

A Shadow Detection Method for Remote Sensing Images using VHR Hyperspectral and LIDAR Data

Gustav Tolt¹, Michal Shimoni², Jörgen Ahlberg¹

- 1. Dept. of Informatics, Swedish Defence Research Agency (FOI), Sweden
- 2. Signal and Image Center, Royal Military Academy, Belgium

IGARSS 2011, Vancouver, Canada

Outline

- Introduction
- Dataset
 - Lidar data
 - HS images
- Proposed methodology
- Results
- Conclusions and discussion

Introduction

- Overarching purpose of this work
 - Facilitate automatic (re-)recognition and detection of targets in deep shadows
- Research aspects
 - Combine 3D and spectral data for shadow detection
 - Can a supervised classifier learn to distinguish between the spectra of shadow and non-shadow pixels, respectively?
- Combined lidar and spectral data increasingly available
 - Sweden (and other countries) is currently being laser scanned during a few years, in order to make a new national elevation model

Introduction

- With an ideal 3D model, shadows could be predicted through line-of-sight analysis
 - However, remotely sensed 3D data is not ideal
 - Resolution
 - Lidar gives points rather than surfaces
 - Representation (here: 2D raster)
 - Data registration errors between lidar and HS data
- We should still be able to use 3D data to support detection of shadows in hyperspectral images

Dataset

- Test area
 - City of Norrköping, Sweden
 - 10 km² in total, of which 1 km² was used in this work
- Simultaneous acquisition of lidar data and HS images
 - Aircraft, 750 m altitude
- Lidar
 - Optech ALTM Gemeni
 - 3D points -> raster DSM (25 cm pixels)
- Hyperspectral
 - Itres CASI 1500, line scanner
 - 24 bands (equal size), center wavelenghts 381.9 nm 1040.4 nm
 - Trade-off between spatial and spectral resolution
 - Pixel size about 40 cm (native)
 - Orthorectification -> 50 cm pixels

Dataset

- Orthorectification and registration errors (as expected)
 - < about 2 m, varying across the image
- Movement of objects
 - Mosaicking performed without explicitly minimizing inconsistencies between data sets

- 1. Create a rough shadow image through line-of-sight analysis of Digital Surface Model (DSM)
- Use approximate sun position at the time of HS image acquisition
- Mark pixel *p* as non-shadow if there are no pixels with higher elevation above the straight line connecting *p* and the sun

- In practice, disregard pixels close to p, to decrease the influence of the noise
- This rough shadow image contains errors due to
 - Limited resolution, rasterization, misregistration wrt hyperspectral image

- 2. In the rough shadow image, detect the interior of large shadow and non-shadow regions, respectively
- Apply distance transform and threshold
 - The choice of threshold determines the minimum region size
 - Depends on registration errors, here: 2 m
- Idea: the remaining pixels correspond to shadow/nonshadow pixels in the HS image

- 3. Use the large shadow/non-shadow regions for training a supervised classifier operating on the spectral data
- Two-class problem: shadow and non-shadow
- Teach the classifier what the spectra of shadows/nonshadows pixels look like in the particular region
- Tough classification task!
- Here: Support Vector Machine

- 4. Post-processing of the result
- Here: fill holes through standard image morphology

• Block diagram:

- Required a priori information:
 - Approx. time of image acquisition -> sun position -> LoS
 - Approx. mismatch between images -> size of training regions

IGARSS 2011, Vancouver, Canada

Final shadows

Three bands (RGB) from HS image

Results

Close-up

Shadows from DSM

Interior of large shadow (black) and non-shadow (white) regions

Final shadows

RGB draped onto DSM

Conclusions and discussion

- A shadow detection method based on line-of-sight analysis and subsequent supervised classification of HS images was presented
- Quite simple method
- Surprisingly good results
 - Though, no quantitative assessment done (yet)
 - Pixels classified individually using spectra
 - Handles non-uniform, moderate mismatches between DSM and images
- Partial shadows (e.g of small, thin objects) sometimes missed
 - Less relevant for us: cannot hide a target there anyway...

Conclusions and discussion

- Many aspects to be further explored
 - Performance assessment
 - Include local, spatial analysis
 - Band selection
 - How much data is needed for training classifier?
 - How large mis-registration errors still give enough training data?
 - Try with low-res DSM
 - Capturing gradual transitions between shadow and non-shadow pixels (i.e. produce a non-binary shadow image)
 - Use classification certainty measure?

Thank for your attention! Questions? Comments?

gustav.tolt@foi.se

