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Distributed Deep Learning

Trend is to train larger models

Larger models require larger datasets

How? Data parallelism on HPC resources comes at aid

In data parallelism a model is replicated on N GPUs

Different chunks of data on each GPU

Resulting global batch size is Byiopar = Birocar X N

Test Loss
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[1] Large models and datasets
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Challenges of Distributed Learning

At a given batch size SGD stops to scale

The number of steps to a given accuracy does not decrease anymore
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Dataset

Extracted from disjoint NAIP tiles
28x28 pixels

4 channels (RGB + Near IR)

1 m spatial resolution

80% training, 20% test

SAT-4

consists of a total of 500,000 image patches covering four broad
land cover classes

SAT-6

consists of a total of 405,000 image patches each of size 28x28
covering 6 landcover classes
4 channels (RGB + Near IR)

[3] SAT4 and SAT6
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Training Strategy

Model: ResNet50

Skip connections to reduce vanishing gradient

LAMB optimizer [4]
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Warm-up phase scaled w.r.t. the batch size

Root square policy for initial learning rate

Polynomial learning rate scheduler
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Experimental Setup

DEEP-EST supercomputer at JSC
Extreme Scale Booster Partition (ESB)
Up to 32 GPUs (Nvidia V100)

Horovod on top of TF2 (Keras API)
—  MPIvs NCCL

100 epochs
Simple data augmentation techniques

3 runs for each experiment
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[5] DEEP-EST
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Results

Test accuracy satisfactory up to batch size of 32K
Training time is reduced (although less than linear)
Test loss increases with the increase of the batch size

Significant divergence at 65K

Batch size | N. GPUs | Accuracy | Loss | Time [s]
8K 4 0.99 0.02 | 34

16K 8 0.98 0.07 | 18

32K 16 0.96 0.11 | 9

65K 32 diverges 5

Table 2. Accuracy and test loss, training time per epoch
epoch with LAMB optimizer, dataset SAT4.

Batch size | N. GPUs | Accuracy | Loss | Time [s]
8K 4 0.99 0.05 | 41

16K 8 0.98 0.11 | 22

32K 16 0.94 0.17 | 11

65K 32 diverges 6

Table 3. Accuracy and test loss, training time per epoch
epoch with LAMB optimizer, dataset SAT6.
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Comments and Future Developments

Training scaled on large number of GPUs and training time reduced
Comparison MPI vs NCCL

Fair comparison with other optimizers [6]
— Utilization of evolutionary optimization

Thorough analysis of steps to accuracy

Extend to more complex datasets
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