

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

Progress in Chinese Satellite Hyperspectral Missions

Lifu Zhang, Yinnian Liu, Xia ZHANG Jinnian Wang, Lan Zeng, Yongqi Xue, Qingxi Tong

16-July-2014

OUTLINE

- Introduction
- Overview of current Chinese spaceborne hyperspectral sensors
- Ongoing and future Chinese satellite hyperspectral missions
- Conclusion

OUTLINE

Introduction

- Overview of current Chinese spaceborne hyperspectral sensors
- Ongoing and future Chinese satellite hyperspectral missions
- Conclusion

Introduction

Panchromatic

From Panchromatic to Hyperspectral—Increasing the Spectral Resolution

Multispectral

Hyperspectral

When the spectral resolution reached higher than λ^{-2} the Optical Remote Sensing can be Considered as Hyperspectral Remote Sensing

Introduction: A model of HRS

Reflectance

0.4

Spect

Scan

Direction

Spatial

Dimention

Dimens

Each pixel or a group of pixels contains a unique continuous spectrum of the earth objects, which can be served as a signature for the identification of terrestrial materials after atmospheric correction of the data.

wavelengthwww.radi.2a5.cn

Introduction

▲ Remote Sensing, both Airborne and Spaceborne has been greatly promoted in China due to the wide requirements by the national economic and social development.

▲ The hyperspectral RS in China was started on the beginning of 1970s.

▲ Same as other countries, the development of HRS in China was also initiated from the development of airborne hyperspectral sensors

▲ With the development of hyperspectral airborne sensors, the applications in hyperspectral remote sensing area have been widely carried out.

AMSS

VIS/NIR Line Detector

Spec.Bands: 6:

2.035, 2.087, 2.143,

2.200, 2.280, 2.380

FOV: 90°

IFOV: 6 mrd.

The First Real Imaging Spectrometer in China

(one optical scanning unit and three spectrometer modules for different spectral ranges)

71 spectral bands

VIS-NIR: 32 bands (0.44~1.08 um) Spectral resolution: 20 nm **SWIR:** 32 bands (1.5~2.45 um) **Spectral resolution : 25 nm TIR:** 7 bands (8.0~11.6) **Spectral resolution : 0.45 um Given FOV: 90°** □ IFOV: 3.0 mrad □ Scan Rate : 10-20 (lines/sec.)

Digitization: : 12 bit

Operational Modular Imaging Spectrometer(OMIS)

ectrometer(OMIS)

OMIS-I (128 band)

Pushbroom Hyperspectral Imager (PHI)

Airborne Imaging Spectrometer (OMIS-PHI) in Operation in Japan

Flying PHI and OMIS onboard "King Air" Aircraft

Aragawa Tokyo, Japan

Precise classification of farmland area in Japan based on PHI image

Sweet potato 🗾 cabbage	water	WX4	WX8313	99-15
the harvested rice crop	cement ground	XJ8016	9520	WY5021

Classification result of rice varieties based on the PHI image. The left figure shows the

correspondindg ground survey map, which is quite consistent with the classification result (right).

elongation stage

grouting stage

>0.23Extremely serious diseases >0.17 serious diseases >0.11 Medium disease >0.04 slight disease <0.04 no disease <0 best growing

milk stage

Wheat disease indices by spectrum monitoring based on PHI image

(Liu liangyun, 2002)

Offshore thermal pollution in Japan

Development of Spaceborne Hyperspectral RS

□ With the development of airborne hyperspectral remote sensing, hyperspectral sensors have been considered as important spaceborne payloads to meet the needs of the resources surveying and environmental monitoring

Some hyperspectral sensors have been used as the payload in the airborne remote sensing system and in a series of China's satellites, the Spaceships and for Lunar mission.

OUTLINE

Introduction

- Overview of current Chinese spaceborne hyperspectral sensors
- Ongoing and future Chinese satellite hyperspectral missions
- Conclusion

The first satellite hyperspectral imager CMODIS onboard Shenzhou-3 Spaceship

"SHENZHOU-3"(SZ-3) – A China's Spaceship

Launched in 25th March,2002

No. bands: 34, Include:
Visible: 20 (20nm, from 412 nm)
NIR: 10 (20nm, from 822 nm)
SWIR: 1 (2.150-2.250 μm)
TIR: 3
(8.40-8.90,10.30-11.30 μm,11.50-12.50 μm)

The first satellite hyperspectral imager--

In early October 2002 the Orbital Module was operated almost 200 days with more than 2000 cycles around the Earth

A typical CMODIS image

www.raui.cdS.CN

Medium-Resolution Spectral Imager (MERSI) onboared Meteorological FY-3A

Satellite Specifications and orbital parameters

Orbit	Sun synchronous
Altitude (km)	831
Power	1100 W
Launch mass	2298.5 Kg
C i	4.38 × 2.0 × 2.0 m (in stowed)
Size	4.44 × 10.0 × 3.79 m (in flight)
Orbital period (min)	101.49
Inclination (°)	98.81
Eccentricity	<0.0013
Local time at descending node	1005 UTC
Orbital maintenances	I5 min (2 yr)⁻¹
Onboard data storage	144 GB
Attitude control	Three-axis stabilization
Quasi-repeat time	5 days
Launch vehicle	LM-4B
Design life	3 yr

Spec.Range:0.4-12.5umNumber of BSpatial Resolution:0.25-1kmScanning raQuantization:12 bitRadiometricAssembling two onboard calibration systemsScanning ra

Number of Bands: 20 Scanning range: $\pm 55.4^{\circ}$ Radiometric calibration Accu. <7%

Meteorological FY-3A Medium-Resolution Spectral Imager (MERSI)

A global image mosaic from MERSI with natural color and resolution of 3 km

(Courtesy: Chaohua Dong *et al.*) www.radi.cas.cn

Meteorological FY-3A Medium-Resolution Spectral Imager (MERSI)

Nuri typhoon monitoring

Greenland sea ice monitoring with MERSI 250-m datasets

(Chaohua Dong *et al.*)

HJ-1 Small Satellite Constellation for Environment and Disasters Monitoring

A Constellation of 2 Small Satellites (HJ-1) was launched in Sept. 6, 2008 for Environment and Disasters Monitoring

One of the Main Payloads on Board of the Satellite is a VIS-NIR Imaging Spectrometer (HSI)

Spec.Range:450nm-900nmNumber of Bands:115Spatial Resolution:100mGround Coverage:50kmSide Looking:±30°Revisit:4-31days

HJ-1 Small Satellite Constellation for Environment and Disasters Monitoring A typical Image Cube from HJ-1 Satellite

China's first target vehicle Tiangong-1 (TG-1 HSI)

RangeResolutionband num0.4-1.0um10 nm641.0-2.5um23 nm64

Numerous applications have indicated that the TG-1 HSI has achieved high performance levels in spatial, spectral, and SNR (Signal to Noise Ratio).

Land use monitoring, Beijing, China

(China Manned Space Engineering)

中国载人航天工程网

Qinghai, China

TG-1 HSI Image Cube(SWIR1.0-2.5µm)

(Date: 05- Oct.-2011, Australia)

Interferometric Imaging Spectrometer (IIM) onboard Chang'E-1Lunar Mission

TRAC	Width of Swath	25.6km
	Spatial Resolution	200m
	Imaging Region	75° N~75° S
	Spectral Range	480~960nm
n state	Spectral Bands	32
4-Oct-2007	Digitazation	12bit
	MTF	≥0.2

Lunar Mission (Chang'E-1) Imaging Spectrometer (IIM)

Abundance Distribution Map of the major Lunar Minerals

Current Chinese Spaceborne Hyperspectral Imaging Sensors

Sensor	wavelength/ μm	Spectral Resolution/ nm	Bands	Available Date
CMODIS	0.4-12.5	20	34	2002
HJ-1A HSI	0.45–0.95	5	115	2008
FY-3 MERSI	0.44–0.89 0.39–1.04 1.62-2.15 10-12.5	50 20 50 2500	5 12 2 1	2008
Chang'E-1 IIM	0.48-0.96	15	32	2009
TG-1 HSI	0.40-1.0 1.0-2.5	10 23	64 64	2011

OUTLINE

 Overview of current Chinese spaceborne hyperspectral sensors

 Ongoing and future Chinese satellite hyperspectral missions

Conclusion

China Commercial Remote-sensing Satellite System (CCRSS)

CCRSS is scheduled to be launched in 2016 (TBD). It is composed of two satellites, i.e. CCRSS-A and CCRSS-B.
 CCRSS-A will provide commercially panchromatic/ multispectral imagery and hyperspectral imagery from visual to shortwave infrared.

Framework of CCRSS-A

Scheme comparisons for CCRSS-A

Scheme &	Scheme I	Scheme II	Scheme III	Scheme IV
Para.	HRS	HRS+ infrared	HRS	HRS+ Infrared
Spec. range	0.4.2 Euro	0.4-2.5µm		0.4-2.5µm
	0.4-2.5µm	8.0-12.5µm	0.4-2.5µm	8.0-12.5µm
No. bands	328	328+2~5	328	328+2~5
Width	40Km	30 Km	30 Km	30 Km
Spatial Res.	30m	30/60m	15m	15/30
Aperture	180mm	135mm	300mm	300mm
Volume	1020*980*550mm	1150*1000*500mm	1600*1100*800mm	1600*1200*700mm
Weight	147kg	187 kg	260 kg	300 kg
Power	260W	360 W	300 W	400 W
Budget	0.17 billion	0.22 billion	0.18 billion	0.23 billion
Period	2.5 years	3.5 years	2.5 years	3.5 years

Flow Chart of quantitative information products of CCRS-A hyperspectral data

OUTLINE

- Overview of current Chinese spaceborne hyperspectral sensors
- Ongoing and future Chinese satellite hyperspectral missions
- Conclusion

Conclusion

- Hyperspectral Remote Sensing is a newly developed technology, it has a wide potential in applications in different fields.
- □ Great attention has been paid to development of Hyperspectral Remote Sensing techonology and it applications in China. During last 30 years both airborne and spaceborne hyperspectral have been developed and wide international cooperation has been achieved.
- □ As an important technology HRS has been widely applied in vegetation, agriculture, forestry, urban, oceanic, environment, geology and mineral identification, classification and recognition.
- □ Hyperspectral remote sensing will also a basic technology for lunar, planets and the deep space exploration and especial attention has been paid to its development and application.

Thanks!

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

Add: No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China Tel: 86–10–82178008 Fax: 86–10–82178009 E-mail: office@radi.ac.cn Web: www.radi.cas.cn