

QUANTUM COMPUTING FOR EARTH OBSERVATION M2GARSS 2024 - Tutorial

April 15, 2024 Amer Delilbasic, Gabriele Cavallaro

Driving questions for the tutorial

What is quantum computing?

Why the quantum computing hype?

How can Earth observation benefit from quantum computing?

Which algorithms and resources are relevant for me?

Tutorial structure

Part 1: Introduction

Quantum computing Quantum optimization Quantum machine learning

Part 2: Examples

Acquisition planning for EO satellites

Evolution of computing architectures

IQM – LRZ, "Bringing quantum acceleration to Supercomputers", whitepaper, May 2022

Principles of quantum mechanics

Quantum computing is defined according to the postulates and laws of quantum mechanics.

Underlying concepts:

Superposition

Quantum systems can be described as a superposition of quantum states

Measurement

Measuring the state of a quantum system affects the state of the system in a random way

Entanglement

In an entangled system, the states of the system particles are related to each other

Qubit as information unit

Classical bit It can be either 0 or 1

0	1	0	0	1	0	0	0
0	1	0	0	1	0	0	1

Measurement and qubit collapse

Measuring a qubit leads to a random result and affects the qubit irreversibly.

The original state is lost, and no copies can be made (no-cloning theorem).

Quantum computational models

Catherine C. McGeoch, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , Morgan & Claypool, 2014.

Model where the time evolution of a quantum system under adiabatic conditions is described by the Hamiltonian $\mathcal{H}(t)$ and ruled by the Schrödinger's equation

$$i\hbar\frac{d}{dt}|\Phi(t)\rangle = \mathcal{H}(t)|\Phi(t)\rangle$$

Catherine C. McGeoch, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , Morgan & Claypool, 2014.

The quantum computing landscape

https://thequantuminsider.com/2022/05/09/quantum-computing-market-map-and-data-2022/

Investments in quantum technology reached their highest annual level.

Volume of raised investment in the indicated year,¹ \$ million

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/quantum-technology-sees-record-investments-progress-on-talent-gap

Quantum computing can provide a substantial computational advantage

Grover's search algorithm

Iterative algorithm that searches for an item in an unstructured database of *N* objects

Time complexity: $O(\sqrt{N})$ instead of O(N)

Multiple applications and building block of many quantum algorithms

Shor's factoring algorithm

Finds the prime factors of an integer N

Time complexity: polylogarithmic instead of sub-exponential Applications in **cryptography**

Quantum computers present practical limitations

- · Quantum information theory neglects physical implementation
- Current state: Noisy Intermediate-Scale Quantum (NISQ) devices
- · Insufficient scale for a practical quantum advantage

Number of qubits

Dimension of quantum data that can be processed in a single QPU

Quantum volume

Dimension of the circuit that can be implemented with low error

through-3-more-performance-records-for-quantum-volume-217-218-and-219

Main applications of quantum computing

Which are the most relevant for Earth observation?

Examples of quantum optimization algorithms

Quantum Approximate Optimization Algorithm (QAOA)

Model: quantum circuits

Purpose: combinatorial optimization

Design: n qubits for 2^n possible solutions, accuracy increases with repetitions

Quantum annealing

Model: adiabatic quantum computation

Purpose: combinatorial optimization (QUBO)

Design: n qubits for 2^n possible solutions, a coupler for each non-zero coefficient

Blekos, Kostas, et al. "A review on quantum approximate optimization algorithm and its variants." Physics Reports 1068 (2024): 1-66

Catherine C. McGeoch, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , Morgan & Claypool, 2014.

Examples of quantum machine learning algorithms

Quantum neural networks

Model: quantum circuits

Purpose: learn the circuit parameters that generate the desired output, starting from a training set

Design: multiple architectures, usually n qubits for n-dimensional data, subject to trainability requirements

Kwak, Yunseok, et al. "Quantum neural networks: Concepts, applications, and challenges." 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE, 2021.

Quantum kernels

Model: quantum circuits

Purpose: encoding data to a high-dimensional feature space and calculating the kernel matrix

Design: n qubits for n-dimensional data, a run for every pair of training examples, circuit choice depending on data structure (can be trained), subject to trainability requirements

Liu, Yunchao & Arunachalam, Srinivasan, Temme, Kristan. "A rigorous and robust quantum speed-up in supervised machine learning", Nature Physics, 17, 1-5, 2019.

Earth observation requires increasing computing capabilities

https://www.hzdr.de/db/Cms?pOid=45916&pNid=3635

Where does quantum computing fit?

Photo by Donald Giannatti on Unsplash

QC4EO Study technical reports: https://eo4society.esa.int/projects/qc4eo-study/

Contributions to quantum computing for Earth observation

Acquisition planning for EO satellites

Operational planning of satellite acquisition processes

Rainjonneau, Serge, et al. "Quantum Algorithms applied to Satellite Mission Planning for Earth Observation" submitted to IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING (2023) and arXiv preprint arXiv:2302.07181v1 (2023).

Stollenwerk, Tobias, et al. "Image Acquisition Planning for Earth Observation Satellites with a Quantum Annealer." arXiv preprint arXiv:2006.09724 (2020).

Contributions to quantum computing for Earth observation

СН

Forschungszentrum

Contributions to quantum computing for Earth observation

Practical examples

Acquisition planning for EO satellites

Use case for quantum optimization algorithms (QAOA, QA)

Semantic segmentation of satellite images

Use case for **quantum machine learning** algorithms

Session "Quantum Approaches in Remote Sensing"

Tools for testing quantum algorithms

Qiskit

Creating and running **quantum circuits** on multiple backends Example: IBM Torino: 133 qubits Free access to QPUs (queue time may vary)

https://quantum.ibm.com/

Qubit structure of IBM Torino

D-Wave Ocean

Creating and solving **QUBO optimization problems** on multiple backends

Example: D-Wave Advantage quantum annealer: 5000+ qubits

1-min free computing time

https://www.fz-juelich.de/en/ias/jsc/systems/quantum-computing/juniq-facility

JUPSI, a D-Wave Advantage quantum annealer hosted at FZJ

Acquisition planning for EO satellites

mqt-problemsolver: great library for testing QAOA for acquisition planning

Quetschlich, N., Koch, V., Burgholzer, L., & Wille, R. (2023). A Hybrid Classical Quantum Computing Approach to the Satellite Mission Planning Problem. https://arxiv.org/abs/2308.00029v1

Example problem instance

Acquisition planning for EO satellites

Solving QUBO with quantum annealing:

def solve_using_qa(qubo, qa_setup: dict[str, Any]):
 # Create a client instance
 client = Client.from_config()

Get the list of available solvers
solvers = client.get_solvers()

Print the name of the used solvers
print("Using solver", solvers[0].id)

Create a sampler
sampler = DWaveSampler(solver=solvers[0].id)

Solve the QUBO using the D-Wave sampler

sampleset = sampler.sample_qubo(qubo, num_reads=qa_setup("num_reads"), label='Acquisition Planning')
return sampleset

Example problem instance

Conclusions

- Multiple tools are available and multiple applications are possible
- Testing today: insights on the behavior of quantum algorithms > actual advantage
- Fast development of quantum hardware can change the game

Session "Quantum Approaches in Remote Sensing" (tomorrow, 9.30-10.30, in this room)

- Quantum neural network for semantic segmentation of radar sounder data: 9.45-10.00
- Quantum annealing for semantic segmentation of optical images: 10.15-10.30

Thanks to GRSS

Join us!

Manil Maskey

Peter Baumann

CHAIRS

Gabriele Cavallaro

Earth Science Informatics (ESI) Technical Committee

Advance application of informatics to geoscience and remote sensing

https://www.grss-ieee.org/technical-committees/earth-science-informatics/

Dora Blanco Heras

LEADS

Iksha Gurung

Rocco Sedona

Sudan Jha

High-performance and Disruptive Computing in Remote Sensing (HDCRS) Working Group

Connect and support the community of interdisciplinary researchers in remote sensing who are specialized in emerging computing paradigms

https://www.grss-ieee.org/community/groups-initiatives/high-performance-and-disruptive-computing-in-remote-sensing-hdcrs/

G. Cavallaro, D. B. Heras, Z. Wu, M.Maskey, S. Lopez, P. Gawron, M. Coca and M. Datcu, "High-Performance andDisruptive Computing in Remote Sensing: HDCRS-A New Working Group of the GRSS Earth Science Informatics Technical Committee," in IEEE Geoscience and Remote Sensing Magazine (GRSM), vol. 10, no. 2, 2022, https://doi.org/10.1109/MGRS.2022.3145478

Upcoming event:

School on High Performance and Disruptive Computing in Remote Sensing 4-7 June 2024, Santiago de Compostela, Spain (https://www.hdc-rs.com/)

Questions?

Amer Delilbasic Doctoral Researcher @ Jülich Supercomputing Centre, Germany & University of Iceland

a.delilbasic@fz-juelich.de linkedin.com/in/delilbasic

Gabriele Cavallaro

Head of Simulation and Data Lab @ Jülich Supercomputing Centre & Adjunct Associate Professor @ University of Iceland

g.cavallaro@fz-juelich.de gabriele-cavallaro.com

