

TUTORIAL

July 6, 2008

Boston, Massachusetts, USA

SAR Polarimetry: Basics, Processing Techniques and Applications

Eric POTTIER – Laurent FERRO-FAMIL

IETR – UMR CNRS 6164 University of Rennes 1 SAPHIR Team

Rennes, Franceeric.pottier@univ-rennes1.fr, laurent.ferro-famil@univ-rennes1.fr

Radar Polarimetry (Polar : polarisation Metry: measure) is the science of acquiring, processing and analysing the polarization state of an electromagnetic field

Radar Polarimetry deals with the full vector nature of polarized electromagnetic waves

The POLARISATION information Contained in the waves backscattered from a given medium is highly related to:

its geometrical structure reflectivity, shape and orientation

its geophysical properties such as humidity, roughness, ...

IETR SAHR E. Pottier, L. Ferro-Famil

APPLICATIONS OF RADAR POLARIMETRY IN REMOTE SENSING (EARTH MONITORING)

Forest Vegetation

- Forest Height
- Forest Biomass
- Forest Structure
- Canopy Extinction
- Underlying Topography
- Soil Moisture Content
- Soil roughness
- Height of Vegetation Layer
- Extinction of Vegetation Layer
- Moisture of Vegetation Layer

- Forest Ecology
- Forest Management
- Ecosystem Change
- Carbon Cycle

- Farming Management
- Water Cycle
- Desretification

Agriculture

Snow and Ice

- Topography
- Penetration Depth / Density
- Snow Ice Layer
- Snow Ice Extinction
- Water Equivalent

- Ecosystem Change
- Water Cycle
- Water Management

- Geometric Properties
- Dielectric Properties

Urban Monitoring

Courtesy of Dr I. Hajnsek (DLR-HR)

POLARIMETRIC SAR SENSORS

AIRBORNE SENSORS

AES1 AeroSensing (D)

AIRSAR NASA / JPL (USA)

DOSAR EADS / Dornier GmbH (D)

SIR-C NASA / JPL (USA)

SHUTTLE / SPACEBORNE SENSORS

ENVISAT / ASAR ESA (EU)

ALOS / PALSAR NASDA / JAROS (J)

RADARSAT 2 CSA - MDA (CA)

ESAR DLR (D)

EMISAR DCRS (DK)

MEMPHIS / AER II-PAMIR FGAN (D)

PHARUS TNO - FEL (NL)

RENE UVSQ / CETP (F) UVSQ / CETP (F) E. Pottier, L. Ferro-Famil

PISAR NASDA / CRL (J)

STORM

RAMSES ONERA (F)

SAR580 Environnement Canada (CA)

TerraSAR - X BMBF / DLR / ASTRIUM

Innovation

- Specifications needed for future satellite sensors
- Test advanced imaging modes

Development

- Development of algorithm for quantitative parameter inversion
- Development of new application products

Data Availability

- Detailed information in critical areas
- Key information that cannot currently be measured from space
- Young researcher education
- Preparation to satellite SAR sensors

Requirements to an Airborne system

- Flexible and modular SAR system
- System avalaibility
- Complete processing chain
- Fast data delivery
- High data quality

POLARIMETRIC AIRBORNE SAR SENSORS

AES1 InterMap Technologies (D) GulfStream Commander X-Band (HH), P-Band (Quad)

AIRSAR NASA / JPL (USA) DC8 P, L, C-Band (Quad)

AuSAR - INGARA D.S.T.O (Aus) DC3 (97) KingAir 350 (00) Beach 1900C X-Band (Quad)

DOSAR EADS / Dornier GmbH (D) DO 228 (89), C160 (98), G222 (00) S, C, X-Band (Quad), Ka-Band (VV)

ESAR DLR (D) DO 228 P, L, S-Band (Quad) C, X-Band (Sngl)

EMISAR DCRS (DK) G3 Aircraft L, C-Band (Quad)

MEMPHIS / AER II-PAMIR FGAN (D) Transal C160 Ka, W-Band (Quad) / X-Band (Quad)

STORM UVSQ / CETP (F) Merlin IV C-Band (Quad)

PHARUS TNO - FEL (NL) CESSNA – Citation II C-Band (Quad)

PISAR NASDA / CRL (J) GulfStream L, X-Band (Quad)

RAMSES ONERA (F) Transal C160 P, L, S, C, X, Ku, Ka, W-Band (Quad)

SAR580 Environnement Canada (CA) Convair CV-580 C, X-Band (Quad)

+ CASSAR (China), MIT/Lincoln Lab (USA), P3-SAR (NADC / ERIM -USA), Military Systems ...

DC8 P, L, C-Band (Quad)

E. Pottier, L. Ferro-Famil

IETR E. Pottier, L. Ferro-Famil

RADAR POLARIMETRY

San Francisco Bay (1988) – (L-Band)

DO 228

P, L, S-Band (Quad) C, X-Band (Sngl)

Experimental Synthetic Aperture Radar System

P-Band

X-Band

C-Band

Image: Second System
<th

X-Band – Quad Pol

EMISAR DCRS (DK) G3 Aircraft L, C-Band (Quad)

Copenhagen (1999) C-Band

København 3, Zealand, Denmark					1 km 1 : 50 000
Acquired (date): Acquired (time): Processed: Latitude, center: Longitude, center:	June 18, 1996 19:47 UTC Sept. 25, 1996 N 02*47 E 12*35*	A	Sensor: Frequency: Arthude (WGS 64): Incidence angle: Platform: RCAF,	EMISAR 5.30 GHz 32.5 km 38.4" to 60.6" Guiltetnam G-3	Ť

IETR SPURE E. Pottier, L. Ferro-Famil

EMISAR

Foulum (C-Band) Land Cover Monitoring

Grass for cutting

Oil seed rape Building 12 13 14

PISAR NASDA NASDA / CRL (J) GulfStream L, X-Band (Quad)

Tsukuba Science City (1997)

L-Band

IMAGE SIZE : 700 (Range) x 700 (Azimut) PIXEL SIZE : 2.5m (Range) x 2.5m (Azimut) IMAGE SIZE : 700 (Range) x 700 (Azimut) PIXEL SIZE : 2.5m (Range) x 2.5m (Azimut)

|HH-VV|, |HV|, |HH+VV|

Tohoku University (2001)

L-Band

X-Band

IMAGE SIZE : 5000m (Range) x 5000m (Azimut) PIXEL SIZE : 2.5m (Range) x 2.5m (Azimut) IMAGE SIZE : 5000m (Range) x 5000m (Azimut) PIXEL SIZE : 2.5m (Range) x 2.5m (Azimut)

E. Pottier, L. Ferro-Famil

|HH-VV|, |HV|, |HH+VV|

RAMSES ONERA (F) Transal C160 P, L, S, C, X, Ku, Ka, W-Band (Quad)

Courtesy of ONERA

MAIN CHARACTERISTICS OF THE RAMSES SYSTEM

Band	Ctr Freq [GHz]	λ [cm]	Bwidth [MHz]	Rés [m]	Anten.	Elev x azimut	Peak Power	Power Stage	Polar	Mode
Р	0.43	69,7	75	2	Array	40° x 30°	300	SSA	Full	
L*	1.3	23	200	0,75	Array	23° x 16°	100	SSA	Full	
S	3.2	9,4	300	0,5	Array	30° x 10°	150	SSA	Full	
С	5.3	5,6	300	0,5	Array	33° x 8°	500	TWT	Full	
Х	9.6	3,1	1200	0,13	Both	16° x 16°	200	TWT	Full	IFPOL, IF MB
Ku	14.3	2,1	1200	0,13	Horn	14° x 14°	200	TWT	Full	IFPOL, IF mb
Ka	35	0,8	1200	0,13	Horn	20° or 5°	100	TWT	VV	
W	95	0,3	500	0,3	Horn	3° 5° 10°	50	EIA	LR, LL	
						or 20°				

• Boresight incidence angle can be adjusted from 30° to 75° (except at P-band)

• Flexible waveform: Bandwidth, number of recorded channels, swath width

•Two frequencies can be operated simultaneously

RAMSES

X -Band (Quad - PolInSar) Resolution: 0.9m (range) x 0.9m (azimut) Swath: 800m

Campaign **RITAS** (Radar Imagerie Thématique Agricole et Sols) INRA, CETP, BRGM, CEMAGREF et ONERA – March 2002

Courtesy of ONERA

SETHI ONERA (F) Mystere 20 P, L, S, C, X (Quad - Pol)

(P-Vh, X-Hh, L-Vh)

SAR580 Environnement Canada (CA) Convair CV-580 C, X-Band (Quad)

Developed by Canada Centre for Remote Sensing CCRS – 1974

Fully Polarimetric SAR at C-Band

Now owned and operated by Environment Canada

Viewed as a primary research tool to support CCRS work for RADARSAT 2 and ENVISAT

IETR SAME E. Pottier, L. Ferro-Famil

SAR580

Environnement Canada (CA)

Convair CV-580

C, X-Band (Quad)

Qu'Appelle River (June 2000) Geocoded Product

Parameter	Units	Value
Antenna		
Polarization		H and V
Peak Gain	dB	27
Elevation Width	0	16
Azimuth Width	ο	3
Transmitter		1
		тwт
Chirp Generation		SAW
Power	kW	16
Frequency	GHz	5.3
PRF/V	1/m	3.32 or 2.57
PRF_max	Hz	383x2
Receivers		2
Compression		SAW ⁻¹
Digitization		I +Q
		6-bit

POLARIMETRIC SPACEBORNE SAR SENSORS

SIR-C NASA / JPL (USA) April 1994 (10 days) October 1994 (10 days) L, C-Band (Quad)

ENVISAT / ASAR ESA (EU) 2002 C-Band (Sngl / Twin)

TerraSAR-X DLR / EADS – ASTRIUM / Infoterra GmbH June 2007 X-Band (Sngl / Twin / Quad ?)

RADARSAT 2 CSA / MDA (CA) December 2007 C-Band (Quad)

BONANZA CREEK (USA)

DEATH VALLEY (USA)

1994 (2 MISSIONS)

LAMANCHA (S)

OETZTAL (AUT)

IETR SAME E. Pottier, L. Ferro-Famil

Pol-InSAR Optimisation

Selenge-River, Kudara/Buryatia, Russia

K. Papathanassiou (PhD Dissertation)

HH-VV

2HV

HH+VV

Pol-InSAR Optimisation

Selenge-River, Kudara/Buryatia, Russia

Interferometric Coherence Images

Opt 3 Courtesy of Prof. W.M. Boerner

Pol-InSAR Optimisation

Selenge-River, Kudara/Buryatia, Russia

Phase Difference between Scattering Mechanisms

K. Papathanassiou (PhD Dissertation)

ENVISAT - ASAR

2002

C-Band

(Sngl / Twin)

ENVISAT – ASAR – MERIS

ENVISAT - ASAR

BRETAGNE

Instrument: (ASAR)

Date of Acquisitions: 5 October 2003 20 December 2003 22 February 2004

Instrument features: Image Mode Precision (150 m resolution)

ASAR Mode: Image Swath 2

Orbit Direction: Descending Orbit number: 04249

ASAR Polarization: V/V

Coordinates: NW Lat/Long: N 50.42 / W 3.37 NE Lat/Long: N 49.56 / E 2.23 SE Lat/Long: N 46.22 / E 1.07 SW Lat/Long: N 47.06 / W 4.19

Orbit: LEO, Circular	Sun-synchronous	Sun-synchronous	Sun-synchronous
Repeat Period	46 days	24 days	11 days
Equatorial Crossing Time (<i>hrs</i>)	22:30 (ascending)	18:00 (ascending)	18:00 (ascending)
Inclinaison (<i>deg</i>)	98.16	98.60	97.44
Equatorial Altitude (km)	692	798	515
Wavelegth - Band	23cm (L)	5.6 cm (C)	3 cm (X)

MODE (Resolution / Swath Looks / Polar)

Standard Stripmap

Fine

ScanSAR

Quad Polarisation

20 x 10 m / 70 km 2 / HH or VV

10 m / 70 km 1 / HH or VV

100 m / 350 km 8 / HH or VV

30 x 10 m / 30 km 2 / Quad Pol 25 m / 100 km 4 / HH or VV

8 m / 50 km 8 / HH or VV

100 m / 500 km 8 / HH or VV

Standard 25 x 8 m / 25 km 4 / Quad Pol *Fine* 8 x 8 m / 25 km 1 / Quad Pol 3 m / 30 km 1 / HH or VV

1 m (spolight) / 10 km 1 / HH or VV

16 m / 100 km 1 / HH or VV

3 m / 15 km 1 / Quad Pol

ALOS - PALSAR

January 2006 L-Band (Sngl / Twin / Quad)

ALOS : Advanced Land Observing Satellite PALSAR : Phase Array L-Band SAR

Tamakomai – Sapporo (Japan)

Tamakomai – Sapporo (Japan)

Single vs. Fully Polarized

ierr Sapur E. Pottier, L. Ferro-Famil

|AA-BB|, |AB|, |AA+BB|

|LL-RR|, |LR|, |LL+RR|

Intensity E. Pottier, L. Ferro-Famil Entropy-Shannon Polarimetry

Entropy-Shannon

Tamakomai – Sapporo (Japan)

IETR E. Potti HH-VV, HV, HH+VV

Wishart – H/A/alpha segmentation

Sec.

Wishart – H/A/alpha segmentation

IETR E. P. HH-VV, HV, HH+VV

Wishart – H/A/alpha segmentation

Izu-Oshima island

IETR E. Pottier, L. Ferro-Famil

Courtesy of Prof. Y. Yamaguchi

TerraSAR - X

June 2007 X-Band (Sngl / Twin / Quad ?)

Volgograd (21 / 06 / 07)

Volgograd (21 / 06 / 07)

Belzig – Berlin (G)

IETR E. Pottier, L. Ferro-Famil

ETR SAFIR E. Pottier, L. Ferro-Famil

Rostock (G)

Troyes (F)

IETR

IETR

TerraSAR-X - TANDEM-X (2009)

RADARSAT - 2 Agence spatiale Canadian Space Agency

E. Pottier, L. Ferro-Famil Fenrisgletscher glacier – Sermilik fjord (18/12/2007)

E. Pottier, L. Ferro-Famil Koojesse inlet - Frobisher Bay, southeast Baffin Island (07/01/2008)

E. P |HH-VV|, |HV|, |HH+VV|

GOOGLE EARTH

IETR E. Pottier, L. Ferro-Famil

RADAR POLARIMETRY

GOOGLE EARTH

COSMO – SkyMED (07 / 06 / 07)

THALES

4 satellite SAR constellation, right & left looking acquisition

- Short revisit time
- Rapid response
- Very high resolution from 1 metre
- High geo-location accuracy
- All-weather day/night global coverage
- High imaging capacity
- Interferometric & polarmetric capability

Interferometric capability

- One-day interferometry
- Tandem-like interferometry mission
- Optimum mean revisit
- Flexible acquisition; time delay of:
 - one day (pairs 1-2, 2-3)
 - two days (1-3, 3-4)
 - three days (2-4)
 - four days (1-4)

Ring structure located in Ouadane-Richat in Mauritania

Cosmo – Skymed

The near-circular, conical peak of Mount Egmont on New Zealand's North Island

TerraSAR-X StripMap (3m) – VV Cosmo – Skymed

eesa

RADAR POLARIMETRY

ALOS – PALSAR

RADARSAT 2

TerraSAR – X

ENVISAT – ASAR

PoISAR PoI-InSAR

GOLDEN AGE

POLARIMETRIC REMOTE SENSING

IETR SAMUE E. Pottier, L. Ferro-Famil

QUALITATIVE ANALYSIS

RADAR POLARIMETRY

E. Pottier, L. Ferro-Famil

IETR SAPHR

REAL ELECTRIC FIELD VECTOR $\vec{E}(z,t)$

 $\vec{B}(z,t) = \mu \vec{H}(z,t)$

 $\vec{D}(z,t) = \varepsilon \vec{E}(z,t)$

 σ (Conductivity) μ (Permeability) ε (Permittivity)

IETR SAPHINE E. Pottier, L. Ferro-Famil

PROPAGATION EQUATION

$$\nabla \wedge (\nabla \wedge \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla \cdot (\nabla \vec{A})$$

$$\mathbf{PROPAGATION EQUATION}$$

$$\nabla^{2} \vec{E}(z,t) - \mu \varepsilon \frac{\partial^{2} \vec{E}(z,t)}{\partial t^{2}} - \mu \sigma \frac{\partial \vec{E}(z,t)}{\partial t} = -\frac{1}{\varepsilon} \frac{\partial \rho(z,t)}{\partial t}$$

$$\mathbf{W}$$
HELMHOLTZ PROPAGATION EQUATION
$$\nabla^{2} \vec{E}(z,t) - \mu \varepsilon \frac{\partial^{2} \vec{E}(z,t)}{\partial t^{2}} = \theta$$
Source Free, Linear, Homogeneous, Isotropic, Dielectric and lossless Medium

IETR SAPHE E. Pottier, L. Ferro-Famil

PROPAGATION EQUATION

COMPLEX ELECTRIC FIELD VECTOR $\underline{E}(z)$ With: $\vec{E}(z,t) = \Re\left(\underline{E}(z)e^{j\omega t}\right)$

HELMHOLTZ PROPAGATION EQUATION $\nabla^2 \underline{E}(z) + \underline{k}^2 \underline{E}(z) = \theta$

SOLUTION:
$$\underline{E}(z) = \underline{E}e^{-jkz}$$

With:
$$\underline{E} = \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix} = \begin{bmatrix} E_{ox} e^{j\delta_x} \\ E_{oy} e^{j\delta_y} \\ E_{oz} e^{j\delta_z} \end{bmatrix}$$

SINUSOIDAL PLANE WAVE

$$abla \cdot \vec{E}(z,t) = \theta \quad \Rightarrow \quad \frac{\partial E_z}{\partial z} = \theta$$

POLARISATION ELLIPSE

REAL ELECTRIC FIELD VECTOR

$$\vec{E}(z,t) = \begin{cases} E_x = E_{\theta x} \cos(\omega t - kz - \delta_x) \\ E_y = E_{\theta y} \cos(\omega t - kz - \delta_y) \\ E_z = \theta \end{cases}$$

POLARISATION ELLIPSE

THE REAL ELECTRIC FIELD VECTOR MOVES IN TIME ALONG AN ELLIPSE

$$\left(\frac{E_x}{E_{\theta x}}\right)^2 - 2\frac{E_x E_y}{E_{\theta x} E_{\theta y}} \cos(\delta) + \left(\frac{E_y}{E_{\theta y}}\right)^2 = \sin^2(\delta)$$

With: $\delta = \delta_y - \delta_x$

POLARISATION ELLIPSE

POLARISATION HANDENESS

ROTATION SENSE: LOOKING INTO THE DIRECTION OF THE WAVE PROPAGATION

REAL ELECTRIC FIELD VECTORPHASOR = JONES VECTOR
$$\vec{E}(z,t) = \begin{cases} E_x = E_{\theta x} \cos(\omega t - kz - \delta_x) \\ E_y = E_{\theta y} \cos(\omega t - kz - \delta_y) \end{pmatrix}$$
 $\underbrace{ = \begin{bmatrix} E_x = E_{\theta x} e^{j\delta_x} \\ E_y = E_{\theta y} e^{j\delta_y} \end{bmatrix} } \\ E_z = \theta & \text{With: } \vec{E}(z,t) = \Re\left(\underline{E}e^{j(\omega t - kz)}\right) \end{pmatrix}$ GEOMETRICAL PARAMETERSABSOLUTE PHASE $\alpha = \delta_x$ $A = \sqrt{E_{\theta x}^2 + E_{\theta y}^2}$ ORIENTATION ANGLEELLIPTICITY ANGLE

$$\tan 2\phi = 2 \frac{E_{\theta x} E_{\theta y}}{E_{\theta x}^2 - E_{\theta y}^2} \cos \delta$$

$$\sin 2\tau = 2 \frac{E_{\theta x} E_{\theta y}}{E_{\theta x}^2 + E_{\theta y}^2} \sin \delta$$

POLARISATION HANDENESS: $Sign(\tau)$

HORIZONTAL POLARISATION STATE

VERTICAL POLARISATION STATE

LINEAR POLARISATION STATE

 $\hat{y} \qquad \hat{z} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$

ORTHOGONAL LINEAR POLARISATION STATE

LEFT CIRCULAR POLARISATION STATE

RIGHT CIRCULAR POLARISATION STATE

ORTHOGONAL ELLIPTICAL POLARISATION STATE

ELLIPTICAL POLARISATION STATE

POLARISATION RATIO

COMPLEX POLARISATION PLANE

COMPLEX POLARISATION PLANE

IGARSS2008

$$\underline{E} = \begin{bmatrix} E_x \\ E_y \end{bmatrix} = \begin{bmatrix} E_{ox} e^{j\delta_x} \\ E_{oy} e^{j\delta_y} \end{bmatrix}$$
$$= A \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} \hat{u}_x$$
$$\underbrace{\mathbf{POLARISATION ALGEBRA}}$$

NORM OF A JONES VECTOR $\|\underline{E}\| = \sqrt{\overline{E_{\theta x}^2 + E_{\theta y}^2}}$ SCALAR PRODUCT $\langle \underline{A}, \underline{B} \rangle = \underline{A}^{T^*} \underline{B}$ ORTHOGONALITY $\langle \underline{A}, \underline{A}_{\perp} \rangle = 0$

JONES VECTOR $\underline{E} = A \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ i\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} \hat{u}_x$ HOGONAL JONES VECTOR $\underline{E}_{\perp} = A \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ i\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} \hat{u}_{y}$ $=A\begin{bmatrix} -\sin(\phi) & -\cos(\phi) \\ \cos(\phi) & -\sin(\phi) \end{bmatrix}\begin{bmatrix} \cos(\tau) & -j\sin(\tau) \\ -j\sin(\tau) & \cos(\tau) \end{bmatrix}\begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} \hat{u}_x$ $\underline{E}_{\perp} = A \begin{bmatrix} \cos\left(\phi + \frac{\pi}{2}\right) & -\sin\left(\phi + \frac{\pi}{2}\right) \\ \sin\left(\phi + \frac{\pi}{2}\right) & \cos\left(\phi + \frac{\pi}{2}\right) \end{bmatrix} \begin{bmatrix} \cos\left(-\tau\right) & j\sin\left(-\tau\right) \\ j\sin\left(-\tau\right) & \cos\left(-\tau\right) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} \hat{u}_{x}$ E. Pottier, L. Ferro-Famil

ORTHOGONAL JONES VECTOR

$$\underline{E} = A \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} \hat{u}_x$$

$$\underbrace{ORTHOGONAL JONES VECTOR}_{E_{\perp}} = A \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} \hat{u}_y$$

$$\underbrace{\underbrace{E}_{\cdot}, \underline{E}_{\perp}}_{i} = A \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} [\hat{u}_x, \hat{u}_y]$$

ELLIPTICAL BASIS TRANSFORMATION

ORTHOGONAL JONES VECTORS

$$\begin{bmatrix} \underline{E}, \underline{E}_{\perp} \end{bmatrix} = A \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} [\hat{u}_x, \hat{u}_y]$$

SU(2) : SPECIAL UNITARY TRANSFORMATION MATRIX

$$\begin{bmatrix} U(\phi,\tau,\alpha) \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & \theta \\ \theta & e^{j\alpha} \end{bmatrix}$$
$$\begin{bmatrix} U_2(\phi) \end{bmatrix} \begin{bmatrix} U_2(\tau) \end{bmatrix} \begin{bmatrix} U_2(\alpha) \end{bmatrix}$$

 $\begin{bmatrix} U_2 \end{bmatrix} \begin{bmatrix} U_2 \end{bmatrix}^{T^*} = \begin{bmatrix} I_{D2} \end{bmatrix}$ conservation of the wave energy $det(\begin{bmatrix} U_2 \end{bmatrix}) = +1$ Ensures the correct phase definition

SU(2) : SPECIAL UNITARY TRANSFORMATION MATRIX

$$\begin{bmatrix} U(\phi,\tau,\alpha) \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix}$$

ELLIPTICAL BASIS TRANSFORMATION MATRIX

$$\begin{bmatrix} U_{(\underline{A},\underline{A}_{\perp})\mapsto(\underline{B},\underline{B}_{\perp})} \end{bmatrix} = \begin{bmatrix} U(\phi,\tau,\alpha) \end{bmatrix}^{-1} \\ = \begin{bmatrix} e^{j\alpha} & \theta \\ \theta & e^{-j\alpha} \end{bmatrix} \begin{bmatrix} \cos(\tau) & -j\sin(\tau) \\ -j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} \cos(\phi) & \sin(\phi) \\ -\sin(\phi) & \cos(\phi) \end{bmatrix}$$

$$\underline{E} = E_{H} \underline{H} + E_{V} \underline{V} = E_{LC} \underline{LC} + E_{RC} \underline{RC}$$

With:

$$H = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \underline{V} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \underline{LC} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ j \end{bmatrix} \quad \underline{RC} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -j \end{bmatrix}$$
$$\downarrow$$
$$\begin{bmatrix} \underline{LC}, \underline{RC} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$$

REAL REPRESENTATION OF THE POLARISATION STATE OF A MONOCHROMATIC WAVE

$$\underline{E} \cdot \underline{E}^{T^*} = \begin{bmatrix} E_x E_x^* & E_x E_y^* \\ E_y E_x^* & E_y E_y^* \end{bmatrix}$$

PAULI MATRICES GROUP

$$\sigma_{\theta} = \begin{bmatrix} 1 & \theta \\ 0 & 1 \end{bmatrix} \quad \sigma_{1} = \begin{bmatrix} 1 & \theta \\ 0 & -1 \end{bmatrix} \quad \sigma_{2} = \begin{bmatrix} \theta & 1 \\ 1 & \theta \end{bmatrix} \quad \sigma_{3} = \begin{bmatrix} \theta & -j \\ j & \theta \end{bmatrix}$$
$$\underbrace{E \cdot E^{T^{*}}}_{2} = \frac{1}{2} \{g_{\theta}\sigma_{\theta} + g_{1}\sigma_{1} + g_{2}\sigma_{2} + g_{3}\sigma_{3}\} = \frac{1}{2} \begin{bmatrix} g_{\theta} + g_{1} & g_{2} - jg_{3} \\ g_{2} + jg_{3} & g_{\theta} - g_{1} \end{bmatrix}$$

 $\{g_{0}, g_{1}, g_{2}, g_{3}\}$ Stokes parameters

IETR SAPHR E. Pottier, L. Ferro-Famil

JONES VECTOR

$$\underline{E} = \begin{bmatrix} E_x = E_{ox} e^{j\delta_x} \\ E_y = E_{oy} e^{j\delta_y} \end{bmatrix}$$

STOKES VECTOR
$$\underline{g}_E = \begin{bmatrix} g_\theta = |E_x|^2 + |E_y|^2 \\ g_1 = |E_x|^2 - |E_y|^2 \\ g_2 = 2\Re(E_x E_y^*) \\ g_3 = -2\Im(E_x E_y^*) \end{bmatrix}$$

WAVE POLARISATION STATE ESTIMATION FROM INTENSITIES MEASUREMENTS

STOKES VECTOR

$$\underline{g}_{\underline{E}} = \begin{bmatrix} g_{\theta} = E_{\theta x}^{2} + E_{\theta y}^{2} \\ g_{1} = E_{\theta x}^{2} - E_{\theta y}^{2} \\ g_{2} = 2E_{\theta x}E_{\theta y}\cos(\delta) \\ g_{3} = 2E_{\theta x}E_{\theta y}\sin(\delta) \end{bmatrix} = \begin{bmatrix} g_{\theta} = A^{2} \\ g_{1} = A^{2}\cos 2\phi\cos 2\tau \\ g_{2} = A^{2}\sin 2\phi\cos 2\tau \\ g_{3} = A^{2}\sin 2\phi\cos 2\tau \\ g_{3} = A^{2}\sin 2\tau \end{bmatrix}$$

GEOMETRICAL PARAMETERS

ORIENTATION ANGLE $\tan 2\phi = 2 \frac{E_{\theta x} E_{\theta y}}{E_{\theta x}^2 - E_{\theta y}^2} \cos \delta = \frac{g_2}{g_1}$ ELLIPTICITY ANGLE $\sin 2\tau = 2 \frac{E_{\theta x} E_{\theta y}}{E_{\theta x}^2 + E_{\theta y}^2} \sin \delta = \frac{g_3}{g_0}$

JONES VECTOR

$$\underline{E} = A \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & \theta \\ \theta & e^{j\alpha} \end{bmatrix} \hat{\mu}_{x}$$

$$\begin{bmatrix} U_{2}(\phi) \end{bmatrix} \begin{bmatrix} U_{2}(\sigma) \end{bmatrix} \begin{bmatrix} U_{2}(\sigma) \end{bmatrix} \begin{bmatrix} U_{2}(\alpha) \end{bmatrix}$$

$$\frac{\mathsf{HOMOMORPHISM SU(2) - O(3)}{\begin{bmatrix} 0 \\ 3(2\theta) \end{bmatrix}_{p,q}} = \frac{1}{2} Tr \left(\begin{bmatrix} U_{2}(\theta) \end{bmatrix}^{T*} \sigma_{p} \begin{bmatrix} U_{2}(\theta) \end{bmatrix} \sigma_{q} \right)$$

$$(\sigma_{p}, \sigma_{q}) : \text{Pauli Matrices}$$

$$\frac{\mathbf{g}}{E} = A^{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ \theta & \cos(2\phi) & -\sin(2\phi) & \theta \\ 0 & \sin(2\phi) & \cos(2\phi) & \theta \\ \theta & \sin(2\tau) & \theta & \cos(2\tau) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ \theta & \cos(2\tau) & \theta & -\sin(2\tau) \\ \theta & \sin(2\tau) & \theta & \cos(2\tau) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(2\alpha) & -\sin(2\alpha) \\ \theta & \sin(2\alpha) & \cos(2\alpha) \end{bmatrix} \underline{g}_{\hat{\mu}}$$

$$\begin{bmatrix} O_{4}(2\tau) \end{bmatrix} \qquad \begin{bmatrix} O_{4}(2\tau) \end{bmatrix} \qquad \begin{bmatrix} O_{4}(2\alpha) \end{bmatrix}$$

HORIZONTAL POLARISATION STATE

VERTICAL POLARISATION STATE

ORTHOGONAL LINEAR POLARISATION STATE

LINEAR POLARISATION STATE

IETR SAPHR E. Pottier, L. Ferro-Famil

LEFT CIRCULAR POLARISATION STATE

ELLIPTICAL POLARISATION STATE

RIGHT CIRCULAR POLARISATION STATE

$$\begin{bmatrix} U_2 \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} \\ \begin{bmatrix} U_2(\phi) \end{bmatrix} \begin{bmatrix} U_2(\tau) \end{bmatrix} \begin{bmatrix} U_2(\alpha) \end{bmatrix}$$

HOMOMORPHISM SU(2) - O(3) $\begin{bmatrix} O_3(2\theta) \end{bmatrix}_{p,q} = \frac{1}{2} Tr \left(\begin{bmatrix} U_2(\theta) \end{bmatrix}^{T^*} \sigma_p \begin{bmatrix} U_2(\theta) \end{bmatrix} \sigma_q \right)$ $(\sigma_p, \sigma_q) : \text{Pauli Matrices}$

 $\begin{bmatrix} O(4) \text{ UNITARY GROUP} \\ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(2\phi) & -\sin(2\phi) & 0 \\ 0 & \sin(2\phi) & \cos(2\phi) & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(2\tau) & 0 & -\sin(2\tau) \\ 0 & 0 & 1 & 0 \\ 0 & \sin(2\tau) & 0 & \cos(2\tau) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(2\alpha) & -\sin(2\alpha) \\ 0 & 0 & \sin(2\alpha) & \cos(2\alpha) \end{bmatrix} \\ \begin{bmatrix} O_4(2\phi) \end{bmatrix} \begin{bmatrix} O_4(2\tau) \end{bmatrix} \begin{bmatrix} O_4(2\alpha) \end{bmatrix}$

STOKES VECTOR

$$\underline{g}_{E} = \begin{bmatrix} g_{\theta} \\ g_{I} \\ g_{2} \\ g_{3} \end{bmatrix} = \begin{bmatrix} |E_{x}|^{2} + |E_{y}|^{2} \\ |E_{x}|^{2} - |E_{y}|^{2} \\ 2\Re(E_{x}E_{y}^{*}) \\ -2\Im(E_{x}E_{y}^{*}) \end{bmatrix} = \begin{bmatrix} E_{\theta x}^{2} + E_{\theta y}^{2} \\ E_{\theta x}^{2} - E_{\theta y}^{2} \\ 2E_{\theta x}E_{\theta y}\cos(\delta) \\ 2E_{\theta x}E_{\theta y}\sin(\delta) \end{bmatrix} = \begin{bmatrix} A^{2} \\ A^{2}\cos 2\phi\cos 2\tau \\ A^{2}\sin 2\phi\cos 2\tau \\ A^{2}\sin 2\tau \end{bmatrix}$$

$$\begin{cases} g_{\theta} \\ f_{1}, g_{2}, g_{3} \end{cases} \text{ TOTAL WAVE INTENSITY} \\ \{g_{1}, g_{2}, g_{3} \} \text{ POLARISED WAVE INTENSITIES} \end{cases}$$

$$\boxed{g_{\theta}^{2} = g_{1}^{2} + g_{2}^{2} + g_{3}^{2}} \text{ WAVE FULLY POLARISED}$$

 $\{g_1, g_2, g_3\}$ Spherical Coordinates of a point P on a sphere with radius g_{θ}

JONES VECTOR

ORTHOGONAL JONES VECTOR

ORTHOGONALITY CONDITIONS $(\phi, \tau) \mapsto \begin{cases} \phi' = \phi + \frac{\pi}{2} \\ \tau' = -\tau \end{cases}$

STOKES VECTOR

ORTHOGONAL STOKES VECTOR

$$\underline{g}_{\underline{E}} = \begin{bmatrix} g_{\theta} \\ g_{1} \\ g_{2} \\ g_{3} \end{bmatrix} = \begin{bmatrix} A \\ A\cos 2\phi \cos 2\tau \\ A\sin 2\phi \cos 2\tau \\ A\sin 2\tau \end{bmatrix} \qquad \underline{g}_{\underline{E}_{\perp}} = \begin{bmatrix} g_{\theta} \\ g_{1} \\ g_{2} \\ g_{3} \end{bmatrix} = \begin{bmatrix} A \\ -A\cos 2\phi \cos 2\tau \\ -A\sin 2\phi \cos 2\tau \\ -A\sin 2\tau \end{bmatrix}$$
ORTHOGONALITY = ANTIPODALITY

STOKES VECTOR

$$\underline{g}_{\underline{E}} = \begin{bmatrix} g_{\theta} \\ g_{1} \\ g_{2} \\ g_{3} \end{bmatrix} = \begin{bmatrix} A \\ A\cos 2\phi \cos 2\tau \\ A\sin 2\phi \cos 2\tau \\ A\sin 2\tau \end{bmatrix}$$

ORTHOGONAL STOKES VECTOR

$$\mathbf{g}_{E_{\perp}} = \begin{bmatrix} \mathbf{g}_{\theta} \\ \mathbf{g}_{1} \\ \mathbf{g}_{2} \\ \mathbf{g}_{3} \end{bmatrix} = \begin{bmatrix} A \\ -A\cos 2\phi\cos 2\tau \\ -A\sin 2\phi\cos 2\tau \\ -A\sin 2\tau \end{bmatrix}$$

ORTHOGONALITY = ANTIPODALITY *E. Pottier, L. Ferro-Famil*

PARTIALLY POLARISED WAVES

DETERMINISTIC SCATTERING

COMPLETELY POLARISED WAVE

RANDOM SCATTERING

PARTIALLY POLARISED WAVE

Polarisation Ellipse varies in time Amplitude, Phase: Random processes

STATISTICAL DESCRIPTION

PARTIALLY POLARISED WAVES

JONES VECTORS $\{\underline{E}\}$ WAVE COVARIANCE MATRIX $\langle [J] \rangle = \langle \underline{E} \underline{E}^{T^*} \rangle = \begin{vmatrix} \langle |E_x|^2 \rangle & \langle E_x E_y^* \rangle \\ \langle E_y E_x^* \rangle & \langle |E_y|^2 \rangle \end{vmatrix}$ $\langle [J] \rangle = \frac{1}{2} \begin{vmatrix} \langle g_{\theta} \rangle + \langle g_{1} \rangle & \langle g_{2} \rangle - j \langle g_{3} \rangle \\ \langle g_{2} \rangle + j \langle g_{2} \rangle & \langle g_{\theta} \rangle - \langle g_{1} \rangle \end{vmatrix}$ $\begin{pmatrix} \langle \boldsymbol{g}_{\boldsymbol{\theta}} \rangle^2 \geq \langle \boldsymbol{g}_1 \rangle^2 + \langle \boldsymbol{g}_2 \rangle^2 + \langle \boldsymbol{g}_3 \rangle^2 \\ \text{PARTIALLY POLARISED WAVES} \end{pmatrix}$

WAVE COVARIANCE MATRIX

$$\langle [\boldsymbol{J}] \rangle = \langle \boldsymbol{\underline{E}} \boldsymbol{\underline{E}}^{T^*} \rangle = \begin{bmatrix} \langle |\boldsymbol{E}_x|^2 \rangle & \langle \boldsymbol{E}_x \boldsymbol{\underline{E}}_y^* \rangle \\ \langle \boldsymbol{E}_y \boldsymbol{\underline{E}}_x^* \rangle & \langle |\boldsymbol{E}_y|^2 \rangle \end{bmatrix}$$

DIAGONAL ELEMENTS : INTENSITIES ON EACH OF THE 2 ORTHOGONAL COMPONENTS OF THE WAVE

OFF-DIAGONAL ELEMENTS : CROSS-CORRELATIONS BETWEEN THE 2 ORTHOGONAL COMPONENTS OF THE WAVE

$$Trace([J]) = \langle |E_x|^2 \rangle + \langle |E_y|^2 \rangle = A^2 \quad \text{TOTAL WAVE INTENSITY}$$

THE WAVE COVARIANCE MATRIX IS A 2x2 HERMITIAN POSITIVE SEMI-DEFINITE MATRIX

ietre 👬 E. Pottier, L. Ferro-Famil

EIGENVALUES DECOMPOSITION

$$\langle [\boldsymbol{J}] \rangle = [\boldsymbol{U}_2] \begin{bmatrix} \lambda_1 & \boldsymbol{\theta} \\ \boldsymbol{\theta} & \lambda_2 \end{bmatrix} [\boldsymbol{U}_2]^{-1} = \lambda_1 \underline{\boldsymbol{u}}_1 \underline{\boldsymbol{u}}_1^{T*} + \lambda_2 \underline{\boldsymbol{u}}_2 \underline{\boldsymbol{u}}_2^{T*}$$

1

2 ORTHOGONAL EIGENVECTORS

$$\begin{bmatrix} U_2 \end{bmatrix} = \begin{bmatrix} \underline{u}_1, \underline{u}_2 \end{bmatrix}$$

2 REAL EIGENVALUES

$$\lambda_{1} = \frac{1}{2} \left\{ \left\langle \boldsymbol{g}_{\theta} \right\rangle + \sqrt{\left\langle \boldsymbol{g}_{1} \right\rangle^{2} + \left\langle \boldsymbol{g}_{2} \right\rangle^{2} + \left\langle \boldsymbol{g}_{3} \right\rangle^{2}} \right\}$$
$$\lambda_{2} = \frac{1}{2} \left\{ \left\langle \boldsymbol{g}_{\theta} \right\rangle - \sqrt{\left\langle \boldsymbol{g}_{1} \right\rangle^{2} + \left\langle \boldsymbol{g}_{2} \right\rangle^{2} + \left\langle \boldsymbol{g}_{3} \right\rangle^{2}} \right\}$$

IETR SAPHR *E. Pottier, L. Ferro-Famil*

PARTIALLY POLARISED WAVES

PARTIALLY POLARISED WAVES DESCRIPTORS

Degree of Polarisation

$$DoP = \frac{\sqrt{\langle g_1 \rangle^2 + \langle g_2 \rangle^2 + \langle g_3 \rangle^2}}{\sqrt{\langle g_0 \rangle}} = \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2} = \left(1 - \frac{4 \operatorname{det}([J])}{\operatorname{Trace}^2([J])}\right)$$

$$\underbrace{\frac{\operatorname{Polarised Wave Power}}{\operatorname{Total Wave Power}}}_{\operatorname{Total Wave Power}} \qquad \operatorname{Anisotropy}$$

Wave Entropy

$$H = -\sum_{i=1}^{i=2} p_i \log_2(p_i) \qquad \text{With:} \quad p_i = \frac{\lambda_i}{\lambda_1 + \lambda_2}$$

Degree of randomness, statistical disorder

PARTIALLY POLARISED WAVES

COMPLETELY POLARISED WAVES

Maximum Correlation Between E_x and E_y

$$|E_{x}|^{2} \left| \left| E_{y} \right|^{2} \right| = \left| \left| E_{x} E_{y}^{*} \right| \left| \left| E_{y} E_{x}^{*} \right| \right| \right| \Rightarrow det([J]) = 0 \Rightarrow \begin{cases} \lambda_{1} \neq 0 \\ \lambda_{2} = 0 \end{cases} \Rightarrow \begin{cases} DoP = 1 \\ H = 0 \end{cases}$$

COMPLETELY UNPOLARISED WAVES

Absence of any Polarised Structure in the Wave

$$\left\{ \left\langle \left| E_{x} \right|^{2} \right\rangle = \left\langle \left| E_{y} \right|^{2} \right\rangle \\ \left\langle E_{x} E_{y}^{*} \right\rangle = \left\langle E_{y} E_{x}^{*} \right\rangle = 0 \right\} det ([J]) = \frac{Trace^{2} ([J])}{4} \Rightarrow \lambda_{1} = \lambda_{2} \Rightarrow \begin{cases} DoP = 0 \\ H = 1 \end{cases}$$

PARTIALLY POLARISED WAVES

Correlation between E_x and E_y $\langle [J] \rangle = \begin{bmatrix} \langle |E_x|^2 \rangle & \langle E_x E_y^* \rangle \\ \langle E_y E_x^* \rangle & \langle |E_y|^2 \rangle \end{bmatrix} \Rightarrow \begin{cases} det([J]) \ge 0 \\ \lambda_1 \ne \lambda_2 \ge 0 \end{cases} \Rightarrow \begin{cases} 0 \le DoP \le 1 \\ 0 \le H \le 1 \end{cases}$

RADAR POLARIMETRY

IETR E. Pottier, L. Ferro-Famil

RADAR POLARIMETRY

WAVE DESCRIPTORS

MONOCHROMATIC PLANE WAVES

IETR SAME E. Pottier, L. Ferro-Famil

С

WAVE DESCRIPTORS

PARTIALLY POLARISED PLANE WAVES

COMPLEX DOMAIN

REAL DOMAIN

OVARIANCE MATRIX
$$\langle [J] \rangle = \langle \underline{E} \underline{E}^{T^*} \rangle$$
 STOKES VECTOR $\langle \underline{g}_{\underline{E}} \rangle = \begin{bmatrix} \langle g_{\theta} \rangle \\ \langle g_{1} \rangle \\ \langle g_{2} \rangle \\ \langle g_{3} \rangle \end{bmatrix}$
PLANE WAVES FULLY DESCRIBED
BY 4 INDEPENDANT PARAMETERS
 $\cdot \langle |E_{x}|^{2} \rangle, \langle E_{x} E_{y}^{*} \rangle, \langle E_{y} E_{x}^{*} \rangle, \langle |E_{y}|^{2} \rangle$
 $\cdot \{\langle g_{\theta} \rangle, \langle g_{1} \rangle, \langle g_{2} \rangle, \langle g_{3} \rangle\}$
WAVE POLARIMETRIC DIMENSION = 4

IETR SAPHE E. Pottier, L. Ferro-Famil

IETR KE E. Pottier, L. Ferro-Famil

WAVE POLARIMETRY

SCATTERING POLARIMETRY

POLARIMETRIC DESCRIPTORS

SCATTERING MATRIX

BISTATIC CASE

SCATTERING MATRIX or JONES MATRIX

$$\begin{bmatrix} E_X^s \\ E_Y^s \end{bmatrix} = \frac{e^{jkr}}{r} \begin{bmatrix} S_{XX} & S_{XY} \\ S_{YX} & S_{YY} \end{bmatrix} \begin{bmatrix} E_X^i \\ E_Y^i \end{bmatrix}$$

DEFINED IN THE LOCAL COORDINATES SYSTEM

[S] IS INDEPENDENT OF THE POLARISATION STATE OF THE INCIDENCE WAVE

[S] IS DEPENDENT ON THE FREQUENCY AND THE GEOMETRICAL AND ELECTRICAL PROPERTIES OF THE SCATTERER

TOTAL SCATTERED POWER

 $Span([S]) = Trace([S][S]^{T^*}) = |S_{XX}|^2 + |S_{XY}|^2 + |S_{YX}|^2 + |S_{YY}|^2$

IETR SAME E. Pottier, L. Ferro-Famil

SCATTERING MATRIX

BACKSCATTERING MATRIX

MONOSTATIC CASE

BACKSCATTERING MATRIX or SINCLAIR MATRIX

In the case of Backscattering from Reciprocal Scatterers:

RECIPROCITY THEOREM

$$S_{XY}^{BSA} = S_{YX}^{BSA} \iff S_{XY}^{FSA} = -S_{YX}^{FSA}$$

$$S_{X}^{s} = \frac{e^{jkr}}{r} \begin{bmatrix} S_{XX} & S_{XY} \\ S_{XY} & S_{YY} \end{bmatrix} \begin{bmatrix} E_{X}^{i} \\ E_{Y}^{i} \end{bmatrix}$$
(BSA CONVENTION)

TOTAL SCATTERED POWER

IETR SAPHIR

$$Span([S]) = Trace([S][S]^{T*}) = |S_{XX}|^2 + 2|S_{XY}|^2 + |S_{YY}|^2$$

BACKSCATTERING MATRIX

$$\left[S_{(B,B_{\perp})}\right] = \left[U_{(A,A_{\perp})\mapsto(B,B_{\perp})}\right]^{T} \left[S_{(A,A_{\perp})}\right] \left[U_{(A,A_{\perp})\mapsto(B,B_{\perp})}\right]$$

CON-SIMILARITY TRANSFORMATION

$$= \begin{bmatrix} e^{j\alpha} & 0 \\ 0 & e^{-j\alpha} \end{bmatrix} \begin{bmatrix} \cos(\tau) & -j\sin(\tau) \\ -j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} \cos(\phi) & \sin(\phi) \\ -\sin(\phi) & \cos(\phi) \end{bmatrix}$$
$$\begin{bmatrix} U_2(-\alpha) \end{bmatrix} \begin{bmatrix} U_2(-\tau) \end{bmatrix} \begin{bmatrix} U_2(-\phi) \end{bmatrix}$$

 $\begin{bmatrix} U_{(1,1)} \end{bmatrix}$

FROBENIUS NORM OF
$$[S_{(A,A_{\perp})}]$$

 $Span([S_{(A,A_{\perp})}]) = Trace([S_{(A,A_{\perp})}][S_{(A,A_{\perp})}]^{T*}) = |S_{AA}|^2 + 2|S_{AA_{\perp}}|^2 + |S_{A_{\perp}A_{\perp}}|^2$

FROBENIUS NORM OF $[S_{(B,B_{\perp})}]$ $Span([S_{(B,B_{\perp})}]) = Trace([S_{(B,B_{\perp})}][S_{(B,B_{\perp})}]^{T*}) = |S_{BB}|^{2} + 2|S_{BB_{\perp}}|^{2} + |S_{B_{\perp}B_{\perp}}|^{2}$

SPECIAL UNITARY SU(2) GROUP
$$[U][U]^{T^*} = [I_{D2}] det([U]) = +1$$

$$Span([S_{(A,A_{\perp})}]) = Span([S_{(B,B_{\perp})}])$$
FROBENIUS NORM OF A SCATTERING MATRIX
IS INVARIANT UNDER BASIS ELLIPTICAL TRANSFORMATION

E. Pottier, L. Ferro-Famil

(H,V) POLARISATION BASIS

IETR SAPHR *E. Pottier, L. Ferro-Famil*

(+45°,-45°) POLARISATION BASIS

|AA+BB||AB||AA-BB|With: A=Linear +45°, B=Linear -45°

(LC,RC) POLARISATION BASIS

|LL+RR| |LR | |LL-RR|

POLARIMETRIC DESCRIPTORS

VECTORIAL FORMULATION OF THE SCATTERING PROBLEM

SCATTERING MATRIX
$$[S] = \begin{bmatrix} S_{XX} & S_{XY} \\ S_{YX} & S_{YY} \end{bmatrix}$$

SCATTERING VECTOR $\vec{S} := V([S]) = \frac{1}{2}Trace([S][\Psi]) = \begin{bmatrix} S1 \\ S2 \\ S3 \\ S4 \end{bmatrix} \in C_4$
With: $V([S])$ MATRIX VECTORISATION OPERATOR

 $[\Psi]$ SET OF ORTHOGONAL 2x2 MATRICES

FROBENIOUS NORM OF
$$\vec{S}$$

 $\|\vec{S}\|^2 = \vec{S}^{T^*} \cdot \vec{S} = |S_1|^2 + |S_2|^2 + |S_3|^2 + |S_4|^2$
 $= Span([S]) = |S_{XX}|^2 + |S_{YX}|^2 + |S_{XY}|^2 + |S_{YY}|^2$

IETR E. Pottier, L. Ferro-Famil

PAULI SCATTERING VECTOR $\underline{k} = V([S]) = \frac{1}{2}Trace([S][\psi_P])$

SET OF 2x2 COMPLEX MATRICES FROM THE PAULI MATRICES GROUP

$$\begin{bmatrix} \psi_P \end{bmatrix} = \left\{ \sqrt{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \sqrt{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \sqrt{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sqrt{2} \begin{bmatrix} 0 & -j \\ j & 0 \end{bmatrix} \right\}$$
$$\boxed{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{XX} + S_{YY} & S_{XX} - S_{YY} & S_{XY} + S_{YX} & j(S_{XY} - S_{YX}) \end{bmatrix}^T$$

Advantage: Closer related to physical properties of the scatterer

Note: Also known as <u>kap</u>

LEXICOGRAPHIC SCATTERING VECTOR $\underline{\Omega} = V([S]) = \frac{1}{2}Trace([S][\psi_L])$

Advantage: Directly related to the system measurables

Note: Also known as <u>k_{4L}</u>

SCATTERING VECTOR TRANSFORMATIONS

Pauli Scattering Vector:

Lexicographic Scattering Vector:

UNITARY TRANSFORMATION $\underline{k} = \begin{bmatrix} D_4 \end{bmatrix} \underline{\Omega} \quad and \quad \underline{\Omega} = \begin{bmatrix} D_4 \end{bmatrix}^{-1} \underline{k} = \begin{bmatrix} D_4 \end{bmatrix}^{T^*} \underline{k}$

WHERE $[D_A]$ IS A SU(4) MATRIX **IN ORDER TO PRESERVE THE NORM OF THE SCATTERING VECTOR**

$$\begin{bmatrix} D_4 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & j & -j & 0 \end{bmatrix}$$

MONOSTATIC CASE

Pauli Scattering Vector:

$$\underline{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{XX} + S_{YY} \\ S_{XX} - S_{YY} \\ S_{XY} + S_{YX} \\ j(S_{XY} - S_{YX}) \end{bmatrix}$$

$$\mathbf{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{XX} + S_{YY} \\ S_{XX} - S_{YY} \\ 2S_{XY} \end{bmatrix}$$

Note: Also known as <u>k</u>_{3P}

Lexicographic Scattering Vector:

Note: Also known as <u>k_{3L}</u>

TARGET VECTORS

SCATTERING VECTOR TRANSFORMATIONS

Pauli Scattering Vector:

Lexicographic Scattering Vector:

UNITARY TRANSFORMATION $\underline{k} = [D_3] \underline{\Omega}$ and $\underline{\Omega} = [D_3]^{-1} \underline{k} = [D_3]^T \underline{k}$

WHERE $[D_3]$ IS A SU(3) MATRIX IN ORDER TO PRESERVE THE NORM OF THE SCATTERING VECTOR

$$\begin{bmatrix} D_3 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & \sqrt{2} & 0 \end{bmatrix}$$

E. Pottier, L. Ferro-Famil

IGARS STORE PARTIAL SCATTERING POLARIMETRY

IETR SAMUE E. Pottier, L. Ferro-Famil

KENNAUGH MATRIX

MONOSTATIC CASE SINCLAIR MATRIX : $\underline{E}_{s} = [S]\underline{E}_{i}$ KENNAUGH MATRIX : $\underline{g}_{E_s} = [K]\underline{g}_{E_i}$ $[K] = \frac{1}{2} \left([V]^T [[S] \otimes [S]^*] [V] \right) \quad [V] = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -j \\ 0 & 0 & 1 & +j \\ 1 & 1 & 0 & 0 \end{vmatrix}$ **HUYNEN PARAMETERS** $\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} A_{\theta} + B_{\theta} & C & H & F \\ C & A_{\theta} + B & E & G \\ H & E & A_{\theta} - B & D \\ F & G & D & -A_{\theta} + B_{\theta} \end{bmatrix}$

HUYNEN PARAMETERS

PHYSICAL INTERPRETATION MAN-MADE TARGET DECOMPOSITION IDENTIFICATION and ANALYSIS

- « PHENOMENOLOGICAL THEORY OF RADAR TARGETS » (1970)
- A0 : GENERATOR OF TARGET SYMMETRY
- **B0+B : GENERATOR OF TARGET NON-SYMMETRY**
- **B0-B : GENERATOR OF TARGET IRREGULARITY**
- **C**: GENERATOR OF TARGET GLOBAL SHAPE (LINEAR)
- **D**: GENERATOR OF TARGET LOCAL SHAPE (CURVATURE)
- **E** : **GENERATOR OF TARGET LOCAL TWIST (TORSION)**
- **F**: GENERATOR OF TARGET GLOBAL TWIST (HELICITY)
- **G**: **GENERATOR OF TARGET LOCAL COUPLING (GLUE)**
- H: GENERATOR OF TARGET GLOBAL COUPLING (ORIENTATION)

STOKES VECTOR

JONES VECTOR

$$\underline{E} = A \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & \theta \\ \theta & e^{j\alpha} \end{bmatrix} \hat{\mu}_{x}$$

$$\begin{bmatrix} U_{2}(\phi) \end{bmatrix} \begin{bmatrix} U_{2}(\sigma) \end{bmatrix} \begin{bmatrix} U_{2}(\sigma) \end{bmatrix} \begin{bmatrix} U_{2}(\alpha) \end{bmatrix}$$

$$\begin{array}{c} \mathsf{HOMOMORPHISM} \ \mathsf{SU}(2) - \mathsf{O}(3) \\ \begin{bmatrix} 0_{3}(2\theta) \end{bmatrix}_{p,q} = \frac{1}{2} \operatorname{Tr} \left(\begin{bmatrix} U_{2}(\theta) \end{bmatrix}^{T*} \sigma_{p} \begin{bmatrix} U_{2}(\theta) \end{bmatrix} \sigma_{q} \right) \\ (\sigma_{p}, \sigma_{q}) : \operatorname{Pauli Matrices} \end{array}$$

$$\begin{array}{c} \mathsf{STOKES \ \mathsf{VECTOR} \\ \underline{g}_{E} = A^{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ \theta & \cos(2\phi) & -\sin(2\phi) & \theta \\ \theta & \sin(2\phi) & \cos(2\phi) & \theta \\ \theta & \sin(2\tau) & \theta & \cos(2\tau) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ \theta & \cos(2\tau) & \theta & -\sin(2\tau) \\ \theta & \sin(2\tau) & \theta & \cos(2\tau) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ \theta & \sin(2\sigma) & \cos(2\sigma) & -\sin(2\sigma) \\ \theta & \sin(2\sigma) & \cos(2\sigma) & -\sin(2\sigma) \\ \theta & \sin(2\sigma) & \cos(2\sigma) & -\sin(2\sigma) \\ \theta & \sin(2\sigma) & \cos(2\sigma) & 0 \end{bmatrix} \underbrace{g}_{\hat{\mu}} \\ \begin{bmatrix} O_{4}(2\tau) \end{bmatrix} \\ \begin{bmatrix} O_{4}(2\sigma) \end{bmatrix} \\ \begin{bmatrix} O_{4}(2\sigma) \end{bmatrix} \end{aligned}$$

ELLIPTICAL BASIS TRANSFORMATION

IETR SAPHR E. Pottier, L. Ferro-Famil

IGARS 52000 ELLIPTICAL BASIS TRANSFORMATION

$$\begin{bmatrix} U_2 \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix}$$
$$\begin{bmatrix} U_2(\phi) \end{bmatrix} \begin{bmatrix} U_2(\tau) \end{bmatrix} \begin{bmatrix} U_2(\alpha) \end{bmatrix}$$

HOMOMORPHISM SU(2) - O(3)

$$\begin{bmatrix} \boldsymbol{O}_{3}(2\theta) \end{bmatrix}_{p,q} = \frac{1}{2} Tr(\begin{bmatrix} \boldsymbol{U}_{2}(\theta) \end{bmatrix}^{T^{*}} \boldsymbol{\sigma}_{p} \begin{bmatrix} \boldsymbol{U}_{2}(\theta) \end{bmatrix} \boldsymbol{\sigma}_{q})$$
$$(\boldsymbol{\sigma}_{p}, \boldsymbol{\sigma}_{q}) : \text{Pauli Matrices}$$

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & \cos(2\phi) & -\sin(2\phi) & 0 \\ 0 & \sin(2\phi) & \cos(2\phi) & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(2\tau) & 0 & -\sin(2\tau) \\ 0 & 0 & 1 & 0 \\ 0 & \sin(2\tau) & 0 & \cos(2\tau) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(2\alpha) & -\sin(2\alpha) \\ 0 & 0 & \sin(2\alpha) & \cos(2\alpha) \end{bmatrix} \\ \begin{bmatrix} 0_4(2\phi) \end{bmatrix} \begin{bmatrix} 0_4(2\tau) \end{bmatrix} \begin{bmatrix} 0_4(2\alpha) \end{bmatrix}$

IETR 📢 E. Pottier, L. Ferro-Famil

E. Pottier, L. Ferro-Famil

COHERENCY MATRIX

BISTATIC CASE

COHERENCY MATRIX

MONOSTATIC CASE

A0, B0+B, B0-B : HUYNEN TARGET GENERATORS

TARGET GENERATORS

PHYSICAL INTERPRETATION

$$T_{11} = 2A_0 = |S_{XX} + S_{YY}|^2$$

 $T_{33} = B_{\theta} - B = 2 \left| S_{XY} \right|^2$

 $T_{22} = B_{\theta} + B = |S_{XX} - S_{YY}|^2$

TARGET GENERATORS

 $(2A_{\theta})_{dB}$

 $(B_{\theta}+B)_{dB}$

-15dB

 $(B_{\theta}-B)_{dB}$

-30dB

0dB

TARGET GENERATORS

(H,V) POLARISATION BASIS

IETR SAPHE E. Pottier, L. Ferro-Famil

ELLIPTICAL BASIS TRANSFORMATION

SINCLAIR MATRIX

$$\underline{E}_{(A,A_{\perp})}^{s} = \begin{bmatrix} S_{(A,A_{\perp})} \end{bmatrix} \underline{E}_{(A,A_{\perp})}^{i} \qquad \qquad \underline{E}_{(B,B_{\perp})}^{s} = \begin{bmatrix} S_{(B,B_{\perp})} \end{bmatrix} \underline{E}_{(B,B_{\perp})}^{i} \\ \begin{bmatrix} S_{(B,B_{\perp})} \end{bmatrix} = \begin{bmatrix} U_{(A,A_{\perp}) \mapsto (B,B_{\perp})} \end{bmatrix}^{T} \begin{bmatrix} S_{(A,A_{\perp})} \end{bmatrix} \begin{bmatrix} U_{(A,A_{\perp}) \mapsto (B,B_{\perp})} \end{bmatrix}$$
CON-SIMILARITY TRANSFORMATION

COHERENCY MATRIX

$$\begin{bmatrix} T_{(B,B_{\perp})} \end{bmatrix} = \begin{bmatrix} U_{3(A,A_{\perp}) \mapsto (B,B_{\perp})} \end{bmatrix} \begin{bmatrix} T_{(A,A_{\perp})} \end{bmatrix} \begin{bmatrix} U_{3(A,A_{\perp}) \mapsto (B,B_{\perp})} \end{bmatrix}^{-1}$$

SIMILARITY TRANSFORMATION

 $\begin{bmatrix} U_{3(A,A_{\perp})\mapsto(B,B_{\perp})} \end{bmatrix} \qquad \begin{array}{c} U(3) \text{ SPECIAL UNITARY ELLIPTICAL} \\ \text{BASIS TRANSFORMATION MATRIX} \end{array}$

ELLIPTICAL BASIS TRANSFORMATION

$$\begin{bmatrix} U_2 \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & \theta \\ \theta & e^{j\alpha} \end{bmatrix} \\ \begin{bmatrix} U_2(\phi) \end{bmatrix} & \begin{bmatrix} U_2(\tau) \end{bmatrix} & \begin{bmatrix} U_2(\alpha) \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(2\phi) & \sin(2\phi) \\ 0 & -\sin(2\phi) & \cos(2\phi) \end{bmatrix} \begin{bmatrix} \cos(2\tau) & 0 & j\sin(2\tau) \\ 0 & 1 & 0 \\ j\sin(2\tau) & 0 & \cos(2\tau) \end{bmatrix} \begin{bmatrix} \cos(2\alpha) & -j\sin(2\alpha) & 0 \\ -j\sin(2\alpha) & \cos(2\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \begin{bmatrix} U_3(2\phi) \end{bmatrix} & \begin{bmatrix} U_3(2\tau) \end{bmatrix} \begin{bmatrix} U_3(2\alpha) \end{bmatrix} \begin{bmatrix} U_3(2\alpha) \end{bmatrix}$$

IETR E. Pottier, L. Ferro-Famil

COVARIANCE MATRIX

COVARIANCE MATRIX

MONOSTATIC CASE

IGARS 2009 COVARIANCE-COHERENCY MATRICES

Both contain the same information about Polarimetric Scattering Amplitudes, Phase Angles and Correlations

[T] is closer related to Physical and Geometrical Properties of the Scattering Process, and thus allows a better and direct physical interpretation

[C] is directly related to the system measurables

[*T*] is directly related to the Kennaugh matrix and the Huynen parameters

R 📢 E. Pottier, L. Ferro-Famil

$\begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ \sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix}$		
$[U_2(\phi)]$	$\left[U_{2}(\tau) \right]$	$[U_2(\alpha)]$
SPECIAL UNITARY SU(3) GROUP (T Matrix)		
$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	$\cos(2 au) \theta j \sin(2 au)$	$\cos(2\alpha)$ - $j\sin(2\alpha)$ θ
$\left \theta cos(2\phi) sin(2\phi) \right $	0 1 0	$-j\sin(2\alpha)$ $\cos(2\alpha)$ θ
$\begin{bmatrix} \theta & -\sin(2\phi) & \cos(2\phi) \end{bmatrix}$	$j \sin(2\tau) \theta \cos(2\tau) \end{bmatrix}$	0 0 1
$[U_3(2\phi)]$	$[U_3(2\tau)]$	$[U_3(2\alpha)]$
O(4) UNITARY GROUP		
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(2\phi) & -\sin(2\phi) \\ 0 & \sin(2\phi) & \cos(2\phi) \\ 0 & 0 & 0 \end{bmatrix}$	$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(2\tau) & 0 & -\sin(2\tau) \\ 0 & 0 & 1 & 0 \\ 0 & \sin(2\tau) & 0 & \cos(2\tau) \end{bmatrix} $ $ \begin{bmatrix} 0 & (2\tau) \end{bmatrix} $	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(2\alpha) & -\sin(2\alpha) \\ 0 & 0 & \sin(2\alpha) & \cos(2\alpha) \end{bmatrix}$ $\begin{bmatrix} 0 & (2\alpha) \end{bmatrix}$
$[U_4(2\psi)]$		

IETR 📢 E. Pottier, L. Ferro-Famil

POLARIMETRIC GOLDEN NUMBER

POLARIMETRIC TARGET DIMENSION

9 - 5 = 4 TARGET EQUATIONS

PURE TARGET – MONOSTATIC CASE

$$\begin{bmatrix} T \end{bmatrix} = \underline{k} \cdot \underline{k}^{*T} = \begin{bmatrix} 2A_0 & C - jD & H + jG \\ C + jD & B_0 + B & E + jF \\ H - jG & E - jF & B_0 - B \end{bmatrix}$$

3x3 HERMITIAN MATRIX - RANK 1

$$2A_{\theta}(B_{\theta} + B) - C^{2} - D^{2} = \theta \qquad 2A_{\theta}(B_{\theta} - B) - G^{2} - H^{2} = \theta -2A_{\theta}E + CH - DG = \theta \qquad B_{\theta}^{2} - B^{2} - E^{2} - F^{2} = \theta C(B_{\theta} - B) - EH - GF = \theta \qquad -D(B_{\theta} - B) + FH - GE = \theta 2A_{\theta}F - CG - DH = \theta \qquad -G(B_{\theta} + B) + FC - ED = \theta H(B_{\theta} + B) - CE - DF = \theta$$

IETR SAPHR E. Pottier, L. Ferro-Famil

SCATTERING POLARIMETRY

IETR SATHE E. Pottier, L. Ferro-Famil

QUALITATIVE ANALYSIS

