

Geoscience and Remote Sensing Society

Frequency Allocations in Remote Sensing Technical Committee (FARS-TC)

Annual Meeting

IGARSS 2023 Pasadena July 18, 2023

• GUEST SPEAKER: Yan Soldo

The need of reliable spectrum to ensure the success of your space mission

• FARS ANNUAL MEETING

FARS Introduction & New Chairs PocketQube initiative GRSS Views on WRC23 initiative IEEE Standard on RFI quantification initiative Spectrum Management Conferences and Outreach

DISCUSSION

Introduction

The Frequency allocations in Remote Sensing Technical Committee goal is to *interface between GRSS and the radio-frequency regulatory world* by

- educating the remote sensing community on spectrum management processes and issues
- promoting the development of radio frequency interference detection and mitigation technology
- organizing technical sessions at conferences, workshops, etc. on the above processes, issues and technologies
- providing spectrum managers and regulators with technical input and perspective from remote sensing scientists and engineers
- fostering the exchange of information between researchers in different fields, such as remote sensing, radio astronomy, telecommunications, etc. with the common scope of minimizing harmful interference between systems

FARS-TC Chairs

• Outgoing:

Incoming:

- Chair:
 Roger Oliva
- Co-chairs:
 Paolo de Matthaeis
 Ming-Liang Tao

Chair: Paolo de Matthaeis Co-chairs: Ming-Liang Tao Beau Backus

Geoscience and Remote Sensing Society

ONGOING INITIATIVES

PocketQube

- Following the outcome of WRC19 and the discussions at the 2019 and 2020 FARS-TC Annual Meetings regarding the concerns for the 5G deployment, FARS launched an initiative to develop a PocketQube with <u>RF monitoring</u> <u>capabilities at 24 GHz</u> to follow the deployment of 5G and its impact on this remote sensing frequency band.
- The PocketQube was added to the list that UPC through a GRSS educational initiative was developing that included two PocketQubes (5cm x 5cm x 5cm):
 - Optical Payload.
 - RF Payload at L-band
 - RF Payload at 24.5 GHz

PocketQube

Focus on assessing presence of 5G out-of-band signals reaching the 23.6-24 GHz protected band

- Measure RF power with a RSSI in the band from 24 to 25 GHz in 10 MHz channels, +30 dB INR interferences.
- To be used in Drone Campaigns for assessing sites with 5G deployment at 24 GHz.
- Possibility for PocketQubes to be launched with the UPC NanoSat Lab custom CubeSat integrated deployer within the future ³Cat-8 mission (TBC).

PocketQube Test Campaigns

Attach PocketQube to a drone to perform flight campaigns in Spain.

Drone Campaign

- Drone test campaign to validate payload operability
- 5-6 flights over crops field
- Objective: Detect hidden RFI emitters

24 GHz COTS radar modules

 Detections based on time and frequency pulse thresholding, as well as statistical analyses

Field representation with positioning of RFI emitters

GRSS Views on WRC-23 Agenda Items

WRC-23 Agenda Item	Service	Frequency Bands under consideration	EESS Bands Potentially Affected
1.2	International Mobile Telecommunications (IMT)	3300-3400 MHz 3600-3800 MHz 6425-7025 MHz 7025-7125 MHz 10.0-10.5 GHz	3100-3300 MHz (active) 10.0-10.4 GHz (active) 6425-7075 MHz (passive) 7075-7250 MHz (passive) 10.6-10.7 GHz (passive)
1.4	High-altitude platform stations as IMT base stations (HIBS)	various bands between 694 and 2690 MHz	2690-2700 MHz (passive)
1.12	Earth Exploration Satellite Service (EESS) active	40-50 MHz	40-50 MHz (active)
1.10	Non-safety aeronautical mobile service	15.4-15.7 GHz 22-22.21 GHz	22.21-22 GHz (passive)
1.14	Earth Exploration Satellite Service (EESS) passive	231.5-252 GHz	235-238 GHz (passive) 250-252 GHz (passive)
1.15	Earth Station in Motion (ESIM) services	10.7-10.95 GHz 13.25-13.75 GHz 17.2-17.3 GHz	10.6-10.7 GHz (passive) 13.25-13.75 GHz (active) 17.2-17.3 GHz (active)
1.16	Earth Station in Motion (ESIM) services for Non GSO Fixed- Satellite Service (FSS)	17.7-18.6 GHz (space-to-Earth) 18.8-19.3 GHz (space-to-Earth) 19.7-20.2 GHz (space-to-Earth) 27.5-29.1 GHz (Earth-to-space) 29.5-30 GHz (Earth-to-space)	18.6-18.8 GHz (passive)
1.17	Satellite-to-satellite links	11.7-12.7 GHz 18.1-18.6 GHz	18.6-18.8 GHz (passive)
1.18	Mobile-Satellite Service (MSS)	1695-1710 MHz, 2010-2025 MHz, 3300-3315 MHz, 3385-3400 MHz;	3100-3300 MHz (active)
1.19	Fixed-Satellite Service (FSS) space-to-Earth	17.3-17.7 GHz	17.2-17.3 GHz (active)
9.1 (b)	Amateur and Amateur-satellite services	1240-1300 MHz	1215-1240 MHz (active) 1240-1300 MHz (RNSS)
9.1 (d)	Non GSO FSS space stations	37.5-38 GHz	36-37 GHz (passive)

GRSS Views on WRC-23 Agenda Items

• WRC Agenda items with potential impact on the remote sensing Frequency bands.

GRSS Views on WRC-23 Agenda Items

- FARS WRC WG has produced, for the first time, a document summarizing the IEEE-GRSS Views on the WRC Agenda Items related to remote sensing.
- Concerns and opportunities from the GRSS perspective on the proposed modifications to the Radio Regulations are discussed
- We would like to share this document with volunteer members from FARS-TC for a final consolidated version to be released in the coming months.

Special thanks to: G. De Amici, R. Natsuaki, T. Bollian, J. Johnson, A. Bringer, D. Le Vine, A. Camps, D. Lubar, L. Carrer, P. Mohammed

FARS-TC and Standards Committee

- FARS-TC triggered the development of an IEEE Standard to <u>define a methodology to quantitatively</u> <u>evaluate the amount of man-made Radio Frequency</u> <u>Interference (RFI)</u> in any given frequency band allocated to space-based remote sensing.
- Useful in understanding the situation of all the bands allocated to remote sensing, follow their trends and in defining priorities for our spectrum managers.
- After several meeting and discussions, the activity entered the stage of writing down the first draft
- We welcome all our members to join.

Initial Flowchart:

Step 1 - RFI Detection Acquisition-Reference-Frame

Step 2 – RFI Maps (per Sensor) Sensor-Reference-Frame

> <u>Step 3 – RFI Maps</u> Global-Reference-Frame

Step 4 – Output products RFI characterization

The RFI in Remote Sensing Working Group,

- 28 Participants from different countries
- 20 Voting Members

We've hold 11 Working Group Meetings, and many sub-group meetings

Geoscience and Remote Sensing Society

SPECTRUM MANAGEMENT ACTIVITIES

Spectrum Management Meetings (1/4)

- IEEE-GRSS continues to be recognized as an important independent player in spectrum management discussions. FARS participated at the following Meetings
- ITU-R Study Groups:
 - Working Party 7C (Remote Sensing Systems)
 - Working Party 3J (Radiowave Propagation)
- Space Frequency Coordination Group (SFCG)

Spectrum Management Meetings (2/4)

Accomplishments at Working Party 3J

- FARS-TC co-lead the development of two new ITU-R Recommendations:
 - ITU-R P.2146 Sea surface bistatic scattering
 - ITU-R P.2148 Digital maps related to surface wind speed statistics
- This new recommendations are already being used for sharing and compatibility studies in the latest meetings, notably WP 7C and WP 4A.

Spectrum Management Meetings (3/4)

Accomplishments at Working Party 7C

- Further advancement of the report on interference at 18 Ghz caused by reflection of broadcast signals over the ocean surface;
- Involvement in the process of developing the conditions for the new secondary allocations to radar sounders at 40-50 MHz under WRC-23 Agenda Item 1.12;
- Advancement in the update of Recommendation ITU-R RS.1166 on active sensors, that had not been revised since 2009.

Spectrum Management Meetings (4/4)

- <u>Space Frequency Coordination</u>
 <u>Group (SFCG)</u>
- FARS-TC succeeded to have the IEEE-GRSS RFI database linked at the SFCG website
- FARS-TC contributed two documents to the 2022 Annual Meeting (SFCG-41) and two documents to 2023 (SFCG-42), and responsible for several action items

The Space Frequency Coordination Group (SFCG), an organization comprised of space agencies and related national and international entities concerned with the use of the radio-frequency spectrum for space-related application for the benefit of humanity, has recently included a link on its website to the Database of Radio Frequency Interference (RFI) observed by some remote sensing instruments on its section "RFI to EESS (passive) sensors". SFCG has the objective of coordinating the regulatory efforts of all main space agencies and related organizations to achieve an effective use and management of those radio frequency bands that are allocated by the ITU Radio Regulations to the Space Research, Space Operations, Earth Exploration Stabilite, and Meteorological Satellite services.

By listing this database along with other important RFI repositories, SFCG is recognising the quality of the work being done by the IEEE-GRSS Frequency Allocations in Remote Sensing-Technical Committee (FARS-TC).

Geoscience and Remote Sensing Society

CONFERENCES AND OUTREACH

IGARSS

• FARS-TC organized two Invited Sessions at IGARSS 2022 and two

Community Contributed Sessions at IGARSS 2023

WE7 V20. I: MULTI-TENPORAL IMAGE ANALYSIS FOR DEFECTION AND MIT REQUINER WITHIN DEANCE ARTIFACTS ING. I Instages In a lask Anal IN A Instrumenter Phylochecka University. Chara, Stel Control Tenengy Neural Instance, Chara, Stel granup L. One Vira Staffet Carbon VIV. VIV. 20. ALROWAND ARE SUPPOSED ON INSEAN ASSOCIUTION WID SYSTEMS VII. COM ANAME RECOVERY IN A Instage Anonpaing Long Scheder Linkens, Chara, Instage Anonpain, Andre Mit Carbon Instage Schedulare Linkense, Chara, Instage Anonpain, Annuel Anonpain, Annuel Martines, Anonpaing Linkense, Chara, Instage Anonpain, Annuel Instage Schedulare Linkense, Chara, Instage Anonpain, Annuel Instage Schedulare Linkense, Chara, Instage Annuel Instage Schedulare Linkense, Chara, Instage Annuel Instage Schedulare Linkense, Chara, Instage Anonpain, Annuel Instage Schedulare Linkense, Chara, Instage Annuel Instage Annuel Instage Annuel	Nas Chen, trian Mademi I Genter, China I Genter, China I Genter, China
SYSTEMS VIA LOW-RANK RECOVERY	
tan makey, sinologikang Lan, southeast University, University, Beging instruction of Sonio Drive, LawA Deve, Tarepare (S.K. Shenghai academy of space technology, Chine, Jie U, Nanj Astonautics and Astronautics, China	te Sensing Information, West 20 Jul; 1530 - 1545 United Burgeon Time (UTC West 20 Jul; 1530 - 1545 UTC
WT7.V20.2: ON BOARD BYL DETECTION PERFORMANCE OF A MULTICHAND DIGITAL SQUARE-LAW DETECTORS Tables Bollon, Manuae Nouni, Gehard Ringer, Alberts Martin, Geman Aeropaus Cerb	Weg 28 Jul; 1745 - 1800 Centrol European Time (UTC
WE7. V20.4: POLARIMETRIC ANALYSIS OF RH IN L-BAND SAR SYSTEM Byo Hatuani, Akina Hirau, The University of Totyo, Japan	Thu, 27 Jul, 0000 - 00:15 Mologuia Taine (UTC +8) Web, 29 Jul, 1900 - 1915 Centrel forwards Time (UTC Med, 29 Jul, 1900 - 1913 UTC Web, 29 Jul, 1200 - 1215 Satern Taine (UTC -6)
WE7 V20.5: RECENT RFI RELATED DEVELOPMENTS FROM A NOAA LEO PER Loward Em, NESA, Londra States	SPECTIVE Two, 27 Jul, 00:57 - 00:00 Molegolar Filmer, UTC +-8 Weeg 20 Jul, 18:18 - 18:80 Central Burgeoin Fairer, UTC Weeg 20 Jul, 18:35 - 16:80 UTC Weeg 20 Jul, 19:35 - 16:80 UTC Weeg 20 Jul, 19:35 - 16:80 UTC

Thu, 21 AJ, 1559 - 1202 Malaying Time (JIC - 4) Thu, 21 AJ, 1529 - 1520 Central Ecorporate Time (JIC - 1) Thu, 21 AJ, 1539 - 1520 UFC Thu, 21 AJ, 0559 - 0520 Eastern Time (JIC - 3)	Location: Virtual Room 21 Sensito Type: Chai Virtual et Matthanis, 14654 Goddard and Roger Oliva, Zenithal But technologies Sensito Manager Chaini Mohmad Shari Taoda Invited Sensions	
THS.V21.1: ON BOARD RADIO FREQUENCY INTERFERENCE I MAGING MICROWAVE RADIOMETER Sten Switzup Kittenzen, Jan E. Balling, Sten Schwidt Sobjerg, Niels S Denmark		Thu; 21 Ju; 1958 - 2020 Mologia Time (JTC +0) Thu; 21 Ju; 1558 - 1620 Central Burspean Time (JTC +1) Thu; 21 Ju; 1159 - 1220 UTC Thu; 21 Ju; 0159 - 0020 Eastern Time (JTC -5)
THS.V21.2: RADIO-FREQUENCY INTERFERENCE (IRFO IN HF- Congroup Wang, Yinan Li, Hao Li, Wenyu Gao, Roupdwan Li, China Ao		Thi, 21 Jul, 2028 - 2035 Mologio Time (UTC +8) Thi, 21 Jul, 1439 - 1435 Central European Time (UTC +1) Thi, 21 Jul, 1529 - 1525 UTC Thi, 21 Jul, 1529 - 0525 Eastern Time (UTC -5)
TH5.V213: RADIO FREQUENCY INTERFERENCE MITIGATION MICROWWE IMAGER COMBINED ACTIVE AND PASSIVE (MI Denghas Har, Tamhu Guo, Lijie Nia, Has Liu, Ji Wa, Chinese Academy Uswenth: China	CAP)	Thu, 27.14, 2025 - 2020 Molepule Time (UTC +4) Thu, 27.14, MSS - 1450 Central Burgeon Time (UTC +1) Thu, 27.14, 1225 - 1250 UTC Thu, 27.14, 1225 - 1250 UTC

Tae, 18 Jul, 1300 - 14.15 Pacific Time (URC -7)	Locations Room 103 Sension Type: Chai Sension Chain Roger Clava, Zenithal Blue Sension Manager: Sharibo Subha Pal Tackie Community-Contributed Sessions	
TU3. R3.1: CURRENT AND FUTURE WEATHER FORECAST 22-24 GHZ CHANNELS IN THE CONTEXT OF RFI Changyong Cao, Mark (Quanhua) Liu, NOJU/MISDIS, United States:		Tue, 18.4 (; 18.00 - 18.12 Anople Time (UTC - 7)
TU3.R9.2: DESIGN, IMPLEMENTATION AND TESTING OF A POCKITQUBE Guillem Gracia-Sola, Stefan Podana, Adrian Alcantara, Alajandro Garc		
TU3. R9.3: RADIOFREQUENCY INTERFERENCE IN L-BAND Dri Ukanga, Ålenn Llorente, Judit Genzalez, ISDEFE, Spain; Nas Solde Bas Secheslogies, Spain; Fikrio Jenge, Modis International DI, Nathe	, European Space Agency, Netherlands; Roger Oliva, Zenithal	Tee, 1834; 1824 - 1838 Anofe Terre (UTC -7)
David Le Vine, Paolo de Matthaeis, Priscilla Mohammed, Goddard Sp		Tue, 78.4.C, 72.05 - 12.48 People Time (UTC - 7)
TU3. R9.4: A CASE STUDY IN RH AT L-BAND DIFECTIO Dwil Le Vine, Faelo de Matshaei, Percille Mohammed, Goddard Sp AS, Umed Stars TU3. R9.3: ASSESSING RADIO FREQUENCY INTERFEREINO DEVELOPMENT OF A RR SIMULATION TOOL	ce Flight Center, United States, James Higgins, ASRC Federal CE (NF) IMPACT ON WEATHER FORECASTS:	Tare, 2014, 22:08 - 15:08 People Time (UTC -7)

Tue, 14 Jul, 1545 - TTUE Paulie Time (UT: -1)	Location: Facer 133 Senior Type: Crul Senior Date (Sogre Clina, Zenithol Blue Senior Manager: Surresh K.C.O Yacki: Community-Contributed Seniori	
TU4.83.1: MINIVIZING ESTIMATION ERROR VARIANCE U SOIL MOISTURE ACTIVE PASSIVE (SMAP) SATELLITE Mohammad Faceha, Nicholas Mastamarde, State University of New Yo		Tag. 183.61, 1545 - 1557 Rocife Tone (UTC -1)
TU4.88.2: PERFORMANCE OF THE COPERNICUS IMAGINE PROCESSOR Steen Savstrup Kintensen, Jan E. Balling, Steen Schwidl Sabjarg, Neils S		Tae, 1834 (1557 - 1600 Recife Tare (LVC -7)
TU4.R8.3: USING KARHUNEN-LOEVE DECOMPOSITION F Bail Diec Garcia, Adriano Campe Carmona, Hyuk Park, Universitat Pole		Tae, 18.1c(1669 - 1621 Pecific Time (UTC -7)
TU4.R8.4: GNSS SIGNAL JAMMING AS OBSERVED IN RAD Dong INg NASA Goddard Space Flight Center, United States	DIO OCCULTATION	Tae, 1834 (1621 - 1633 Pecific Time (UTC -7)
TU4.R9.5: RFI AND WEATHER RADARS: OVERVIEW AND I Metia Taccarone, T. Chandraseke, Colorado State University, United S		Tue, 18.1u(, 16.33 - 16.45 Pecific Time (UTC -7)

RFI 2022 Workshop

- FARS participated in the organization of a new edition of the RFI Workshop, held virtually on February 14-18, 2022, and hosted by ECMWF.
- The goal of the workshop was to promote the exchange of information and techniques on RFI.
- Remote sensing, astronomy and meteorological communities will share their strategies to mitigate RFI in their respective fields.
- 70 presentations and 9 posters: almost doubled last edition in 2019

http://www.rfi2022.org

Geoscience and Remote Sensing Society

FARS-TC presence

FARS participated at the following conferences to discuss our activities or some of the FARS initiatives:

- ESA Living Planet Symposium
- CORF meetings
- ISRMM
- RWW/Sharc
- Radar 2021

FARS will also have a presence in the:

• URSI General Assembly 2023

FARS Online Tools FREQUENCY ALLOCATION TABLE

GRSS FARS-TC tool available on the GRSS website at:

http://www.classic.grss-ieee.org/frequency_allocations.html

 Added new country-specific allocations in the Frequency Allocations tool:

USA Federal use	Europe (ECA)	
USA non-Federal	United Arab Emirates	
Australia	Belgium (BIPT)	
China –Inland	Canada	
China – Hong Kong	Colombia	
China- Macao	India	
United Kingdom	Brazil	
Russia	Turkey	
Egypt		

FARS Online Tools: RFI OBSERVATIONS

GRSS FARS-TC tool available on the GRSS website at: http://www.classic.grss-ieee.org/rfi observations.html

- The Space Frequency Coordination Group (SFCG) added a link to our FARS-TC RFI Observation tool on their website.
- It represents a recognition of the quality of the work performed by our **Technical Committee**
- Currently including:

IEEE GRSS RFI Observations Display System

GRSM Magazine

The following articles were promoted by FARS in the Geoscience Remote Sensing Magazine:

 December 2021 edition: Agenda Items of the World Radiocommunication Conference 2023 With a Potential Impact on Microwave Remote Sensing,

by FARS-TC co-chair P. de Matthaeis

• **December 2022 edition:** Protection of Earth Observation Satellites from Radio Frequency Interference: Policies and Practices, portraying the efforts to protect the spectrum,

by the Portuguese Autoridade Nacional de Comunicações

- December 2023 edition (planned):On the Chinese Lutan-1 Mission and RFI by FARS-TC co-chair M. Tao.
- March 2024 edition (planned): On the PocketQube campaigns, by UPC team

GRSS Newsletter

FARS-TC actively contributed to the GRSS Newsletter:

GRSS Community

GRSS contributes to new ITU recommendations

Use of the radio-frequency spectrum by scientific and commercial services is managed by the International Telecommunication Union (ITU), IEEE GRSS has been participating in the ITU

In this framework, the FARS Technical Committee co-lead the development of two new recommendations on scattering from the sea surface to be used to predict interference from satellite transmissions potentially reflected on the ocean into remote sensing instruments, such as that observed by GPM/GMI at 15 GHz:

+ ITU-R P.2148: Digital maps related to surface wind speed statistics

meetings to support the interests of the remote sensing community for several years.

An IEEE-GRSS product at the SFCG Website

The Space Frequency Coordination Group (BFCG), an organization compiled of space spencies and related national and international entities concerned with the use of the radio-frequency spectrum for space-related application for the benefit of homanity. This necently included a link on its website to the Database of Radio Frequency Interference (RFI) observed by some remote sensing instruments on its section 'RFI to EESS (stassies) estions's SFG basis the objective of coordinating the regulatory efforts of all main space agencies and related organizations to achieve an effective use and management of those radio frequency bands that ar allocated by the ITU Flado Regulators to the space Research, Space Operations, Earth Exploration Statellite, and Meteorological Statellite services.

By listing this database along with other important RFI repositories, SFCG is recognising the quality of the work being done by the IEEE-GRSS Frequency Allocations in Remote Sensing-Technical Committee (FARS-TC).

Thank you for your attention!

For more information on the FARS Technical Committee visit: https://www.grss-ieee.org/

For any questions, please write to fars_chairs@grss-ieee.org.

