending on ϕ and e.
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One-qubit unitary gates

Matrix representation in a basis

Operation from |i⟩ to |j⟩

Uji = |j⟩⟨i |

Identity gate

Before After
|0⟩ |0⟩
|1⟩ |1⟩

I

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
X = |0⟩⟨0|+ |1⟩⟨1| =

=

[
1 0
0 1

]
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One-qubit unitary gates

Matrix representation in a basis

Operation from |i⟩ to |j⟩

Uji = |j⟩⟨i |

NOT gate

Before After
|0⟩ |1⟩
|1⟩ |0⟩

X

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
X = |1⟩⟨0|+ |0⟩⟨1| =

=

[
0 1
1 0

]
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One-qubit unitary gates

Hadamard gate

Before After

|0⟩ 1√
2
(|0⟩+ |1⟩)

|1⟩ 1√
2
(|0⟩ − |1⟩)

H

H =
1
√
2
(|0⟩+ |1⟩)⟨0|+

1
√
2
(|0⟩ − |1⟩)⟨1| =

1
√
2

[
1 1
1 −1

]
• Hermitian and Unitary

H · H† = H · H = I

• Changes basis
HXH = Z

• Hadamard transform

H⊗n(|0⟩)⊗n = H ⊗ · · · ⊗ H|0 . . . 0⟩ =
1

√
2n

2n−1∑
i=0

|i⟩
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One-qubit unitary gates

Matrix representation in a basis

Operation from |i⟩ to |j⟩

Uji = |j⟩⟨i |

Phase gate - Exercise 4

Before After
|0⟩ |0⟩
|1⟩ i |1⟩

S

What is the matrix representation of S?

a)

[
0 −i
i 0

]
, b)

[
1 0
0 i

]
, c)

[
2 0
2 0

]
, d)

[
i 1
1 i

]
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One-qubit unitary gates

Matrix representation in a basis

Operation from |i⟩ to |j⟩

Uji = |j⟩⟨i |

Phase gate - Exercise

Before After
|0⟩ |0⟩
|1⟩ i |1⟩

S

What is the matrix representation of S?

b) S =

[
1 0
0 i

]
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Parameterized gates

Gates as an exponentiation of gates

We (theoretically) can perform arbitrary con-
tinuously parameterized gates

RX (θ) = e−iX θ
2

RX (θ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]
RY (θ) = e−iY θ

2

RY (θ) =

[
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

]
RZ (θ) = e−iZ θ

2

RZ (θ) =

[
e−iθ/2 0

0 e iθ/2

]
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Quantum computing as unitary rotations
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Quantum computing as unitary rotations
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Quantum computing as unitary rotations
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Quantum computing as unitary rotations
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Quantum computing as unitary rotations
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Quantum computing as unitary rotations
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Controlled NOT gate

CNOT truth table

Before After
C T C T
|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |0⟩ |1⟩
|1⟩ |0⟩ |1⟩ |1⟩
|1⟩ |1⟩ |1⟩ |0⟩

Matrix representation

|00⟩ =


1
0
0
0

 , |01⟩ =

0
1
0
0

 , |10⟩ =

0
0
1
0

 , |11⟩ =

0
0
0
1



CNOT = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11| =

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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CNOT gate - action on an arbitrary quantum state

Arbitrary state

|ψ⟩ = α|0⟩+ β|1⟩

|ψ⟩ •

|0⟩

CNOT (α|0⟩+ β|1⟩)⊗ (|0⟩) =

= CNOT (α|00⟩+ β|10⟩) =

= α|00⟩+ β|11⟩

For α = 1√
2
, β = 1√

2

|Φ+⟩ =
1
√
2
(|00⟩+ |11⟩)

Even more qubits

|ψ⟩ ⊗ |0⟩ ⊗ |0⟩

|ψ⟩ • •

|0⟩

|0⟩

α|000⟩+ β|111⟩

Error correction - repetition codes
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Controlled Z gate

diagram

C •

T •

CNOT truth table

Before After
C T C T
|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |0⟩ |1⟩
|1⟩ |0⟩ |1⟩ |0⟩
|1⟩ |1⟩ |1⟩ −|1⟩

Matrix representation

|00⟩ =


1
0
0
0

 , |01⟩ =

0
1
0
0

 , |10⟩ =

0
0
1
0

 , |11⟩ =

0
0
0
1



CZ = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨11| − |11⟩⟨11| =

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


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Exercise 4 Quantum circuit equivalence

H •

H • •

Which of the following quantum circuits are equivalent to the one above?

1) H •

H •

2) H •

H • H H •

3) H X

H

Answers: a) All, b) Only 2, c)1 and 2, d) Only 3

HH = I,HXH = Z
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