
Lecture 4.1 - Distributed Deep
Learning with High Performance

Computing
End-to-End Machine Learning with High Performance and Cloud

Computing - Tutorial IGARSS 2022

17.07.2022
Rocco Sedona

Jülich Supercomputing Centre - Forschungszentrum Jülich GmbH
University of Iceland

2

Outline

� Recap of basic concepts of Deep Learning

� Introduction to HPC

� MPI and other communication backends

� Introduction to Distributed Deep Learning

� Frameworks

� Final Remarks

17.07.2022 – IGARSS 2022 – Rocco Sedona

Recap of
basic DL
concepts

Optimization

● Optimizing loss (objective) of a (complex) model on data
● a (complex) model: function (or distribution) family
● parameters are to adapt (“fit”) given the data
● optimization: defining a loss
● loss L: measure of quality (“fit”) of the model in terms of a task

solution on
● Objective: minimize

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC

Generalization

● Estimate : aiming for good generalization
capability

● General approach: split into disjoint and ,
● train on
● generalization error on after training

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC

HPC

Hardware Levels of Parallelism

● (a) Single-machine (shared memory) (b) Multi-machine (distributed
memory)

https://www.researchgate.net/publication/302245489_Adaptation_Strat
egies_in_Multiprocessors_System_on_Chip

HPC

HPC at the frontline of computing power
It includes work on ‘four basic building blocks’:

● Theory (numerical laws, physical models,
speed-up performance, etc.)

● Technology (multi-core, supercomputers,
networks, storages, etc.)

● Architecture (shared-memory,
distributed-memory, interconnects, etc.)

● Software (libraries, schedulers, monitoring,
applications, etc.)

Architecture: Shared-memory building blocks
interconnected with a fast network (e.g., InfiniBand)

https://www.fz-juelich.de/de/ias/jsc

https://ebrary.net/206293/computer_science/distributed_shared_me
mory_multiprocessors_numa_model

Communication
Backend

MPI

● MPI is a standard for
exchanging messages between
multiple computers running a
parallel program across
distributed memory

● Point-to-point and collective
communication are supported

● Different topologies can be
implemented

● Parallel I/O operations
● Blocking and non blocking

statements

Hoefler, T., Rabenseifner, R., Ritzdorf, H., de Supinski, B. R., Thakur, R., & Träff, J. L. (2010). The scalable process topology interface of
MPI 2.2. Concurrency and Computation: Practice and Experience, 23(4), 293–310. https://doi.org/10.1002/cpe.1643

https://doi.org/10.1002/cpe.1643

NCCL

● NVIDIA Collective Communications Library (NCCL)
[19]

● Provides optimized implementation of inter-GPU
communication operations, such as allreduce and
variants

● Optimized for high bandwidth and low latency
over PCI and NVLink/NVSwitch high speed
interconnect for intra-node communication (up to
16 GPUs)

● Sockets and InfiniBand for inter-node
communication

● For a comparison between communication
backends look at:
[https://mlbench.github.io/2020/09/08/communication-backend-c

omparison/]

https://developer.nvidia.com/blog/scaling-deep-learning
-training-nccl/

RCCL

● AMD’s port of NCCL: ROCm

Communication Collectives
Library (RCCL) uses the same
C API as NCCL

● NCCL APIs do not need to be

converted
 https://github.com/RadeonOpenCompute/ROCm https://hwrig.com/amd-instinct-gpu-and-epyc-are-making-lumi-in-2021/

https://lumi-supercomputer.eu/easybuild-lumis-primary-softwar
e-installation-tool-introduced/ https://www.bsc.es/innovation-and-services/technical-information-cte-amd

https://github.com/RadeonOpenCompute/ROCm
https://hwrig.com/amd-instinct-gpu-and-epyc-are-making-lumi-in-2021/
https://lumi-supercomputer.eu/easybuild-lumis-primary-software-installation-tool-introduced/
https://lumi-supercomputer.eu/easybuild-lumis-primary-software-installation-tool-introduced/
https://www.bsc.es/innovation-and-services/technical-information-cte-amd

Benchmark

● For a comparison
between
communication
backends look at:
[https://mlbench.gith
ub.io/2020/09/08/c
ommunication-backe
nd-comparison/]

● MPI vs Gloo vs NCCL

Motivation

Motivation

In recent years almost exponential
increase of number of parameters of
the models

https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances
-that-work-towards-harnessing-large-scale-power/

2020

2022

https://huggingface.co/blog/large-language-models

https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/
https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/
https://huggingface.co/blog/large-language-models

Motivation

● Bigger models require bigger datasets
● Consequence -> More resources are

needed (both memory and computation
power)

Kaplan et al., “Scaling Laws for Neural
Language Models”, 2020,
https://arxiv.org/abs/2001.08361

https://arxiv.org/abs/2001.08361

Distributed
Deep Learning

Data Parallelism

● Concept: split the data
● The gradients for

different batches of data
are calculated
separately on each node

● But averaged across
nodes to apply
consistent updates to
the model copy in each
node A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow”, arXiv:1802.05799,

2018

Model Parallelism

Concept: split the model
Pipelining:

● partitioning the DNN according to depth,
assigning layers to specific processors

● overlapping computations, i.e.,
between one layer and the next (as
data becomes ready)

[https://huggingface.co/docs/transformers/parallelism]

Model Parallelism

Tensor parallelism:
● matrix operations (f.e.

matrix multiplication) can
be split between multiple
GPUs

● Scaling large transformers
with multihead
self-attention is based on
this concept

[https://huggingface.co/docs/transformers/parallelism] [https://www.youtube.com/watch?v=iDulhoQ2pro&
ab_channel=YannicKilcher]

Challenges

● Poor generalization due to sharp minima
[Hochreiter, Sepp and Schmidhuber, Jürgen. Flat minima. Neural Computation, 9(1):1–42, 1997]

● Time to accuracy does not decrease

Shallue et al., 2019, https://arxiv.org/pdf/1811.03600.pdf

N. S. Keskar and D. Mudigere and J. Nocedal and M. Smelyanskiy and P.T.P. Tang, On Large-Batch Training for
Deep Learning: Generalization Gap and Sharp Minima, 2016

https://arxiv.org/pdf/1811.03600.pdf

Solution

● For batch size < 8000
○ Scale learning rate
○ Warm-up

● For batch size > 8000
○ Choice of the optimizer:

■ LARS
■ LAMB
■ post-local SGD

Osawa et al., 2020

Warm-up

Is that all?

● Still ongoing research
● Well-establish optimizers can

match new ones with enough
hyperparameter tuning

https://openreview.net/pdf?id=Kloou2uk_Rz

https://openreview.net/pdf?id=Kloou2uk_Rz

Frameworks

Frameworks

Horovod
● Data parallel, each GPU has a copy of the model

and a chunk of the data
● Efficient decentralized framework,

based on MPI and NCCL libraries, where actors exchange
parameters without the need of a parameter server

● Works on top of Keras, TensorFlow, PyTorch and
Apache MXNet

Tensorflow

● Parameter server for asynchronous training
● Mirrored strategy for synchronous training

Pytorch

● Distributed Data-Parallel Training (DDP)

A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in
TensorFlow”, arXiv:1802.05799, 2018.

https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow

https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow

Horovod

Ring allreduce
Two step process :

1. share-reduce step
2. share-only step

A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow”, arXiv:1802.05799, 2018

https://www.youtube.com/watch?v=4y0TDK3KoCA&t=585s&ab_channel=Uber
Engineering

Distributed Training with TensorFlow

https://www.tensorflow.org/guide/distributed_training

● tf.distribute.Strategy is a TensorFlow API that
implements distributed training

● Easy to use and switching between strategies:
○ MirroredStrategy and

MultiWorkerMirroredStrategy
○ TPUStrategy
○ ParameterServerStrategy
○ CentralStorageStrategy

● Use cluster resolver to read SLURM job
configuration automatically

Other Frameworks

[https://github.com/cc-hpc-itwm/tarantella]

[https://github.com/hpcaitech/ColossalAI]

[https://github.com/NVIDIA/Megatron-LM]

https://github.com/helmholtz-analytics/heat

https://docs.ray.io/

https://github.com/helmholtz-analytics/heat
https://docs.ray.io/

A Remote
Sensing Use
Case

BigEarthNet Classification

Dataset: BigEarthNet, Sentinel-2 Data Patches and
Annotated with CORINE Land Covers
Model: ResNet50

0.74 F1-score up to 24 nodes - 96 GPUs with a global
batch size of 8K samples

R. Sedona et al., Remote Sensing Big Data Classification with
High Performance Distributed Deep Learning, 2019

Patch and its dimension (px)

Enhancements

● Adopted TensorFlow Dataset API to build a pipeline with
integrated data augmentation, caching and prefetching of the
data

● Deploying on 64 nodes / 256 GPUs of the Juwels Booster (Nvidia
A100)

● New CNNs as EfficientNet, less parameters than ResNet, faster to
train and higher accuracy

● Testing newer optimizers: LARS, LAMB, NovoGrad
● As the number of hyperparameters grows, there is the need to

automatize the search for the optimal values (NAS)
● Hyper parameter tuning with Ray Tune (embedded in Horovod):

'IGARSS2022 ACCELERATING HYPERPARAMETER TUNING OF A DEEP
LEARNING MODEL FOR REMOTE SENSING IMAGE CLASSIFICATION',
M. Aach, R. Sedona, A. Lintermann, G. Cavallaro, H. Neukirchen, M.
Riedel, IGARSS2022 (accepted)

https://github.com/qubvel/efficientnet

https://github.com/qubvel/efficientnet

Final Remarks

Final Remarks

● The trend is to make distributed deep learning
easier

● Not only frameworks, but integrated products
● Example: Dataflow-as-a-Service by

SambaNova
● Intel's OpenAPI for heterogeneous computing

[https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.u1
eb1g]

● AMD's GPUs using ROCm (similar to Nvidia’s
NCCL)

[f.e. https://www.bsc.es/innovation-and-services/technical-information-cte-amd]

[https://www.hpcwire.com/2020/12/09/ai-newcomer-sambanova
-gas-product-lineup-and-offers-new-service/]

DL and Cloud Computing

 https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman

● Trend towards cloud-based HPC
● What about costs?
● Let’s have a look at NCsv3-series [25]
● 355 years to train GPT-3 on a Tesla V100
● Training cost = 355Y×365D/Y×24H/D×0.9792$/H

= 3.045.116$

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman

Towards Exascale

Frontier (First supercomputer
to Break the Exaflop Ceiling at
Oak Ridge National Laboratory
(ORNL) in the US

Exascale Application
Readiness
[https://www.olcf.ornl.gov/caar/frontier-caar/?fbcli
d=IwAR0JvTHz9rc_um_OGQbN28J8MDw5sv5yMF2O
BWy2u5RKdMVyxODseWlnP7E]

https://www.fz-juelich.de/en/news/archive/press-release/2022/f
irst-european-exascale-supercomputer-coming-to-julich

Final Remarks

● Takeaways:
● Frontier technology is fast paced
● But successful solutions tend to become

stable
● Great opportunities for Distributed Deep

Learning with the increased availability of
computing resources

● Aknowledgement: Helmholtz AI
Consultants
[https://www.helmholtz.ai/themenmenue/our-research/consultant-teams/helmholtz-ai-consultants-fzj
/index.html]

 [PRACE course “Introduction to Scalable Deep Learning” https://events.prace-ri.eu/event/1310/]

Carlota Perez, 2002. "Technological Revolutions and
Financial Capital," Books, Edward Elgar Publishing,
number 2640.

drive. enable. innovate.

The CoE RAISE project have received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow
us:

https://medium.com/@raise_info
https://www.researchgate.net/project/CoE-RAISE
https://www.youtube.com/channel/UCAdIZ-v6cWwGdapwYxdN7dg
https://www.facebook.com/CoERAISE2021
https://www.linkedin.com/company/coe-raise
https://twitter.com/CoeRaise

Practical

https://www.tensorflow.org/guide/distributed_training#other_strategies

● STEP 1: git clone
● STEP 2: codice train.py (TF mirrored strategy)
● STEP 3: (if enought time) participants will create

SLURM job script, otherwise we provide it
● STEP 4: run the code
● STEP 5: check error and output file and that the

model is saved
● -> load the model onto AWS

Have scripts ready to show in case Jupyter JSC is down

