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Distributed Deep Learning

 Trend is to train larger models

 Larger models require larger datasets

 How? Data parallelism on HPC resources comes at aid

 In data parallelism a model is replicated on N GPUs

 Different chunks of data on each GPU

 Resulting global batch size is 𝐵𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐵𝑙𝑜𝑐𝑎𝑙 × 𝑁
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[1] Large models and datasets



Challenges of Distributed Learning

 At a given batch size SGD stops to scale 

 The number of steps to a given accuracy does not decrease anymore
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[1] Steps to accuracy[2] Steps to accuracy
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[3] SAT4 and SAT6



Training Strategy

 Model: ResNet50

 Skip connections to reduce vanishing gradient

 LAMB optimizer [4]

 Warm-up phase scaled w.r.t. the batch size

 Root square policy for initial learning rate

 Polynomial learning rate scheduler
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Experimental Setup

 DEEP-EST supercomputer at JSC

 Extreme Scale Booster Partition (ESB)

 Up to 32 GPUs (Nvidia V100)

 Horovod on top of TF2 (Keras API)

 MPI vs NCCL

 100 epochs

 Simple data augmentation techniques

 3 runs for each experiment
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[5] DEEP-EST



Results

 Test accuracy satisfactory up to batch size of 32K

 Training time is reduced (although less than linear)

 Test loss increases with the increase of the batch size

 Significant divergence at 65K
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Comments and Future Developments

 Training scaled on large number of GPUs and training time reduced

 Comparison MPI vs NCCL

 Fair comparison with other optimizers [6]

 Utilization of evolutionary optimization

 Thorough analysis of steps to accuracy

 Extend to more complex datasets
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