

Lecture 4.1 - Distributed Deep Learning with High Performance Computing

End-to-End Machine Learning with High Performance and Cloud Computing – Tutorial IGARSS 2022

17.07.2022 Rocco Sedona Jülich Supercomputing Centre – Forschungszentrum Jülich GmbH University of Iceland

- Recap of basic concepts of Deep Learning
- Introduction to HPC
- MPI and other communication backends
- Introduction to Distributed Deep Learning
- Frameworks
- Final Remarks

Recap of basic DL concepts

Optimization

- Optimizing loss (objective) of a (complex) model f on data D
- a (complex) model: function (or distribution) family $f(X; \theta)$ ($p(X; \theta)$)
- parameters θ are to adapt ("fit") given the data $X \in D$
- optimization: defining a loss $L(\tilde{f}(X; \theta), D)$ loss L: measure of quality ("fit") of the model f in terms of a task solution on D
- Objective: minimize $L(f(X; \theta), D)$

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC

Generalization

- Estimate $L(f(X; \theta), D^{unseen})$: aiming for good generalization capability
- General approach: split D into disjoint D_{tr} and D_{ts} , $D_{tr} \cap D_{ts} = \emptyset$
- train on \dot{D}_{tr}
- generalization error on D_{ts} after training

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC

HPC

Hardware Levels of Parallelism

• (a) Single-machine (shared memory) (b) Multi-machine (distributed memory)

https://www.researchgate.net/publication/302245489_Adaptation_Strat egies_in_Multiprocessors_System_on_Chip

HPC at the frontline of computing power It includes work on 'four basic building blocks':

- Theory (numerical laws, physical models, speed-up performance, etc.) Technology (multi-core, supercomputers, networks, storages, etc.) Architecture (shared-memory, distributed-memory, interconnects, etc.) Software (libraries, schedulers, monitoring,

- applications, etc.)

Architecture: Shared-memory building blocks interconnected with a fast network (e.g., InfiniBand)

https://www.fz-juelich.de/de/ias/jsc

https://ebrary.net/206293/computer science/distributed shared me mory multiprocessors numa model

Communication Backend

- MPI is a standard for exchanging messages between multiple computers running a parallel program across distributed memory
- Point-to-point and collective communication are supported
- **Different topologies** can be implemented
- Parallel I/O operations
- Blocking and non blocking statements

Hoefler, T., Rabenseifner, R., Ritzdorf, H., de Supinski, B. R., Thakur, R., & Träff, J. L. (2010). The scalable process topology interface of MPI 2.2. Concurrency and Computation: Practice and Experience, 23(4), 293–310. <u>https://doi.org/10.1002/cpe.1643</u>

NCCL

- NVIDIA Collective Communications Library (NCCL) • [19]
- Provides optimized implementation of inter-GPU • communication operations, such as allreduce and variants
- Optimized for high bandwidth and low latency ٠ over PCI and NVLink/NVSwitch high speed interconnect for intra-node communication (up to 16 GPUs)
- Sockets and InfiniBand for inter-node • communication
- For a comparison between communication backends look at:

https://mlbench.github.io/2020/09/08/communication-backend-c omparison/]

- AMD's port of NCCL: ROCm
 Communication Collectives
 Library (RCCL) uses the same
 C API as NCCL
- NCCL APIs do not need to be converted

https://github.com/RadeonOpenCompute/ROCm

https://lumi-supercomputer.eu/easybuild-lumis-primary-softwar e-installation-tool-introduced/

https://hwrig.com/amd-instinct-gpu-and-epyc-are-making-lumi-in-2021/

https://www.bsc.es/innovation-and-services/technical-information-cte-amd

Benchmark

Comparison of MPI, GLOO, NCCL for [2, 4, 8] workers , CUDA tensors

- For a comparison between communication backends look at: [https://mlbench.gith ub.io/2020/09/08/c ommunication-backe nd-comparison/]
- MPI vs Gloo vs NCCL

Motivation

Motivation

In recent years almost exponential increase of number of parameters of the models

https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances _that-work-towards-harnessing-large-scale-power/

https://huggingface.co/blog/large-language-models

2020

2022

Motivation

- Bigger models require bigger datasets
- Consequence -> More resources are needed (both memory and computation power)

	Data Set	Type	Task	Size
mall	MNIST	Image	Classification	55,000
	Fashion MNIST	Image	Classification	55,000
~	CIFAR-10	Image	Classification	45,000
large	ImageNet	Image	Classification	$1,\!281,\!167$
	Open Images	Image	Classification (multi-label)	4,526,492
	LM1B	Text	Language modeling	30,301,028
14	Common Crawl	Text	Language modeling	~ 25.8 billion

Kaplan et al., "Scaling Laws for Neural Language Models", 2020, https://arxiv.org/abs/2001.08361

Distributed Deep Learning

- Concept: split the data
- The gradients for different batches of data are calculated separately on each node
- But averaged across nodes to apply consistent updates to the model copy in each node

Data Parallelism

Model Parallelism

Concept: split the model Pipelining:

- partitioning the DNN according to depth, assigning layers to specific processors
- overlapping computations, i.e., between one layer and the next (as data becomes ready)

P1

P3

[https://huggingface.co/docs/transformers/parallelism]

Device 3

Device 2

F. B Device 1 Update Time F. B Device 0 Update Fag Fai Fag Faa Baa B3.2 Ba.1 Ba.0 Device 3 F2.0 F2.1 F2.2 F2.3 B2.3 B22 Ban Ban Device 2 Device 1 F10 F11 F12 F13 B1.3 B1.2 B1.1 Update **Bubble** Device 0 F0.0 F0.1 F0.2 F0.3 B0,3 B0,2 B0.1 Bee Update

B₃

B₂

F₃

F2

Lindate

Model Parallelism

Tensor parallelism:

- matrix operations (f.e. matrix multiplication) can be split between multiple GPUs
- Scaling large transformers with multihead self-attention is based on this concept

[https://www.youtube.com/watch?v=iDulhoQ2pro& ab_channel=YannicKilcher]

Ashish Vaswan

Google Brain

avaswani@google.co

Llion Jones

Google Research

llion@google.com

[https://huggingface.co/docs/transformers/parallelism]

Challenges

- Poor generalization due to sharp minima [Hochreiter, Sepp and Schmidhuber, Jürgen. Flat minima. Neural Computation, 9(1):1–42, 1997]
- Time to accuracy does not decrease

Shallue et al., 2019, https://arxiv.org/pdf/1811.03600.pdf

N. S. Keskar and D. Mudigere and J. Nocedal and M. Smelyanskiy and P.T.P. Tang, On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, 2016

Solution

- For batch size < 8000
 - Scale learning rate
 - Warm-up
- For batch size > 8000
 - Choice of the optimizer:
 - LARS
 - LAMB
 - post-local SGD

	Hardware	Software	Batch size	Optimizer	# Steps	Time/step	Time	Accuracy
Goyal et al. [3]	Tesla P100 \times 256	Caffe2	8,192	SGD	14,076	0.255 s	1 hr	76.3 %
You et al. [11]	$KNL \times 2048$	Intel Caffe	32,768	SGD	3,519	0.341 s	20 min	75.4 %
Akiba et al. [10]	Tesla P100 \times 1024	Chainer	32,768	RMSprop/SGD	3,519	0.255 s	15 min	74.9 %
You et al. [11]	$KNL \times 2048$	Intel Caffe	32,768	ŜGD	2,503	0.335 s	14 min	74.9 %
Jia et al. [12]	Tesla P40 \times 2048	TensorFlow	65,536	SGD	1,800	0.220 s	6.6 min	75.8 %
Ying <i>et al.</i> [16]	TPU v3 \times 1024	TensorFlow	32,768	SGD	3,519	0.037 s	2.2 min	76.3 %
Mikami et al. [13]	Tesla V100 \times 3456	NNL	55,296	SGD	2,086	$0.057 \mathrm{s}$	2.0 min	75.3 %
Yamazaki et al. [14]	Tesla V100 \times 2048	MXNet	81,920	SGD	1,440	$0.050 \mathrm{~s}$	1.2 min	75.1 %

Osawa et al., 2020

• Still ongoing research

• Well-establish optimizers can match new ones with enough *hyperparameter tuning*

Batch size	Step budget	LAMB	Adam
32k	15,625	91.48	91.58
65k/32k	8,599	90.58	91.04
65k	7,818	—	90.46

https://openreview.net/pdf?id=Kloou2uk_Rz

Is that all?

Frameworks

Tensorflow

Parameter server for asynchronous training Mirrored strategy for synchronous training

Pytorch

Distributed Data-Parallel Training (DDP)

A. Sergeev and M. D. Balso, "Horovod: Fast and Easy Distributed Deep Learning in TensorFlow", arXiv:1802.05799, 2018.

Horovod

- Data parallel, each GPU has a copy of the model • and a chunk of the data
- Efficient decentralized framework,

based on MPI and NCCL libraries, where actors exchange parameters without the need of a parameter server

Works on top of Keras, TensorFlow, PyTorch and • Apache MXNet

#TFDevSummit

HOROVOD

Horovod

Ring allreduce

Two step process:

- 1. share-reduce step
- 2. share-only step

https://www.youtube.com/watch?v=4y0TDK3KoCA&t=585s&ab_channel=Uber Engineering

A. Sergeev and M. D. Balso, "Horovod: Fast and Easy Distributed Deep Learning in TensorFlow", arXiv:1802.05799, 2018

Distributed Training with TensorFlow

- tf.distribute.Strategy is a TensorFlow API that implements distributed training
- Easy to use and switching between strategies:
 - MirroredStrategy and MultiWorkerMirroredStrategy
 - TPUStrategy
 - ParameterServerStrategy
 - CentralStorageStrategy
- Use cluster resolver to read SLURM job configuration automatically

https://www.tensorflow.org/guide/distributed_training

Other Frameworks

[https://github.com/NVIDIA/Megatron-LM]

A Remote Sensing Use Case

BigEarthNet Classification

Dataset: BigEarthNet, Sentinel-2 Data Patches and Annotated with CORINE Land Covers

Model: ResNet50

0.74 F1-score up to 24 nodes – 96 GPUs with a global batch size of 8K samples

Patch and its dimension (px)

non-irrigated arable land, fruit trees and berry plantations, agro-forestry areas, transitional woodland/shrub

non-irrigated arable land

R. Sedona et al., Remote Sensing Big Data Classification with High Performance Distributed Deep Learning, 2019

Enhancements

- Adopted TensorFlow Dataset API to build a pipeline with integrated data augmentation, caching and prefetching of the data
- Deploying on 64 nodes / 256 GPUs of the Juwels Booster (Nvidia A100)
- New CNNs as EfficientNet, less parameters than ResNet, faster to train and higher accuracy
- Testing newer optimizers: LARS, LAMB, NovoGrad
- As the number of hyperparameters grows, there is the need to automatize the search for the optimal values (NAS)
- Hyper parameter tuning with Ray Tune (embedded in Horovod): 'IGARSS2022 ACCELERATING HYPERPARAMETER TUNING OF A DEEP LEARNING MODEL FOR REMOTE SENSING IMAGE CLASSIFICATION', M. Aach, R. Sedona, A. Lintermann, G. Cavallaro, H. Neukirchen, M. Riedel, IGARSS2022 (accepted)

https://github.com/qubvel/efficientnet

Final Remarks

• The trend is to make distributed deep learning easier

- Not only frameworks, but integrated products
- Example: Dataflow-as-a-Service by SambaNova
- Intel's OpenAPI for heterogeneous computing [https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.u1 eb1g]
- AMD's GPUs using ROCm (similar to Nvidia's NCCL)

[f.e. https://www.bsc.es/innovation-and-services/technical-information-cte-amd]

DL and Cloud Computing

- Trend towards cloud-based HPC
- What about costs?
- Let's have a look at NCsv3-series [25]
- **355 years** to train GPT-3 on a Tesla V100
- Training cost = 355Y×365D/Y×24H/D×0.9792\$/H
 = 3.045.116\$

https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman

Add to estimate	Instance	Core	RAM	Temporary storage	GPU	Pay as you go	1 year reserved (% Savings)	3 year reserved (% Savings)	Spot (% Savings)
Ð	NC6s v3	6	112 GiB	736 GiB	1X V100	\$3.06/hour	\$1.9492/hour (~36%)	\$0.9792/hour (~68%)	\$0.306/hour (~90%)
•	NC12s v3	12	224 GiB	1,474 GiB	2X V100	\$6.12/hour	\$3.8984/hour (~36%)	\$1.9585/hour (~68%)	\$0.612/hour (~90%)
•	NC24rs v3	24	448 GiB	2,948 GiB	4X V100	\$13.464/hour	\$8.5766/hour (~36%)	\$5.1002/hour (~62%)	\$1.3464/hour (~90%)
Ð	NC24s v3	24	448 GiB	2,948 GiB	4X V100	\$12.24/hour	\$7.7970/hour (~36%)	\$3.9169/hour (~68%)	\$1.224/hour (~90%)

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

Towards Exascale

Frontier (First supercomputer to Break the Exaflop Ceiling at Oak Ridge National Laboratory (ORNL) in the US

Exascale Application Readiness [https://www.olcf.ornl.gov/caar/frontier-caar/?fbcli

d=IwAR0JvTHz9rc_um_OGQbN28J8MDw5sv5yMF2O BWy2u5RKdMVyxODseWInP7E]

https://www.fz-juelich.de/en/news/archive/press-release/2022/f irst-european-exascale-supercomputer-coming-to-julich

500

HOME

Ceiling

May 30, 2022

A massive machine in Tennessee has been deemed the world's speediest. Experts say two supercomputers in China may be faster, but the country didn't participate in the rankings.

Give this article R (Д

• Takeaways:

- Frontier technology is fast paced
- But successful solutions tend to become stable
- Great opportunities for Distributed Deep Learning with the increased availability of computing resources
- Aknowledgement: Helmholtz AI Consultants

[https://www.helmholtz.ai/themenmenue/our-research/consultant-teams/helmholtz-ai-consultants-fzj /index.html]

[PRACE course "Introduction to Scalable Deep Learning" https://events.prace-ri.eu/event/1310/]

Carlota Perez, 2002. "Technological Revolutions and Financial Capital," Books, Edward Elgar Publishing, number 2640.

drive. enable. innovate.

The CoE RAISE project have received funding from the European Union's Horizon 2020 – Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow us:

- STEP 1: git clone
- STEP 2: codice train.py (TF mirrored strategy)
- STEP 3: (if enought time) participants will create SLURM job script, otherwise we provide it
- STEP 4: run the code
- STEP 5: check error and output file and that the model is saved
- -> load the model onto AWS

Have scripts ready to show in case Jupyter JSC is down

https://www.tensorflow.org/guide/distributed_training#other_strategies

