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Recap of 
basic DL 
concepts



 

Optimization

● Optimizing loss (objective) of a (complex) model   on data 
● a (complex) model: function (or distribution) family
● parameters    are to adapt (“fit”) given the data 
● optimization: defining a loss 
● loss L: measure of quality (“fit”) of the model     in terms of a task 

solution on 
● Objective: minimize 

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC



 

Generalization

● Estimate                                            : aiming for good generalization 
capability 

● General approach: split     into disjoint          and         , 
● train on 
● generalization error on          after training

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC



HPC



 

Hardware Levels of Parallelism

● (a) Single-machine (shared memory) (b) Multi-machine (distributed 
memory)

https://www.researchgate.net/publication/302245489_Adaptation_Strat
egies_in_Multiprocessors_System_on_Chip



 

HPC

HPC at the frontline of computing power 
It includes work on ‘four basic building blocks’:

● Theory (numerical laws, physical models, 
speed-up performance, etc.)

● Technology (multi-core, supercomputers, 
networks, storages, etc.)

● Architecture (shared-memory, 
distributed-memory, interconnects, etc.)

● Software (libraries, schedulers, monitoring, 
applications, etc.)

Architecture: Shared-memory building blocks 
interconnected with a fast network (e.g., InfiniBand)

https://www.fz-juelich.de/de/ias/jsc

https://ebrary.net/206293/computer_science/distributed_shared_me
mory_multiprocessors_numa_model



Communication 
Backend



 

MPI

● MPI is a standard  for 
exchanging messages between 
multiple computers running a 
parallel program across 
distributed memory 

● Point-to-point and collective 
communication are supported 

● Different topologies can be 
implemented 

● Parallel I/O operations 
● Blocking and non blocking 

statements
 

 

Hoefler, T., Rabenseifner, R., Ritzdorf, H., de Supinski, B. R., Thakur, R., & Träff, J. L. (2010). The scalable process topology interface of 
MPI 2.2. Concurrency and Computation: Practice and Experience, 23(4), 293–310. https://doi.org/10.1002/cpe.1643

https://doi.org/10.1002/cpe.1643


 

NCCL

● NVIDIA Collective Communications Library (NCCL) 
[19] 

● Provides optimized implementation of inter-GPU 
communication operations, such as allreduce and 
variants 

● Optimized for high bandwidth and low latency 
over PCI and NVLink/NVSwitch high speed 
interconnect for intra-node communication (up to 
16 GPUs) 

● Sockets and InfiniBand for inter-node 
communication 

● For a comparison between communication 
backends look at: 
[https://mlbench.github.io/2020/09/08/communication-backend-c

omparison/] 
 

https://developer.nvidia.com/blog/scaling-deep-learning
-training-nccl/



 

RCCL

● AMD’s port of NCCL: ROCm 

Communication Collectives 
Library (RCCL) uses the same 
C API as NCCL

● NCCL APIs do not need to be 

converted
 https://github.com/RadeonOpenCompute/ROCm https://hwrig.com/amd-instinct-gpu-and-epyc-are-making-lumi-in-2021/

https://lumi-supercomputer.eu/easybuild-lumis-primary-softwar
e-installation-tool-introduced/ https://www.bsc.es/innovation-and-services/technical-information-cte-amd

https://github.com/RadeonOpenCompute/ROCm
https://hwrig.com/amd-instinct-gpu-and-epyc-are-making-lumi-in-2021/
https://lumi-supercomputer.eu/easybuild-lumis-primary-software-installation-tool-introduced/
https://lumi-supercomputer.eu/easybuild-lumis-primary-software-installation-tool-introduced/
https://www.bsc.es/innovation-and-services/technical-information-cte-amd


 

Benchmark

● For a comparison 
between 
communication 
backends look at:
[https://mlbench.gith
ub.io/2020/09/08/c
ommunication-backe
nd-comparison/]

● MPI vs Gloo vs NCCL
 



Motivation



 

Motivation 

In recent years almost exponential 
increase of number of parameters of 
the models 

https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances
-that-work-towards-harnessing-large-scale-power/

2020

2022

https://huggingface.co/blog/large-language-models

https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/
https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/
https://huggingface.co/blog/large-language-models


 

Motivation

● Bigger models require bigger datasets 
● Consequence -> More resources are 

needed (both memory and computation 
power)

Kaplan et al., “Scaling Laws for Neural 
Language Models”, 2020, 
https://arxiv.org/abs/2001.08361

https://arxiv.org/abs/2001.08361


Distributed 
Deep Learning



 

Data Parallelism

● Concept: split the data
● The gradients for 

different batches of data 
are calculated 
separately on each node  

● But averaged across 
nodes to apply 
consistent updates to 
the model copy in each 
node A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow”, arXiv:1802.05799, 

2018



 

Model Parallelism

Concept: split the model
Pipelining: 

● partitioning the DNN according to depth, 
assigning layers to specific processors 

● overlapping computations, i.e., 
between one layer and the next (as 
data becomes ready)

[https://huggingface.co/docs/transformers/parallelism] 



 

Model Parallelism

Tensor parallelism: 
● matrix operations (f.e. 

matrix multiplication) can 
be split between multiple 
GPUs 

● Scaling large transformers 
with multihead 
self-attention is based on 
this concept

[https://huggingface.co/docs/transformers/parallelism] [https://www.youtube.com/watch?v=iDulhoQ2pro&
ab_channel=YannicKilcher] 



 

Challenges

● Poor generalization due to sharp minima
[Hochreiter, Sepp and Schmidhuber, Jürgen. Flat minima. Neural Computation, 9(1):1–42, 1997]

● Time to accuracy does not decrease 

Shallue et al., 2019, https://arxiv.org/pdf/1811.03600.pdf

 

N. S. Keskar and D. Mudigere and J. Nocedal and M. Smelyanskiy and P.T.P. Tang, On Large-Batch Training for 
Deep Learning: Generalization Gap and Sharp Minima, 2016

https://arxiv.org/pdf/1811.03600.pdf


 

Solution

● For batch size < 8000
○ Scale learning rate 
○ Warm-up

● For batch size > 8000
○ Choice of the optimizer:

■ LARS
■ LAMB
■ post-local SGD

Osawa et al., 2020

Warm-up



 

Is that all?

● Still ongoing research
● Well-establish optimizers can 

match new ones with enough 
hyperparameter tuning

https://openreview.net/pdf?id=Kloou2uk_Rz

https://openreview.net/pdf?id=Kloou2uk_Rz


Frameworks



 

Frameworks

Horovod 
● Data parallel, each GPU has a copy of the model 

and a chunk of the data 
● Efficient decentralized framework, 

based on MPI and NCCL libraries, where actors exchange 
parameters without the need of a parameter server 

● Works on top of Keras, TensorFlow, PyTorch and 
Apache MXNet 

 
Tensorflow 

● Parameter server for asynchronous training 
● Mirrored strategy for synchronous training 

 
Pytorch 

● Distributed Data-Parallel Training (DDP) 

A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in 
TensorFlow”, arXiv:1802.05799, 2018.

https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow

https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow


 

Horovod

Ring allreduce 
Two step process :

1. share-reduce step  
2. share-only step

A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow”, arXiv:1802.05799, 2018

https://www.youtube.com/watch?v=4y0TDK3KoCA&t=585s&ab_channel=Uber
Engineering



 

Distributed Training with TensorFlow

https://www.tensorflow.org/guide/distributed_training

● tf.distribute.Strategy is a TensorFlow API that 
implements distributed training

● Easy to use and switching between strategies:
○ MirroredStrategy and 

MultiWorkerMirroredStrategy
○ TPUStrategy
○ ParameterServerStrategy
○ CentralStorageStrategy

● Use cluster resolver to read SLURM job 
configuration automatically



 

Other Frameworks

[https://github.com/cc-hpc-itwm/tarantella] 

[https://github.com/hpcaitech/ColossalAI] 

[https://github.com/NVIDIA/Megatron-LM] 

https://github.com/helmholtz-analytics/heat

https://docs.ray.io/

https://github.com/helmholtz-analytics/heat
https://docs.ray.io/


A Remote 
Sensing Use 
Case



 

BigEarthNet Classification

Dataset: BigEarthNet, Sentinel-2 Data Patches and 
Annotated with CORINE Land Covers  
Model: ResNet50

0.74 F1-score up to 24 nodes - 96 GPUs with a global 
batch size of 8K samples

R. Sedona et al., Remote Sensing Big Data Classification with 
High Performance Distributed Deep Learning, 2019

Patch and its dimension (px)  



 

Enhancements

● Adopted TensorFlow Dataset API to build a pipeline with 
integrated data augmentation, caching and prefetching of the 
data 

● Deploying on 64 nodes / 256 GPUs of the Juwels Booster (Nvidia 
A100) 

● New CNNs as EfficientNet, less parameters than ResNet, faster to 
train and higher accuracy 

● Testing newer optimizers: LARS, LAMB, NovoGrad 
● As the number of hyperparameters grows, there is the need to 

automatize the search for the optimal values (NAS)
● Hyper parameter tuning with Ray Tune (embedded in Horovod): 

'IGARSS2022 ACCELERATING HYPERPARAMETER TUNING OF A DEEP 
LEARNING MODEL FOR REMOTE SENSING IMAGE CLASSIFICATION', 
M. Aach, R. Sedona, A. Lintermann, G. Cavallaro, H. Neukirchen, M. 
Riedel, IGARSS2022 (accepted)

https://github.com/qubvel/efficientnet

https://github.com/qubvel/efficientnet


Final Remarks



 

Final Remarks

● The trend is to make distributed deep learning 
easier 

● Not only frameworks, but integrated products 
● Example: Dataflow-as-a-Service by 

SambaNova 
● Intel's OpenAPI for heterogeneous computing 

[https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.u1
eb1g] 

● AMD's GPUs using ROCm (similar to Nvidia’s 
NCCL) 

[f.e. https://www.bsc.es/innovation-and-services/technical-information-cte-amd] 

[https://www.hpcwire.com/2020/12/09/ai-newcomer-sambanova
-gas-product-lineup-and-offers-new-service/]



 

DL and Cloud Computing

 https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman

● Trend towards cloud-based HPC
● What about costs?
● Let’s have a look at NCsv3-series [25] 
● 355 years to train GPT-3 on a Tesla V100 
● Training cost = 355Y×365D/Y×24H/D×0.9792$/H 

= 3.045.116$ 

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman


 

Towards Exascale

Frontier (First supercomputer 
to Break the Exaflop Ceiling at 
Oak Ridge National Laboratory 
(ORNL) in the US

Exascale Application 
Readiness
[https://www.olcf.ornl.gov/caar/frontier-caar/?fbcli
d=IwAR0JvTHz9rc_um_OGQbN28J8MDw5sv5yMF2O
BWy2u5RKdMVyxODseWlnP7E]

https://www.fz-juelich.de/en/news/archive/press-release/2022/f
irst-european-exascale-supercomputer-coming-to-julich



 

Final Remarks

● Takeaways: 
● Frontier technology is fast paced 
● But successful solutions tend to become 

stable 
● Great opportunities for Distributed Deep 

Learning with the increased availability of 
computing resources

● Aknowledgement: Helmholtz AI 
Consultants 
[https://www.helmholtz.ai/themenmenue/our-research/consultant-teams/helmholtz-ai-consultants-fzj
/index.html] 

        [PRACE course “Introduction to Scalable Deep Learning” https://events.prace-ri.eu/event/1310/]

Carlota Perez, 2002. "Technological Revolutions and 
Financial Capital," Books, Edward Elgar Publishing, 
number 2640.
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Practical

https://www.tensorflow.org/guide/distributed_training#other_strategies

● STEP 1: git clone
● STEP 2: codice train.py (TF mirrored strategy)
● STEP 3: (if enought time) participants will create 

SLURM job script, otherwise we provide it
● STEP 4: run the code
● STEP 5: check error and output file and that the 

model is saved
● -> load the model onto AWS

Have scripts ready to show in case Jupyter JSC is down


