

POTSDAN

KAYSER-THREDE

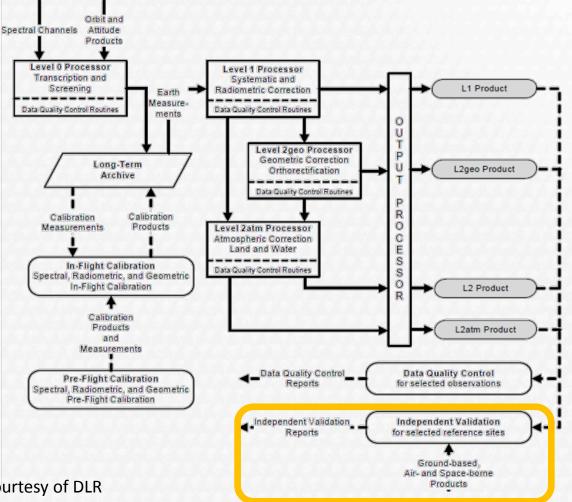
Concept for EnMAP post-launch product validation and instrument characterisation activities

C. Rogass, K. Segl, M. Brell, L. Guanter, and H. Kaufmann

Helmholtz Centre Potsdam GFZ, German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany

July 16th 2014, Session WE4.09

EnMAP satellite parameters


MAP Parameter	Performance	
atellite characteristics		
Imaging principle	push-broom, two prism imaging spectromete	rs
Orbit	sun-synchronous	
Altitude	643 km	
Inclination	97.96°	
Weight (payload + bus)	1000 kg	
Size	3.1 m x 1.9 m x 1.7 m	
pectral characteristics	VNIR	SWIR
Spectral range	420 - 1000 nm	900 - 2450 nm
Number of bands	88	154
Spectral sampling interval	6.5/10nm	10 nm
Spectral bandwidth (FWHM)	8.1 ± 1.0 nm	12.5 ± 1.5 nm
Signal-to-noise ratio (SNR)	> 500.1(at 495 nm)	> 180.1 (at 2200 nm)
Spectral calibration accuracy	0.5 nm	
Spectral stability	0.5 nm	
Spectral smile/keystone effect	< 20 % of detector element	
Radiometric calibration accuracy	<5%	
Radiometric stability	± 2.5 % between two consecutive calibrations	
Polarisation sensitivity	< 5 %	
patial characteristics		
Ground sampling distance (GSD)	30 m (at nadir, sea level)	
Swath width	30 km (Field of View = 2.63° across track)	
Swath length	1000 km/orbit, 5000 km/day	
Pointing angle	± 30° (across track)	
Geometric co-registration	≤ 0.2 + GSD	
Pointing accuracy	500 m nadir	
Pointing knowledge	100 m nadir	
Pointing stability	< 5 % of a pixel (short term jitter)	
emporal characteristics		
Target revisit time	23 days (VZA ≤ 5°)/4 days (VZA ≤ 30°)	
Equator crossing time	11:00 h ± 18 min (local time descending node)	
Average Ground Speed	6.9 km/s	
Along-track exposure	4,3 ms	

EnMAP Science Plan: http://www.enmap.org/sites/default/files/pdf/pub/121026_EnMAP_SciencePlan_dpi150.pdf

Data Product Standards Approach

HELMHOLTZ | ASSOCIATION

Illustration, courtesy of DLR

Objectives of GFZ Validation and Characterization Plan

- Quantitative validation of EnMAP products to be delivered to users
 - L1: Top-of-Atmosphere radiance
 - L2geo: Top-of-Atmosphere radiance + geometric correction
 - L2atm: Surface reflectance, no geometric correction
 - L2: Surface reflectance + geometric correction
- Complement instrument monitoring activities

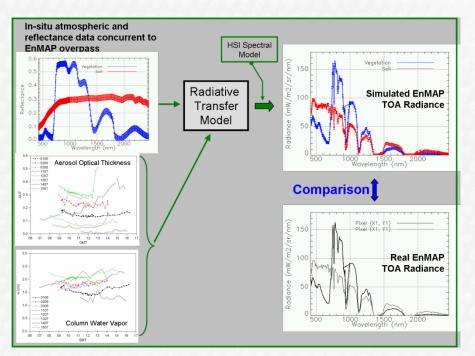
- Characterization and Monitoring of e.g. noise, MTF, radiometric calibration, keystone, spectral shift and smile and detector non-linearity

Two-fold Validation Approach:

- - Field campaigns with in-situ measurements of atmospheric and surface parameters + flight campaigns
 - Benefit from collaborative effort with other ground-based hyperspectral science related activities
- - Sophisticated models and image processing techniques involved
 - Alternative to those considered in the GS calibration and monitoring plans
 - Activities considered "scientific" rather than "operational"

Provide absolute reference for L1 and L2 products

Approach: Involving ground-based reflectance and atmospheric measurements and airborne HS data.

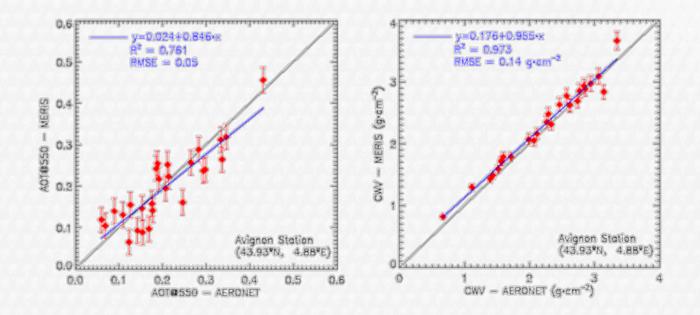

Four scenarios:

- L1/L2geo (radiance) validation
- L2/L2atm (reflectance) validation
- L2/L2geo (geometry) validation
- Atmospheric product validation

L1/L2geo (radiance) validation

- **Reflectance-based approach**: reflectance + atmosphere + RT simulations
 - + HIS spectral model \rightarrow EnMAP-like TOA radiance

 Benefit of airborne sensors: to extend validation area to cover EnMAP's swath and to check across-track radiometric response



Atmospheric product validation

 By-products from EnMAP atmospheric correction: aerosol optical thickness and columnar water vapor.

ELMHOLTZ ASSOCIATION

 Comparison of AERONET data with related EnMAP data → EnMAP acquisitions over AERONET sites are required.

Validation Sites – Criteria

L1 & L2geo (radiance)

- Best conditions for instrument testing (high SNR, minimal atmospheric impact...)
- Far from ocean and urban & industrial areas
- Vegetation-free, bright and elevated targets
- Wide-spread over the globe

L2 & L2atm (reflectance)

- Under normal acquisition conditions
- Typical EnMAP science sites (agricultural, coastal, geological...)
- Included in extensive science-oriented campaigns
- Validation sites across the world at sea level (short-term accessible)

L2 & L2geo (geometry)

• Flat and mountainous regions, spectrally heterogeneous with high spectral contrast, geologically stable

- From CEOS QA4EO Catalog of Worldwide Test Sites for Sensor Characterization
 (Coordination of EnMAP Cal/Val with CEOS and co-existing missions (e.g. Sentinel-2, LDCM, HISUI, PRISMA) is indispensable)
- > Emphasis on global coverage and sites' PI experience
- Data acquisition through partnerships: International partners to provide the data as part of a priority-user agreement
- Potential partners identified formal agreements have to be made (about 2 years before launch)

Approach

Two-fold Validation Approach:

- - Field campaigns with in-situ measurements of atmospheric and surface parameters + flight campaigns
 - Benefit from joint effort with ground-based science activities
- \succ Scene-based \rightarrow further validation from scene-based data analysis:
 - Advanced models and image processing techniques involved
 - Alternative to those considered in the GS calibration and monitoring plans
 - Activities considered "scientific" rather than "operational"

HELMHOLTZ

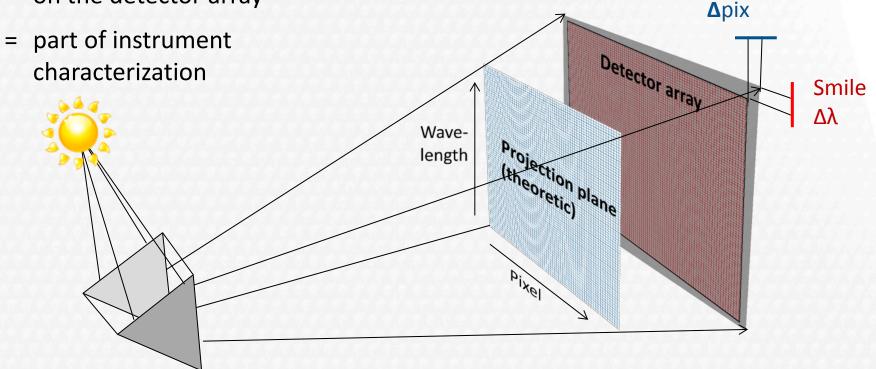
Development for automated and accurate algorithms for the analysis and monitoring of:

Image quality

- Dead and bad pixels, striping
- Co-registration

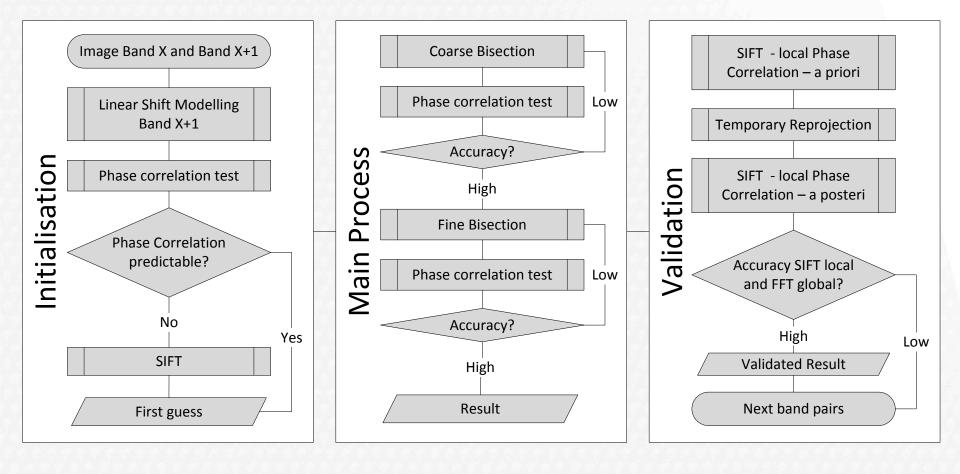
Sensor characteristics

- Keystone
- Spectral smile
- Noise
- MTF



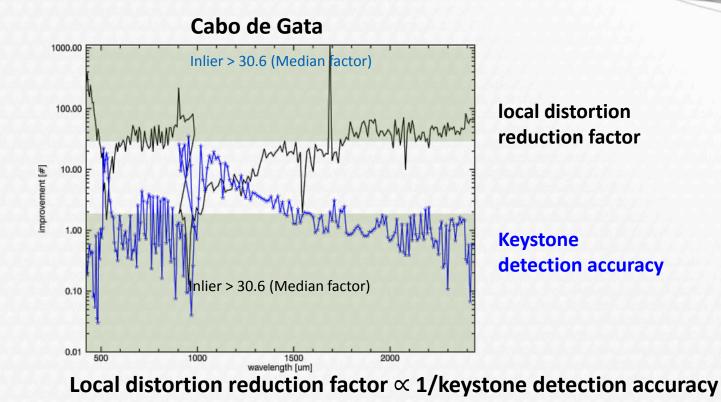
HELMHOLTZ

Keystone


Keystone and Smile/Frown

 are spatial deviations from an optimal projection on the detector array

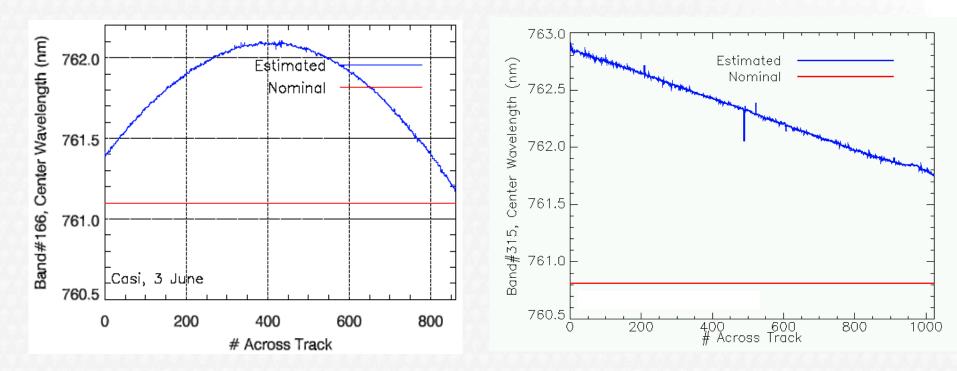
Scene-Based Keystone Estimation


HELMHOLTZ

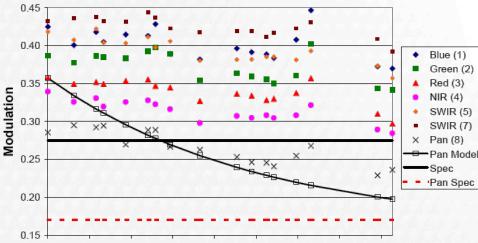
ASSOCIATION

Scene-Based Keystone Estimation

-> Weighting of global results by local results - > exclude outliers (above median) -> Local reduction factors should be better than their median


Mean keystone detection accuracy: >99 % without outliers -> Accuracy < 1 μPixel

Characterization of spectral shift and smile


Use of atmospheric absorption features
(oxygen-A 760 nm & water vapor 1140 nm)
– complement of on-orbit measurements

MTF estimation from L1 images - Targets with sharp brightness transitions necessary for the inversion of parametric MTF models

Jun-99 Sep-99 Nov-99 Feb-00 May-00 Aug-00 Nov-00 Feb-01 May-01 Date

MTF at Nyquist vs. Date

HELMHOLTZ

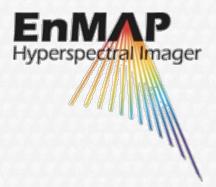
ASSOCIATION

J. C. Storey. Landsat 7 on-orbit modulation transfer function estimation. In *Proceedings of* SPIE Sensors, Systems, and Next-Generation Satellites V, volume 4540, pages 50–61, 2001.

Summary

- Independent EnMAP Validation Plan activities
- Two-fold validation approach: Ground-based & scene-based
 - Ground-based validation
 - L1/L2geo: "radiometric sites", through international partnerships.
 - L2/L2atm: "science sites", EnMAP internal, coupled to science campaigns.
 - L2/L2geo:"geometric sites", comparison with reference images
 - Scene-based validation
 - Advanced data processing routines to complement other validation sources.
 - Validation of intermediate products: instrumental parameters and atmospheric products
- Particular details (software, sites, instrumentation, ...) defined along EnMAP phase D.
- International partnerships for EnMAP Cal/Val activities to be formally established.

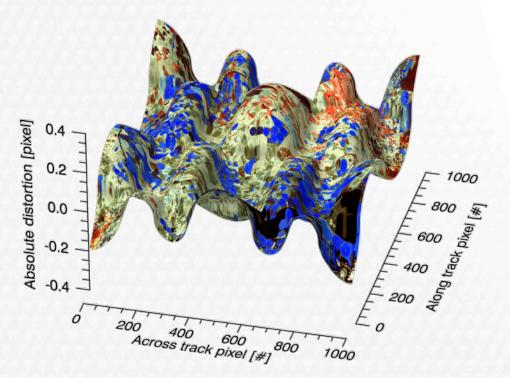
Thank you


Maximilian Brell brell@gfz-potsdam.de Phone: +49 331 288 1820

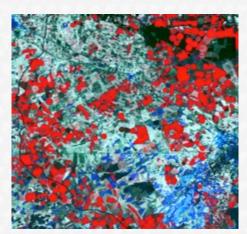
Gefördert durch:

Bundesministerium für Wirtschaft und Technologie

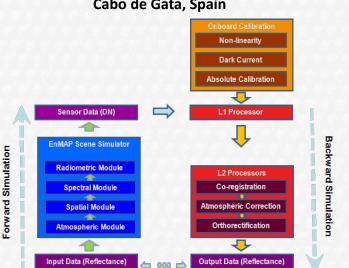
aufgrund eines Beschlusses des Deutschen Bundestages

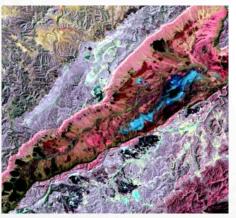


Non-linear distortions hamper:


- Pre-processing
 - Co-registration
 - Rectification
 - Validation
- Qualification
 - Identification
 - Segmentation
 - Classification
- Spatiotemporal Monitoring
- Most Applications

Materials – EnMAP simulations – EETES¹





False color composite (R 864 nm, G 653 nm, B 549 nm) of **Barrax, Spain**

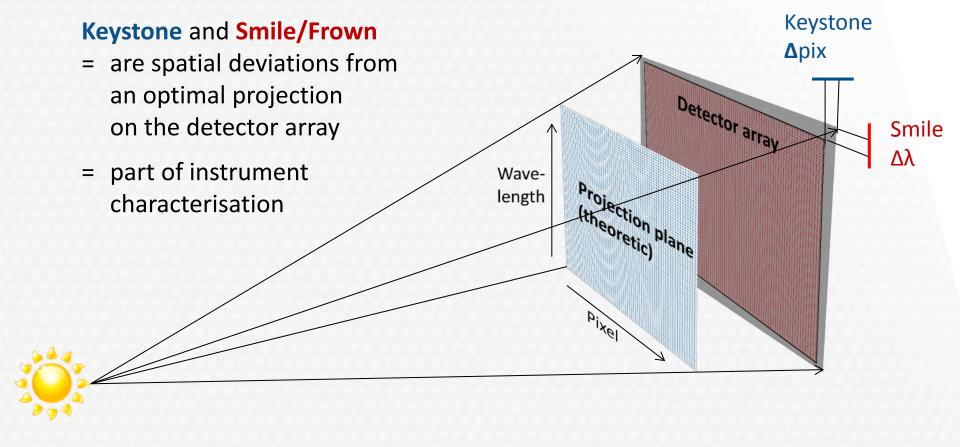
False color composite (R 2201 nm, G 801 nm, B 484 nm) of **Cabo de Gata, Spain**

False color composite (R 2201 nm, G 801 nm, B 484 nm) of the **Makhtesh Ramon, Israel**

¹Segl, K.; Guanter, L.; Rogass, C;, Kuester, T.; Roessner, S.; Kaufmann, H.; Sang, B.; Mogulsky, V.; Hofer, S. (2012). EeteS - The EnMAP End-to-End Simulation Tool. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2): 522-530.

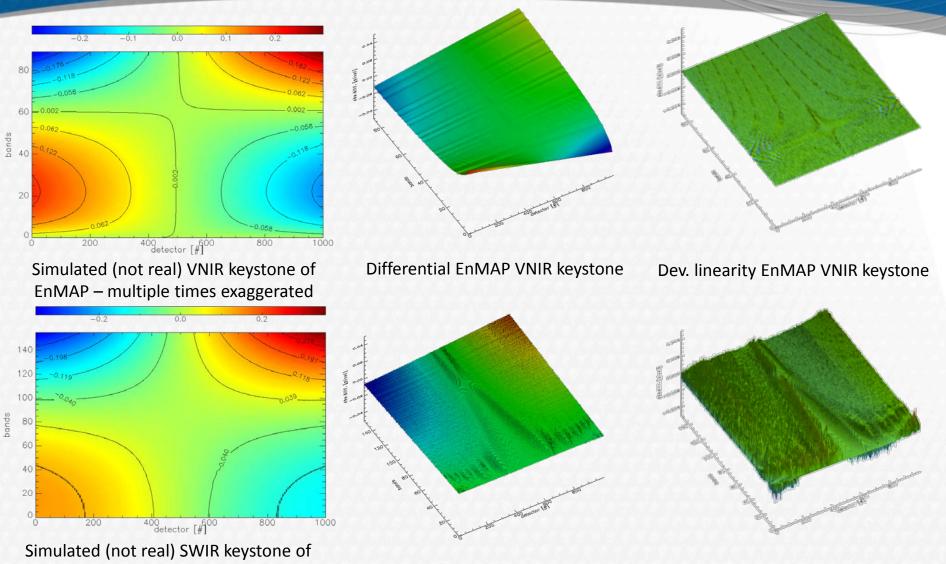
Must be reduced as first*²!

May superimpose themselves!


- Band-To-Band:
 - Keystone
 - Characterisation inaccuracies
- Image-To-Image (VNIR / SWIR co-registration):
 - Time delay (20 lines @ equator)
 - Miss-alignment VNIR-SWIR (0.1 Pixel)
 - Detector LOS (max. 0.2 Pixel)
 - Short term jitter (≈ 200 mPixel)
 - Earth rotation (1.4 pixel @ equator) and elevation ($\Delta h_{1 \text{ km}} \approx 1 \text{ mPixel}$)
 - Attitude variations (drift 0.2 Pixel, speed 1 μ Pixel, gravity release, atmospheric friction, $\Delta \alpha_{\text{Roll,Pitch}=45 \ \mu\text{Rad}} \approx 1 \text{ pixel}$)
 - Keystone

Hard job for DLR and KT, but they can do it <- VALIDATION necessary!

Example I: Keystone – Band-To-Band

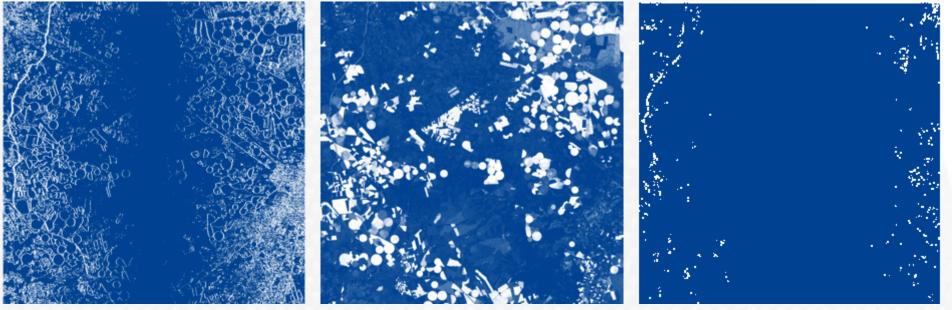


EnMAP – multiple times exaggerated

Example I: Keystone of EnMAP - Properties

Differential EnMAP SWIR keystone

Dev. linearity EnMAP SWIR keystone


HELMHOLTZ

ASSOCIATION

Effect of temporal keystone alteration

Static:Non-linear across track pointing shifts on groundDynamic:like static + change of intrinsic pointing relation

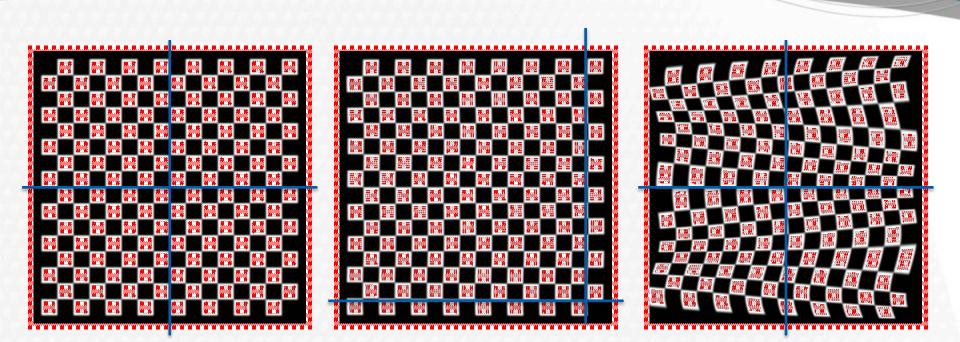
NDVI (850 and 650 nm) difference of Barrax, Spain for max (∆ keystone)= 0.5 pixel

NDVI (850 and 650 nm) of **Barrax, Spain**

NDVI (850 and 650 nm) difference of Barrax, Spain for max (Δ keystone)= 0.05 pixel

ELMHOLTZ

ASSOCIATION

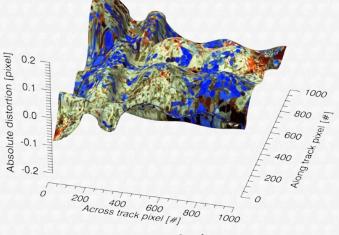


Example II: Attitude variation – Image-To-Image

G

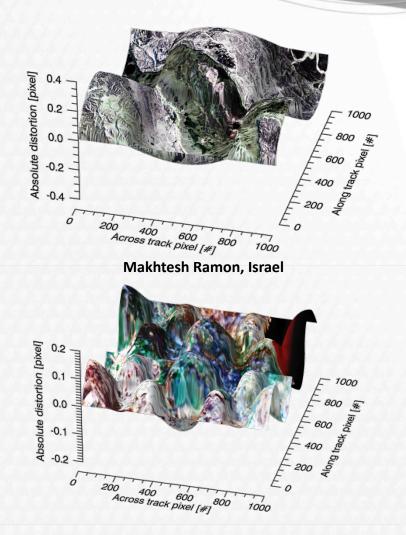
HELMHOLTZ

ASSOCIATION



Pixel distortion in a 256x256 grid induced by simulated attitude variations

- Left 0.1 pixel @max
- Middle 0.5 pixel @max
- Right 5.0 pixel @max

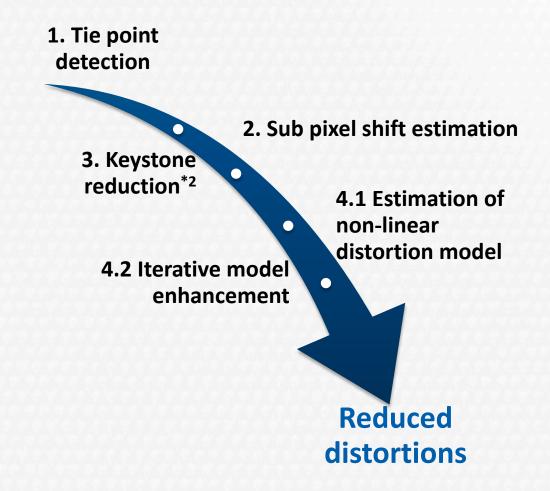

Example II: Attitude - Non-linear distortions

Barrax, Spain

Non linear pixel distortion

- May remain after pre-processing
- Non-circular but maybe harmonic
- Hard to reduce
- Impacts all analyses

ELMHOLTZ


ASSOCIATION

Cabo de Gata, Spain

Distortion reduction: Workflow

Band-To-Band

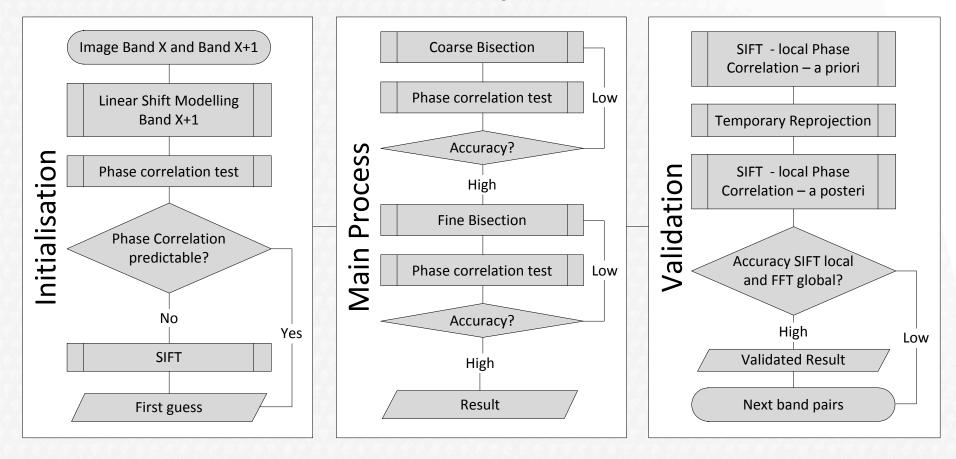
Assumptions

- Adjacent bands of hyperspectral acquisitions are spatially high correlated
- o Jitter (micro vibrations) has no impact on relative keystone
- Atmospheric BRDF has no impact on relative keystone
- o Material BRDF has no impact on relative keystone
- o Relative keystone is stable during acquisition

Image-To-Image

- Spectrally adjacent bands of VNIR and SWIR are spatially high correlated
- Jitter consists of multiple frequencies and is harmonic (not modelled!!!)
- Thermo-elastic and LOS variations with low frequency
- Short term variations (> 50 Hz) are harmonic and of low impact

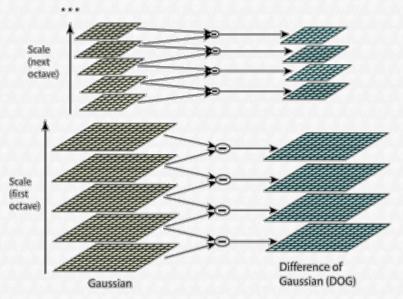
Conventions

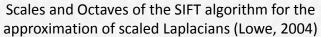

- 1 Pixel = 1.000 mPixel = 1.000.000 μPixel

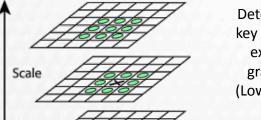
Methods I - Overview

Scheme for relative keystone detection*2

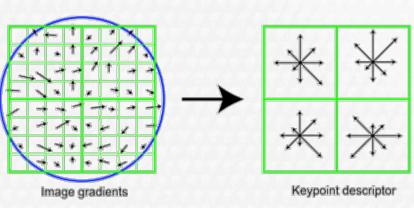
²Rogass, C. et al., 2013. Automatic reduction of keystone - applications to EnMAP. In Proceedings of the 8th EARSeL SIG imaging spectroscopy workshop. EARSeL, Nantes.




Methods III – SIFT



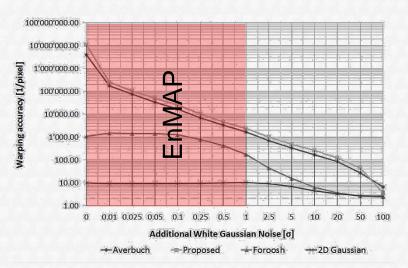
Scale Invariant Feature Transform – SIFT³

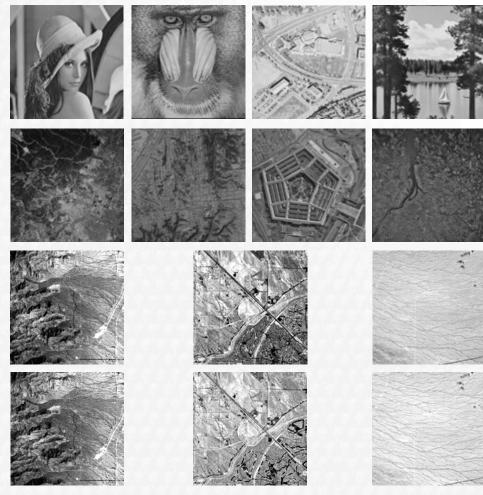

- Image Warping, 3D reconstruction
- Automatic tie point (key point) detection
- Scale, blur, rotation and illumination invariant
- Combination of Laplacian and local gradient directions

Detection of key points as extreme gradients (Lowe, 2004)

Key point description (Lowe, 2004)

Methods II – Phase Correlation

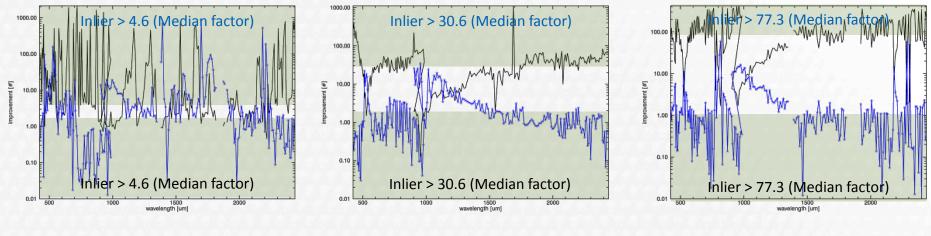

Spatial Correlation properties


Maximised if images spatially coincide
Only circular shifts!!!, rotation, scale

Most important property

Phase Correlation properties

- Higher accuracy⁴ than cross correlation
- Highly redundant solution
- Noise robust² > 200.000 simulations



⁴Rogass, C.; Segl, K.; Kuester, T.; Kaufmann (2013). Performance of correlation approaches for the evaluation of spatial distortion reductions. submitted.

Keystone detection accuracy (blue, %) and local distortion reduction factor (black)

Barrax

Cabo de Gata

Makhtesh Ramon

Local distortion reduction factor \propto 1/keystone detection accuracy

-> Weighting of global results by local results - > exclude outliers (above median) -> Local reduction factors should be better than their median

Mean keystone detection accuracy: 80 % with outliers, >99 % without outliers

Relative keystone detection possible – highly accurate

1% keystone change detectable (high SNR bands)

Tracking of changes possible = Validation Tool

Two bands enough, but more bands reliable

Mountainous and urban scenes appropriate

Absolute keystone detection

Definition of appropriate study regions

Higher degree of sensor model integration

Speed improvement and double precision