
Distributed Deep Learning

R O CCO SE D O N A, P H D STU D E N T

H I G H P R O D U CTI V I TY D ATA P R O CE SS I N G R E SE AR CH G R O U P

JÜ L I CH SU P E R CO M P U TI N G CE N TR E

U N I V E R S I TY O F I CE L AN D

IEEE IGARSS Tutorial on Scalable Machine Learning with High Performance and Cloud Computing
July 10-11, 2021

OUTLINE

▪ Introduction

1. Key Concepts of Deep Learning

2. Key Concepts of MPI

▪ Distributed Training: Motivation and Theory

▪ Frameworks

1. Horovod

2. DeepSpeed

3. Others

• A Remote Sensing Application

Page 2

Introduction

▪ Forward interconnection of several layers of perceptrons

▪ MLPs can be used as universal approximators

▪ In classification problems, they allow modeling nonlinear discriminant functions

▪ Interconnecting neurons aims at increasing the capability of modeling complex input-output relationships

𝑥1

𝑥2

𝑥𝑛

𝐶1

𝐶𝑚

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

FE
A

TU
R

E
V

EC
TO

R
 O

F
PA

T
TE

R
N

 𝒙

INPUT
LAYER

FIRST HIDDEN
LAYER

SECOND HIDDEN
LAYER

OUTPUT
LAYER

WINNER TAKES
ALL

DECISION RULE

C
LA

SS
 E

ST
IM

A
TE

 F
O

R
 P

A
T

TE
R

N
 𝒙

Page 3

Multilayer Percepton (MLP) Neural Network

Introduction

▪ The choice of the architecture and the activation function plays a key role in the definition of the network

▪ Each activation function takes a single number and performs a certain fixed mathematical operation on it

ℎ 𝑧 =
1

1 + 𝑒−𝑧
ℎ 𝑧 = tanh 𝑧 ℎ 𝑧 = max(𝑧, 0)

ℎ 𝑧 = log(1 + 𝑒𝑧) ℎ 𝑧 = max z, z𝛼
0 < 𝛼 < 1

ℎ 𝑧 = ቊ
𝑧, 𝑧 > 0

𝛼 𝑒𝑧 − 1 𝑧 ≤ 0

[1] Undestanding the Neural Network

Page 4

Activation functions (Lecture 10.1)

Introduction

▪ As for all supervised classifiers, one of the most important issue with ANNs is how to train them

▪ Training means finding an opportune architecture and related weight and bias values

▪ The highly nonlinear nature of ANNs makes it not trivial to find an analytical solution to the problem

− Therefore, one has to resort to numerical optimizers

▪ Another problem is the number of weights and biases to optimize

𝑀𝐿𝑃 𝑤𝑖𝑡ℎ ቐ

10 𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠
20 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠
5 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠

⇒ 325 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (+𝑏𝑖𝑎𝑠𝑒𝑠)

Page 5

Training

Introduction

▪ What weights should be modified (and how much) to obtain correct classification?

− I.e., Understand what connections are increasing or reducing to the error in the output

▪ Looking for an algorithm which modifies the different weights to minimize the error rate

▪ Backpropagation: iterative algorithm which has hugely contributed to neural network fame

▪ It is a gradient-based search method which allows finding a minimum of the sum of squared error criterion

Page 6

Backpropagation

Introduction

▪ Gives an estimate of the true gradient by averaging the gradient from each of the B points (mini-batch)

▪ Minibatch sampling: implemented by shuffling the dataset S, and processing that permutation by obtaining contiguous

segments of size B from it

1. Initialize weights randomly ~𝒩(0, 𝜎2)

2. Loop until convergence

3. Pick batch of B data points

4. Compute gradient
𝜕ℒ𝑖 𝑾

𝜕𝑾
=

𝟏

𝑩
σ𝑘=1
𝐵 𝜕ℒ𝑖 𝑾

𝜕𝑾

5. Update weights 𝑾≔𝑾− 𝜂
𝜕ℒ 𝑾

𝜕𝑾

6. Return weights
Fast to compute and a good
estimate of the true gradient!

© MIT 6.S191: Introduction to Deep Learning

introtodeeplearning.com

Page 7

Mini-batch Gradient Descent

http://introtodeeplearning.com/

Introduction

▪ 1 Epoch: entire training set passed forward and backward through the network in once

− The training set is divided in batches since the data can be too large

▪ 1 iteration: entire batch passed forward and backward through the network in once

− If 1000 training samples and batch size set to 500, it means 2 iterations to complete 1 Epoch

What is the right numbers of epochs?

Error on validation samples

Page 8

Epochs and iterations

What is MPI?

▪ MPI is a standard for exchanging

messages between multiple computers

running a parallel program across

distributed memory

▪ Point-to-point and collective

communication are supported

▪ Different topologies can be implemented

▪ Parallel I/O operations

▪ Blocking and non blocking statements

[2] MPI topologies

Page 9

Message Passing: Exchanging Data

▪ Each processor has its own data and memory that cannot be accessed by other processors

Page 10

Collective Functions: Broadcast (one-to-many)

▪ Broadcast distributes the same data to many or even all other processors

Page 11

Collective Functions: Scatter (one-to-many)

▪ Scatter distributes different data to many or even all other processors

Page 12

Collective Functions: Gather (many-to-one)

▪ Gather collects data from many or even all other processors to one specific processor

Page 13

Collective Functions: Reduce (many-to-one)

▪ Each Reduce combines collection with computation based on data from many or even all other processors

▪ Usage of reduce includes finding a global minimum or maximum, sum, or product of the different data located at
different processors

+ global sum as example

Page 14

NCCL

• NVIDIA Collective Communications Library
(NCCL) [19]

• Provides optimized implementation of inter-
GPU communication operations, such as
allreduce and variants

• Optimized for high bandwidth and low latency
over PCI and NVLink high speed interconnect
for intra-node communication

• Sockets and InfiniBand for inter-node
communication

• For a comparison between communication
backends look at
[https://mlbench.github.io/2020/09/08/communication-

backend-comparison/]

Page 15

Bigger Models

Page 16

[3] Model size

▪ In recent years almost exponential increase of number of parameters of the models

Bigger Datasets

Page 17

[4] Data and model size

▪ Bigger models require bigger datasets

▪ Consequence -> More resoueces are
needed (both memory and computation
power)

Generalization

▪ New view on the generalization of the model

▪ Double descending curve when training large models on large datasets

Page 18

[5] Generalization

Distributed training

▪ Mini-Batch Gradient Descent:

− More accurate estimation of gradient and smoother convergence

− Allows for larger learning rates (i.e., trust more the gradient , training faster)

− Can parallelize computation and achieve significant speed increases

Send batches across the GPUs, compute their gradient simultaneously and aggregate them back

With Data Parallelism

[6] Distributed Deep Learning

Page 19

Distributed training

▪ The gradients for different batches of data are calculated separately on each node

▪ But averaged across nodes to apply consistent updates to the model copy in each node

With Data Parallelism

MPI_Allreduce

node

node

node

[6] Distributed Deep Learning
Page 20

Distributed training

▪ Minibatch copied to all processors

▪ Different parts of the DNN computed on different processors

▪ DNN architecture creates layer interdependencies

▪ F.e. fully connected layers incur all-to-all communication

With Model Parallelism

[6] Distributed Deep Learning

Page 21

Distributed training

▪ Can either refer to

1. overlapping computations, i.e., between one layer and the next (as data becomes ready)

2. or to partitioning the DNN according to depth, assigning layers to specific processors

Pipelining

[6] Distributed Deep Learning

Page 22

Challenges of Distributed Learning

Focus on Data Distribution

𝐵𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐵𝑙𝑜𝑐𝑎𝑙 × 𝑁

𝐵𝑔𝑙𝑜𝑏𝑎𝑙 is global batch size, 𝐵𝑙𝑜𝑐𝑎𝑙 local batch
size per worker, 𝑁 number of workers

Two challenges when using large batch across
large clusters

▪ Very large mini-batch size (> 8000
samples) often leads to lower test
accuracy
− Generalization gap caused by sharp

minima [4] [31]

− Optimization difficulties [5]

▪ When using large clusters, it is harder to
achieve near-linear scalability as the
number of machines increases, especially
for models with the high communication-
to-computation ratio

[7] Large-Batch Training

Page 23

Challenges of Distributed Learning

▪ At a given batch size SGD stops to scale

▪ The number of steps to a given accuracy does not decrease anymore

Page 24

[8] Steps to accuracy

Optimization

▪ SYNCHRONOUS SGD

− Stragglers, machines which
take a long time to respond

− Presence of synchronization
Barrier

− Convervenge guaranteed

▪ ASYNCHRONOUS SGD

− Stale Gradients , some
workers could be computing
gradients using model
weights that may be several
gradient steps behind
current of global weights

− convergence not
guaranteed

[9] Sync and async SGD

Page 25

Global gradient update

Parameter server
▪ Key-value store dedicated storing

variables and does not conduct any
computation task

▪ Adapts one-to-all, and all-to-one
collective communication topology for
exchanging the gradients and model
between servers and workers

[9] Parameter server

Page 26

Learning rate policy

Linear policy [10]

▪ When the minibatch size is multiplied by k, multiply the learning rate by k

▪ Why? Recall SGD

▪ after k iterations of SGD with learning rate η and a minibatch size of n

▪ taking a single step with the large minibatch Bj of size kn and learning rate 𝜂 yields

▪ Strong assumption and setting would lead to

Page 27

Learning rate policy

Squared root policy [11]

▪ Less aggressive than linear policy

▪ In SGD the weight updates are proportional to the estimated gradient

▪ the covariance matrix of the parameters update step ∆w is:

▪ simple way to make the covariance matrix the same for all mini-batch sizes is to increase the learning rate by the
square root of the mini-batch size

Page 28

Warm-up

▪ Early stages of the training: the linear scaling
rule breaks down when the network is changing
rapidly

▪ Strategy: using less aggressive learning rates at
the start of training

▪ Two types:

− Constant warmup, constant (lower) learning rate
for a few epochs

− Gradual warmup, ramps up the learning rate
from a small to a large value

▪ After warmup, back to original learning rate
schedule

[12] Warm-up

Page 29

LARS optimizer

▪ Layer-wise Adaptive Rate Scaling

▪ Adaptation of SGD

▪ Local LR λl is defined for each layer through trust coefficient η

▪ Magnitude of the update for each layer doesn’t depend on the magnitude of the gradient

▪ Addresses vanishing and exploding gradient problems

[13]

Page 30

Newer Optimizers?

▪ Newer optimizers such as LAMB, NVLAMB, NovoGrad

▪ Still an open research question: are new optimizers really needed for distributed deep learning?

▪ Some recent researchers claim for fair comparisons

▪ They suggest that traditional algorithms (SGD, ADAM) can still do the trick with enough optimization of the
hyperparameters [14]

Page 31

Distributed Deep Learning Frameworks

Horovod
▪ Data parallel, each GPU has a copy of the model

and a chunk of the data
▪ Efficient decentralized framework,
based on MPI and NCCL libraries, where actors
exchange parameters without the need of a
parameter server
▪ Works on top of Keras, TensorFlow, PyTorch and

Apache MXNet

Tensorflow
▪ Parameter server for asynchronous training
▪ Mirrored strategy for synchronous training

Pytorch
▪ Distributed Data-Parallel Training (DDP)
▪ RPC-Based Distributed Training supports general

training structures

[15] Distributed Deep Learning

[16] Distributed TF2

Page 32

Horovod

Global gradient update

Ring allreduce
▪ Two step process

1. share-reduce step
2. share-only step

▪ 2(𝑁/ 𝑃 × (𝑃 − 1))
operations vs

▪ 2(𝑁 × (𝑃 − 1)) in standard
allreduce, P processes, N
length of data array [15] Distributed Deep Learning

[17] Ring AllReduce

GPU

GPU

Page 33

Tensor fusion

▪ An efficient communication strategy in a distributed training system should maximize the throughput as well as reduce
the latency [15]

▪ Sizes of gradient tensors to aggregate vary a lot for different types of layers

▪ Usually, gradient tensor sizes for convolution layers are much smaller than fully-connected layers.

▪ Sending too many small tensors in the network will not only cause the bandwidth to be under-utilized but also
increase the latency

▪ The core idea of tensor fusion is to pack multiple small size tensors together before all-reduce to better utilize the
bandwidth of the network

▪ Set parameter θ. In the backward phase, tensors are fused into a buffer pool if the total size is less than θ

▪ Send the fused tensor out for all-reduce when the total size is larger than θ

Page 34

Remote Sensing Application

Datasets
Image
type

Image per
class

Scene
classes

Annotation
type

Total
images

Spatial
resolution (m)

Image sizes Year Ref.

BigEarthNet Satellite MS
328 to
217119

43 Multi label 590,326
10
20
60

120x120
60x60
20x20

2018

Patch and its dimension

Dataset: Sentinel-2 Data Patches and Annotated with CORINE Land Covers

[18]

Page 35

Multi land-cover class patch-based classification

Setup

HPC
▪ The experiments carried out on Juelich Research on

Exascale Cluster Architectures (JURECA) supercomputer,
▪ Experiments using 32 nodes, i.e., 128 GPUs (NVIDIA K80

GPUs
▪ with 24GB of memory each).

ResNet50
▪ ResNet-50 is CNN
▪ Overcomes the difficulties of training with a large

number of layers (vanishing gradient problem) by using
skip connections

[19] ResNet-50

Page 36

Experimental Results

▪ Keep high accuracy with large batch size is a known
issue

▪ LARS optimizer with Nesterov momentum

▪ The initial LR is computed using a linear policy as η=
(0.1*k*n)/256, where k is the number of workers (i.e.,
GPUs) and n is the batch size for each worker (set here
to 64 for the 8,000 effective batch size case, to 128 for
the 16,000 case and to 256 for the 32,000 case)

▪ Scheduler with deterministic annealing

▪ LR computed following a multi-step decay scheme. The
original LR was multiplied by 0.1 after 30 epochs, by
0.01 after 60 epochs and by 0.001 after 80 epochs

▪ To avoid instability problems a warm-up of 5 epochs was
used for all the experiments [20]

Page 37

Improvements

▪ Using the TensorFlow Dataset API to build a pipeline with
integrated data augmentation, caching and prefetching of the data

▪ Deploying on 64 nodes / 256 GPUs of the new Juwels Booster
(Nvidia A100) (presented at DLonSC 2021)

▪ New CNNs as EfficientNet, less parameters than ResNet, faster to
train and higher accuracy

▪ Testing newer optimizers: LAMB and NovoGrad

▪ As the number of hyperparameters grows, there is the need to
automatize the search for the optimal values (NAS)

Page 38

[https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html]

[21] EfficientNet

DeepSpeed

▪ Released in May 2020 by Microsoft

▪ DeepSpeed is optimized for low latency, high throughput training

▪ 3D Parallelism to train models with up to 1 trillion parameters

▪ DeepSpeed API is a lightweight wrapper on PyTorch

[22] DeepSpeed

Page 39

3D parallelism

DeepSpeed

▪ 10x bigger model training on a single GPU with ZeRO-Offload, leveraging both CPU and GPU memory for
training large models

▪ Models of up to 13 billion parameters on a single NVIDIA V100 GPU without running out of memory, 10x
bigger than the existing approaches

▪ ZeRO removes the memory redundancies across data-parallel processes by partitioning the three model
states (optimizer states, gradients, and parameters) across data-parallel processes instead of replicating
them

▪ ZeRO-Offload democratizes large model training by making it possible even on a single GPU. It is based on
ZeRO 2

[22]

Page 40

ZeRO

DeepSpeed

▪ Powering 10x longer sequences and 6x faster execution
through DeepSpeed Sparse Attention

▪ Attention-based deep learning models, such as
Transformers, are highly effective in capturing
relationships between tokens in an input sequence,
even across long distances

▪ SA can also allow random attention or any combination
of local, global, and random attention [23]

Page 41

[22] DeepSpeed

Sparse Attention

DeepSpeed

▪ 1-bit Adam with up to 5x communication volume reduction

▪ consists of two parts:

1. the warmup stage, which is the vanilla Adam algorithm

2. the compression stage, which keeps the variance term constant and compresses the remaining linear
term, that is the momentum, into 1-bit representation

Page 42

[22] DeepSpeed

1-bit Adam

GPT-3 Transformer

▪ How much would it cost to train in on a Cloud service?

▪ Let’s have a look at NCsv3-series [24]

▪ 355 years to train GPT-3 on a Tesla V100

▪ Training cost = 355Y×365D/Y×24H/D×0.9792$/H =
3.045.116$

▪ Let’s take our RS appplication as an example: on the

Cloud it would still cost thousands of Euros, maybe

using HPC makes sense then!

[24] NCsv3-series pricing

[25] Lex Friedman on GPT-3

Page 41

Other Frameworks

Page 44

• HeAT, distributed tensors (data parallelism) with
PyTorch support

• Tarantella, similar to Horovod with TensorFlow support

[26] HEAT

[27] Tarantella

Conclusion

Page 45

• The trend is to make distributed
deep learning easier

• Not only frameworks, but
integrated products

• Example: Dataflow-as-a-Service by
SambaNova [29]

• Helmholtz AI Consultants @ JSC
[28]

• Takeaways:
• The frontier is fast paced
• But successful solutions tend to

become stable

[29] SambaNova

Lecture Bibliography (1)

[1] http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/HW1p1.html

[2] Hoefler, T., Rabenseifner, R., Ritzdorf, H., de Supinski, B. R., Thakur, R., & Träff, J. L. (2010). The scalable process topology interface of

MPI 2.2. Concurrency and Computation: Practice and Experience, 23(4), 293–310. https://doi.org/10.1002/cpe.1643

[3] https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-

large-scale-power/

[4] Kaplan et al., “Scaling Laws for Neural Language Models”, 2020, https://arxiv.org/abs/2001.08361

[5] Belkin et al. , “ Reconciling modern machine-learning practice and the classical bias–variance trade-off”, 2020

[6] Ben-Nun, T., & Hoefler, T. (2019). Demystifying Parallel and Distributed Deep Learning. ACM Computing Surveys, 52(4), 1–43.
https://doi.org/10.1145/3320060

[7] N. S. Keskar and D. Mudigere and J. Nocedal and M. Smelyanskiy and P.T.P. Tang, On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima, 2016

[8] Shallue et al., Measuring the Effects of Data Parallelism on Neural Network Training”, JMLR, 2020

[9] https://www.oreilly.com/library/view/hands-on-convolutional-neural/9781789130331/ab605c5f-d9a4-4271-8e97-
f162832a290d.xhtml

[10] P. Goyal and P. Dollár and R. Girshick and P. Noordhuis and L. Wesolowski and A. Kyrola and A. Tulloch and Y. Jia and K. He,
“Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2018

Page 46

http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/HW1p1.html
https://doi.org/10.1002/cpe.1643
https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/
https://arxiv.org/abs/2001.08361
https://doi.org/10.1145/3320060
https://www.oreilly.com/library/view/hands-on-convolutional-neural/9781789130331/ab605c5f-d9a4-4271-8e97-f162832a290d.xhtml

Lecture Bibliography (2)

[11] E. Hoffer, I. Hubara, D. Soudry, Train longer, generalize better: closing the generalization gap in large batch training
of neural networks, 2017

[12] https://www.researchgate.net/figure/Our-learning-rate-schedules-with-or-without-warming-up-Blue-one-is-
with-warming-up-and_fig5_326144703

[13] Y. You, I. Gitman, B. Ginsburg, Large Batch Training of Convolutional Networks, 2017

[14] Nado, A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes ,
https://arxiv.org/pdf/2102.06356.pdf

[14] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, L. Yu, T. Chen, G. Hu, S. Shi, X. Chu, Highly
Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes, 2018

[15] A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow”, arXiv:1802.05799,
2018.

[16] https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow

[17] https://developer.nvidia.com/blog/scaling-deep-learning-training-nccl/]

[18] G. Sumbul, M. Charfuelan, B. Demir, V. Markl, "BigEarthNet: A Large-Scale Benchmark Archive for Remote Sensing
Image Understanding", IEEE International Geoscience and Remote Sensing Symposium, pp. 5901-5904, Yokohama,
Japan, 2019.

Page 47

https://www.researchgate.net/figure/Our-learning-rate-schedules-with-or-without-warming-up-Blue-one-is-with-warming-up-and_fig5_326144703
https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow
https://developer.nvidia.com/blog/scaling-deep-learning-training-nccl/

Lecture Bibliography (3)

[19] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90

[20] R. Sedona, G. Cavallaro, J. Jitsev, A. Strube, M. Riedel, M. Book, “Scaling up a multispectral ResNet-50 to 128 GPUs”,
IGARSS 2020

[21] https://github.com/qubvel/efficientnet

[22] https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010.

[24] https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

[25] https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman

[26] Markus Götz and Daniel Coquelin and Charlotte Debus and Kai Krajsek and Claudia Comito and Philipp Knechtges and
Björn Hagemeier and Michael Tarnawa and Simon Hanselmann and Martin Siggel and Achim Basermann and Achim Streit,
“HeAT -- a Distributed and GPU-accelerated Tensor Framework for Data Analytics”, 2020

[27] https://github.com/cc-hpc-itwm/tarantella

[28] https://www.helmholtz.ai/themenmenue/our-research/consultant-teams/helmholtz-ai-consultants-fzj/index.html

[29] https://sambanova.ai/

Page 48

https://github.com/qubvel/efficientnet
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman
https://sambanova.ai/

