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Introduction

▪ Forward interconnection of several layers of perceptrons

▪ MLPs can be used as universal approximators

▪ In classification problems, they allow modeling nonlinear discriminant functions

▪ Interconnecting neurons aims at increasing the capability of modeling complex input-output relationships
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Multilayer Percepton (MLP) Neural Network 



Introduction

▪ The choice of the architecture and the activation function plays a key role in the definition of the network 

▪ Each activation function takes a single number and performs a certain fixed mathematical operation on it

ℎ 𝑧 =
1

1 + 𝑒−𝑧
ℎ 𝑧 = tanh 𝑧 ℎ 𝑧 = max(𝑧, 0)

ℎ 𝑧 = log(1 + 𝑒𝑧) ℎ 𝑧 = max z, z𝛼
0 < 𝛼 < 1

ℎ 𝑧 = ቊ
𝑧, 𝑧 > 0

𝛼 𝑒𝑧 − 1 𝑧 ≤ 0

[1] Undestanding the Neural Network
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Activation functions (Lecture 10.1) 



Introduction

▪ As for all supervised classifiers, one of the most important issue with ANNs is how to train them

▪ Training means finding an opportune architecture and related weight and bias values

▪ The highly nonlinear nature of ANNs makes it not trivial to find an analytical solution to the problem

− Therefore, one has to resort to numerical optimizers

▪ Another problem is the number of weights and biases to optimize

𝑀𝐿𝑃 𝑤𝑖𝑡ℎ ቐ

10 𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠
20 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠
5 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠

⇒ 325 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (+𝑏𝑖𝑎𝑠𝑒𝑠)
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Training



Introduction

▪ What weights should be modified (and how much) to obtain correct classification?   

− I.e., Understand what connections are increasing or reducing to the error in the output

▪ Looking for an algorithm which modifies the different weights to minimize the error rate

▪ Backpropagation: iterative algorithm which has hugely contributed to neural network fame 

▪ It is a gradient-based search method which allows finding a minimum of the sum of squared error criterion
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Backpropagation



Introduction

▪ Gives an estimate of the true gradient by averaging the gradient from each of the B points (mini-batch)

▪ Minibatch sampling: implemented by shuffling the dataset S, and processing that permutation by obtaining contiguous 

segments of size B from it

1. Initialize weights randomly ~𝒩(0, 𝜎2)

2. Loop until convergence

3. Pick batch of B data points 

4. Compute gradient    
𝜕ℒ𝑖 𝑾

𝜕𝑾
=

𝟏

𝑩
σ𝑘=1
𝐵 𝜕ℒ𝑖 𝑾

𝜕𝑾

5. Update weights       𝑾≔𝑾− 𝜂
𝜕ℒ 𝑾

𝜕𝑾

6. Return weights  
Fast to compute and a good
estimate of the true gradient!

© MIT 6.S191: Introduction to Deep Learning

introtodeeplearning.com
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Mini-batch Gradient Descent

http://introtodeeplearning.com/


Introduction

▪ 1 Epoch: entire training set passed forward and backward through the network in once

− The training set is divided in batches since the data can be too large 

▪ 1 iteration: entire batch passed forward and backward through the network in once

− If 1000 training samples and batch size set to 500, it means 2 iterations to complete 1 Epoch

What is the right numbers of epochs?

Error on validation samples
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Epochs and iterations



What is MPI? 

▪ MPI is a standard for exchanging 

messages between multiple computers 

running a parallel program across 

distributed memory

▪ Point-to-point and collective 

communication are supported

▪ Different topologies can be implemented

▪ Parallel I/O operations

▪ Blocking and non blocking statements

[2] MPI topologies
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Message Passing: Exchanging Data

▪ Each processor has its own data and memory that cannot be accessed by other processors
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Collective Functions: Broadcast (one-to-many)

▪ Broadcast distributes the same data to many or even all other processors
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Collective Functions: Scatter (one-to-many)

▪ Scatter distributes different data to many or even all other processors
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Collective Functions: Gather (many-to-one)

▪ Gather collects data from many or even all other processors to one specific processor
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Collective Functions: Reduce (many-to-one)

▪ Each Reduce combines collection with computation based on data from many or even all other processors

▪ Usage of reduce includes finding a global minimum or maximum, sum, or product of the different data located at 
different processors

+ global sum as example
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NCCL

• NVIDIA Collective Communications Library 
(NCCL) [19]

• Provides optimized implementation of inter-
GPU communication operations, such as 
allreduce and variants

• Optimized for high bandwidth and low latency 
over PCI and NVLink high speed interconnect 
for intra-node communication

• Sockets and InfiniBand for inter-node 
communication

• For a comparison between communication 
backends look at 
[https://mlbench.github.io/2020/09/08/communication-

backend-comparison/]
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Bigger Models
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[3] Model size

▪ In recent years almost exponential increase of number of parameters of the models



Bigger Datasets
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[4] Data and model size

▪ Bigger models require bigger datasets

▪ Consequence -> More resoueces are 
needed (both memory and computation
power)



Generalization

▪ New view on the generalization of the model

▪ Double descending curve when training large models on large datasets 
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[5] Generalization



Distributed training

▪ Mini-Batch Gradient Descent:

− More accurate estimation of gradient and smoother convergence

− Allows for larger learning rates (i.e., trust more the gradient , training faster)

− Can parallelize computation and achieve significant speed increases

Send batches across the GPUs, compute their gradient simultaneously and aggregate them back 

With Data Parallelism 

[6] Distributed Deep Learning
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Distributed training

▪ The gradients for different batches of data are calculated separately on each node 

▪ But averaged across nodes to apply consistent updates to the model copy in each node

With Data Parallelism 

MPI_Allreduce

node 

node 

node 

[6] Distributed Deep Learning
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Distributed training

▪ Minibatch copied to all processors

▪ Different parts of the DNN computed on different processors

▪ DNN architecture creates layer interdependencies

▪ F.e. fully connected layers incur all-to-all communication

With Model Parallelism 

[6] Distributed Deep Learning
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Distributed training

▪ Can either refer to

1. overlapping computations, i.e., between one layer and the next (as data becomes ready)

2. or to partitioning the DNN according to depth, assigning layers to specific processors

Pipelining

[6] Distributed Deep Learning
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Challenges of Distributed Learning

Focus on Data Distribution

𝐵𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐵𝑙𝑜𝑐𝑎𝑙 × 𝑁

𝐵𝑔𝑙𝑜𝑏𝑎𝑙 is global batch size, 𝐵𝑙𝑜𝑐𝑎𝑙 local batch 
size per worker, 𝑁 number of workers 

Two challenges when using large batch across 
large clusters

▪ Very large mini-batch size (> 8000 
samples) often leads to lower test 
accuracy
− Generalization gap caused by sharp 

minima [4] [31]

− Optimization difficulties [5]

▪ When using large clusters, it is harder to 
achieve near-linear scalability as the 
number of machines increases, especially 
for models with the high communication-
to-computation ratio

[7] Large-Batch Training
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Challenges of Distributed Learning

▪ At a given batch size SGD stops to scale 

▪ The number of steps to a given accuracy does not decrease anymore
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[8] Steps to accuracy



Optimization

▪ SYNCHRONOUS SGD

− Stragglers, machines which 
take a long time to respond

− Presence of synchronization
Barrier

− Convervenge guaranteed

▪ ASYNCHRONOUS SGD

− Stale Gradients , some 
workers could be computing 
gradients using model 
weights that may be several 
gradient steps behind 
current of global weights 

− convergence not 
guaranteed

[9] Sync and async SGD
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Global gradient update

Parameter server
▪ Key-value store dedicated storing 

variables and does not conduct any 
computation task

▪ Adapts one-to-all, and all-to-one 
collective communication topology for 
exchanging the gradients and model 
between servers and workers 

[9] Parameter server
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Learning rate policy

Linear policy [10]

▪ When the minibatch size is multiplied by k, multiply the learning rate by k

▪ Why? Recall SGD

▪ after k iterations of SGD with learning rate η and a minibatch size of n

▪ taking a single step with the large minibatch Bj of size kn and learning rate 𝜂 yields

▪ Strong assumption                                                        and setting                    would lead to 
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Learning rate policy

Squared root policy [11]

▪ Less aggressive than linear policy

▪ In SGD the weight updates are proportional to the estimated gradient

▪ the covariance matrix of the parameters update step ∆w is: 

▪ simple way to make the covariance matrix the same for all mini-batch sizes is to increase the learning rate by the 
square root of the mini-batch size 
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Warm-up

▪ Early stages of the training: the linear scaling 
rule breaks down when the network is changing 
rapidly

▪ Strategy: using less aggressive learning rates at 
the start of training

▪ Two types:

− Constant warmup, constant (lower) learning rate 
for a few epochs

− Gradual warmup, ramps up the learning rate 
from a small to a large value

▪ After warmup, back to original learning rate 
schedule

[12] Warm-up
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LARS optimizer

▪ Layer-wise Adaptive Rate Scaling

▪ Adaptation of SGD

▪ Local LR λl is defined for each layer through trust coefficient η

▪ Magnitude of the update for each layer doesn’t depend on the magnitude of the gradient

▪ Addresses vanishing and exploding gradient problems

[13]
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Newer Optimizers?

▪ Newer optimizers such as LAMB, NVLAMB, NovoGrad

▪ Still an open research question: are new optimizers really needed for distributed deep learning?

▪ Some recent researchers claim for fair comparisons

▪ They suggest that traditional algorithms (SGD, ADAM) can still do the trick with enough optimization of the 
hyperparameters [14]
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Distributed Deep Learning Frameworks

Horovod
▪ Data parallel, each GPU has a copy of the model 

and a chunk of the data
▪ Efficient decentralized framework,
based on MPI and NCCL libraries, where actors 
exchange parameters without the need of a 
parameter server
▪ Works on top of Keras, TensorFlow, PyTorch and 

Apache MXNet

Tensorflow
▪ Parameter server for asynchronous training
▪ Mirrored strategy for synchronous training

Pytorch
▪ Distributed Data-Parallel Training (DDP)
▪ RPC-Based Distributed Training supports general 

training structures

[15] Distributed Deep Learning

[16] Distributed TF2
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Horovod



Global gradient update

Ring allreduce
▪ Two step process

1. share-reduce step 
2. share-only step

▪ 2( 𝑁/ 𝑃 × (𝑃 − 1))
operations vs

▪ 2(𝑁 × (𝑃 − 1)) in standard 
allreduce, P processes, N 
length of data array [15] Distributed Deep Learning

[17] Ring AllReduce

GPU

GPU
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Tensor fusion

▪ An efficient communication strategy in a distributed training system should maximize the throughput as well as reduce 
the latency [15]

▪ Sizes of gradient tensors to aggregate vary a lot for different types of layers

▪ Usually, gradient tensor sizes for convolution layers are much smaller than fully-connected layers. 

▪ Sending too many small tensors in the network will not only cause the bandwidth to be under-utilized but also 
increase the latency

▪ The core idea of tensor fusion is to pack multiple small size tensors together before all-reduce to better utilize the 
bandwidth of the network

▪ Set parameter θ. In the backward phase, tensors are fused into a buffer pool if the total size is less than θ

▪ Send the fused tensor out for all-reduce when the total size is larger than θ
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Remote Sensing Application

Datasets
Image
type

Image per
class

Scene 
classes

Annotation 
type

Total 
images

Spatial 
resolution (m)

Image sizes Year Ref.

BigEarthNet Satellite MS
328 to 
217119

43 Multi label 590,326
10
20
60

120x120
60x60
20x20

2018

Patch and its dimension 

Dataset: Sentinel-2 Data Patches and Annotated with CORINE Land Covers 

[18]
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Multi land-cover class patch-based classification



Setup

HPC
▪ The experiments carried out on Juelich Research on 

Exascale Cluster Architectures (JURECA) supercomputer,
▪ Experiments using 32 nodes, i.e., 128 GPUs  (NVIDIA K80 

GPUs
▪ with 24GB of memory each).

ResNet50
▪ ResNet-50 is CNN
▪ Overcomes the difficulties of training with a large 

number of layers (vanishing gradient problem) by using 
skip connections

[19] ResNet-50
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Experimental Results

▪ Keep high accuracy with large batch size is a known 
issue

▪ LARS optimizer with Nesterov momentum

▪ The initial LR is computed using a linear policy as η= 
(0.1*k*n)/256, where k is the number of workers (i.e., 
GPUs) and n is the batch size for each worker (set here 
to 64 for the 8,000 effective batch size case, to 128 for 
the 16,000 case and to 256 for the 32,000 case)

▪ Scheduler with deterministic annealing

▪ LR computed following a multi-step decay scheme. The 
original LR was multiplied by 0.1 after 30 epochs, by 
0.01 after 60 epochs and by 0.001 after 80 epochs

▪ To avoid instability problems a warm-up of 5 epochs was 
used for all the experiments [20]
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Improvements

▪ Using the TensorFlow Dataset API to build a pipeline with 
integrated data augmentation, caching and prefetching of the data

▪ Deploying on 64 nodes / 256 GPUs of the new Juwels Booster 
(Nvidia A100) (presented at DLonSC 2021)

▪ New CNNs as EfficientNet, less parameters than ResNet, faster to 
train and higher accuracy

▪ Testing newer optimizers: LAMB and NovoGrad

▪ As the number of hyperparameters grows, there is the need to 
automatize the search for the optimal values (NAS)
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[https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html]

[21] EfficientNet



DeepSpeed

▪ Released in May 2020 by Microsoft

▪ DeepSpeed is optimized for low latency, high throughput training

▪ 3D Parallelism to train models with up to 1 trillion parameters

▪ DeepSpeed API is a lightweight wrapper on PyTorch

[22] DeepSpeed
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3D parallelism



DeepSpeed

▪ 10x bigger model training on a single GPU with ZeRO-Offload, leveraging both CPU and GPU memory for 
training large models

▪ Models of up to 13 billion parameters on a single NVIDIA V100 GPU without running out of memory, 10x 
bigger than the existing approaches

▪ ZeRO removes the memory redundancies across data-parallel processes by partitioning the three model 
states (optimizer states, gradients, and parameters) across data-parallel processes instead of replicating 
them

▪ ZeRO-Offload democratizes large model training by making it possible even on a single GPU. It is based on 
ZeRO 2

[22]
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ZeRO



DeepSpeed

▪ Powering 10x longer sequences and 6x faster execution 
through DeepSpeed Sparse Attention

▪ Attention-based deep learning models, such as 
Transformers, are highly effective in capturing 
relationships between tokens in an input sequence, 
even across long distances

▪ SA can also allow random attention or any combination 
of local, global, and random attention [23]
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[22] DeepSpeed

Sparse Attention



DeepSpeed

▪ 1-bit Adam with up to 5x communication volume reduction

▪ consists of two parts: 

1. the warmup stage, which is the vanilla Adam algorithm 

2. the compression stage, which keeps the variance term constant and compresses the remaining linear 
term, that is the momentum, into 1-bit representation
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[22] DeepSpeed

1-bit Adam



GPT-3 Transformer

▪ How much would it cost to train in on a Cloud service?

▪ Let’s have a look at NCsv3-series [24]

▪ 355 years to train GPT-3 on a Tesla V100

▪ Training cost = 355Y×365D/Y×24H/D×0.9792$/H = 
3.045.116$

▪ Let’s take our RS appplication as an example: on the

Cloud it would still cost thousands of Euros, maybe

using HPC makes sense then!

[24] NCsv3-series pricing 

[25] Lex Friedman on GPT-3
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Other Frameworks
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• HeAT, distributed tensors (data parallelism) with 
PyTorch support

• Tarantella, similar to Horovod with TensorFlow support

[26] HEAT

[27] Tarantella



Conclusion
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• The trend is to make distributed
deep learning easier

• Not only frameworks, but
integrated products

• Example: Dataflow-as-a-Service by 
SambaNova [29]

• Helmholtz AI Consultants @ JSC 
[28]

• Takeaways:
• The frontier is fast paced
• But successful solutions tend to 

become stable

[29] SambaNova
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