

ENHANCING LARGE BATCH SIZE TRAINING OF DEEP MODELS FOR REMOTE SENSING APPLICATIONS

Rocco Sedona^{1,2}, *Gabriele Cavallaro*¹, *Morris Riedel*^{1,2}, *Matthias Book*¹

¹ Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany ² School of Engineering and Natural Sciences, University of Iceland, Iceland

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Distributed Deep Learning

- Trend is to train larger models
- Larger models require larger datasets
- How? Data parallelism on HPC resources comes at aid
- In data parallelism a model is replicated on N GPUs
- Different chunks of data on each GPU
- Resulting global batch size is $B_{global} = B_{local} \times N$

[1] Large models and datasets

Challenges of Distributed Learning

- At a given batch size SGD stops to scale
- The number of steps to a given accuracy does not decrease anymore

[2] Steps to accuracy

Dataset

- Extracted from disjoint NAIP tiles
- 28x28 pixels
- 4 channels (RGB + Near IR)
- 1 m spatial resolution
- 80% training, 20% test
- SAT-4
 - consists of a total of 500,000 image patches covering four broad land cover classes
- SAT-6
 - consists of a total of 405,000 image patches each of size 28x28
 - covering 6 landcover classes
 - 4 channels (RGB + Near IR)

[3] SAT4 and SAT6

Training Strategy

- Model: ResNet50
 - Skip connections to reduce vanishing gradient
- LAMB optimizer [4]

$$x_{t+1}^{i} = x_{t}^{i} - \eta_{t} \frac{\Phi(\|x_{t}^{i}\|)}{\|g_{t}^{i}\|} g_{t}^{i},$$

- Warm-up phase scaled w.r.t. the batch size
- Root square policy for initial learning rate
- Polynomial learning rate scheduler

Experimental Setup

- DEEP-EST supercomputer at JSC
- Extreme Scale Booster Partition (ESB)
- Up to 32 GPUs (Nvidia V100)
- Horovod on top of TF2 (Keras API)
 MPI vs NCCL
- 100 epochs
- Simple data augmentation techniques
- 3 runs for each experiment

[5] DEEP-EST

Results

- Test accuracy satisfactory up to batch size of 32K
- Training time is reduced (although less than linear)
- Test loss increases with the increase of the batch size
- Significant divergence at 65K

Batch size	N. GPUs	Accuracy	Loss	Time [s]
8K	4	0.99	0.02	34
16K	8	0.98	0.07	18
32K	16	0.96	0.11	9
65K	32	diverges		5

Table 2. Accuracy and test loss, training time per epochepoch with LAMB optimizer, dataset SAT4.

Batch size	N. GPUs	Accuracy	Loss	Time [s]
8K	4	0.99	0.05	41
16K	8	0.98	0.11	22
32K	16	0.94	0.17	11
65K	32	diverges		6

Table 3. Accuracy and test loss, training time per epochepoch with LAMB optimizer, dataset SAT6.

Comments and Future Developments

- Training scaled on large number of GPUs and training time reduced
- Comparison MPI vs NCCL
- Fair comparison with other optimizers [6]
 - Utilization of evolutionary optimization
- Thorough analysis of steps to accuracy
- Extend to more complex datasets

References

[1] Kaplan et al., "Scaling Laws for Neural Language Models", 2020, https://arxiv.org/abs/2001.08361

[2] Shallue et al., Measuring the Effects of Data Parallelism on Neural Network Training", JMLR, 2020

[3] SAT4 and SAT6, <u>https://csc.lsu.edu/~saikat/deepsat/</u>

[4] You et al., "Large Batch Optimization for Deep Learning: Training BERT in 76 minutes," 2020

[5] DEEP Projects, https://www.deep-projects.eu/

[6] Nado et al., A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes , https://arxiv.org/pdf/2102.06356.pdf