
BIG DATA ANALYTICS USING APACHE SPARK

DR. SHAHBAZ MEMON
HIGH PRODUCTIVITY DATA PROCESSING RESEARCH GROUP
JÜLICH SUPERCOMPUTING CENTRE 

IEEE IGARSS 2021 Tutorial on Scalable Machine Learning with High Performance and Cloud Computing



STRUCTURE

• Introduction
• Apache Spark Basics
• Developing on Spark
• Machine Learning on Spark
• Conclusions

Page 2



INTRODUCTION
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HPC AND HTC 
Introduction
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Riedel [14]



END-TO-END IMAGE ANALYTICS
Motivational Scenario
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QUESTIONS TO PONDER

• Pre- and post-processing in the scope of application, rather than on one step

• Manage all workflow tasks within one framework e.g. end-to-end Deep Learning

• Data export and import from multiple kind of storage systems

• Data-intensive rather than compute-intensive processing
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BIG DATA ANALYTICS

• Support of multiple algorithms and frameworks
• Machine Learning and Deep Learning
• Integrated processing with HTC, HPC and ML/DL frameworks

• Abstract parallelization complexity from user
• Parallel processing, batch systems, environmental intricacies are abstracted

• Encapsulate distributed computing and storage infrastructure details
• Operating systems, security, networks and security interfaces
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BIG DATA USE CASES

• Web mining and search (e.g Page Rank and Ad Analytics)
• Stream analytics (Twitter, Facebook and Trading)
• Graph processing
• IoT (Remote sensing, Automotive and Smart devices)
• Large scale image and video processing
• Time-series analysis
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BIG DATA ANALYTIC FRAMEWORKS

• Motto: Bring compute to data
• Batch Processing

• Manage job requests as batches 
• Map-reduce framework: Large problem space to many small tasks
• E.g. Apache Hadoop

• In-Memory processing
• Data processing in memory
• Efficient map-reduce, filter and transform, Extract Transform and Load (ETL)
• E.g. Apache Spark (Focus of this talk) and Apache Flink
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IN-MEMORY: MORE I/O EFFICIENCY
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HDFS / GFS / NoSQL

HDFS / GFS / NoSQL

MapOp1 Reduce Map Reduce
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APACHE SPARK BASICS
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APACHE SPARK

• Open source, unified analytics [2] engine for distributed and parallel data processing
• Data transformations + AI and ML

• Provides a set of extensible APIs for 
• SQL for interactive queries
• Machine learning
• Stream processing
• Graph processing

In-Memory Computing Framework
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spark.apache.org [2]



ECOSYSTEM
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• Apache Project and open source
• Databricks: main development driver 
• Supported by major cloud computing providers 

• E.g. Amazon and Google
• Integrated with multiple schedulers, file systems, DBMS 

and data stores, a.k.a Connectors
• Hadoop (Batch processing) supported 

• Seamlessly complement / replace Map-Reduce layer
• HPC Supported 

• SLURM as a scheduler



APACHE SPARK COMPONENTS
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Learning Spark [2]



APACHE SPARK COMPONENTS
• Spark SQL (Dataframes): 

• Standard SQL and Hive QL, but parallel execution
• Data sources: JSON, Images, Parquet, Binary and Hive tables 

• Spark Streaming (Structured Streaming)
• High throughput and low latency scenarios
• Log inflow, sensor data (IOT), Twitter streams

• Machine Learning (ML Lib)
• Clustering, classification and recommender systems
• Support Deep learning frameworks – Keras, Tensorflow and Pytorch

• Graph Processing (GraphX)
• Iterative and parallel Graph computations
• Social computing, semantic networks and link data
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SPARK APPLICATION AREAS

• Data processing pipeline (load, preparation and transform) include machine learning 
(Alibaba [7])

• Netflix recommendation ML pipeline (Netflix [8])

• Remote sensing and image analytics [5] and [6]

Commercial and Scientific Applications
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ARCHITECTURE
Application Concepts
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• Jobs: A parallel computation
• Stages: A job is divided into stages
• Tasks: A single unit of execution

Learning Spark [9]



RESILIENT DISTRIBUTED DATASETS (RDD)

• Basic programming abstraction (not used by every user level)
• Dependencies: DAG structure of tasks
• Partitions: Data locality and parallel computation on partitions
• Iterator [T]: Handle to multiple type of collections

• Less expressive and complex
• Computations are opaque
• Difficult to introspect and debug

• New releases (> 3.0) prefer Spark DataFrames

Data Structure Representation
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SPARK DATAFRAMES

• Structured and the format is inspired by pandas DataFrames
• Distributed in-memory tables

• Rows and columns, data types and schemas
• E.g. integer, string, array and map
• Simple and complex data types

• Scala (main implementation), Python, Java and R bindings
• Supports many formats as external data sources

• Parquet, JSON, CSV, Images and Binary, etc

Structured computing API – High level wrappers to RDDs
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TRANSFORMATIONS AND ACTIONS

Transformations
• Transform Spark DataFrame into a new DataFrame without modifying the original data
• E.g. select, filter, groupBy, orderBy, join
• Lazy evaluation: not computed until action is called or any read / write occurs

Actions
• Compute operations 
• E.g. show, take, count, collect, save

Narrow and Wide Transformations
• Wide transformations use multiple partitions

Operation Types
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NARROW AND WIDE TRANSFORMATIONS
Transformation Types
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Narrow Wide

(e.g. filter or contains) (e.g. groupBy or contains)

Input Output Input Output



SPARK EXECUTION WORKFLOW

1. Create or load data 
• e.g. load data set in DataFrames or RDDs

2. Apply 1-n tranformations data (narrow or wode)
• e.g. select, filter, groupBy, orderBy

3. Perform actions that return or store data
• E.g. reduce; count; collect
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DEVELOPING ON SPARK
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APACHE SPARK DEPLOYMENTS ON CLOUDS

• Private Clouds: in-premise deployments 
• E.g. OpenStack or Apache CloudStack or Containers

• Public Clouds: external provider, Pay-per use and Elastic scaling
• Amazon EMR (Elastic Map-Reduce)
• Microsoft Azure (Databricks or HDInsight) 
• Google (DataProc)
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Mostly Virtualised
Computing 
Infrastructures



JUPYTER-DOCKER STACK
User Development Environment
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Host Machine

PySpark

Container

Scipy
Scikit-learn

Pandas
matplotlib

Ubuntu-base

User Code+ IGARSS-
Notebooksmount

Jupyter



PYSPARK

• Python bindings for Apache Spark (implemented in Scala)
• Mostly every functionality is available in Python
• Easily developed on Jupyter-lab instances
• PySpark Image Specifics

• PySpark v 3.1.2
• Includes core Spark libraries

• PyArrow (for interoperability between Pandas and Spark Dataframes)
• JAVA (OpenJDK) 11 and Scala 2.12.10

Embedded Development Environment
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LAUNCHING THE PYSPARK CONTAINER

• Enter the following URL:
• https://labs.play-with-docker.com/

• Press “Start”

• Login using your existing credentials 
or Sign up for a new Docker account 
(It is free)

• Account created

Based on Jupyter-Docker Stack
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https://labs.play-with-docker.com/


STARTING AN IMAGE
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Hit “Start”

Click “Add New Instance”

Terminal is started



PREPARE THE WORKING DIRECTORY

• On the Terminal, write the following commands (step-wise)

$> mkdir igarss-nb (Press Enter)

$> chmod 777 igarss-nb (Press Enter)

$> cd igarss-nb (Press Enter)
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LAUNCH THE PYSPARK IMAGE

$> docker run -p 8888:8888 -p 4040:4040 –p 4041:4041 –p 4042:4042 \
-v ~/igarss-nb:/home/jovyan/work jupyter/pyspark-notebook \
start-notebook.sh --NotebookApp.token=‘ig2021’

Server started.
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VIEW THE NOTEBOOK SERVER
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Click 8888

New tab opens and there enter ig2021
and press Log in



OPEN THE JUPYTER TERMINAL
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DOWNLOAD THE NOTEBOOKS ARCHIVE
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On the shell type: 
$ cd work
$ wget https://fz-juelich.sciebo.de/s/xiNXrpfOfmqLmMX/download

Untar the archive: $tar –xvf download

Switch to the previous browser tab
and click IGARSS2021

https://fz-juelich.sciebo.de/s/xiNXrpfOfmqLmMX/download


BROWSER VIEW
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Demonstration: Open “BasicDataFrame.ipynb”



USER DEFINED FUNCTIONS (UDF)

• Types: Simple and Pandas UDF
• Define new domain specific modules that extend the vocabulary of 

Spark’s built-in functions
• Useful for data normalization and cleaning (e.g. handling nulls, 

feature scaling)
• Simple UDF: Row-wise operation on a data frame – sequential 

processing, see example notebook (next slide)
• Pandas UDF: Vectorized operations (process entire array at once)

Explicit Customization
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[12] Pandas UDF
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Demonstration: Open “SparkUDFExample.ipynb”



MACHINE LEARNING ON SPARK
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MACHINE LEARNING WITH SPARK
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Learning Spark [2]



SPARKML (MLLIB)

• Promises Machine Learning at Scale
• Parallel processing made easy

• Develop locally (e.g. Jupyter Notebook) -> deploy on cluster 
• MLLib features

• Distributed with ML algorithms (clustering, classification..)
• Parallel implementations
• Processing data is cached in-memory (optimal for iterative algorithms)
• Support of Python, Scala, Java, R
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SPARK ML CONCEPTS

• Transformer: Data preparation and rule-based transformations. Input DataFrame and 
output a new DataFrame instance.

• Estimators: Learning or fitting parameters. Returns a Model (a transformer)

• Pipeline: A kind of estimator that orchestrates a series of transformers and estimators into 
a single model
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newDF = myDF.transform() 

svmModel = svm.fit(newDF) 

pipeline = Pipeline(stages=[vec, svm]) # combine vectorization and classifier
pipelineModel = pipeline.fit(trainData) # model training
preds = pipelineModel.transform(testData) # model evaluation



SPARK ML IMPLEMENTATION
Taxonomy
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[16]



K-MEANS CLUSTERING

• Partition-based clustering
• Clusters are associated with respective centroids
• Number of clusters must be known

Clustering Example
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[3] Tan et al.



K-MEANS: UBER PICKUP DATA

• Dataset: Uber Pickups in the CSV format
• Problem: Cluster the dense pickup points
• Uber trip data of August 2014
• Attributes: Lat, Lon, Date and Time, Base (TLC)

Example

Clustering Example
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[2] Kaggle-Uber

Demonstration: Switch to Notebook “KMeansExample.ipynb”



LOGISTIC REGRESSION

• Supervised machine learning algorithm
• Classification algorithm to deal with categorical response
• Predict binomial outcomes between 0 and 1
• Predictions are generated in the form of probabilities
• Uses Sigmoid function (a.k.a Logistic Function)

Example

Classification Example
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Demonstration: Open “LogisticRegressionExample.ipynb”



ONEVSREST CLASSIFICATION
Multi-class classification
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Demonstration: Open “OneVsRestExample.ipynb”

• Multiple class labels dataset
• Resolve multi-class as binary-class problem
• Apply N-binary classifiers for N-classes
• Example: The shape is triangle, square or cross

Example

[1] Jatin Nanda



ML PIPELINE – LINEAR REGRESSION EXAMPLE
Refresher
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Pipeline is a kind of estimator that orchestrates a series of transformers and 
estimators into a single model

[17]
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Demonstration: Open Notebook “PipelineExample.ipynb”



DOWNLOAD THE NOTEBOOKS TO THE LOCAL FILESYSTEM

• Open the Jupyter Terminal
• CD to the /home/jovyuan/work directory ($> cd ~/work)
• Create a Tar archive ($> tar –czvf igarss21.tar.gz IGARSS2021/)
• Switch to the file browser view and download the created (igarss21.tar.gz) archive
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SPARK AND DEEP LEARNING
Introduction
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• Combine ETL/ELT, model training and hyper-parameter tuning in one workflow
• Train TensorFlow / PyTorch models integrated with the Spark ecosystem

[4] Uber@Spark AI Summit 2020

Pre-Processing
(Spark)

Distributed Training
Keras/TF/PyTorch with Horovod)

Prediction
DL and Spark



DISTRIBUTED DEEP LEARNING

Distributed Inference
• Pandas UDF (User Defined Functions) and Apache Arrow

Distributed Training
1) Spark-TensorFlow-Distributor
2) HorovodRunner (only available for Databricks Runtime ML users)

Options
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SPARK-TF-DISTRIBUTOR
Code Snapshot
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[13] SparkTFDistributor Code Repository



HOROVOD RUNNER 
Distributed Training
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• A generic API to manage distributed DL workloads
• Implemented through Spark’s barrier execution 

mode scheduling (to support the MPI execution 
model)

Development workflow
1) Write single node DL code (e.g. TF/Keras)
2) Horovod-ify your code
3) Invoke HorovodRunner <hr.run(hvd_tr,..)> [10] Databricks



CONCLUSIONS

• Big data analytics frameworks such as Apache Spark allows end-to-end ML/DL pipelines

• A viable direction for remote sensing and image analysis applications where whole 
processing workflow runs HPC and HTC simultaneously 

• Harness public clouds (e.g. Amazon or Google) that provides stable deployments; 
integrated with state-of-the-art data analysis and DL frameworks (e.g. TF or PyTorch)
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THANKS FOR LISTENING
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