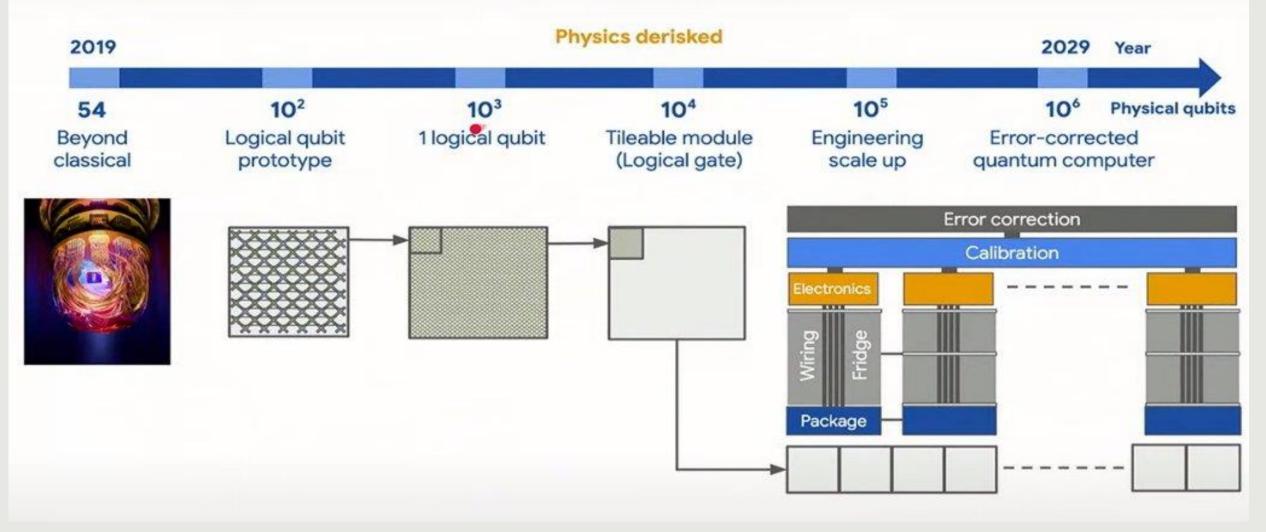


Bringing the power of Quantum Computing to Earth Observation

Bertrand Le Saux ESA EOP-S Φ-lab 01/06/2023

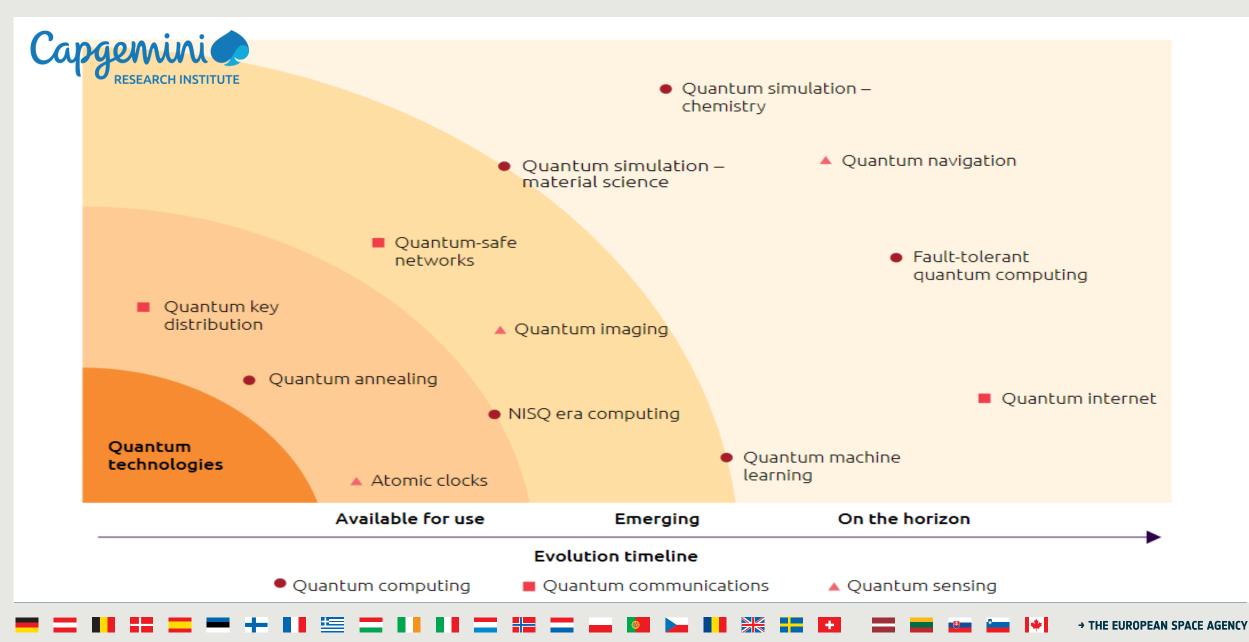
ESA UNCLASSIFIED - For ESA Official Use Only



Time magazine February 2023 issue

💻 🔜 📲 🚍 💳 🕂 📲 🧮 📰 📲 🔚 📲 🚍 🛶 🛐 🌬 📲 🚼 🖬 🔤 🝁 🖬 👘 🔶 The European Space Agency

Google Al Quantum hardware roadmap


🗮 🔜 📲 📲 🚍 🛲 🕂 📲 🚟 🔜 📲 📲 🚍 📲 🔤 🔤 🚳 🕨 📲 🚼 🚍 📾 🚳 🛏 🖛

	2019 🥝	2020 🥝	2021 🥝	2022 🥝	2023	2024	2025	2026+
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime
Model Developers					Prototype quantum software applications ${\begin{tabular}{lllllllllllllllllllllllllllllllllll$		Quantum software applications	
							Machine learning Natural	science Optimization
Algorithm Developers		Quantum algorithm and ap	plication modules	\odot	Quantum Serverless 🕑			
Dereception		Machine learning Natural science Optimization				Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries
Kernel Developers	Circuits	0	Qiskit Runtime					
Developers				Dynamic circuits 🥪	Threaded primitives 👌 Error suppression and mi		ation	Error correction
System Modularity	Falcon 🔗 27 qubits	Hummingbird 🥪 65 qubits	Eagle 🔗 127 qubits	Osprey 🔗 433 qubits	Condor 3	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical and quantum
			\blacklozenge	\blacklozenge	\blacklozenge			communication
					Heron 👌 133 qubits x p	Crossbill 408 qubits		
	Ţ							

💳 💶 💵 🔚 🚍 💳 🕂 📲 🧮 📰 📲 🚍 📲 🔤 🛶 🚳 🐂 🚼 🛃 💶 📾 🐏 🕍 🔸 The European Space Agency

💻 🔜 📲 🚍 📟 🕂 📲 🧮 📰 📲 🔜 📲 🚍 🛶 👰 🍉 📲 🚼 📰 📾 💷 🐏 🔺 🔸 the European space agency

Roadmap definition: QC4EO Studies

👝 🚍 📕 🚝 🚍 🔚 🔚 🚝 📕 📕 🔚 🧮 📲 👫 🚍 🛶 🚳 🚬 📲 👯 📲 🛨 🔤 🔤 🙀 🔸 THE EUROPEAN SPACE AGENCY

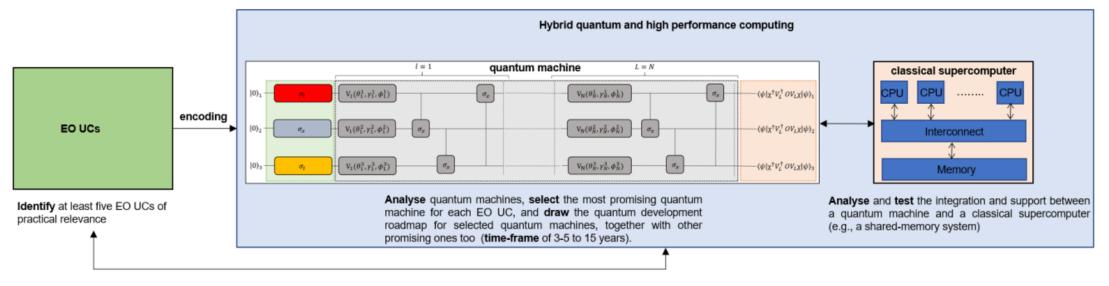
QC4EO Studies

2 projects during Q1 / Q2 2023 following ESA AO/1-11125/22/I-DT QUANTUM COMPUTING FOR EARTH OBSERVATION STUDY (QC4EO STUDY)

Objectives:

- Identify use cases relevant to the Earth Observation domain, for which QC is expected to dramatically enhance computational performances with respect to traditional methods.
- **Provide options for QC or hybrid machine architectures** required to solve the identified QC4EO use cases, with the relevant sizing, e.g. in term of Qubits.

Perform a maturity and forecast assessment of the QC machine industry roadmaps; and


Derive a credible QC4EO timeline of use cases that could take advantage of a QC approach

💳 💶 📲 🚍 💳 🕂 📲 🧮 🚍 📲 📲 🚍 📲 🔤 🛶 🔯 🛌 📲 🚼 💶 📾 🖓 ե 🖬 🗮 🔤 🖛

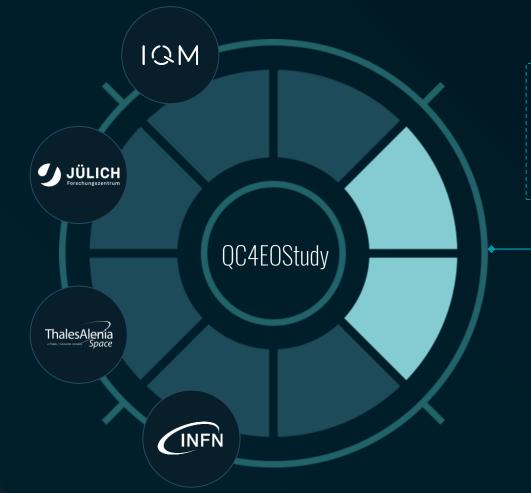
Quantum Advantage for EO (QA4EO) project overview

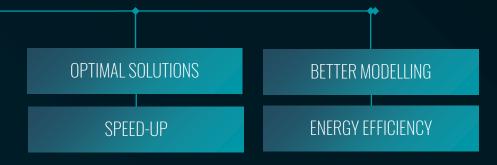
- Identify hard Earth observation use cases (EO UCs) for quantum computers (e.g., quantum machines) or a hybrid approach
- Analyse quantum machines according to their number of qubits, errors, and so on
- Draw the roadmap of quantum computers

Analyse the short- and long- term aim of utilizing a quantum machine and a classical supercomputer in the **time-frame** of 3-5 to 15 years to all identified EO UCs, and **draw timeline** for computing the identified EO UCs with respect to the quantum development roadmap.

QC4EO Studies

Use-cases:


- I. Variational quantum algorithms for EO Image processing
- II. Climate adaptation digital twin hpc+qc workflow
- III. Earth land cover understanding
- IV. Feature selection for environmental monitoring hyperspectral imagery
- V. Uncertainty quantification for remotely-sensed datasets


- 💶 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🚍 👬 🚍 🛶 🚳 🛌 📲 📰 🖬 📰 ன 🚱 🛶 🖬

Quantum COMPUTING FOR EARTH OBSERVATION

Can QC offer advantages to EO applications within a medium to long timeframe (between the next 3-5 to 15 years)? What hardware developments are necessary to achieve this quantum advantage?

Potential quantum advantages

QC4EO Studies

Quantum Computing for Earth Observation

Project duration: Prime-contractor: Sub-contractors: 5 months (March to August 2023) ForschungsZentrum Jülich (FZJ) TASF, TASI, INFN, IQM

High-level list of identified use-cases:

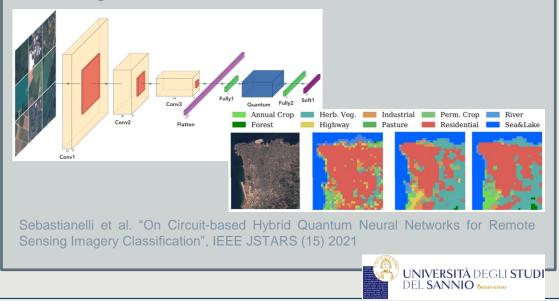
- Scenario n° 1 Phase Unwrapping problem for interferometric SAR applications
- Scenario n° 2 Quantum Fourier Transform for SAR raw dara processing
- Scenario n° 3 Satellite Image Time Series Classification
- Scenario n° 4 Optical Agile Satellites Mission Planning
- Scenario n° 5 Multiple-view Geometry on optical images
- Scenario n° 6 Digital beamforming
- Scenario n° 7 Quantum algorithms for SAR raw data compression
- Scenario n° 8 Quantum algorithms for SAR image segmentation

Exploratory activities

Explore the potential of Quantum Machine Learning for Earth Observation use cases

Devise hybrid quantum classical AI models in high performance computing environments

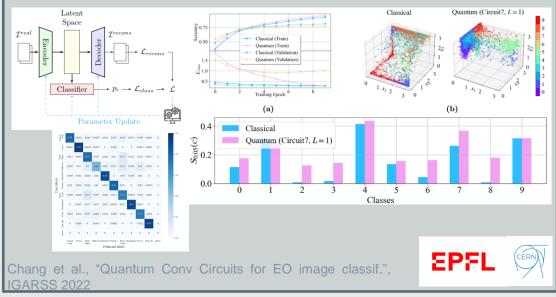
Build a strong community of experts in both Quantum Computing and Earth Observation


> Hybrid Classical Quantum Networks (Quantum Convnets, Quantum GANs, Recurrent nets)

Case Study 1: Hybrid QCNN for EO classification Use-case: EO image classification for land-use and landcover.

Approach: Hybrid Quantum Classical CNNs enrich standard conv nets with a quantum layer!

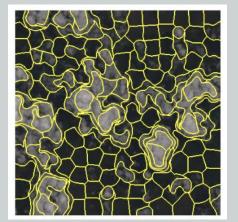
Findings:

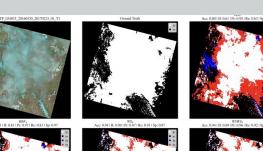

Successful Proof of concept, with slightly better performances than comparable CNNs thanks to entanglement.

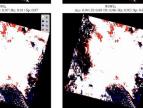
Case Study 2: Hybrid QCNN Expressivity Use-case: EO image classification Approach: Hybrid models with latent space embedding

Findings:

- Investigation of Quantum Ansätze: better expressivity with circuits with two-qubit SU 4 state
- End-to-end Proof of Concept for EO image classification with SOTA performances

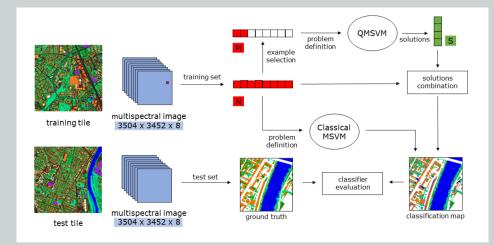



Exploring Quantum Kernels (e.g. Projected Quantum Features, SVMs...)


Case Study 3: Circuit-based Quantum SVM Use case: cloud detection in multispectral EO images. Approach: Hybrid Support Vector Machines (SVMs) with gate-based quantum kernels.

Findings:

- End-to-end pipeline to embed and process EO data with small NISQ circuits.
- Successful Proof of Concept, with results on par with standard SVM thanks to Quantum Kernel Target Alignment.


. UNIVERSITY

Miroszewski, A., Mielczarek, J., Czelusta, G., Szczepanek, F., Grabowski, B., Le Saux, Tagiellonian B., & Nalepa, J. (2023). Detecting Clouds in Multispectral Satellite Images Using Quantum-Kernel Support Vector Machines. arXiv preprint arXiv:2302.08270.

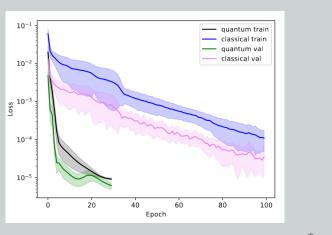
Case Study 4: Annealing-based Quantum SVM Use case: Classification of multispectral EO data. Approach: Hybrid Support Vector Machines (SVMs) with Julich SC Quantum Annealer.

Findings:

- Advantage Annealer operates only a limited number of samples for Q optimization...
- But execution times increase linearly!

Delilbasic, A., Le Saux, B., Riedel, M., Michielsen, K., & Cavallaro, G. (2023). A Single-Step Multiclass SVM based on Quantum Annealing for Remote Sensing Data Classification. arXiv preprint arXiv:2303.11705

→ THE EUROPEAN SPACE AGENCY

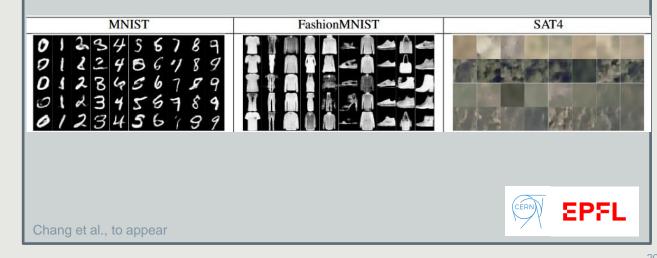


> Hybrid Classical Quantum Networks (Quantum Convnets, Quantum GANs, Recurrent nets)

Case Study 5: Continuous-variable QC RNNs Use case: Earth Systems observation and prediction. Approach: Recurrent Neural Networks for time-series on Continuous-Variable QC.

Findings:

- Promises of faster training convergence
- For a small number of trainable parameters, it can achieve lower losses than its classical counterpart.


Siemaszko, McDermott, Buracsewski, Le Saux & Stobinska "Rapid training or recurrent quantum neural networks", **QTML 2022 / Qu Mach. Intell. 2023**

Case Study 6: Quantum Generative Al Use case: Generative modelling and synthesis of images. Approach: Quantum Generative Adversarial Networks (QGANS) : Quantum Generator + Classical Discriminator.

Findings:

- Trick #1: Latent space embedding by pretrained autoencoder
- Trick #2: Continuous, Style-based quantum GAN
- Successful image generation for varied image types
- Faster and better performances (in terms of distribution mapping) with less parameters

Hybrid Quantum-Classical Neural Networks

Su Yeon Chang [CERN, EPFL]

23/05/2022

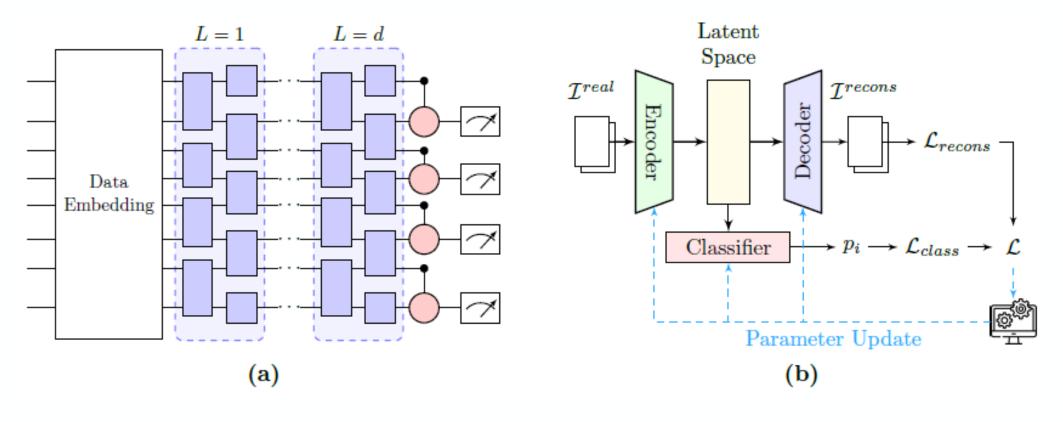
Motivation and objectives

- Quantum Machine Learning (QML)
- Intersection between Machine Learning (ML) and Quantum Computing (QC)
- Potential to improve the existing ML techniques
- Can be efficiently simulated on the real quantum hardware
- Increasing studies on application of QML on Earth Observation (EO) images

PhD Objective : Implement quantum generative models to reproduce EO images

Challenges

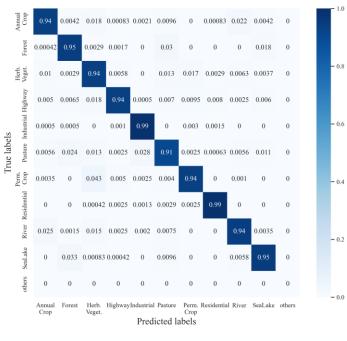
- **1.** Scale EO data for current quantum simulators \rightarrow Dimensionality reduction techniques
- 2. Transfer classical data to quantum & quantum data to classical
- \rightarrow How to interpret the quantum circuit output into classical data?
- 3. Find the quantum circuit architecture which is the most trainable, efficient and accurate

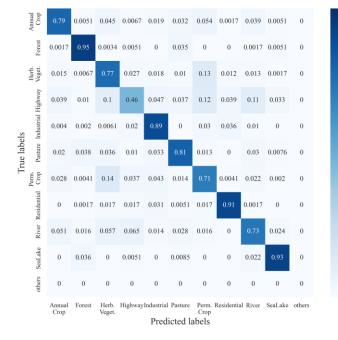

→ Hardware Efficient Ansatz (HEA), Quantum Convolutional Neural Networks (QCNN), Alternating Layered Ansatz (ALT), etc...

- 3. Possibility of quantum advantage
- \rightarrow Quantum advantages expected in case the training is classically intractable
- \rightarrow Can quantum generative model learn hidden image properties that classical ML cannot?
- 5. Trainability on **real quantum hardware**

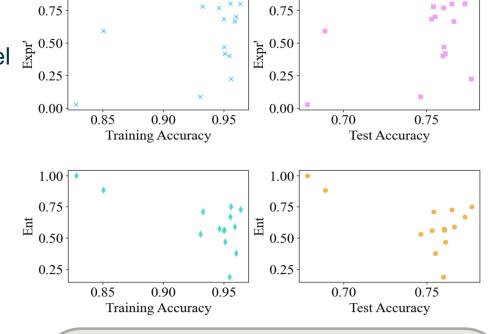
 \rightarrow Aim to run quantum circuit on different quantum devices, e.g. superconducting chips (IBMQ), Ion trap (IONQ)

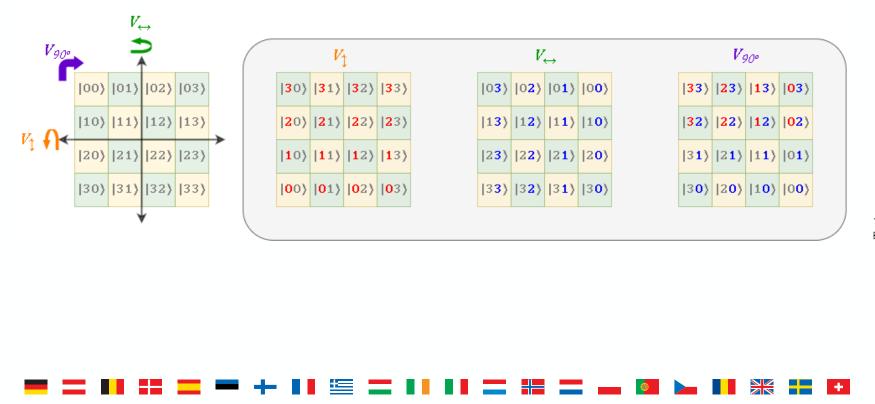
Multi-task hybrid model for image classification


- Work presented in <u>Quantum Information Processing 2023 conference</u>
- Hybrid classical-quantum model for image reconstruction and classification
- Classical autoencoder for dimensionality reduction & image reconstruction
- Quantum classifier for feature classification

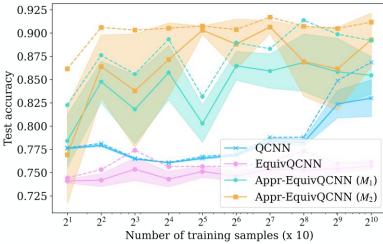


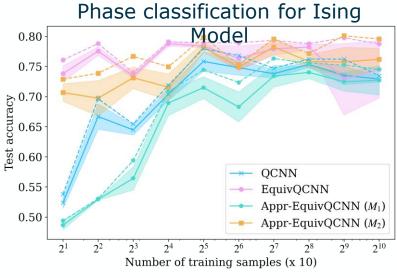
Multi-task hybrid model for image classification


- Successful classification for EuroSAT dataset (10 classes)
- Challenge : Cannot observe quantum advantage with current model
- \rightarrow Investigate latent feature arrangement to understand the limitation


- **Study correlation between PQCircuit architecture & classification accuracy**
- Pearson Correlation Coefficient calculated for Expressibility /Entanglement capability v.s. Accuracy
- Higher Expressivity \rightarrow Higher Accuracy
- Higher Entanglement → Lower Accuracy

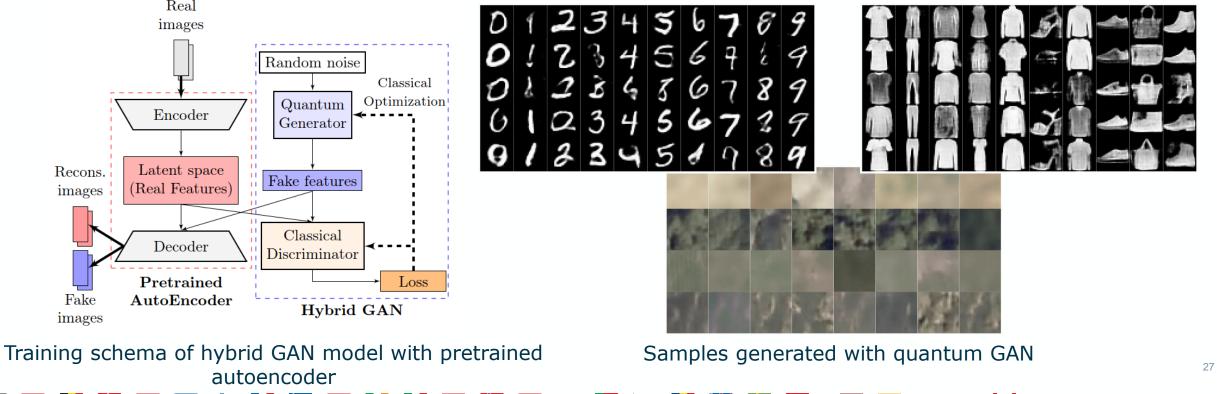
-0.2


- 0.0


Equivariant Quantum CNN

- Work submitted to <u>IEEE Quantum Week 2023</u>
- Construct an equivariant quantum CNN for image classification under rotation & reflection symmetry
- Better generalization power compared to the non-equivariant model
- **Challenge** : Extend the application to larger RGB datasets

MNIST Image classification (digits 4,5)

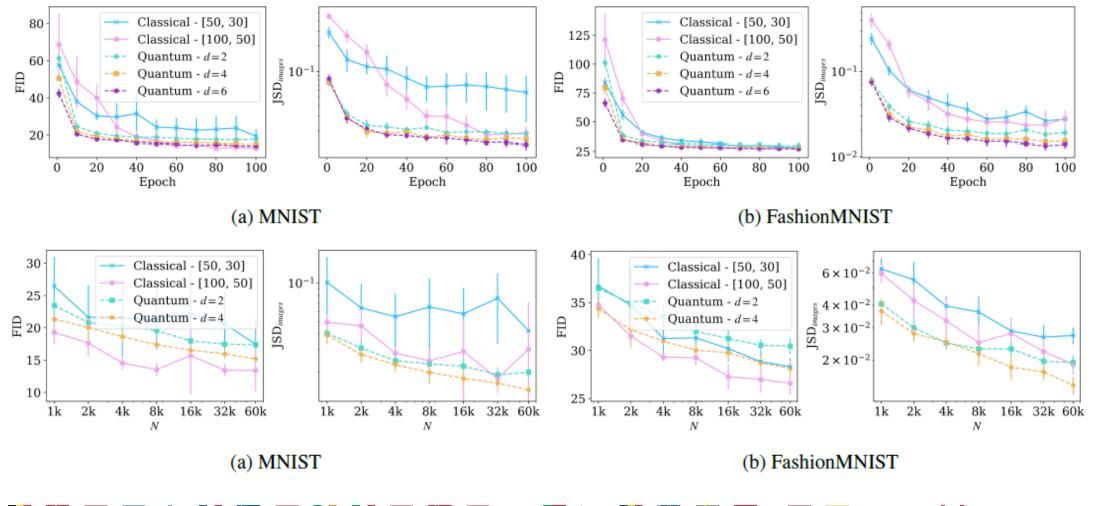


26

→ THE EUROPEAN SPACE AGENCY

Style-based quantum GAN for image generation

- Quantum Generative Adversarial Networks : Quantum Generator + Classical Discriminator
- \rightarrow Hybrid approach allows to <u>scale up the model</u> for realistic use cases
- Features extracted from images via a pretrained autoencoder used as GAN training set
- Generated features passed back to the autoencoder to reconstruct images
- Successful GAN training with MNIST, FashionMNIST and SAT4 dataset

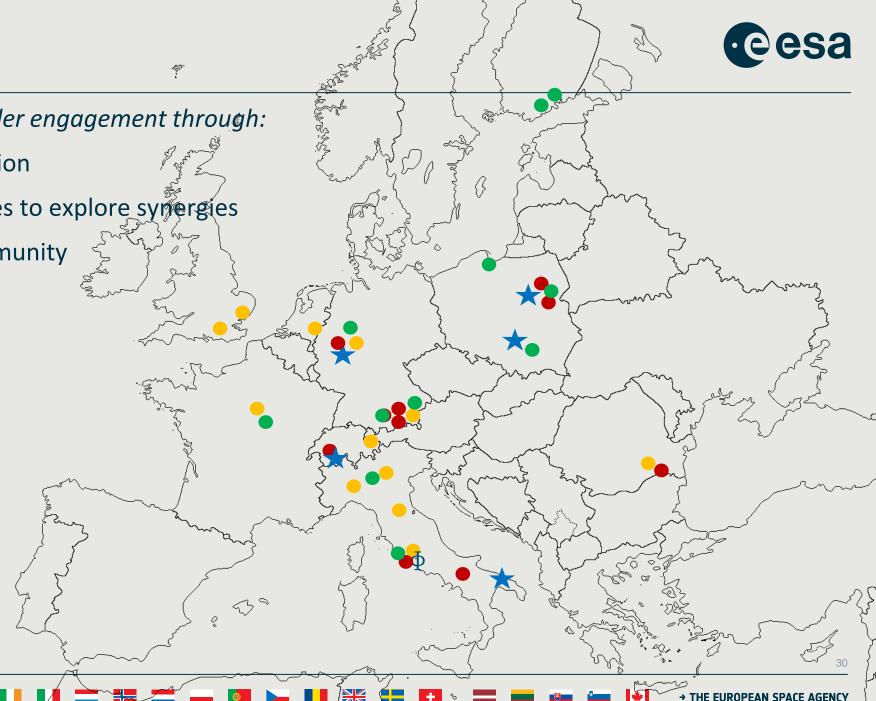


eeså

Style-based quantum GAN for image generation

- Faster convergence using similar number of parameters
- Better generalization power with less number of training samples

QC4EO Network


→ THE EUROPEAN SPACE AGENCY ----- • 0 .

QC4EO Network

Community building and stakeholder engagement through:

- Workshop and event organisation
- Consult QC and EO communities to explore symergies
- Support emerging QCxEO community

- QC4EO Study
- ★ Co-funded research
- Partners / visitors
- Community / events

QC4EO Network: workshops and events

- 2019 Workshop on Quantum Processing: from Quantum Computing to Earth Observation in Rome, <u>https://philab.phi.esa.int/workshop-quantum-for-earth-observation/</u>
- 2021 ESA-Ellis Workshop on Quantum Algorithms and Machine Learning for EO applications,
 - https://ellisqphml.github.io/ellisphilab2021
- 2021 Φ-week QC4EO session in Frascati,

https://phiweek.esa.int

- 2021 ESA 5th Quantum Conference Quantum Computing session,
 - https://atpi.eventsair.com/5th-quantum-technology-conference/
- 2022 Living Planet Symposium, Agora Session on "Future of Computing for FutureEO"
- 2022 QTML 2022 Industry Panel
- 2023 ESA 6th Quantum Conference Quantum Computing session,

https://nikal.eventsair.com/6th-quantum-technology-conference

Stakeholder engagement

- Al-enhanced Quantum Computing for EO: Joint initiative between CERN and ESA-EOP
- QC4EO JP: Consultation with CERN, DLR, TU Munich, LRZ, Ellis, etc...
- Companies: IBM, Quantinuum, Quandela, Thales, Xanadu, etc.

Community events and thematic initiatives

• IEEE GRSS High-performance and Disruptive Computing (HDCRS) Summer School, May 2022, 2023

https://www.hdc-rs.com

- CINECA Introduction to Quantum Computing School June 2023
- Quantum Open Software Foundation mentoring <u>https://qosf.org/</u>
- Quantum Climate initiative <u>https://q4climate.github.io/</u>

Publications

IEEE JSTARS Special Issue on "Quantum resources for Earth Observation" → 2021 / 2022

Ed. M. Datcu (DLR), J. Le Moigne (NASA), B. Le Saux (ESA)

→ <u>https://ieeexplore.ieee.org</u>

💳 💶 📲 🚍 💳 🕂 📲 🔚 📰 🚍 📲 📲 🚍 🛶 🔯 🛌 📲 🚟 🚍 🚥 🐏 ன ன 🖛 🖛

QC4EO Network: visiting researchers

Senior visiting researchers:

Mihai Datcu (Politehnica Uni of Bucharest)

Early-career researchers:

Gabriele Cavallaro (Forschungszentrum Jülich)

Piotr Gawron (CAMK / Polish Acad of Sciences)

Michal Siemaszko (PhD, Univ. Warsaw)

Alice Barthe (PhD, CERN / Leiden Uni)

Andrea Ceschini (PhD, La Sapienza)

Francesca de Falco (MSc., La Sapienza)

Francesco Mauro

(PhD, Uni. Sannio)

Amer Delilbasic

(PhD, Uni of Iceland / FZ Jülich)

→ THE EUROPEAN SPACE AGENCY

- > We are welcoming visiting researchers from academia and industry!
- **Spend short stays or residencies at the Φ-lab to mingle with EO, AI, and QC experts!**
- Let's get in touch!

Conclusions

ESA Φ-lab's Initiative on Quantum Computing for Earth Observation (QC4EO)

General perspectives:

- Increase the mutual awareness of the needs and capabilities of the Quantum Computing and Earth Observation communities
- Create new synergies, building on shared experience in AI, optimisation, and highperformance computing
- Prepare the ground for the opportunities that will be presented when the quantum community will be able to produce hardware and software for applied problems

💳 ___ 📲 🚍 ___ 🕶 🕂 📲 🔙 🔚 📕 🚛 ∺ 💶 🛶 🚳 🛌 📲 层 🖬 📲 ன 🌆 🏜 🖛 👘 → The European Space Agenc

ESA Φ-lab's Initiative on Quantum Computing for Earth Observation (QC4EO)

Practical perspectives:

- > Look for **practical applications and use-cases**, enabled by increased quantum volume
- Understand the advantages (faster, better, etc.?) brought by QC with exploratory activities
- Design hybrid computing frameworks including traditional CPU, GPU, HPC and new paradigms such as quantum and neuromorphic computing for optimal problem solving

- Follow us: <u>https://www.esa.int/ / https://philab.esa.int/</u>
- Join ESA Φ-lab@ESRIN: <u>https://jobs.esa.int/</u>
- Contact: <u>alessandro.sebastianelli@esa.int</u>, bertrand.le.saux@esa.int

SAVE THE DATE! 6th ESA Quantum Technology Conference | 19 – 21 September 2023 | Matera, Italy