

Outline of the course:	
1. Introduction	5
1.1 Basic Radiometry Concepts	6
1.2 Context and Objectives of the SMOS mission	13
1.3. The Stokes Emission Vector and Spectral Signatures	20
1.4. Atmospheric and Ionospheric Effects at L-band	31
2. The MIRAS Concept	39
2.1 Antenna Size Considerations	39
2.2. Aperture Synthesis in Radioastronomy and Earth Observation	43
2.3. Aperture Synthesis Techniques	45
2.3.1. Fundamentals	45
2.3.2. Imaging	46
2.3.3. Dual-polarization and full-polarimetric aperture synthesis radiometers	50
2.3.4. Transformation from antenna to Earth reference frames	53
3. MIRAS Instrument Performance	57
3.1. Angular Resolution	57
3.2. Radiometric Performance	64
3.2.1. Radiometric sensitivity	65
3.2.2. Radiometric bias and accuracy	69

	Cesa W
4. MIRAS Instrument Calibration	75
4.1. MIRAS topology	76
4.1.1. Array topology	76
4.1.2. Receiver architecture	77
4.1.3. NIR architecture	78
4.1.4. DIgital COrrelator System (DICOS)	82
4.1.5. CAlibration System (CAS)	84
4.1.6. Power Measurement System (PMS)	85
4.2. MIRAS Calibration 4.2.1 MTDAS internal calibration	80
4.2.1. MIRAS Internal calibration	110
4.2.2. MIRAS external calibration	110
5 Image Reconstruction Algorithms	126
5.1 Image Reconstruction Algorithms: Ideal Situation	127
5.2. Image Formation Through a Fourier Synthesis Process	128
5.3. Formulation of the Problem: Instrument Equation After Internal Calibrati	on 129
5.4. Pre-processing of Visibility Samples	131
5.5. Types of Image Reconstruction Algorithms	
Solution of Instrument Equation in Terms of Differential Visibilities	136
5.6. Geolocalization: from director cosines grid to Earth reference frame grid	142
	142
6. Retrieval of Geophysical Parameters	143
6.1. Retrieval of Ocean Salinity	144
0.2. Retrieval of Soil Moisture	140
7. SEPS: the SMOS End-to-end Performance Simulator	
8. Conclusions	168
IGARSS 2006. Tutorial on Aperture Synthesis Microwave Radiometers: Applicativ Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006	on to the SMOS Mission. 4

• Contributions to the noise power incident at the antenna:

- From the **object** to which it is pointing (T_{β}), attenuated by the atmosphere ($L_{a}(\theta)$)

- The **atmosphere** (T_{UP})

- Reflections from other sources (T_{DN}):

esa 🖉

Sun, Moon, galactic noise, atmosphere...

- Direct brightness temperature from other sources.

 $\Rightarrow \text{Apparent brightness temperature} \\ \mathcal{T}_{AP}^{p}(\theta, \varphi) = \frac{1}{\mathcal{L}_{a}(h, \theta, \varphi)} \left(\mathcal{T}_{B}^{p}(\theta, \varphi) + \mathcal{T}_{SC}^{p}(\theta, \varphi) \right) + \mathcal{T}_{UP}(\theta, \varphi)$

• Earth remote sensing applications (not comprehensive) Scientific requirements

Aplication	Spatial resolution [*] [km]	Radiometric sensitivity [K]	Frequencies [GHz]
Temperature profile	50	0.3	21, 37, 55 , 90
Water vapor profile	15	0.5	21, 37, 90, <i>180</i>
Wind speed (over sea)	2-50	1	<i>10</i> , 18
Sea surface temperatura	1-50	0.3	<i>6.6</i> , 10, 18, 21, 37
Sea surface salinity	1-10	0.3	1 . 4 , 6.6
Oil slicks	0.5	0.3	6.6, 37
Soil moisture	3-25	1	1 . 4 , 6.6
Snow cover	3-25	1	6.6, 10, <i>18, 37</i> , 90
Sea ice concentration	1-5	2	<i>18, 37</i> , 90
Continental ice mapping	1-5	1	10, 18, <i>37</i>
Rain rate over the ocean	10-25	0.5	10, <i>18</i> , 21, 37
Rain rate over land	10-25	0.5	18, <i>37, 90</i> , 180
Cloud liquid water content	1-5	1	21, <i>37</i> , 90

 $\ensuremath{\overset{\scriptstyle *:}{\scriptstyle}}$ Spatial resolution may vary depending on the application

Year	Platforr	n/Instrument	1.4 GHz	6 GHz	10 GHz	18 GHz	21 GHz	37 GHz	50-60 GHz	90 GHz	160 GHz	183 GHz	Res. Espacial (Km
1962	Mariner					х	х						1,300
1968	Cosmos	243	×		x								37
1970	Cosmos	384				~	×	x					13
1972	NIMDUS	DESMR				x	~	~	V(2)				25
1073	Skylab	S-103			×		^	^	A(3)				16
1973	JAYIOD	5-194	×		~								115
1974	Meteor							x					
1975	Nimbus	6 ESMR						x					20 × 43
		SCAMS					х	x	X(3)				150
1978	DMSP	SSM/T							X(7)				175
1978	Tiros-N	MSU							X(4)				110
1978	Nimbus	7 SMMR		×	х	х	х	x					18 × 27
1000	Seasat	SMMR		х	×	×	×	×		~			22 x 35
1982	DMSP	55M/1				x	×	×	V(12)	×			16 x 14
1900	NUAA	AMSULP					~	~	A(12)	÷	v	Y(3)	50
1992		SSM/T-2								â	Ŷ	X(3)	50
002-04	Agua	AMSR/E		x	x	х	х	x		x	.,	~	75x43-6x4
	1.14	AMSU				15	channels	from	15 to 90				40
2002	Envisat	MWR					x	x	GHz				25
2007	SMOS	MIRAS	×										30->60
2008	SAC/D	Aquarius	х										76x94-96x156
2010	Hydros	(cancelled Dec 05)	х										40

SMOS mission Objectives	
Jcean: global 555 maps 0.1 psu every 10-30 days	5
200 km spatial resolutio	'n
_and: global SM maps and 0.035 m³/m³ every 3 da	ys
vegetation water content 0.2 Kg/m ²	
60 km spatial resolution	l.
	and multi-layered
Tryosphere: Improved show mantle	•

Technical Solution =

Microwave Radiometry by Aperture Synthesis

Innovative Method

• Makes 2D brightness temperature images without mechanical antenna scanning

• Ideal case:

$$\mathcal{V}(\boldsymbol{u},\boldsymbol{v})\boldsymbol{\alpha} < \boldsymbol{b}_{1}(\boldsymbol{t})\boldsymbol{b}_{2}^{*}(\boldsymbol{t}) \succ = \mathsf{F}\left[\frac{T_{g}\left(\boldsymbol{\xi},\boldsymbol{\eta}\right) - T_{gh}}{\sqrt{1 - \boldsymbol{\xi}^{2} - \boldsymbol{\eta}^{2}}} \left| \boldsymbol{F}\left(\boldsymbol{\xi},\boldsymbol{\eta}\right) \right|^{2}\right]$$

Achieves good spatial resolution (~50 km) with an array of small antennas (~20 cm)
Smaller cost and more easily scalable

IGARSS 2006. Tutorial on Aperture Synthesis Microwave Radiometers: Application to the SMOS Mission. Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006 15

Windowing of the Visibility Samples

• In many cases the Blackman window is the preferably window function because, despite of a significant widening of the principal lobe, the Blackmann window function produces the best attenuation of the side lobes.

• However, applying the same window for all pixels in the FOV produces a significant distorsion of the pixels shape once projected over the Earth.

 This can be compensated by imaging each pixel with a properly designed window that compensates:

- the radial enlarging (window more "rectangular", and less tapered) and

- the cosine projection (window more "rectangular" in the radial direction and more "tapered" in the perpendicular" direction

- · Windows can be designed for any specific "constant" spatial resolution on Earth
- \Rightarrow This is called "strip adaptive" processing:

Not worth to use IHFFTs, but to apply a IHDFT to each pixel. IGARSS 2006. Tutorial on Aperture Synthesis Microwave Radiometers: Application to the SMOS Mission. Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006 61

Resulting pixels:

The higher the spatial resolution the lower the resulting efficiency, up to a point where it is useless

Efficiency of an adaptive Blackmann function for circular pixels of 50 km.

ID	a.	η	$\sqrt{a \cdot b}(km)$	a f b	$2E_1/\Delta\zeta_{-340}$	2E2/AC-3.00	$\delta(\text{deg})$	Eff	Eff [Eff Blackmann
-1	+0.00	-0.54	32.38	1.20	1.53490633	1.22050588	0.00	0.8786	1.0600
2	+0.31	-0.51	36,20	1.24	1.30608439	1.25623300	77.80	0.8682	1.0475
3	-0.12	-0.61	34.56	1.32	1.52109277	1.22081945	-25.55	0.8781	1.0594
4	-0.38	-0.28	38.67	1.10	1.16991005	1.25388626	-16.52	0.8598	1.0373
5	+0.00	-0.10	36.51	1.18	1.38470540	1,19006734	0.00	0.8681	1.0473
6	-0.40	-0.04	45.00	1.27	0.98094982	0.95561598	84.38	0.8226	0.9924
7	+0.29	+0.13	56.05	1.61	0.95317709	0.71324803	-47.36	0.7975	0.9621
8	-0.18	+0.21	61.06	1.78	0.96558678	0.60227971	26.68	0.7862	0.9485
9	+0.62	-0.22	58.46	1.62	0.65263750	0.98347758	20.52	0.7940	0.9579
10	+0.20	+0.29	77.62	2.20	0.81519902	0.43091755	-27.03	0.7372	0.8894
11	-0.24	+0.34	96.39	2.69	0.66368510	0.31253072	30.61	0.6768	0.8165

(1) p Tr

Error classification and correction techniques:

	Error type	Procedure
1)	Offset errors (µ12r, µ12i):	Uncorrelated noise ⁽¹⁾
		+ 1/0 unbalance
2)	Quadrature errors $(\theta_{q1}, \theta_{q2})$:	Distributed Noise Injection (1)
3)	Non-separable in phase and amplitude errors (θ_{12}, g_{12})	Centralized Noise Injection ⁽²⁾
		(only shortest baselines)
4)	Separable phase errors (θ_1, θ_2)	Distributed Noise Injection (1)
5)	Separable amplitude errors (q1,q2)	PMS: THOT/TCOLD
6)	Antenna temperature (T_A)	3 NIRs
7)	Antenna radiation voltage patterns: $F_{n1,2}(\xi,\eta)$	Anechoic chamber measurements
		+ redundant space calibration ⁽³⁾
		 image reconstruction algorithm
8)	Fringe-washing function: r _{n1,2} (ξ,η)	Correlation at different time lags ^(4,5)
		(correlated noise injection)
		 image reconstruction algorithm
9)	Antenna position errors: (Δυ,Δν,Δw)	Image reconstruction algorithm

 ¹ Londenin, F. Mires, P. Logez-Dekker, S. J. Frasier, "Redundant Space Calibration Of Hexagonal And Y-Shaped Beamforming Radars and Interferometric Radiometers", 194, Damps, F. Torres, P. Lopez-Dekker, S. J. Frasier, "Redundant Space Calibration Of Hexagonal And Y-Shaped Beamforming Radars and Interferometric Radiometers", 11ternational Journal of Remote Sensing, Vol. 24, pp. 5183-5196, 20 Diciembre 2003
 (19, A. Camps, F. Torres, P. Lopez-Dekker, S. J. Frasier, "Redundant Space Calibration of Channels Frequency Response in Interferometric Radiometers," Electronics Letters, 21st Jonany 1999, Vol 35, No. 2, pp. 115-116
 (19, R. Butora, M. Martin-Neiro, A.L. Rivada-Antich, "Fringe-washing function calibration in aperture synthesis microwave radiometry," Radio Science, Volume 38, Issue 2, pp. 15-1, DOI 10.1027/2002R5002695

74

NOISE INJECTION RADIOMETER: V(0.0)	÷					0.19	0.49	0.00	
VIR: Sensitivity 21. /JE	0,196	K	0		1	0,19			M
NIR: Bias error	0 00891	К	0.013	K/ºC	1		0.01		M
VIR: Gain error	-0,0033	-	0	/0C	150		-0,50		M
RECEIVER & BASELINE AMPLITUDE ERRORS	1,77	25	8 28			0.00	0,00	0.88	
Amplitude calibration residual error	0.1	%	0		0.15			0.02	E
NDN Sij relative amplitude	0.037	dB	0		8,1		1	0.30	M
PMS sensitivity due to thermal noise	0.059	95	0	5	1.1	22		0.06	Ê
ow-frequency PMS random gain fluctuation	0.075	%	0		1,1			0,08	E
PMS linearity error:	0.25	96	0		1.1			0.28	M
Reciever input path Sij relative amplitude	0,01	dB	0		8,1			0,08	R
Antenna losses relative amplitude	0,02	dB	0	5	8,1			0,16	M
Error in the relative noise injected by CAS	0.67	96	0	S	0,5			0.34	M
Amplitude error due to mismatch at calibration planes	1,2	%	0		0,5	1		0,60	M
FWF(0) modulus error on distributed calibration	1,5	96	0	Q;	0,21			0,32	E
PHASE ERRORS	1,47	deg			110,100	0,00	0,00	0,40	
n-phase calibration residual error	0.018	deg	0		0.27			0.00	E
NDN Sij relative phase uncertainty	1,27	deg	0		0,27			0,34	M
Receiver input path Sij relative phase uncertainty	0,5	deg	0		0,27			0,14	R
Path antenna plane to antenna geometric center	0.5	dea	0		0.27	2		0.14	E
Residual guadrature error	0,014	deg	0		0,36	2		0,01	E
Phase error due to mismatch at calibration planes	0,13	deg	0		0,27	1		0.04	E
In-band freg dependent guadrature error	0	deg	0		0.025			0.00	E
FWF(0) phase error on distributed calibration	0,15	deg	0		0,38			0,06	E
OTHER SOURCES OF ERROR						0,00	0,00	1,02	
Sampling skew error	0,52	ns	0		0,76			0,40	M
Sampling litter error	0,03	ns	0		5			0,15	M
Comparators threshold and U-noise injection correction	0,50	cu	0		0.83	3		0.42	R
SELF-RFI&FLAT TARGET RESPONSE correction	1,00	cu	0		0,83			0,83	R
TOTAL RMS Sum (K)	fi onte	20	6	12	-	2,40	0,49	2,02	
TOTAL radiometric sensitivity						2.40			
TOTAL radiometric accuracy (PMS rum of pixel bias 8	coope bias	1			-			2.08	

IGARSS 2006. Tutorial on Aperture Synthesis Microwave Radiometers: Application to the SMOS Mission. Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006 73

					💽 esa 🕫
	RADIOMETRIC ERROR BUD	GET:	Curren	t Perfo	ormances
• Curre	ent PLM performances vs Require	ments			
	Radiometric Sensitivity (K)	Req't	X-Pol	Y-Pol	
	Ocean Salinity (150K) - Boresight	2,5	2,32	2,33	
	Ocean Salinity (150K) - 32°	4,1	3,80	3,82	
	Soil Moisture (220K) - Boresight	3,5	2,77	2,77	
	Soil Moisture (220K) - 32°	5,8	4,54	4,54	
• Radio	ometric Accuracy				
Ra	diometric Accuracy (K)	Re	q't X-P	ol Y-Po	Ы
Ra	diometric Systematic Error (TA=273 K) 3	,7 4,2	2 2,46	ò
Me	asurement Accuracy (TA=298 K)	4	,1 4,5	9 2,65	5
	Large disparity between X and	d Y du	e to NI	R beha	vior
 Impo and N 	rtant Flight Model HW measurem JIR (NIR EM performance data a	vailab	still mis le soon)	sing: Aı	ntenna, Receiver
	Denver Colorado USA July 20, 200		Compo II	BC 2006	

Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006

IN-ORBIT CALIBRATION HEADLINES

cui moues	Туре	Description and objectives
Deep Sky view	External	NIR absolute calibration:
		 Antenna branch injected noise
		 Reference branch injected noise
		• Deep sky imaging: FLAT TARGET RESPONSE (Corbella Offset correction)
		Current baseline two calibrations per month.
Moon Pointing	External	Antenna relative phase validation/correction
_		 Commissioning phase and validation activitites
Long	Internal	 U-noise injection (internal correlated noise correction)
Calibration		C-noise injection (FWF shape)
		• C-noise injection (part of the orbit) Monitoring parameter temperature drift
Short	Internal	C-noise injection:
Calibration		 PMS calibration
		◦ FWF at the origin
Selfcalibration	Internal	Calculation of normalized complex correlations:
		 Sampler offset correction (1-0 correction)
		 Quadrature correction

Basic measurements = visibility samples = complex cross-correlation of the signals $b_k(t)$ and $b_j(t)$ collected by each pair of channels (antennas + receivers)

LICEF switch S-parameters						
Symbol	S _{LCk} , S _{LHk} , S _{LVk}					
Units	Module: dB Phase: deg					
Procedure	Ground measurements between ${\rm CIP}_k$, ${\rm HIP}_k$ and ${\rm VIP}_k$ to ${\rm TRFOP}_k$ respectively. Measurements performed prior to antenna assembling.					
Measurement accuracy	Applies to relative measurements Relative module: 0.15 dB (3 sigma) S_{LCK} S_{LVK} S_{LCK} S_{LVR}					
Comments	Used to perform calibration plane translation from CIP _k to VIP _k and HIP _k					
Sensitivity of PMS gain to T	ph					
Symbol	$\mathcal{S}_{\mathcal{G}_{PMSk}}^{\wedge T_{ph}}$					
Units	%/°C					
Procedure	Ground characterization of PMS _k vs temperature. Actualized during commissioning phase and dedicated orbits.					
Measurement accuracy	TBD after EM tests					
Comments	Used to correct the effect of temperature drift in-between PMS collibrations					

Symbol	S_{k0}					
Units	Module: dB					
	Phase: deg					
Procedure	Ground measurements between port "O" (nominal and redundant Noise					
	Sources in NS4 positions) and CIP _k . Any cable used to connect the output					
	of the NDN to the CIPk connector at LICEF is part of the NDN itself					
	and must be included in the S-parameters measurements.					
Measurement accuracy	Applies to relative measurements: $\frac{S_{k0}}{S_{r0}}$, where port "r" is the reference					
	branch.					
	Relative module: 0.045 dB (3 sigma)					
	Relative phase: 1.5 deg (3 sigma)					
	Measurement accuracy must be achieved in all temperature operation					
	range.					
Comments	Used to perform:					
	 Amplitude calibration: plane translation from CIP_r (reference port) to CIP_k. (LICEF "K" port) 					
	 Phase calibration: CAS phase correction (C-Noise injection). 					

Symbol	ϕ_{H}, ϕ_{V}					
Units	Deg					
Procedure	Measured during IVT test at ESTEC					
Measurement accuracy	3/√2 deg (3 sigma)					
Comments	Used to translate the phase of calibrated visibilities from VIP _k /HIP _k planes to VAP _k /HAP _k planes. Assumed to be constant in topporture					

 $\hat{V_{kj}}$ is the *corrected* visibility (receiver k at *p*-pol and receiver *j* at *q*-pol) which, assuming both receivers at the same physical temperature T_{ph} , is given by

$$\hat{V}_{kj}^{pq} = \iint_{\xi^2 + \eta^2 \leq 1} \frac{T_{\beta}(\xi, \eta) - \delta_{pq} T_{ph}}{\sqrt{1 - \xi^2 - \eta^2}} \cdot \frac{F_{n_k}(\xi, \eta)}{\sqrt{\Omega_{a_k}}} \cdot \frac{F_{n_j}(\xi, \eta)}{\sqrt{\Omega_{a_j}}} \cdot \overline{\tilde{r}_{kj}} \left(-\frac{u\xi + v\eta}{f_0} \right) \cdot e^{-j2\pi(u\xi + v\eta)} d\xi d\eta$$

where the bar over the fringe washing function means normalized to unity at the origin, that is:

$$\overline{\tilde{r}_{kj}}(t) = \frac{\tilde{r}_{kj}^{\alpha\beta}(t)}{\tilde{r}_{kj}^{\alpha\beta}(0)}$$

is assumed to be the same for all superscript combinations (switch positions)

				PMS C	ALIBR	RATIO	N	•	e es	sa 🛷
Distrib	outed	d calib	ration							
Concio	donat	iona		aivana	in the	hub a	nd tha	finat	and an	aand
CONSIC	Jerui		All rec	ervers	in the		nu me	11.21	unu se	conu
Sectio	ons ot	The a	rms are	e ariven	TWICE	(Tor eve	en ana (oaa nois	se sour	ces),
while s	some	receiv	vers in ·	the thir	d secti	on are c	only dri	ven once	г.	
1	h	P	m	n	P	111	11	P	111	n
		γÇ.			i		n	i		<i>n</i>
F	0	ARM A			2 3 4 5 6			7 8 9		
	1	1	7	13	25	31	37	49	55	61
	2*	2*	8	14	26*	32	38	50*	56	62
	3**	3**	9	15	27**	33	39	51**	57	63
	4	4	10	16	28	34	40	52	58	64
	5	5	11	17	29	35	41	53	59	65
	6	6	12	18	30	36	42	54	60	66
	25	(13	19	31	37	43	55	61	67
	26"	8	14	20	32	38	44	56	62	68
4	27	9 10	10	21	33	39	40	57	03 64	69 70
	20	10	10	22	35	40	40	50	65	70
	30	12	18	24	36	42	48	60	66	72
	49									
	50*									
ţ	51**		* NIR	R-LICEF H in	nput ** NI	R-LICEF V	input			
	52									
	53									
	54									
IG/	ARSS 2	006. Tuto	rial on Ape	erture Synth	nesis Micro	wave Radi	ometers: A	Application	to the SMC	OS Mission.

De-normalized quadrature-corrected visibilities computed from quadrature-corrected normalized correlations and system temperatures:

$$V_{kj}^{HH} = \sqrt{T_{sys_k}^{HH} T_{sys_j}^{HH}} \mathcal{M}_{kj}^{H} \qquad V_{kj}^{UH} = \sqrt{T_{sys_k}^{UH} T_{sys_j}^{UH}} \mathcal{M}_{kj}^{U}$$
$$V_{kj}^{VV} = \sqrt{T_{sys_k}^{VV} T_{sys_j}^{VV}} \mathcal{M}_{kj}^{V} \qquad V_{kj}^{UV} = \sqrt{T_{sys_k}^{UV} T_{sys_j}^{UV}} \mathcal{M}_{kj}^{U}$$

For all baselines sharing a common noise source the *de-normalized correlation temperatures* for both warm and hot states are computed:

$$\mathcal{T}_{kj}^{\mathcal{C}_1} = \sqrt{\mathcal{T}_{sys_k}^{\mathcal{C}_1\mathcal{C}} \mathcal{T}_{sys_j}^{\mathcal{C}_1\mathcal{C}}} \mathcal{M}_{kj}^{\mathcal{C}_1} \qquad \qquad \mathcal{T}_{kj}^{\mathcal{C}_2} = \sqrt{\mathcal{T}_{sys_k}^{\mathcal{C}_2\mathcal{C}} \mathcal{T}_{sys_j}^{\mathcal{C}_2\mathcal{C}}} \mathcal{M}_{kj}^{\mathcal{C}_2}$$

 \Rightarrow phase and amplitude correction factors or fringe washing constants for all receivers connected to a given distribution network

1. Computation of auxiliary visibilities to extend the AF-FOV to periodic Earth aliases: (cont') d) Term corresponding to the antenna back lobes, since there are two directions (θ,ϕ) and $(\pi-\theta,\phi)$ that are imaged in the same (ξ,η) point: $V_{12}^{(p)}|_{back} = \frac{1}{\sqrt{\Omega}\Omega} \iint_{\frac{1}{p}} \frac{T_{pq,back}(\xi,\eta) - T_{rec}}{h - e^2 - e^2} \hat{F}_{pq1}(\xi,\eta) \hat{F}_{pq2}(\xi,\eta) \hat{F}_{12}(-\frac{u_{12}\xi + v_{12}\eta - w_{12}\sqrt{1 - \xi^2 - \eta^2}}{4}) e^{x} \left(-j2\pi \left(u_{12}\xi + v_{12}\eta - w_{12}\sqrt{1 - \xi^2 - \eta^2} \right) \right) d\xi d\eta$ Note, however, that the uncertainty in the measured antenna patterns from the back side e) Term coming from a "constant" T_B within the land-covered region and a ocean-covered region so that differential visibilities are zero-mean: $V_{land}^{pq}(u,v) = T_{land}^{pq} V_{Earth}^{pq}(u,v)$ $V_{Ocean}^{pq}(u,v)$: from ocean emission model $\Delta V^{pq}(u,v) = V^{pq}(u,v) - V_{R}^{pq}(u,v) - V_{sky}^{pq}(u,v) - V_{back}^{pq}(u,v) - T_{Land}^{pq} \overline{V_{Earth}}(u,v) - V_{Ocean}(u,v)$ $\overline{V_{Land}^{p,q}}^{=} = \frac{1}{\sqrt{\Omega,\Omega_{q}}} \sum_{\boldsymbol{\lambda} = 1} \iint_{\boldsymbol{\lambda} = 1} \frac{1}{\sqrt{1 - \varepsilon^{2} - n^{2}}} \widehat{f_{n1}}^{e}(\xi,\eta) \widehat{f_{n2}}^{e}(-\frac{u_{12}\xi + v_{12}\eta + w_{12}\sqrt{1 - \xi^{2} - \eta^{2}}}{f_{n}} \Big] \exp\Big(-j2\pi (u_{12}\xi + v_{12}\eta + w_{12}\sqrt{1 - \xi^{2} - \eta^{2}})\Big) d\xi d\eta$ IGARSS 2006. Tutorial on Aperture Synthesis Microwave Radiometers: Application to the SMOS Mission. Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006 132

Ionosphere:

• Ionosphere parameters computed based on the Intenational Reference Ionosphere '95 model. It has been implemented in a set of Fortran functions by **Dieter Bilitza**, obtained from the National Space Science Data Center ftp server:

<u>ftp://nssdc.gsfc.nasa.gov/pub/models/ionospheric/iri/iri95/fortran_code/</u>

• Geomagnetic field computed based on the International Geomagnetic Reference Field model. It has been implemented in a set of Fortran functions, obtained from the National Space Science Data Center ftp server:

<u>ftp://nssdc.gsfc.nasa.gov/pub/models/geomagnetic/igrf/fortran_co</u>

- TEC used to compute ionospheric losses
- TEC and Earth's geomagnetic field data used to compute Faraday's rotation

IGARSS 2006. Tutorial on Aperture Synthesis Microwave Radiometers: Application to the SMOS Mission. Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006 159

baselines).

NIR

NIR is a polarimetric noise injection radiometer at 1.4 GHz. Three NIR Flight Models will be included in the central hub of MIRAS. The main purposes of NIR are: (A) to provide precise measurement of the average (fully polarimetric) brightness temperature scene for the absolute calibration of the MIRAS image map (B) to measure the noise temperature level of the reference noise of Calibration Subsystem (CAS) Thus, NIR is the absolute amplitude reference of MIRAS Furthermore, NIR incorporates operational modes that allow it to form interferometric baselines with other receivers of MIRAS (so called mixed

IGARSS 2006. Tutorial on Aperture Synthesis Microwave Radiometers: Application to the SMOS Mission. Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006 173

The functions of the controller are to

- (A) inject reference noise into the two receiver chains,
- (B) regulate the amount of the injected noise to keep the system balanced with antenna temperature or with the calibration noise from CAS, and
- (C) control the switches of NIR (Dicke-switches of the receivers and the noise switches of the controller) according to the selected operation mode.
- The basic blocks of the controller are
- bias circuitry, which generates the required voltages and provides EMC protection,
- two noise injection circuitries and couplers (for vertical and horizontal polarization channels),
- and an FPGA circuitry, which controls the noise injection circuitry and front-end switches of NIR receivers.

esa 🐠

1B/2L stands for 1-bit/2-level digital output for the correlator of MIRAS,
PWR is detector signal to retrieve system temperature,
and LINP is Length of Injected Noise Pulse to retrieve antenna temperature.
Note that there are two paths for the noise injection into the receivers; through antenna branch for antenna temperature measurement and directly to the receiver's frontend switch for the calibration of the CAS' noise level.

IGARSS 2006. Tutorial on Aperture Synthesis Microwave Radiometers: Application to the SMOS Mission. Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006 175

Distributed calibration

The offset voltage can be computed independently for each case. Its final value for those receivers driven twice is the average of both.

IGARSS 2006. Tutorial on Aperture Synthesis Microwave Radiometers: Application to the SMOS Mission. Denver, Colorado, USA. July 30, 2006. © A. Camps, UPC, 2006

182