
BIG DATA ANALYTICS USING APACHE SPARK

DR. SHAHBAZ MEMON
HIGH PRODUCTIVITY DATA PROCESSING RESEARCH GROUP
JÜLICH SUPERCOMPUTING CENTRE

IEEE IGARSS 2021 Tutorial on Scalable Machine Learning with High Performance and Cloud Computing

STRUCTURE

• Introduction
• Apache Spark Basics
• Developing on Spark
• Machine Learning on Spark
• Conclusions

Page 2

INTRODUCTION

Page 3

HPC AND HTC
Introduction

Page 4

Riedel [14]

END-TO-END IMAGE ANALYTICS
Motivational Scenario

Page 5

Preprocessing Model (re)training PredictionSegmentation

Image denoise,
segmentation

Extraction of interesting
features

DNN Classification output

Raw data
Processed
data

Generated
Model

Massively Parallel (HPC) Embarrassingly Parallel (HTC) Embarrassingly Parallel (HTC) Embarrassingly Parallel (HTC)

QUESTIONS TO PONDER

• Pre- and post-processing in the scope of application, rather than on one step

• Manage all workflow tasks within one framework e.g. end-to-end Deep Learning

• Data export and import from multiple kind of storage systems

• Data-intensive rather than compute-intensive processing

Page 6

BIG DATA ANALYTICS

• Support of multiple algorithms and frameworks
• Machine Learning and Deep Learning
• Integrated processing with HTC, HPC and ML/DL frameworks

• Abstract parallelization complexity from user
• Parallel processing, batch systems, environmental intricacies are abstracted

• Encapsulate distributed computing and storage infrastructure details
• Operating systems, security, networks and security interfaces

Page 7

BIG DATA USE CASES

• Web mining and search (e.g Page Rank and Ad Analytics)
• Stream analytics (Twitter, Facebook and Trading)
• Graph processing
• IoT (Remote sensing, Automotive and Smart devices)
• Large scale image and video processing
• Time-series analysis

Page 8

BIG DATA ANALYTIC FRAMEWORKS

• Motto: Bring compute to data
• Batch Processing

• Manage job requests as batches
• Map-reduce framework: Large problem space to many small tasks
• E.g. Apache Hadoop

• In-Memory processing
• Data processing in memory
• Efficient map-reduce, filter and transform, Extract Transform and Load (ETL)
• E.g. Apache Spark (Focus of this talk) and Apache Flink

Page 9

IN-MEMORY: MORE I/O EFFICIENCY

Page 10

HDFS / GFS / NoSQL

HDFS / GFS / NoSQL

MapOp1 Reduce Map Reduce

Operation 1 Operation 2Data Cached

In-Memory

Batch-Compute

APACHE SPARK BASICS

Page 11

APACHE SPARK

• Open source, unified analytics [2] engine for distributed and parallel data processing
• Data transformations + AI and ML

• Provides a set of extensible APIs for
• SQL for interactive queries
• Machine learning
• Stream processing
• Graph processing

In-Memory Computing Framework

Page 12

spark.apache.org [2]

ECOSYSTEM

Page 13

• Apache Project and open source
• Databricks: main development driver
• Supported by major cloud computing providers

• E.g. Amazon and Google
• Integrated with multiple schedulers, file systems, DBMS

and data stores, a.k.a Connectors
• Hadoop (Batch processing) supported

• Seamlessly complement / replace Map-Reduce layer
• HPC Supported

• SLURM as a scheduler

APACHE SPARK COMPONENTS

Page 14

Learning Spark [2]

APACHE SPARK COMPONENTS
• Spark SQL (Dataframes):

• Standard SQL and Hive QL, but parallel execution
• Data sources: JSON, Images, Parquet, Binary and Hive tables

• Spark Streaming (Structured Streaming)
• High throughput and low latency scenarios
• Log inflow, sensor data (IOT), Twitter streams

• Machine Learning (ML Lib)
• Clustering, classification and recommender systems
• Support Deep learning frameworks – Keras, Tensorflow and Pytorch

• Graph Processing (GraphX)
• Iterative and parallel Graph computations
• Social computing, semantic networks and link data

Page 15

SPARK APPLICATION AREAS

• Data processing pipeline (load, preparation and transform) include machine learning
(Alibaba [7])

• Netflix recommendation ML pipeline (Netflix [8])

• Remote sensing and image analytics [5] and [6]

Commercial and Scientific Applications

Page 16

ARCHITECTURE
Application Concepts

Page 17

• Jobs: A parallel computation
• Stages: A job is divided into stages
• Tasks: A single unit of execution

Learning Spark [9]

RESILIENT DISTRIBUTED DATASETS (RDD)

• Basic programming abstraction (not used by every user level)
• Dependencies: DAG structure of tasks
• Partitions: Data locality and parallel computation on partitions
• Iterator [T]: Handle to multiple type of collections

• Less expressive and complex
• Computations are opaque
• Difficult to introspect and debug

• New releases (> 3.0) prefer Spark DataFrames

Data Structure Representation

Page 18

SPARK DATAFRAMES

• Structured and the format is inspired by pandas DataFrames
• Distributed in-memory tables

• Rows and columns, data types and schemas
• E.g. integer, string, array and map
• Simple and complex data types

• Scala (main implementation), Python, Java and R bindings
• Supports many formats as external data sources

• Parquet, JSON, CSV, Images and Binary, etc

Structured computing API – High level wrappers to RDDs

Page 19

TRANSFORMATIONS AND ACTIONS

Transformations
• Transform Spark DataFrame into a new DataFrame without modifying the original data
• E.g. select, filter, groupBy, orderBy, join
• Lazy evaluation: not computed until action is called or any read / write occurs

Actions
• Compute operations
• E.g. show, take, count, collect, save

Narrow and Wide Transformations
• Wide transformations use multiple partitions

Operation Types

Page 20

NARROW AND WIDE TRANSFORMATIONS
Transformation Types

Page 21

Narrow Wide

(e.g. filter or contains) (e.g. groupBy or contains)

Input Output Input Output

SPARK EXECUTION WORKFLOW

1. Create or load data
• e.g. load data set in DataFrames or RDDs

2. Apply 1-n tranformations data (narrow or wode)
• e.g. select, filter, groupBy, orderBy

3. Perform actions that return or store data
• E.g. reduce; count; collect

Page 22

DEVELOPING ON SPARK

Page 23

APACHE SPARK DEPLOYMENTS ON CLOUDS

• Private Clouds: in-premise deployments
• E.g. OpenStack or Apache CloudStack or Containers

• Public Clouds: external provider, Pay-per use and Elastic scaling
• Amazon EMR (Elastic Map-Reduce)
• Microsoft Azure (Databricks or HDInsight)
• Google (DataProc)

Page 24

Mostly Virtualised
Computing
Infrastructures

JUPYTER-DOCKER STACK
User Development Environment

Page 25

Host Machine

PySpark

Container

Scipy
Scikit-learn

Pandas
matplotlib

Ubuntu-base

User Code+ IGARSS-
Notebooksmount

Jupyter

PYSPARK

• Python bindings for Apache Spark (implemented in Scala)
• Mostly every functionality is available in Python
• Easily developed on Jupyter-lab instances
• PySpark Image Specifics

• PySpark v 3.1.2
• Includes core Spark libraries

• PyArrow (for interoperability between Pandas and Spark Dataframes)
• JAVA (OpenJDK) 11 and Scala 2.12.10

Embedded Development Environment

Page 26

LAUNCHING THE PYSPARK CONTAINER

• Enter the following URL:
• https://labs.play-with-docker.com/

• Press “Start”

• Login using your existing credentials
or Sign up for a new Docker account
(It is free)

• Account created

Based on Jupyter-Docker Stack

Page 27

https://labs.play-with-docker.com/

STARTING AN IMAGE

Page 28

Hit “Start”

Click “Add New Instance”

Terminal is started

PREPARE THE WORKING DIRECTORY

• On the Terminal, write the following commands (step-wise)

$> mkdir igarss-nb (Press Enter)

$> chmod 777 igarss-nb (Press Enter)

$> cd igarss-nb (Press Enter)

Page 29

LAUNCH THE PYSPARK IMAGE

$> docker run -p 8888:8888 -p 4040:4040 –p 4041:4041 –p 4042:4042 \
-v ~/igarss-nb:/home/jovyan/work jupyter/pyspark-notebook \
start-notebook.sh --NotebookApp.token=‘ig2021’

Server started.

Page 30

VIEW THE NOTEBOOK SERVER

Page 31

Click 8888

New tab opens and there enter ig2021
and press Log in

OPEN THE JUPYTER TERMINAL

Page 32

DOWNLOAD THE NOTEBOOKS ARCHIVE

Page 33

On the shell type:
$ cd work
$ wget https://fz-juelich.sciebo.de/s/xiNXrpfOfmqLmMX/download

Untar the archive: $tar –xvf download

Switch to the previous browser tab
and click IGARSS2021

https://fz-juelich.sciebo.de/s/xiNXrpfOfmqLmMX/download

BROWSER VIEW

Page 34

Page 35

Demonstration: Open “BasicDataFrame.ipynb”

USER DEFINED FUNCTIONS (UDF)

• Types: Simple and Pandas UDF
• Define new domain specific modules that extend the vocabulary of

Spark’s built-in functions
• Useful for data normalization and cleaning (e.g. handling nulls,

feature scaling)
• Simple UDF: Row-wise operation on a data frame – sequential

processing, see example notebook (next slide)
• Pandas UDF: Vectorized operations (process entire array at once)

Explicit Customization

Page 36

[12] Pandas UDF

Page 37

Demonstration: Open “SparkUDFExample.ipynb”

MACHINE LEARNING ON SPARK

Page 38

MACHINE LEARNING WITH SPARK

Page 39

Learning Spark [2]

SPARKML (MLLIB)

• Promises Machine Learning at Scale
• Parallel processing made easy

• Develop locally (e.g. Jupyter Notebook) -> deploy on cluster
• MLLib features

• Distributed with ML algorithms (clustering, classification..)
• Parallel implementations
• Processing data is cached in-memory (optimal for iterative algorithms)
• Support of Python, Scala, Java, R

Page 40

SPARK ML CONCEPTS

• Transformer: Data preparation and rule-based transformations. Input DataFrame and
output a new DataFrame instance.

• Estimators: Learning or fitting parameters. Returns a Model (a transformer)

• Pipeline: A kind of estimator that orchestrates a series of transformers and estimators into
a single model

Page 41

newDF = myDF.transform()

svmModel = svm.fit(newDF)

pipeline = Pipeline(stages=[vec, svm]) # combine vectorization and classifier
pipelineModel = pipeline.fit(trainData) # model training
preds = pipelineModel.transform(testData) # model evaluation

SPARK ML IMPLEMENTATION
Taxonomy

Page 42

[16]

K-MEANS CLUSTERING

• Partition-based clustering
• Clusters are associated with respective centroids
• Number of clusters must be known

Clustering Example

Page 43

[3] Tan et al.

K-MEANS: UBER PICKUP DATA

• Dataset: Uber Pickups in the CSV format
• Problem: Cluster the dense pickup points
• Uber trip data of August 2014
• Attributes: Lat, Lon, Date and Time, Base (TLC)

Example

Clustering Example

Page 44

[2] Kaggle-Uber

Demonstration: Switch to Notebook “KMeansExample.ipynb”

LOGISTIC REGRESSION

• Supervised machine learning algorithm
• Classification algorithm to deal with categorical response
• Predict binomial outcomes between 0 and 1
• Predictions are generated in the form of probabilities
• Uses Sigmoid function (a.k.a Logistic Function)

Example

Classification Example

Page 45

Demonstration: Open “LogisticRegressionExample.ipynb”

ONEVSREST CLASSIFICATION
Multi-class classification

Page 46

Demonstration: Open “OneVsRestExample.ipynb”

• Multiple class labels dataset
• Resolve multi-class as binary-class problem
• Apply N-binary classifiers for N-classes
• Example: The shape is triangle, square or cross

Example

[1] Jatin Nanda

ML PIPELINE – LINEAR REGRESSION EXAMPLE
Refresher

Page 47

Pipeline is a kind of estimator that orchestrates a series of transformers and
estimators into a single model

[17]

Page 48

Demonstration: Open Notebook “PipelineExample.ipynb”

DOWNLOAD THE NOTEBOOKS TO THE LOCAL FILESYSTEM

• Open the Jupyter Terminal
• CD to the /home/jovyuan/work directory ($> cd ~/work)
• Create a Tar archive ($> tar –czvf igarss21.tar.gz IGARSS2021/)
• Switch to the file browser view and download the created (igarss21.tar.gz) archive

Page 49

SPARK AND DEEP LEARNING
Introduction

Page 50

• Combine ETL/ELT, model training and hyper-parameter tuning in one workflow
• Train TensorFlow / PyTorch models integrated with the Spark ecosystem

[4] Uber@Spark AI Summit 2020

Pre-Processing
(Spark)

Distributed Training
Keras/TF/PyTorch with Horovod)

Prediction
DL and Spark

DISTRIBUTED DEEP LEARNING

Distributed Inference
• Pandas UDF (User Defined Functions) and Apache Arrow

Distributed Training
1) Spark-TensorFlow-Distributor
2) HorovodRunner (only available for Databricks Runtime ML users)

Options

Page 51

SPARK-TF-DISTRIBUTOR
Code Snapshot

Page 52

[13] SparkTFDistributor Code Repository

HOROVOD RUNNER
Distributed Training

Page 53

• A generic API to manage distributed DL workloads
• Implemented through Spark’s barrier execution

mode scheduling (to support the MPI execution
model)

Development workflow
1) Write single node DL code (e.g. TF/Keras)
2) Horovod-ify your code
3) Invoke HorovodRunner <hr.run(hvd_tr,..)> [10] Databricks

CONCLUSIONS

• Big data analytics frameworks such as Apache Spark allows end-to-end ML/DL pipelines

• A viable direction for remote sensing and image analysis applications where whole
processing workflow runs HPC and HTC simultaneously

• Harness public clouds (e.g. Amazon or Google) that provides stable deployments;
integrated with state-of-the-art data analysis and DL frameworks (e.g. TF or PyTorch)

Page 54

THANKS FOR LISTENING

Page 55

REFERENCES

[1] Jatin Nanda: https://www.cc.gatech.edu/classes/AY2016/cs4476_fall/results/proj4/html/jnanda3/index.html

[2] Kaggle-Uber: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city?select=uber-raw-data-aug14.csv

[3] Tan, Pan-Ning and Steinbach, Introduction to Data Mining

[4] https://databricks.com/session_na20/end-to-end-deep-learning-with-horovod-on-apache-spark

[5] H. Lan et al. Spark Sensing: A Cloud Computing Framework to Unfold Processing Efficiencies for Large and Multiscale
Remotely Sensed Data, with Examples on Landsat8 and MODIS Data: https://doi.org/10.1155/2018/2075057

[6] J.Haut et al. Cloud Deep Networks for Hyperspectral Image Analysis: https://doi.org/10.1109/TGRS.2019.2929731

[7] Using Apache Spark for Data Processing and Analysis: https://www.alibabacloud.com/blog/using-apache-spark-for-data-
processing-and-analysis_596428

[8] DB Tsai, Netflix’s Recommendation ML Pipeline Using Apache Spark. https://databricks.com/session/netflixs-
recommendation-ml-pipeline-using-apache-spark

[9] Damji, Wenig, Das and Lee, Learning Spark 2nd Edition (O’Reilly Books)

[10] Databricks documentation: HorovodRunner: distributed deep learning with Horovod

00 Month
2018

Page 56

https://www.cc.gatech.edu/classes/AY2016/cs4476_fall/results/proj4/html/jnanda3/index.html
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city?select=uber-raw-data-aug14.csv
https://doi.org/10.1155/2018/2075057
https://doi.org/10.1109/TGRS.2019.2929731
https://www.alibabacloud.com/blog/using-apache-spark-for-data-processing-and-analysis_596428
https://databricks.com/session/netflixs-recommendation-ml-pipeline-using-apache-spark

REFERENCES

[10] Databricks documentation: HorovodRunner: distributed deep learning with Horovod

[11] M. Zahara et al. Apache Spark: A Unified Engine for Big Data Processing. DOI: 10.1145/2934664

[12] Introducing Pandas UDF for PySpark. https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html

[13] Spark-Tensorflow-Distributor: https://github.com/tensorflow/ecosystem/tree/master/spark/spark-tensorflow-distributor

[14] M. Riedel: High-Performance Computing, Fall Semester 2017

[15] B. Hagemeier, HDF Cloud – Helmholtz Data Federation Cloud Resources. Source: 10.17815/jslrf-5-173

[16] G. Park, IRIS: A Conceptual Modeling Framework for Big Data Analytics. https://sites.google.com/site/irisforbigdata/3-
supporting-tool1/machine-learning-lib-spark

[17] Machine Learning Workflow on Qubole. https://www.qubole.com/developers/spark-getting-started-guide/workflow/

Page 57

https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://github.com/tensorflow/ecosystem/tree/master/spark/spark-tensorflow-distributor
https://sites.google.com/site/irisforbigdata/3-supporting-tool1/machine-learning-lib-spark

	Big data analytics using apache spark
	Structure
	introduction
	HPC and HTC
	End-to-end Image analytics
	Questions to ponder
	big Data analytics
	Big data use cases
	Big data analytic frameworks
	In-memory: More i/O efficiency
	Apache Spark basics
	Apache Spark
	Ecosystem
	Apache spark components
	Apache spark components
	Spark Application areas
	Architecture
	Resilient distributed datasets (RDD)
	Spark dataframes
	Transformations and actions
	Narrow and wide Transformations
	Spark execution workflow
	Developing on spark
	Apache spark deployments on Clouds
	Jupyter-docker stack
	pyspark
	Launching the pyspark container
	starting an image
	prepare the working directory
	Launch the pyspark image
	View the notebook server
	Open the Jupyter terminal
	Download the notebooks archive
	browser view
	Foliennummer 35
	User Defined functions (UDF)
	Foliennummer 37
	Machine learning on spark
	Machine learning with spark
	Sparkml (mllib)
	Spark ml concepts
	SPARK ML Implementation
	K-Means clustering
	K-means: Uber Pickup data
	Logistic regression
	OneVsRest Classification
	ML pipeline – Linear regression example
	Foliennummer 48
	Download the Notebooks to the local filesystem
	Spark and deep learning
	Distributed Deep learning
	Spark-tf-distributor
	Horovod runner
	Conclusions
	Thanks for listening
	References
	references

