WE3.09.1 #2513

INSTRUMENT DEVELOPMENT STATUS AND PERFORMANCES OF HYPERSPECTRAL IMAGER SUITE (HISUI) -Onboard Data Correction-

International Geoscience and Remote Sensing Symposium 2014 July 13th-18th, 2014 Québec, Canada

> Jun Tanii Japan Space Systems , Tokyo, Japan

Akira Iwasaki The University of Tokyo, Tokyo, Japan Yoshiyuki Ito NEC Corporation, Tokyo, Japan

Table of Contents

- 1. HISUI (Hyperspectral Imager SUIte) Instrument Overview
- 2. Onboard Data Correction of Hyperspectral Sensor of HISUI
- 3. Conclusion

1. HISUI Instrument Overview HISUI (Hyperspectral Imager SUIte)

HISUI

(Hyperspectral Imager SUIte)

- Japanese earth observation project for resource exploration, vegetation and environment monitoring
- Follow-on mission of ASTER (Advanced Spaceborne Thermal Emission and reflection Radiometer) onboard TERRA
- Consists of 2 instruments
 - Hyperspectral sensor (185 bands from VIS to SWIR)
 - Multispectral sensor (4 bands of VNIR)

HISUI (Hyperspectral Imaging SUIte)

="jade" in Japanese

http://www.moonmadness.jp/itoigawahisui.html

1. HISUI Instrument Overview HISUI Specifications

Instrument	Hyperspectral sensor		Multispectral sensor
	VNIR	SWIR	
Spatial Scanning	Push broom type by satellite moving		Same as left
IFOV (Spatial resolution)	48.5 urad (30 m)		8.1 urad (5 m)
FOV (swath width)	48.5 mrad (30 km)		144.7 mrad (90 km)
Observation frequency	< 4.36 ms		< 0.73 ms
Wavelength region and number	400-970 nm	900-2500 nm	Band1:485 nm
of bands / Center wave length	(57 bands)	(128 bands)	Band2:560 nm
	19E Handa		Band3:660 nm
	185 bands		Band4:835 nm
Spectral resolution	10 nm	12.5 nm	Band1:70 nm
(sampling) for Hyper			Band2:80 nm
Spectral Band width for Multi			Band3:60 nm
			Band4:110 nm
Spectral resolution (ILS FWHM)	< 11 nm	< 16 nm	Same as band width
Dynamic range	Saturated at > 70% albedo		Same as left
SNR	>450 (@620 nm)	>300 (@2100 nm)	> 200 (for each band)
MTF	>0.2		> 0.3
Smile and Keystone	< 1 image pixel		N/A
Calibration accuracy	Absolute:±5%, Among bands:±2%		Same as left
(radiometric)			
Calibration accuracy (spectral)	< 0.2 nm	< 0.625 nm	N/A
Quantization	12 bit		Same as left
Mission life	5 vears		Same as left

1. HISUI Instrument Overview HISUI Functional Block Diagram

HISUI Hyperspectral Sensor Function Diagram

Hyperspectral Sensor Unit

Design of Hyperspectral Sensor Unit

Design for The Telescope and Spectrograph

- <u>Telescope</u>
 - TMA (off-axis three mirror anastigmat type)
 - The diameter of telescope is approximately 30cm and the F-number is 2.2. It is matched for the ground sampling distance(GSD) of 30 meters.
- Spectrograph
 - Two Aberration-corrected Offner type Grating spectrographs
 - VNIR spectrograph and SWIR spectrograph
 - High diffraction efficiency
 - Equal interval of Spectral Sampling
 - Minimize the wavelength shift/ smile/ keystone
 - Robust in alignment against temperature change
 - Stable temperature control within +/-1K in orbit to minimize the wavelength shift.

Design of Hyperspectral Sensor Unit

Design for The Telescope and Spectrograph

• <u>Detector</u>

- VNIR detector: 2Dimentional backside illuminated silicon CMOS
- SWIR detector: 2Dimentional PV-MCT
- <u>Cooler and Dewar</u>
- SWIR detector is integrated inside the dewar
- and cooled down to 145K using Stirling-type cryocooler.

Flight Model of Hyperspectral Sensor Unit

Onboard Data Correction and Compression

Function of HELU (Hyper Electronics Unit) for Digital Data

• Data correction of items as follows;

- Offset-Gain-Non linearity
- PRNU (Photo Response Non-Uniformity)
- Smile distortion (using weight-coefficients during the binning)
- In order to reduce data size,
 - data binning in spectral direction
 4 pixels in VNIR
 2 pixels in SWIR
 - lossless data compression
 - Observation Mode:

With Onboard Data Correction and Data Compression

• Calibration Mode:

Without Onboard Data Correction nor Data Compression (Onboard Calibration with Lamps, Vicarious Calibration,)

Flow of Onboard Data Correction in HELU

Onboard Radiometric Correction

Formulae for non Linearity/Offset Correction

Onboard Radiometric Correction

Examples of PRNU/Gain Correction

Onboard Spectral Correction

Concept of Binning/Smile Correction

p: Radiance data after smile correction
wn: Weight function of pixel No (n)
Xn: Radiance data of pixel No(n) after radiometric correction
n: VNIR =1- 6, SWIR =1-4
(*) Binning is executed along spectral direction

Onboard Spectral Correction

Examples of Binning/Smile Correction

Onboard Spectral Correction

Concept of Binning and Spectral Response

data binning in spectral direction 4 pixels in VNIR

Summary of Onboard Data Correction

Items	Performance after	Performance before
	onboard correction	onboard correction*
Smile	<10-5nm@VNIR	<1nm@VNIR
	<10-5nm@SWIR	<2.5nm@SWIR
Linearity	<5%@VNIR	<5%@VNIR
	(over99.99% data)	(over99.97% data)
	<5%@SWIR	<5%@SWIR
	(over99.99% data)	(over99.99% data)
PRNU	PRNU<13%@VNIR	PRNU<34%@VNIR
	(over99.7 data)	(over99.7 data)
	PRNU<20%@SWIR	PRNU<33%@SWIR
	(over99.7 data)	(over99.7 data)

Spectral Performance

Spectral Performance : Wavelength Shift/ Smile/ Keystone

Before Launch

- Spectrometer Performance
- Misalignment of Assembly
- Onboard correction parameter Table

(install into Onboard Data Processor of HELU)

To measure

Launch/In Orbit

- Offset :Launch Vibration Condition
- *Variable* : Onboard Thermal Vacuum Condition

Correction Parameter Table: install into Ground Data Processing System

Spectral Performance

Spectral Performance : Wavelength shift of evaluation model

Wavelength shift of Flight Model (expected)

VNIR <0.06nm SWIR <0.11 nm

including launch and space environment conditions

Onboard spectral calibrator monitors the wavelength shift.

	VNIR	SWIR	Remarks
Specification	<10nm	<12.5nm	<1 pixel
Normal Temp. & Pressure	<1.0nm	<2.5nm	
After Onboard Correction	<10 ⁻⁵ nm	<10 ⁻⁵ nm	
After Launch Vibration Test	Negligible	Negligible	Offset
Thermal Vacuum Test	<0.058nm	<0.106nm	Variable
Total	<0.06nm	<0.11nm	Expected Value Onboard
Onboard Calibrator	0.2nm	0.625nm	

3. Conclusions

Conclusions

- Onboard Data Correction of Hyperspectral Sensor of HISUI
- The validation tests of Onboard Data Correction function have been completed using the data of functional evaluation model of Instrument.
- The smile performance after correction is very well.
- The method of Onboard Data Correction has been established.
- Status of HISUI Instrument
- Analyzing test results, FM is expected to achieve the spectral performance better than specifications.
- The critical parts of FM, such as the telescope, the spectrographs and the detectors, have been manufactured and the integration & tests of the sensor is proceeding.

Acknowledgements

 HISUI project proceeds under the contract with METI (Ministry of Economy, Trade and Industry).

Thank you very much for your attention !

3. Design of Flight Model Spectral Performance

Test Data of Evaluation Model (Spectral Calibration Accuracy at Normal Temp.)

VNIR

SWIR

3. Design of Flight Model

Spectral Performance

VNIR :Wavelength Shift vs. Temp. (Thermal Vacuum Test)

3. Design of Flight Model

Spectral Performance

SWIR :Wavelength Shift vs. Temp. (Thermal Vacuum Test)

3. Design of Flight Model Spectral Performance After Onboard Correction

3. Onboard calibratior of HISUI

Onboard Calibrator of Hyperspectral sensor

3. Onboard calibrator of HISUI

Onboard Calibrator of HISUI

Onboard Calibrator of HISUI

• HISUI has Optical onboard calibrators .

Instrument	Hyperspectral Sensor	Multispectral Sensor
Light Source	Two halogen lamps	Two halogen lamps
Detector to monitor	 Si-photodiode for VNIR In-Ga-As-photodiode for SWIR 	Si-photodiodes
Filters	Band pass filters Spectral calibration filter	4 band pass filters The band pass wavelength of filter is matched to the spectral band for observation.
Spectral Calibration Accuracy (Target)	0.2nm (VNIR), 0.625nm (SWIR)	N/A