September 26 - October 2, 2020 • Virtual Symposium

Call for Papers

<u>Download PDF Call for Papers</u>	
Important Dates	
Invited Session Proposal Deadline	4 October 2019
Invited Session Proposal Results	4 November 2019
Paper Submission System On-Line	11 November 2019
Tutorial Proposal Deadline	11 November 2019
Tutorial Proposal Results	9 December 2019
Paper Submission Deadline	15 January 2020 20 January 2020
Student Paper Competition Deadline	15 January 2020
Travel Support Application Deadline	15 January 2020
Submission Status Available Online	29 March 2020
Registration Open	11 June 2020 through 2 October 2020
Final Submission Deadline	29 May 2020 19 June 2020
Presentation Video Upload Deadline	10 July 2020
Registration deadline for author with accepted paper(s) and video upload(s)	29 May 2020 15 July 2020
Presentation Videos Available	21 September 2020
IGARSS 2020	19–24 July 2020 26 September - 2 October 2020

Welcome to Waikoloa, Hawaii!

IGARSS 2020 - Remote Sensing: Global Perspectives for Local Solutions - was to be held on the Big Island of Hawaii. This island - over 4,000 square miles - has 10 of the world's 14 climate zones and lends itself to discovery for our diverse global viewpoints and discussions. You will also find the longest running active volcano in the world (continuous since 1983) and the world's largest active Volcano (Mauna Loa.)

The IGARSS 2020 conference was to be held at the Hilton Waikoloa Village on 62 oceanfront acres along the Kohala Coast. It is 20 minutes north of the Kona International Airport. This property offers tropical gardens, wildlife, Asian and Polynesian art, golf courses, tennis courts, shopping, restaurants, snorkeling, a nearby white sand beach (anaeho'omalu bay), salt-water lagoon, fresh water swimming pools, waterfalls and slides, dolphin encounters, sea turtles, and much more.

IGARSS 2020 is offering unique perspectives, discussions, research, solutions, and an opportunity to network in a beautiful environment.

Hosted by the IEEE Geoscience and Remote Sensing Society, the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2020) will be held Saturday, September 26 through Friday, October 2, 2020 in a virtual setting. The main theme of the 2020 symposium is "Remote Sensing: Global Perspectives for Local Solutions".

On behalf of the IEEE Geoscience and Remote Sensing Society and the IGARSS 2020 Organizing Committee, we invite you to participate in IGARSS 2020, the world's premier symposium on geoscience, remote sensing and related topics. We look forward to meeting you online during IGARSS 2020.

Technical Program

IGARSS is a premier event in remote sensing and provides an ideal forum for obtaining up-todate information about the latest developments, exchanging ideas, identifying future trends and making networking with the international geoscience and remote sensing community.

The IGARSS 2020 technical program will include the following general themes:

Data Analysis Methods, Classification, and Data Mining
Atmosphere
Cryosphere
Oceans
Land
Missions, Sensors and Calibration
Data Management and Education

In addition, special scientific themes will be addressed, including:

Monitoring and damage assessment of volcanoes and other natural disasters
Monitoring and Preservation of Natural Reserves
Coastal environment, its change and the impact of rising sea levels
The Great Pacific Garbage Patch
NewSpace in Remote Sensing
Artificial Intelligence in Remote Sensors
Remote sensing parameters and models for radiation energy budget

Student Paper Competition

IEEE Geoscience and Remote Sensing Society student members are invited to submit a paper to the IGARSS <u>Student Paper Competition</u>. The selection of the finalist papers will be done by a committee of experts, and the selected students will present their papers during a special session at the Symposium.

Publication of Proceedings

Accepted papers will be published in the proceedings on IEEE Xplore® only if presented at the Symopsium by one of the listed authors, duly registered.

Paper Submission

Authors who wish to give a presentation are requested to submit a paper (minimum of 2 pages; maximum of four pages). <u>Paper Submission</u> is now open!

Discussion Forum

Check out the $\underline{\sf IGARSS\ Discussion\ Forum}$ to engage in conversation over various Paper topics, GRSS related fields, and ${\sf IGARSS\ Sponsors}$

September 26 - October 2, 2020 • Virtual Symposium

Organizing Committee

General Chair

Bill Emery
University of Colorado

General Co-Chair

Adriano Camps

UPC-BarcelonaTech

Technical Program Co-Chairs

Jasmeet Judge
University of Florida

Paolo Gamba
University of Pavia

Jiancheng Shi
Chinese Academy of Sciences

Finance Chair

Paul Rosen JPL

Tutorials Chair

Scott Hensley IPL

Publicity Chair

Steve Reising

Colorado State University

Mustafa Ustuner

Yildiz Technical University

T.I.E. Forum

Nathan Longbotham Descartes Labs

Industry Liaison

Fabio Pacifici *MAXAR*

Government Liaison

Gail Skofronick Jackson

NASA Goddard Space Flight Center

1 of 2 10/1/20, 1:30 PM

Sponsorships

George Komar

Exhibits

Steven Sisk

Local Arrangements Chair

Ryan Perroy University of Hawaii Hilo

2020 IEEE - All rights reserved. Top photo $\ \, \mathbb{G} \,$ Billene Cannon

Last updated Friday, September 04, 2020

Support: webmaster@igarss2020.org Host: https://cmsworldwide.com/

Use of this website signifies your agreement to the **IEEE** Website Terms and Conditions.

2 of 2 10/1/20, 1:30 PM

September 26 - October 2, 2020 • Virtual Symposium

IGARSS 2020 Registration

Registration Terms and Policies

An existing registration record cannot be transferred to any other person.

Non-Presented Paper (No Show) Policy

The IEEE Geoscience and Remote Sensing Society enforces a "no show" policy. Any accepted paper included in the final program is expected to have at least one author or qualified proxy attend and present the paper at the conference. Authors of the accepted papers included in the final program who do not attend and present at the conference will be added to a "No Show List," compiled by the Society. The "no show" papers will not be published by IEEE on IEEE Xplore® or other public access forums, but these papers will be distributed as part of the on-site electronic proceedings and the copyright of these papers will belong to the IEEE.

Exceptions to this policy will be made by the Technical Program Chair of the conference only if there is evidence that the no show occurred because of unanticipated events beyond the control of the authors, and every option available to the authors to present the paper was exhausted. The no show authors may appeal the decision of the Technical Program Chair.

Currency & Payment

All conference transactions shall be in US Dollars.

The conference accepts payment by credit cards, check and bank transfer. Attendees not using credit cards must forward a check or money order payable to IEEE IGARSS 2020 and drawn on a US bank or a US branch of an International bank for the total registration amount in US Dollars. There will be a \$50 fee assessed for returned checks or for chargebacks issued on valid credit card charges. Registration payments must be received within 10 days of registration.

Payment by Wire Transfer and Check will not be allowed from 30 days before the symposium.

Refund Policy

All registrations are non-refundable.

If you have any questions about registering, please contact the IGARSS registrar at +1-979-846-6800 or by email to registration@igarss2020.org.

1. One copy of proceedings in electronic format (delivered online) is included in the

conference registration fee.

- 2. The regular registration fee does not include tutorials.
- 3. An existing registration record cannot be transferred to any other person.

Each attendee must register separately. No registration transfers. Attendees not using credit cards must forward a check or money order payable to **IEEE IGARSS 2020** and drawn on a US bank or a US branch of an International bank for the total registration amount in US Dollars. There will be a \$50 fee assessed for returned checks or for chargebacks issued on valid credit card charges. Registration payments must be received by the registration deadline for the rate at which you registered; if payment is not received by the deadline, you will be responsible for the higher rate. **Refund policy: No refunds will be permitted.**

Add to existing registration

If you have already registered and know your confirmation number and password, click the button below to add items to your existing registration record. **Please note, this cannot be used to register an additional person to IGARSS 2020, but add-on items to an existing registration only.**

Add to Existing Registration

If you have not yet registered for IGARSS 2020, select your membership category below, then click the **Continue Registration** button, below.

Registration Fees

Every accepted paper must be linked to a registered person by 15 July 2020. Any paper not linked to a registered person by 15 July 2020 will be withdrawn from the technical program and proceedings.

nedule	
Select your membership category. Selection of tutorials and verification of inked papers is performed on the subsequent pages. Click on the <i>Continue</i> button below to proceed with registration.	
○ GRSS Member	US \$10
○ IEEE Member	US \$10
O Non-Member	US \$10
GRSS Student Member	US \$10
O IEEE Student Member	US \$10
O Student Non- Member	US \$10
rill be waived, if at least registered (per-paper	
tration Fees per Paper	US\$ 120
ed papers is performed on ton below to proceed with	
,	GRSS Member IEEE Member Non-Member GRSS Student Member IEEE Student Member Student Non-Member ill be waived, if at least registered (per-paper cration Fees per Paper and papers is performed on

Saturday, September 26, 05:00 - 09:00 and Sunday, September 27, 05:00 - 09:00 (Two parts) Tutorial FD-1: Earth Observation Big Data Intelligence: theory and practice of deep learning and big data mining Tutorial FD-2: Machine Learning in Remote Sensing - Theory		
and practice of deep learning and big data mining		
Tutorial FD-2: Machine Learning in Remote Sensing - Theory		
and Applications for Earth Observation		
Tutorial FD-3: Mathematical Morphology in Interpolations and Extrapolations		
Tutorial FD-4: Natural disasters and hazards monitoring using Earth Observation data		
Tutorial FD-5: Open Source Imaging Spectroscopy: Visualization, Analysis, and Atmospheric Correction		
Tutorial FD-6: Scalable Machine Learning with High Performance and Cloud Computing		
Tutorial FD-7: TOPS Sentinel-1 SAR Interferometry for ground motion detection and monitoring		
Sunday, September 27, 05:00 - 09:00	Half-Day	US \$50
Tutorial HD-1: 3D/4D Radar Tomography: concepts, practice		
Tutorial HD-2: Analysis-Ready Spatio-Temporal Big Data Cubes: Standards, Tools, Services		
Tutorial HD-3: Crop physiological assessments using high resolution RGB images.		
Tutorial HD-4: Predictive Modeling of Hyperspectral Responses of Natural Materials: Challenges and Applications		
Tutorial HD-5: Remote Sensing with Reflected Global		

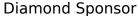
Presenting Papers

Please enter the paper ID(s) of the paper(s) you will cover with your registration here.

☐ I have read and agree to the <u>IEEE Event Terms and Conditions</u>

You must accept the IEEE Event Terms and Conditions

Every accepted paper must be linked to a registered person. Any paper not linked to a registered person by 15 July 2020 will be withdrawn from the technical program and proceedings. Please note that papers which are not registered will not be included in the IEEE Xplore Portal.


Enter the 4-digit numeric ID (e.g., 1234) given when you submitted your paper.

	Paper #1
	Paper #2
	Paper #3
	Paper #4
If you need to link more than 4 papers, contact us at	
registration@igarss2020.org	
Conference Organizer Code	
If you have been provided with a <i>conference organizer code</i> , pleas clicking on the <i>Continue Registration</i> button	e enter it here before
Conference Organizer Code	
Continue Registration	

September 26 - October 2, 2020 • Virtual Symposium

Sponsors

Click on the sponsor logo to visit sponsor's IGARSS page.

Gold Sponsors

Silver Sponsor

If you have questions or for advertising, please contact us at:

Conference Management Services, Inc. 2711 Pierre Place College Station, Texas, 77845, USA

Telephone: +1-979-846-6800 Email: exhibits@igarss2020.org

September 26 - October 2, 2020 • Virtual Symposium

Honorary Exhibitors

Exhibitor

Resonon, Inc.

Resonon designs and manufactures hyperspectral imaging systems for laboratory, outdoor, and airborne remote sensing applications.

Contact: Adam Stern, Senior Scientist

Email: stern@resonon.com

SI Imaging Services

SI Imaging Services (SIIS) is the exclusive worldwide marketing and sales representative of KOMPSAT series KOMPSAT-2, KOMPSAT-3, KOMPSAT-3A and KOMPSAT-5. SIIS contributes Remote Sensing and Earth observation industries societies by providing very high resolution optical and SAR images through over 110 sales partners worldwide. Customers from industries as well as government and international agencies are using KOMPSAT imagery for their missions and researches and achieve good results in several remote sensing applications such as mapping, agriculture, disaster management, and so on. SIIS started its business as a satellite image and service provider and extended its business to KOMPSAT operation.

Contact: Hana Kwon, Manager, Public Relations

Email: <u>publicrelations@si-imaging.com</u>

MDPI

MDPI is a pioneer in scholarly open access publishing and has supported academic communities since 1996. Remote Sensing (ISSN 2072-4292) is a peer-reviewed open access journal about the science and application of remote sensing technology, and is published semi-monthly online by MDPI. It is indexed by the Science Citation Index Expanded (Web of Science), Scopus (2018 CiteScore: 4.89), Ei Compendex, and other databases. All manuscripts are peer-reviewed and a first decision provided to authors approximately 19 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2019).

Contact: Kristy Zhang, Marketing Specialist

Email: kristy.zhang@mdpi.com

HySpex

HySpex cameras are high-performance and versatile hyperspectral cameras for applications - ranging from UAV/airborne to field, lab and industrial use of imaging spectroscopy. HySpex operate in the 0.4–2.5µm wavelength range with industry-leading performance, providing scientific-grade quality to our industry, academic, government and defense partners. HySpex is part of Norsk Elektro Optikk AS (NEO), a privately-owned Norwegian company focused on highend research within the field of electro-optics.

Contact: Hallvard Skjerping, CCO

Email: hallvard@neo.no

CRC Press/Taylor & Francis

CRC Press/Taylor & Francis is a premier global publisher of science, technology, and medical resources. We offer unique, trusted content by expert authors, spreading knowledge and promoting discovery worldwide. We aim to broaden thinking and advance understanding in the sciences, providing researchers, academics, professionals, and students with the tools they need to share ideas and realize their potential.

Contact: Irma Britton, Senior Editor Email: <u>irma.britton@taylorandfrancis.com</u>

Japan Aerospace Exploration Agency (JAXA)

The JAXA is a National Research and Development Agency that were designated to support the Japanese government's overall aerospace development and utilization.

Contact: Kazuo Umezawa, Associate Senior Engineer

Email: <u>umezawa.kazuo@jaxa.jp</u>

Headwall Photonics

Headwall's products are used every day in the lab, in the field, on the ground, under water, in the air, and in space. The company is a leading designer and manufacturer of spectral instrumentation for remote sensing, advanced machine vision, government/defense, and medical/biotech markets. The company's core technologies are producing master-quality holographic diffraction gratings, integrating compact, highperformance spectral modules into turnkey or OEM instrumentation, and creating and selling hyperspectral and now LiDAR solutions for data acquisition and exploitation. Headwall enjoys a market leadership position by designing and manufacturing spectral solutions that are customized for application-specific performance for end-users and OEM customers. The Company is based in Massachusetts where it has two facilities. European operations are located in Belgium. Recently a team from Headwall was awarded OSA's Paul F. Forman Team Engineering Excellence Award for successful

development and deployment of the state-of-the-art Chlorophyll Fluorescence Sensor for airborne imaging solar-induced fluorescence (SIF), a compact, rugged, and lightweight imaging spectrometer, optimized for cost-effective airborne retrieval of chlorophyll fluorescence emission signatures monitoring plant health in near-real-time at simultaneously high spectral and spatial resolutions.

Contact: Ross Nakatsuji, Marketing Communications Manager Email: rnakatsuji@headwallphotonics.com

NASA

NASA leads the nation on a great journey of discovery, seeking new knowledge and understanding of our planet Earth, our Sun and solar system, and the universe out to its farthest reaches and back to its earliest moments of existence. The focal point of the NASA exhibit experience will be the nine-screen Hyperwall, where scientists will share science stories throughout the week.

Contact: Winnie Humberson, Science Exhibit Mgr., Science

Mission Directorate, NASA HQ

Email: Winnie.h.humberson@nasa.gov

Alaska Satellite Facility

The Alaska Satellite Facility (ASF) operates the NASA archive of synthetic aperture radar (SAR) data from a variety of satellites and aircraft, providing these data and associated specialty support services to researchers in support of NASA's Earth Science Data and Information System (ESDIS) project. ASF downlinks, processes, archives, and distributes remote-sensing data to scientific users around the world. We promote, facilitate, and participate in the advancement of remote sensing to support national and international Earth science research, field operations, and commercial applications.

Contact: Rebecca Miller, Product Owner/Public Information

Officer

Email: rrmiller2@alaska.edu

IGARSS 2021

On behalf of the IEEE Geoscience and Remote Sensing Society and the IGARSS 2021 Organizing Committee, we are pleased to invite you to Brussels, Belgium, for the 41th annual IGARSS symposium, starting Sunday the 11th of July till Friday the 16th of July 2021.

Contact: Joost Vandenabeele, General Co-Chair

Email: info@igarss2021.com

Quartus Engineering Incorporated

Quartus Engineering specializes in system design & development, simulation & analysis, testing, prototyping and manufacturing of mechanical systems for a wide-range of industries and are experts in simulation-driven engineering. We are a complete engineering solution provider from concept,

prototype through low volume or complex production. We design for manufacturability and transition to high volumes with ease with Quartus as your guide. Quartus has a broad range of industry and product experience that includes: Civil/Space, Defense, Aircraft/Transportation, Consumer Products, Optics & Photonics and Medical/Life Science. Quartus is focused on game changing applications like remote sensing, metrology, thermal, LiDAR, use of novel materials and other innovative technologies and measurement approaches that span multiple industries and are faced with extreme environments and other complex engineering challenges.

Contact: Eileen Hooker, Marketing Coordinator

Email: eileen.hooker@quartus.com

Descartes Labs

Descartes Labs is the first company to offer a geospatial data refinery that combines a highly scalable processing and modeling platform with a multi-petabyte library of public and private data for building predictive models. We help customers create a competitive advantage by scaling geospatial data science innovation and decision automation.

Contact: Caitlin Kontgis, Director of Scientific Programs

Email: caitlin@descarteslabs.com

United Arab Emirates University

The National Space Science and Technology Center (NSSTC) was jointly established by UAE University, the UAE Space Agency and the Telecommunications Regulatory Authority's ICT Fund in 2016 at Al Ain City, UAE. The center has been established with the vision to become the leading center in the space sector in the UAE and to become a major contributor to the UAE's national strategic innovation agenda.

Contact: Sara Al Eissaee, Marketing and Outreach Executive

Email: sara.amer@uaeu.ac.ae

If you have questions or for advertising, please contact us at:

Conference Management Services, Inc. 2711 Pierre Place

College Station, Texas, 77845, USA

Telephone: +1-979-846-6800 Email: exhibits@igarss2020.org

September 26 - October 2, 2020 • Virtual Symposium

About GRSS

Welcome to the IGARSS 2020 web site! The IEEE Geoscience And Remote Sensing Symposium is the most important meeting for the membership of the IEEE Geoscience and Remote Sensing Society (GRSS).

The Geoscience and Remote Sensing Society (GRSS) is a community of researchers and practitioners collaborating and designing tools to understand our interaction with Earth's ecosystems, to monitor its environments, oceans and ice caps, and to characterize potential risks. GRSS supports a network of collaborations at a global level: come and join us!

1. WHAT IS GRSS?

The Geoscience and Remote Sensing Society (GRSS) is a technical society of the Institute of Electrical and Electronics Engineers (IEEE). GRSS fosters engagement of its members for the benefit of society through science, engineering, applications, and education as related to the development of the field of geoscience and remote sensing.

2. GRSS & IEEE

GRSS is one of the 39 societies of IEEE, the largest academic and professional society with about 430,000 members in 160 countries. GRSS has more than 4200 members in 94 countries. It has currently 79 chapters all over the world (16 of them are student chapters), and 11 ambassadors.

3. GRSS MEMBERS

Members of GRSS come from a wide variety of scientific and engineering backgrounds. Members with engineering backgrounds often support scientific investigations with the design and development of hardware and data processing techniques, requiring them to be familiar with geosciences such as geophysics, geology, hydrology, meteorology, etc. Conversely, scientists find in GRSS a forum for the evaluation and dissemination of remote sensing related science. This fusion of geoscience and engineering disciplines gives GRSS an unique interdisciplinary character and an exciting role in advancing remote sensing science and technology.

During IGARSS, GRSS members and non-members share their latest results and novel developments in the area of geoscience and remote sensing. IGARSS is a big conference, and all the technical communities that form the GRSS community are gathering in different sessions, meetings and technical activities. I am sure each of you will find in this conference topics that are directly important to your own research. However, the diverse technical program of IGARSS is also a place to engage other communities, who operate within our own field of interest but with whom traditionally we do not connect. Diversity is an advantage, and cross-fertilization of different ideas and points of view has always brought to new ideas and

new research projects.

I look forward to welcoming you at IGARSS 2020 this coming July!

Paolo Gamba

2020 GRSS President

September 26 - October 2, 2020 • Virtual Symposium

Privacy and Non-Discrimination Statements

Privacy of Information Policy: Information provided by the registrant will only be used by IEEE and its organizational units to serve the registrant for this and potentially other related IEEE products and services, and updating IEEE member records. In no way will any individual information be given through, for example sale, exchange, or loan, to a third party for any reasons except as required by the prevailing law.

Non-Discrimination: IEEE is committed to the principle that all persons shall have equal access to programs, facilities, services, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by IEEE policy and/or applicable laws. For more information on the IEEE policy visit http://www.ieee.org/nondiscrimination

Attendance at, or participation in, this conference constitutes consent to the use and distribution by IEEE of the attendee's image or voice for informational, publicity, promotional and/or reporting purposes in print or electronic communications media. No flash photography will be used. Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of IEEE. Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled as confidential and/or proprietary.

September 26 - October 2, 2020 • Virtual Symposium

2020 Geoscience and Remote Sensing Summer School

Information

Dates Tuesday, July 14 - Friday, July 17, 2020

Venue University of Hawaii at Hilo

200 W. Kawili St Hilo, Hawaii 96720

Aloha and welcome! The 2020 GRSS Summer School (GR4S) will be held the week before IGARSS 2020 on the University of Hawaii at Hilo campus on the east side of Hawaii Island, approximately 60 minutes away from the IGARSS 2020 venue. The theme of the GR4S this year is Remote Sensing and Natural Disasters. It will be a four-day course of seminar lectures, hands-on lab activities, and tours of tsunami sites and recent volcanic eruption sites, including a trip to Hawaii Volcanoes National Park. Distinguished speakers will give

lectures on SAR, thermal, and optical remote sensing, and emergency remote sensing for disasters via small unmanned aerial systems, followed by hands-on training.

Go to 2020 GRSS Summer School Website

Contact information

2020 Geoscience and Remote Sensing Summer School Committee email: $\underline{ \mbox{rperroy@hawaii.edu} }$

September 26 - October 2, 2020 • Virtual Symposium

Daily Trivia Quiz

Trivia Quiz Rules

Who doesn't like a good trivia question? We can't be together in person to experience Hawaii or "Save the Date" for next year in Brussels, do a face-to-face meeting with this year's Sponsors or to learn a few things about GRSS history...but we can have some fun AND perhaps...win a prize? A gift card for \$250 USD, which can be redeemed for merchandise or used as a charitable donation to a number of worthy causes.

Rules

- 1. Each day there will be a trivia quiz.
- Each day's questions will be based on a different theme related to IGARSS 2020 and will be released at 23:00 UTC.
- 3. Five questions per quiz, per day, and with each correct answer, you'll receive an entry to the prize drawing to take place during the closing ceremony Friday, October 2nd.
- You may take each quiz more than once, however, your last set of answers will be the ones recorded.
- 5. You need to be a registered participant in IGARSS 2020 in order to participate in each
- Each question is a multiple-choice or "true or false" format. Read each question carefully, and click on the button next to your response that you feel best answers the question.
- 7. The correct answers to each day's quiz will be provided the next day. For example, the Monday quiz answers will appear Tuesday, and so on.
- 8. Each registered participant has the potential to have 20 correct answers and a maximum of 20 entries in the prize drawing.
- 9. Click the "Take the Quiz" button to begin. When finished, click the "Submit Quiz" to enter your responses.

Take The Quiz

September 26 - October 2, 2020 • Virtual Symposium

Virtual TIE: Event Details

The TIE (technology, industry, and education) activities that are part of the annual IGARSS conference will be undergoing a format change this year. These activities will be presented as a series of free webinars distributed during the summer and autumn of 2020. We are in the process of finalizing the full slate of activities, but they will include educational seminars, code workshops, panels, and a virtual mixer! These activities are being brought to you by a number of GRSS groups including Young Professionals, IDEA, Educational Activities, and the industry outreach team. Watch your inbox, the event details on this page, and the GRSS social media channels for updates as the details become available. We look forward to seeing you virtually this year! No conference registration needed!

HSUSO/GLOBE Teacher Training 17 July, 16:00 US/Eastern

Registration link: See you next year!

GLOBE is an international program that provides students and the public worldwide with the opportunity to participate in data collection and the scientific process, and contribute meaningfully to our understanding of the Earth system and global environment. The GLOBE Program is offering educators multiple two-hour trainings over 2 days to learn how to engage 6-12 grade students in field research using GLOBE protocols.

How to Publish in GRSS and Be Effective 7 August, 09:00 US/Eastern

Registration link: See you next year!

Find your time: <u>Time Zone Converter</u> or <u>Google calendar</u>

This webinar is meant to provide basic information for authors interested in publishing in GRSS journals to create a high impact paper. Topics to be covered are paper structure and format, reproducibility and replicability, as well asethics. The webinar is intended for authors at all levels, but it is especially suited for Young Professionals and PhD students near the beginning of their careers. The instructors are Alejandro Frery, from Unversidad Federal de Alagoas, Brazil, former Editor in Chief of the IEEE Geoscience and Remote Sensing Letters, and Paolo Gamba, GRSS President.

Deep Learning in Remote Sensing: Challenges, Solutions, and What

Makes Us Different 2 September, 12:00 US/Eastern

Registration link: Zoom meeting

Find your time: Time Zone Converter or Google calendar

Join us for a fireside chat focused on the use of deep learning in remote sensing, a domain quite different from the natural image domain that deep learning algorithms are often crafted for. We will dive into how remote sensing and computer scientists have navigated this field within the remote sensing domain, what challenges they've encountered along the way, and how they've dealt with or overcome them. We'll be joined by speakers Ilke Demir (Intel), Manuel Gonzalez-Rivero (Maxar), Dalton Lunga (Oak Ridge National Laboratory), Jake Shermeyer (In-Q-Tel), and Sherrie Wang (Stanford).

Speakers, in alphabetical order:

- Ilke Demir (Intel Corporation)
- Manuel Gonzalez-Rivero (Maxar)
- Dalton Lunga (Oak Ridge National Laboratory)
- Jake Shermeyer (In-Q-Tel)
- Sherrie Wang (Stanford)

Young Professionals Mixer 9 September, 12:00 US/Eastern

Registration link: Zoom meeting

Find your time: Time Zone Converter or Google calendar

The Young Professionals (YP) mixer is a chance for GRSS YPs to have an informal meet and greet and to network with accomplished professionals from industry and academia. For 2020, this event is going to be held in a unique remote format. We will have a fun trivia competition and will invite senior GRSS members to share stories about their careers and offer advice to the YPs.

Young Professionals Panel 16 September, 12:00 US/Eastern

Registration link: Zoom meeting

Find your time: <u>Time Zone Converter</u> or <u>Google calendar</u>

The inaugural IGARSS Young Professionals (YP) panel will host academic and industry professionals from around the world to discuss how to navigate the myriad career options and the associated challenges for Young Professionals in geoscience and remote sensing. We will also host a Q&A session at the end during which selected questions will be posed to the panelists.

Geospatial Start-up Workshop: Creating a Business That Thrives 24 September, 13:00 US/Eastern

Registration link: Zoom meeting

Find your time: Time Zone Converter or Google calendar

Starting a successful geospatial business takes more than just a good idea. This workshop will walk you through the basics of setting up the right legal structure, examining the many funding options, pitching your idea to investors, and marketing your product once the business is up and running. This panel brings together four business experts with decades of experience in the geospatial industry. You will leave this workshop

understanding what it takes to start – and run – a business that succeeds for the long term in the competitive global marketplace.

Three Minute Thesis 23 September, 10:00 US/Eastern

Registration link: Zoom meeting

Find your time: Time Zone Converter or Google calendar

3MT®, founded by the University of Queensland in 2008, is an academic competition that cultivates students' presentation and research communication skills and challenges them to describe their research within three minutes to a general audience with one static slide. This competition will be held as a part of IGARSS 2020 and is open to all students. Students will be able to submit videos to a video platform of their choice, and the 10 best presenters will be selected to present to a panel of judges remotely on September 23, 2020 at 10:00 AM (US/EST). Prizes will be awarded to the top 3 presenters.

3MT IGARSS 2020 Finalists

1. Fatih Yıldız

"Monitoring and Exploring Natural Hazard Risk in Teos Ancient City Using Remote Sensing and GIS"

Dokuz Eylul University, Turkey

2. Yan Yu

"Remote Sensing and Open Social Data Integration for Urban Applications" Sun Yat-sen University, China

3. T. Warren de Wit

"Human Intent-Guided Autonomous Systems"
University of Alabama Huntsville, United States

4. Yinyi Lin

"Multisource Strategy for Shadow Free Impervious Surface Mapping" The Chinese University of Hong Kong

5. Bungo Konishi

"Complex-valued Reservoir Computing for SAR Data Analysis" Tokyo University, Japan

6. Nur Fatin Irdina Zulhamidi

"Identification of Faults Using Remote Sensing and Gravity" *Universiti Sains Malaysia*

7. Jakob Gawlikowski

"Robust Machine Learning Based Data Fusion Methods" TU Munich, Germany

8. Min Zhao

"Nonlinear Hyperspectral Data Unmixing via Deep Autoencoder Networks" Northwestern Polytechnical University, China

9. Isa Muhammad Zumo

"Evaluating Grazing Land Livestock Carrying Capacity from Satellite Data" Universiti Teknologi Malaysia

10. Endrit Shehaj

"A Journey of Satellite Signals through the Atmosphere" ETH Zurich, Switzerland

Better Tools for Reproducible Science Date/Time TBD

Registration link: Coming Soon...

During this session, attendees will work on example notebooks and exercises which analyze geospatial data in a web-hosted Project Jupyter notebook. Users will not have to

install any package or download any data. Attendees will gain experience with popular python libraries for analysis such as numpy, xarray, pandas and geopandas. Attendees will learn about how to use Jupyter notebooks and widgets to create interactive plots and visualizations that make sharing research engaging and collaborative. Attendees will learn to discover and use data remotely so that no data download is required and the process of generating results is fully repeatable for anyone with an internet connection.

Communicating Science Effectively Date/Time TBD

Registration link: Coming Soon...

This workshop will help attendees develop strong scientific communication skills across written and spoken domains. The workshop will go through the key "musts" for effective communication and tool kits for upgrading and strengthening their scientific communication. These communication strategies will cover written and visual communication in both physical and electronic media.

IDEA/WISE-E Inspire & Empower Panel 25 September, 12:00 US/Eastern

Registration link: Zoom meeting

Find your time: Time Zone Converter or Google calendar

As part of the IGARSS 2020 Virtual TIE Events, we are pleased to invite you to this session co-organized by the GRSS IDEA (Inspire, Develop, Empower, and Advance) committee and WISE-E (Women in Science, Engineering, and the Environment). We will be taking a world tour of cutting-edge remote sensing and geoscience research featuring the successful women scientists behind the work. You'll discover where and how they work, hear about their experiences in and passion in science and engineering, and learn from their journeys. The live event will feature a moderated Q&A panel.

IDEA Diversity & Inclusion Fireside Chat 21 October, 12:00 US/Eastern

Registration link: Zoom meeting

Find your time: Time Zone Converter or Google calendar

As part of the IGARSS 2020 Virtual TIE Events, we are pleased to invite you to this session organized by the GRSS IDEA (Inspire, Develop, Empower, and Advance) committee. In lieu of our annual WinGRSS luncheon, we will be hosting this informal gathering to 1) provide an update on IDEA committee activities throughout the year and 2) to hold a "fireside chat" focused on building our committee's initiatives to develop and advance diversity and inclusion within our society. This fireside chat will serve as an opportunity to discuss different types of existing diversity and inclusion programs, with an emphasis on how success for such programs is defined and measured.

CV/Resume Workshop "Students, Internships and Industry" Date/Time TBD

Registration link: Coming Soon...

Are you currently a student, academic or researcher interested in a career in industry? Are you unsure about how to convert your CV into a resume, or best practices for the job search? Join our webinar, "Students, Internships and Industry" to learn how to find and land a new position in remote sensing.

OGC API overview and Implementation Webinar Date/Time TBD

Registration link: Coming Soon...

Join OGC for an overview of the new OGC APIs designed for application developers to facilitate the sharing and using of location information across a wide variety of domains involving geospatial data. Learn how the APIs enable multiple location technologies to function seamlessly to reduce development time, accelerate integration of heterogeneous resources and improve cross-system or resource interoperability. Topics include:

- OGC APIs: Why? (covers issues with open information sharing that have led to the OGC APIs)
- OGC APIs: What? (covers the landscape of APIs)
- OGC APIs: How? (covers how contributors across the globe are working to enable them -- OGC sprints)
- OGC APIs: Examples

SpaceNet: Building an Open Source Analytics Ecosystem for Geospatial Applications
Date/Time TBD

Registration link: Coming Soon...

There has been exponential growth in computer vision research focused on deep learning techniques. The significant advances in image classification, object detection, and image segmentation have profound implications for a wide variety of geospatial applications, including foundational mapping. SpaceNet LLC, a nonprofit organization dedicated to accelerating open source, applied computer vision research, have striven to direct more research and development towards remote sensing applications. Since its informal launch in 2016, SpaceNet has labeled and open sourced over 26,000 km2 of satellite imagery and synthetic aperture radar (SAR) data, structured and hosted six public data science challenges, and open sourced 28 deep learning algorithms from the challenges. It is planning to launch its seventh public challenge in August featuring a deep time series dataset. In this talk, members from SpaceNet will provide an overview of their previous work, a deep dive into some of the key findings from recent challenges, and discussion about emerging trends in the computer vision and geospatial domains.

SpaceNet is co-founded and managed by In-Q-Tel's CosmiQ in coordination with its co-founder Maxar Technologies and the other SpaceNet Partners: Amazon Web Services (AWS), Capella Space, TopCoder, the Institute of Electrical and Electronics Engineers (IEEE) Geoscience and Remote Sensing Society (GRSS), the National Geospatial-Intelligence Agency (NGA), and Planet. All of the datasets, code, papers, and evaluations are available at www.spacenet.ai.

Platform Workshop [TBD Event Details] Date/Time TBD

Registration link: Coming Soon...

The industry workshop is an opportunity for the GRSS community to learn about geospatial software capabilities that are available to remote sensing professionals. These presentations by industry leaning professionals Register for the conference or follow GRSS to learn more about the this year's lineup is finalized.

September 26 - October 2, 2020 • Virtual Symposium

Student Paper Competition

Important Guidelines for SPC Presenters

Important Guidelines for SPC presenters they are different from the new agile format adopted in IGARSS 2020

- 1. SPC Session Format:
 - o Each student has 20 minutes allocated.
 - Use 15-16 minutes to present your slides.
 - Leave 4-5 minutes for questions from the IEEE GRSS Symposium Award Committee.
 - Audience is not allowed to ask questions in the SPC sessions.
- 2. The first author (i.e., the finalist student) is required to register and participate to the symposium, personally present the paper.
- 3. Once the technical program is available on https://igarss2020.org/, you will see the scheduled slot for your presentation.

Competition Details

All IEEE student members are invited and encouraged to enter the IGARSS 2020 Student Paper Competition. Ten finalists will be selected by a committee to present their papers during a special session at the symposium in Hawaii.

To enter, you must submit the following documents online at the paper submission page by 15 January 2020.

Publish-ready
2-column, 4-page
Proceedings Paper

This document will be judged for the SPC.

Proof of Student Status (scanned image)

Image of your student ID or a letter from your University or school stating that you are a student currently enrolled in a degree program.

Advisor Letter

| Proposition of Proposition Proposition Proposition (Proposition Proposition Proposit

A signed letter from your advisor stating that vou:

- are a candidate for a degree and IEEE student member,
- will personally present the paper if accepted,
- has a higher contribution to the presented paper than 60% (if the contribution is less than 60%, the paper is not suitable for a student paper competition and can be submitted to the normal track),
- will register and participate in the symposium, and
- will attend the Awards Banquet;

ALL THREE DOCUMENTS MUST BE READY AT THE TIME OF SUBMISSION!

Competition guidelines:

- 1. The first/principal author must be a student.
- 2. The student must be an IEEE member.
- 3. Each student can only submit one paper for consideration in the contest.
- 4. The student must be in a degree program at the time of submission of IGARSS 2020 paper.
- 5. The student must attend IGARSS 2020 and present the paper.
- 6. The student will publish the paper in the IGARSS 2020 Proceedings.
- 7. All required documents must be uploaded through the online system by 15 January 2020.

September 26 - October 2, 2020 • Virtual Symposium

Tutorials

Tutorials will be offered via Zoom at the times indicated below. Attendees must be available at the indicated time; tutorials will not be available for on-demand viewing afterwards.

Tutorial Schedule		
Tutorials	Part I	Saturday, 26 September, 05:00 - 09:00 PDT (Los Angeles, Pacific Time) Saturday, 26 September, 14:00 - 18:00 CEST (Central Europe Summer Time) Saturday, 26 September, 20:00 - 00:00 CST (China Standard Time)
	Part II	Sunday, 27 September, 05:00 - 09:00 PDT (Los Angeles, Pacific Time) Sunday, 27 September, 14:00 - 18:00 CEST (Central Europe Summer Time) Sunday, 27 September, 20:00 - 00:00 CST (China Standard Time)
Half-Day Tutorials		Sunday, 27 September, 05:00 - 09:00 PDT (Los Angeles, Pacific Time) Sunday, 27 September, 14:00 - 18:00 CEST (Central Europe Summer Time) Sunday, 27 September, 20:00 - 00:00 CST (China Standard Time)

Tutorials
FD-1: Earth Observation Big Data Intelligence: Theory and Practice of Deep Learning and Big Data Mining
FD-2: Machine Learning in Remote Sensing - Theory and Applications for Earth Observation
FD-3: Mathematical Morphology in Interpolations and Extrapolations
FD-4: Natural disasters and hazards monitoring using Earth Observation data
FD-5: Open Source Imaging Spectroscopy: Visualization, Analysis, and Atmospheric Correction
FD-6: Scalable Machine Learning with High Performance and Cloud Computing
FD-7: TOPS Sentinel-1 SAR Interferometry for ground motion detection and monitoring
HD-1: 3D/4D Radar Tomography: concepts, practice and applications
HD-2: Analysis-Ready Spatio-Temporal Big Data Cubes: Standards, Tools, Services
HD-3: Crop physiological assessments using high resolution RGB images.
HD-4: Predictive Modeling of Hyperspectral Responses of Natural Materials: Challenges and Applications

HD-5: Remote Sensing with Reflected Global Navigation Satellite System and Signals of Opportunity

FD-1: Earth Observation Big Data Intelligence: Theory and Practice of Deep Learning and Big Data Mining

Presented by Mihai Datcu, Feng Xu, Akira Hirose Available to Purchase

Part I

Sat, 26 Sep, 12:00 - 16:00 (UTC)

Sat, 26 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sat, 26 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sat, 26 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Part II

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

In the big data era of earth observation, deep learning and other data mining technologies become critical to successful end applications. Over the past several years, there has been exponentially increasing interests related to deep learning techniques applied to remote sensing including not only hyperspectral imagery but also synthetic aperture radar (SAR) imagery. This tutorial has the following three parts. The first part introduces the basic principles of machine learning, and the evolution to deep learning paradigms. It presents the methods of stochastic variational and Bayesian inference, focusing on the methods and algorithms of deep learning generative adversarial networks. Since the data sets are organic part of the learning process, the EO dataset biases pose new challenges. The tutorial answers to open questions on relative data bias, cross-dataset generalization, for very specific EO cases as multispectral, SAR observation with a large variability of imaging parameters and semantic content. The second part introduces the theory of deep neural networks and the practices of deep learning-based remote sensing applications. It introduces the major types of deep neural networks, the backpropagation algorithms, programming toolboxes, and several examples of deep learning-based remote sensing imagery processing. The last part focuses upon data treatment of and applications to phase and polarization in SAR data. Since SAR is a coherent observation, its data properties are quite special and useful for our social activities to provide us with specific feature extraction and discovery. This part deals with deep learning in complex-amplitude and polarization domains as well as s-called data structurization of such multimodal processing.

FD-2: Machine Learning in Remote Sensing - Theory and Applications for Earth Observation

Presented by Ronny Hänsch, Yuliya Tarabalka, Available to Purchase Naoto Yokoya, Andreas Ley

Part I

Sat, 26 Sep, 12:00 - 16:00 (UTC)

Sat, 26 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sat, 26 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

```
3at 26 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)
```

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Despite the wide and often successful application of machine learning techniques to analyse and interpret remotely sensed data, the complexity, special requirements, as well as selective applicability of these methods often hinders to use them to their full potential. The gap between sensor- and application-specific expertise on the one hand, and a deep insight and understanding of existing machine learning methods on the other hand often leads to suboptimal results, unnecessary or even harmful optimizations, and biased evaluations. The aim of this tutorial is threefold: First, to provide insights and a deep understanding of the algorithmic principles behind state-of-the-art machine learning approaches including Random Forests and Convolutional Networks, feature learning, incremental learning for large-scale/big data remote sensing classification. Second, to illustrate the benefits and limitations of machine learning with practical examples, including providing recommendations about proper preprocessing and initialization (e.g. data normalization), state available sources of data and benchmarks, as well as how to properly generate and sample training data. Third, to inspire new ideas by discussing unusual applications from remote sensing and other domains.

FD-3: Mathematical Morphology in Interpolations and Extrapolations

Presented by B. S. Daya Sagar

Available to Purchase

Part I

Sat, 26 Sep, 12:00 - 16:00 (UTC)

Sat, 26 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sat, 26 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sat, 26 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Part II

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Data available at multiple spatial / spectral / temporal scales pose numerous challenges to the data scientists. Of late researchers paid wide attention to handle such data acquired through various sensing mechanisms to address intertwined topics—like pattern retrieval, pattern analysis, quantitative reasoning, and simulation and modelling-for better understanding spatiotemporal behaviours of several terrestrial phenomena and processes. Various original algorithms and techniques that are mainly based on mathematical morphology (Matheron 1975, Serra 1982, Soille 2010, Sagar 2010, 2013. 2018) have been developed and demonstrated. This course that presents fundamentals of mathematical morphology and their involvement in interpolations and extrapolations with applications in geosciences and geoinformatics would be useful for those with research interests in image processing and analysis, remote sensing and geosciences, geographical information sciences, spatial statistics and mathematical morphology, mapping of earth-like planetary surfaces, etc. This course will be offered in two parts. In the morning shift all the fundamental morphological transformations would be covered. The applications of those transformations, covered in the first shift, to understand the morphological interpolations and extrapolations would be covered with several case studies in the second shift. Morning Session: Introduction to Mathematical Morphology: (i)

Binary Mathematical Morphology, (ii) Grayscale Mathematical Morphology, (iii) Geodesic and Graph Morphology Afternoon Session: Mathematical Morphology in Spatial Interpolations and Extrapolations: (i) Conversion of point-data into polygonal map via SKIZ and WSKIZ, (ii) Visualisation of spatiotemporal behaviour of discrete maps via generation of recursive median elements, (iii) Morphing of grayscale DEMs via morphological interpolations, and (iv) Ranks for pairs of spatial fields via metric based on grayscale morphological distances Bibliography 1. Georges Matheron, 1975, Random Sets and Integral Geometry (New York: John Wiley & Sons). 2. Jean Serra, Image Analysis and Mathematical Morphology, 1982, Academic Press: London, p. 610. 3. B. S. Daya Sagar and Jean Serra, 2010, Preface: Spatial Information Retrieval, Analysis, Reasoning and Modelling, International Journal of Remote Sensing, v. 31, no. 22, p. 5747-5750. 4. Pierre Soille, 2010, Morphological Image Analysis: Principles and Applications, Springer, p. 408. 5. B. S. Daya Sagar, 2013, Mathematical Morphology in Geomorphology and GISci, CRC Press: Boca Raton, p. 546. 6. B. S. Daya Sagar, 2018, Mathematical Morphology in Geosciences and GISci: An Illustrative Review. In: Daya Sagar B., Cheng Q., Agterberg F. (eds) Handbook of Mathematical Geosciences. Springer, Cham DOI: https://doi.org /10.1007/978-3-319-78999-6 35.

FD-4: Natural disasters and hazards monitoring using Earth Observation data

Presented by Ramona Pelich, Marco Chini,

Wataru Takeuchi, Young-Joo Kwak and Vitaliy Yurchenko

Part I

Sat, 26 Sep, 12:00 - 16:00 (UTC)

Sat, 26 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sat, 26 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sat, 26 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Part II

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

In recent years, natural disasters, i.e., hydro-geo-meteorological hazards and risks, have been frequently experienced by many countries across the globe. 2019 has been another year with numerous devastating disasters hitting several regions. For example, in the Bahamas, Hurricane Dorian caused massive flooding with significant damages, while Japan has been affected by cascading and interacting hazards such as catastrophic mudslides and devastating floods caused by Typhoon Hagibis. As well in 2019, north-east India was suffering badly from monsoon-related flooding and landslides as Ganga and Bagmati Rivers swell up due to heavy rainfall. This tutorial is comprised of basic theoretical and experimental information essential for an emergency hazard and risk mapping process focused on advanced satellite Earth Observation (EO) data including both SAR and Optical data. Firstly, this tutorial gives a better understanding of disaster risk in the early stage by means of EO data available immediately after a disaster occurs. Then, after several comprehensive lectures focused on floods and landslides, a hands-on session will give the opportunity to all participants to learn more about the practical EO tools available for rapid-response information. This full day tutorial will demonstrate the implementation of disaster risk reduction and sustainable monitoring for effective emergency response and management between decision and action activities.

FD-5: Open Source Imaging Spectroscopy: Visualization, Analysis, and Atmospheric Correction

Presented by David Ray Thompson

Available to Purchase

Part I

Sat, 26 Sep, 12:00 - 16:00 (UTC)

Sat, 26 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sat, 26 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sat, 26 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Part II

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Imaging spectroscopy, also known as Hyperspectral Imaging, is revolutionizing remote sensing. Spectroscopy enables quantitative mapping of materials and chemistry across wide areas. Future orbital missions by NASA and other agencies will provide these data on global scales. This is a sequence of hands-on lab experiences using open source code for imaging spectrometer data analysis. The full day is divided into a morning session for beginners, and an afternoon session dealing with cutting-edge topics for more advanced researchers. The morning session will introduce basic concepts behind these instruments and provide practical experience in visualization and analysis. The tutorials will use the open-source ISOFIT codebase (https://github.com/isofit/isofit) for atmospheric correction, and OpenSPEC for visualization capability similar to that provided in the ENVI interface. The afternoon session will focus on Bayesian methods including atmosphere/surface property estimation with rigorous uncertainty propagation. Topics include: Optimal Estimation (OE) atmospheric correction methods, principled design of model priors and constraints, and formal error analysis. Both sessions are open to all attendees, who can attend any combination in any order as desired. Tutorial materials are also available as open source resources for participants to use in their own courses.

FD-6: Scalable Machine Learning with High Performance and Cloud Computing

Presented by Gabriele Cavallaro, Shahbaz Memon and Rocco Sedona

Available to Purchase

Part I

Sat, 26 Sep, 12:00 - 16:00 (UTC)

Sat, 26 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sat, 26 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sat, 26 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Part II

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Modern Earth Observation (EO) programs have an open data policy and provide massive volume of free multi-sensor data every day. NASA's Landsat (i.e., the longest running EO program) and ESA's Copernicus provide data with high spectral-spatial coverage at high

revisiting time, which enables global monitoring of the Earth in a near real-time manner. Copernicus, with its fleet of Sentinel satellites, is now the World's largest single EO. These programs are showing that the vast amount of raw data available calls for re-definition of the challenges within the entire Remote Sensing (RS) life cycle (i.e., data acquisition, processing, and application phases). It is not by coincidence that RS data are now described under the big data terminology, with characteristics such as volume (increasing scale of acquired/archived data), velocity (rapidly growing data generation rate and realtime processing needs), variety (data acquired from multiple satellites' sensors that have different spectral, spatial, temporal, and radiometric resolutions), veracity (data uncertainty/ accuracy), and value (extracted information). The large-scale, high-frequency monitoring of the Earth requires robust and scalable Machine Learning (ML) and Deep Learning (DL) models trained over annotated (i.e., not raw) time series of multisensor images at global level (e.g., acquired by Landsat 8 and Sentinel-2). Deep Learning (DL) has already brought crucial achievements in solving RS image classification problems. The state-of-the-art results have been achieved by deep networks with backbones based on convolutional transformations (e.g., Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs)). Their hierarchical architecture composed of stacked repetitive operations enables the extraction of useful image features from raw pixel data and modelling high-level semantic content of RS images. On the one hand, DL can lead to more accurate classification results of land cover classes when networks are trained over large RS annotated datasets. On the other hand, deep networks pose challenges in terms of training time. In fact, the use of a large datasets for training a DL model requires the availability of non-negligible time resources. In this scenario, approaches relying on local workstation machines (i.e., using MATLAB, R, SAS, SNAP, ENVI, etc.), can provide only limited capabilities. Despite modern commodity computers and laptops becoming more powerful in terms of multi-core configurations and GPU, the limitations in regard to computational power and memory are always an issue when it comes to fast training of large high accuracy models from correspondingly large amounts of data. Therefore, the use of highly scalable and parallel distributed architectures (such as clusters or clouds) is a necessary solution to train DL classifiers in a reasonable amount of time, which can then also provide users with high accuracy performance in the recognition tasks. The tutorial aims at providing a complete overview for an audience that is not familiar with these topics. The tutorial will follow a two-fold approach: from selected background lectures (morning session) needed to practical hands-on exercises (afternoon session) in order to perform own research after the tutorial. The tutorial will discuss the fundamentals of what a supercomputer and a cloud consists of, and how we can take advantage of such systems to solve remote sensing problems that require fast and highly scalable solutions such as realistic real time scenarios.

FD-7: TOPS Sentinel-1 SAR Interferometry for ground motion detection and monitoring

Presented by Dinh Ho Tong Minh

Available to Purchase

Part I

Sat, 26 Sep, 12:00 - 16:00 (UTC)

Sat, 26 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sat, 26 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sat, 26 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Part II

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

This tutorial explains how to use SAR Interferometry (InSAR) techniques on real-world

TOPS Sentinel-1 images, with user-oriented (no coding skills required!) open source software. After a quick summary of SAR and InSAR theory, the tutorial presents how to apply Sentinel-1 SAR data and processing technology to identify and monitor ground deformation.

HD-1: 3D/4D Radar Tomography: concepts, practice and applications

Presented by Fabrizio Lombardini

Available to Purchase

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Thanks to the capability of providing direct physical measurements, synthetic aperture radar (SAR) Interferometry allowing generation of digital elevation models and monitoring displacements to a mm/year order, is one of the techniques that have most pushed the applications of SAR to a wide range of scientific, institutional and commercial areas, and it has provided significant returns to the society in terms of improvements in risk monitoring. SAR images relative to a same scene and suitable for interferometric processing are today available for most of the Earth, and their number is exponentially growing. Archives associated to SAR spaceborne sensors are filled by data collected with time and observation angle diversity (multipass-multibaseline data); moreover, current system trends in the SAR field involve clusters of cooperative formation-flying satellites with capability of multiple simultaneous acquisitions (tandem or multistatic SAR systems), airborne systems with multibaseline acquisition capability in a single pass are also available, and unmanned air vehicles with capability of differential monitoring of rapid phenomena are being experimented. In parallel, processing techniques have been developed, evolutions of the powerful SAR Interferometry, aimed at fully exploiting the information lying in such huge amount of multipass-multibaseline data, to produce new and/or more accurate measuring and information extraction functionalities. Focus of this tutorial is on processing methods that, by coherently combining multiple SAR images at the complex (phase and amplitude) data level, differently from phase-only Interferometry, allow improved or extended imaging and differential monitoring capabilities, in terms of accuracy and unambiguous interpretation of the measurements. The tutorial, along the lines of previous issues but in a renewed format, will cover in particular interrelated techniques that have shaped in the recent years an emerged branch of SAR interferometric remote sensing, Tomographic SAR Imaging and Information Extraction; this is playing an important role in the development of next generation of SAR products and will enhance the application spectrum of SAR systems in Earth observation, in particular for the analysis and monitoring of complex scenarios such as urban/critical infrastructure and forest or more generally volumetric scenes, e.g. ice layers and snowpacks. After briefly recalling the basic concept of SAR Interferometry, multibaseline/multipass Tomographic SAR techniques will be framed, presented, and discussed with respect to the specific applications. These techniques are 1) Multibaseline 3D Tomography, furnishing the functionality of layover scatterers elevation separation, to locate different scatterers interfering in the same pixel in complex surface geometries of man-made structures, causing signal garbling in high frequency SARs, and the functionality of full 3D imaging of volumetric scatterers, to provide a profiling of the scattering distribution also along the elevation direction for unambiguous extraction of physical and geometrical parameters in geophysical structures with vertical stratification, sensed by low frequency SARs; 2) Multipass 4D (3D+Time) and higher order Differential Tomography of multiple layover scatterers with slow deformation motions, a more recent and very promising Multidimensional Imaging mode, crossing the bridge between Differential Interferometry and Multibaseline Tomography. Basic concepts, signal models and most diffused processing techniques for 3D/4D Tomographic SAR Imaging will be described in the array beamforming processing i.e. spatial spectral estimation framework,

Fourier based, and of super-resolution kind (adaptive, and model-based). Live demonstration of these Tomographic algorithms and of their behavior will be carried out using simple simulation Matlab codes. A number of experimental results obtained with real data, multibaseline single-pass and multipass airborne, and multipass spaceborne, in X-, C-, L-, and P-band (in particular AER-II, E-SAR, ERS-1/2, COSMO-SkyMed, TerraSAR-X), over infrastructure, urban, forest, and ice areas, will be presented to show current achievements in real cases and the important application potentials of these emerged techniques. Recent new trends in the area will be finally mentioned, including hints to compressive sensing Tomography, and to concepts of higher-order ("5D") Tomography robust to temporal decorrelation and Differential Tomography of non-uniform deformation motions.

HD-2: Analysis-Ready Spatio-Temporal Big Data Cubes: Standards, Tools, Services

Presented by Peter Baumann

Available to Purchase

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Datacubes are emerging as an enabling paradigm for offering massive spatio-temporal Earth data in an analysis-ready way by combining individual files into single, homogenized objects, thereby easing access, extraction, analysis, and fusion. Essentially, datacubes unify spatio-temporal sensor, image (timeseries, simulation, and statistics data under a common modelling and servicing paradigm, independent from the variety of raster encodings utilized. In OGC and ISO standardization, coverages provide the unifying concept for spatio-temporal datacubes, with the streamlined service model of Web Coverage Service (WCS) including Web Coverage Processing Service (WCPS), OGC's geo datacube analytics language. A large, continuously growing number of open-source and proprietary tools support the coverage standards. In this tutorial we present the concept of datacubes, relevant standards, as well as interoperability successes and issues existing. We inspect various implementations and discuss their individual benefits. Based on the OGC reference implementation, rasdaman, live demos accessing existing services and real-life examples which participants can recap and modify on their Internet-connected laptop will play a key role.

HD-3: Crop physiological assessments using high resolution RGB images.

Presented by Shawn C. Kefauver

Available to Purchase

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

In this tutorial we will review in a short presentation the state-of-the-art on the use of commercially available consumer color digital cameras, which capture Red, Green and Blue light covering the visible spectrum with broad spectral bands but at high spatial resolution and with accurate color calibration. We will review various RGB vegetation indexes that use the spectral concept for the estimation of biomass and canopy chlorophyll, the Normalized Green Red Difference Index and the Triangular Greenness Index, as well as others that are in popular use based on this same concept. We will also introduce a number of spectral indexes based on alternate color space transforms such as

Hue Saturation Intensity (HSI), CIE-Lab and CIE-Luv and their practical calculations. Following this short presentation, we will look at the practical aspects of the calculation of these RGB vegetation indexes using the free software FIJI (FIJI is Just ImageJ) using both the interactive GUI (graphical user interface) of the software and also in code format. Finally, several different software plugin packages including the calculation of several of these RGB vegetation indexes, whether captured using a standard digital camera and processed locally using either the MaizeScanner

(https://integrativecropecophysiology.com/software-development/maizescanner/) or the CerealScanner (https://integrativecropecophysiology.com/software-development /cerealscanner/) FIJI plugins developed by the University of Barcelona, or even captured by mobile phone and processed remotely by server application.

HD-4: Predictive Modeling of Hyperspectral Responses of Natural Materials: Challenges and Applications

Presented by Gladimir V. G. Baranoski

Available to Purchase

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Predictive computer models, in conjunction with in situ experiments, are regularly being used by remote sensing researchers to simulate and understand the hyperspectral responses of natural materials (e.g., plants and soils), notably with respect to varying environmental stimuli (e.g., changes in light exposure and water stress). The main purpose of this tutorial is to discuss theoretical and practical issues involved in the development of predictive models of light interactions with these materials, and point out key aspects that need to be addressed to enhance their efficacy. Furthermore, since similar models are used in other scientific domains, such as biophotonics, tissue optics, imaging science and computer graphics, just to name a few, this tutorial also aims to foster the cross-fertilization with related efforts in these fields by identifying common needs and complementary resources. The presentation of this tutorial will be organized into five main sections, which are described as follows. Section 1. This section provides the required background and terminology to be employed throughout the tutorial. It starts with an overview of the main processes involved in the interactions of light with matter. A concise review of relevant optics formulations and radiometry quantities is also provided. We also examine the key concepts of fidelity and predictability, and highlight the requirements and the benefits resulting from their incorporation in applied life sciences investigations. Section 2. It has been long recognized that a carefully designed model is of little use without reliable data. More specifically, the effective use of a model requires material characterization data (e.g., size and water content) to be used as input, supporting data (e.g., absorption spectra of material constituents) to be used during the light transport simulations, and measured radiometric data (e.g., hyperspectral reflectance, transmittance and BSSDF (Bidirectional Surface Scattering Distribution Function)) to be used in the evaluation of modeled results. Besides their relative scarcity, most of measured radiometric datasets available in the literature often provide only a scant description of the material samples employed during the measurements, which makes the used of these datasets as references in comparisons with modeled data problematic. When it comes to a material's constituents in their pure form, such as pigments, data scarcity is aggravated by other practical issues. For example, oftentimes their absorption spectra is estimated either through inversion procedures, which may be biased by the inaccuracies of the inverted model, or does not take into account in vivo and in vitro discrepancies. In this section, we address these issues and highlight recent efforts to mitigate them. Section 3. For the sake of completeness and correctness, one would like to take into account all of the structural and optical characteristics of a target material during the model design stage. However, even if one is able to fully represent a

material in a molecular level, as we outlined above, data may not be available to support such a detailed representation. Hence, researchers need to find an appropriate level of abstraction for the material at hand in order to balance data availability, correctness issues and application requirements. Moreover, no particular modeling design approach is superior in all cases, and regardless of the selected level of abstraction, simplifying assumptions and generalizations are usually employed in the current models due to practical constraints and the inherent complexity of natural materials. In this section, we address these issues and their impact on the efficacy of existing simulation algorithms. Section 4. In order to claim that a model is predictive, one has to provide evidence of its fidelity, i.e., the degree to which it can reproduce the state and behaviour of a real world material in a measurable manner. This makes the evaluation stage essential to determine the predictive capabilities of a given model. In this section, we discuss different evaluation approaches, with a particular emphasis to quantitative and qualitative comparisons of model predictions with actual measured data and/or experimental observations. Although this approach is bound by data availability, it mitigates the presence of biases in the evaluation process and facilitates the identification of model parameters and algorithms that are amenable to modification and correction. In this section, we also discuss the recurrent trade-off involving the pursuit of fidelity and its impact on the performance of simulation algorithms, along with strategies employed to maximize the fidelity/cost ratio of computer intensive models. Section 5. The development of predictive light interaction models offers several opportunities for synergistic collaborations between remote sensing and other scientific domains. For instance, predictive models can provide a robust computational platform for the "in silico" investigation of phenomena that cannot be studied through traditional "wet" experimental procedures. Eventually, these investigations can also lead to the model enhancements. In this final section, we employ case studies to examine this iterative process, which can itself contribute to accelerate the hypothesis generation and validation cycles of research in different fields. We also stress the importance of reproducibility, the cornerstone of scientific advances, and address technical and political barriers that one may need to overcome in order to establish fruitful interdisciplinary collaborations.

HD-5: Remote Sensing with Reflected Global Navigation Satellite System and Signals of Opportunity

Presented by James Garrison, Adriano Camps and Estel Cardellach

Available to Purchase

Sun, 27 Sep, 12:00 - 16:00 (UTC)

Sun, 27 Sep, 20:00 - 00:00 China Standard Time (UTC +8)

Sun, 27 Sep, 14:00 - 18:00 Central Europe Summer Time (UTC +2)

Sun, 27 Sep, 05:00 - 09:00 Pacific Daylight Time (UTC -7)

Although originally designed for navigation, signals from the Global Navigation Satellite System (GNSS), ie., GPS, GLONASS, Galileo and COMPASS, exhibit strong reflections from the Earth and ocean surface. Effects of rough surface scattering modify the properties of reflected signals. Several methods have been developed for inverting these effects to retrieve geophysical data such as ocean surface roughness (winds) and soil moisture. Extensive sets of airborne GNSS-R measurements have been collected over the past 20 years. Flight campaigns have included penetration of hurricanes with winds up to 60 m/s and flights over agricultural fields with calibrated soil moisture measurements. Fixed, tower-based GNSS-R experiments have been conducted to make measurements of sea state, sea level, soil moisture, ice and snow as well as inter-comparisons with microwave radiometry. GNSS reflectometry (GNSS-R) methods enable the use of small, low power, passive instruments. The power and mass of GNSS-R instruments can be made low enough to enable deployment on small satellites, balloons and UAV's. Early research sets of satellite-based GNSS-R data were first collected by the UK-DMC satellite (2003), Tech Demo Sat-1 (2014) and the 8-satellite CYGNSS constellation (2016). Future mission

10 of 11 10/5/20, 11:29 AM

proposals, such as GEROS-ISS (GNSS ReEflectometry, Radio-Occultation and Scatterometry on the International Space Station) and GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN) will demonstrate new GNSS-R measurements of sea surface altimetry and sea ice cover, respectively. Availability of spaceborne GNSS-R data and the development of new applications from these measurements, is expected to increase significantly following launch of these new satellite missions and other smaller ones to be launched in the coming three years (ESA's PRETTY and FFSCAT; China's FY-3E; Taiwan's FS-7R). Recently, methods of GNSS-R have been applied to satellite transmissions in other frequencies, ranging from P-band (230 MHz) to K-band (18.5 GHz). So-called "Signals of Opportunity" (SoOp) methods enable microwave remote sensing outside of protected bands, using frequencies allocated to satellite communications. Measurements of sea surface height, wind speed, snow water equivalent, and soil moisture have been demonstrated with SoOp. This all-day tutorial will summarize the current state of the art in physical modeling, signal processing and application of GNSS-R and SoOp measurements from fixed, airborne and satellite-based platforms. An outline of the tutorial follows: • Introduction to the GNSS signal structure: Correlation properties of PRN codes; BPSK and BOC modulation; • Models for the reflected GNSS (GNSS-R) signal: Models for rough surface scattering, their limitations, and current attempts to improve upon them. Geometry of the bistatic radar problem. Second-order moments of the reflected signal waveform as a stochastic process. • Geophysical model functions: Ocean height spectrum models and the generation of filtered mean square slope. Models for the slope statistics (e.g. Cox and Munk) and reduction of these models to account for the L-band wavelength of GNSS-R signals. Surface reflection coefficients on land and water, and the relationship to soil moisture and ocean salinity. • Retrieval of geophysical data through inversion of scattering models. Direct inversion of scattering models, to estimate surface roughness from delay-Doppler waveform measurements. Non-linear least squares approaches and their sensitivity. Recent results on full-PDF retrievals. Faster computational methods, including series approximations, waveform peak tracking, and matched filters. Multi-look methods and their limitations. • Power calibration of the reflected signal. • Considerations for Signals of Opportunity: similarities and differences with GNSS-R and early results demonstration geophysical retrievals. • Design of GNSS-R satellite missions

11 of 11 10/5/20, 11:29 AM

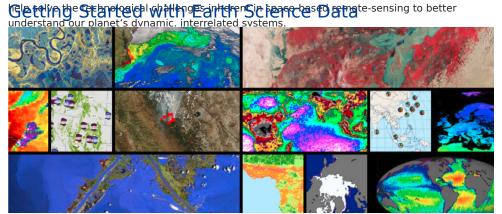
2020 IEEE International Geoscience and Remote Sensing Symposium

September 26 - October 2, 2020 • Virtual Symposium

NASA

NASA's Earth Science Division (ESD) missions help us to understand our planet's interconnected systems, from a global scale down to minute processes. ESD delivers the technology, expertise, and global observations that help us to map the myriad connections between our planet's vital processes and the effects of ongoing natural and human-caused changes. NASA Earth Science data are freely and openly available to anyone.

Observing Earth From Space



From Technology to Orbit

1 of 3 10/5/20, 11:49 AM

As the lead technology office for NASA's Earth Science Division, the <u>Earth Science Technology</u>. <u>Office (ESTO)</u> funds new technologies that can improve Earth science research. From component technologies and flight instruments to data exploitation and mission concepts, ESTO aims to

For more than 30 years, NASA's Earth Observing System Data and Information System (EOSDIS) has provided long-term measurements of our dynamic planet. The thousands of unique data products in the EOSDIS collection come from a variety of sources including the International Space Station, satellites, airborne campaigns, field campaigns, in-situ instruments, and model outputs. Get started today!

Webinars, Tutorials, and Data Recipes:

- Earthdata Webinar Catalog
- NASA Earthdata YouTube channel

Interested in receiving announcements for upcoming webinars? Sign-up for our mailing list.

Putting NASA Data to Work

2 of 3 10/5/20, 11:49 AM

The <u>Applied Sciences Program</u> helps partners use NASA's unique view from space to address real-world issues. The Applied Sciences Program works with individuals and institutions worldwide to inform decision-making, enhance quality of life and strengthen our economy. We build meaningful partnerships with government, industry and nonprofits to power innovative projects that use data from NASA's lightly bearing partly the better right here at home.

Join The Discussion

Explore NASA Earth Science

3 of 3 10/5/20, 11:49 AM

2020 IEEE International Geoscience and Remote Sensing Symposium

September 26 - October 2, 2020 • Virtual Symposium

Opening and Plenary Session

Date: Monday, September 28

Mon, 28 Sep, 12:00 - 14:00 (UTC)

Mon, 28 Sep, 20:00 - 22:00 China Standard Time (UTC +8)

Mon, 28 Sep, 14:00 - 16:00 Central Europe Summer Time (UTC +2)

Mon, 28 Sep, 05:00 - 07:00 Pacific Daylight Time (UTC -7)

Event Ended

Opening Session

Opening Remarks

William Emery, General Chair Toshio Fukuda, IEEE President Paolo Gamba, IEEE GRSS President

Plenary Presentations: Theme — "Global Perspectives for Local Solutions"

"Earth System Science: Understanding and Adapting to our Changing Planet"
Karen St. Germain

1 of 2 10/5/20, 11:48 AM

"Digital Earth: Big Data for Sustainable Development"

Stuart Minchin

"Voyaging to our Kupuna Islands: What do they tell us about climate change"

Haunani Kane

Awards Presentations

Alberto Moreira

Paolo Gamba

Awards and Recognitions

2020 IEEE Fellow Recognition

Dr. Bing Zhang Prof. Mengdao Xing Dr. Xiaofeng Li

2020 IEEE GRSS Education Award

Prof. Jon Atli Benediktsson

2020 IEEE GRSS Outstanding Service Award

Prof. Melba M. Crawford

2020 IEEE GRSS Industry Leader Award

Dr. Yu Okada

2020 IEEE GRSS Fawwaz Ulaby Distinguished Achievement Award

Dr. Riccardo Lanari

2 of 2 10/5/20, 11:48 AM

2020 IEEE International Geoscience and Remote Sensing Symposium

September 26 - October 2, 2020 • Virtual Symposium

Picture-in-Picture	
Closing Ceremony and	Awards
losing ceremony and	Awarus
Event Ended	
Download IGARSS Digital Gift	⑤ Download IGARSS Digital Gift
_	
30 MB, lower-resolution	142 MB, high-resolution

Thank you for participating - William Emery

IGARSS 2020 Summary - Adriano Camps

Society Awards - GRSS President, Paolo Gamba

GRSS Special Awards - Jasmeet Judge

IEEE GRSS Early Career Award
IEEE GRSS Regional Leader Award
IEEE Chapter Excellence Award
IEEE GRSS David Landgrebe Award

Closing Remarks and Prize Drawing

1 of 2 10/5/20, 11:50 AM

Publication Awards - Paolo Gamba

GRSS Publication Awards - Antonio Plaza

IEEE GRSS Transaction Prize Paper Award
IEEE GRSS Letters Prize Paper Award
IEEE GRSS Journal of Selected Topics in Applied Earth Observations and Remote Sensing (J-STARS) Prize Paper Award
IEEE GRSS Highest Impact Paper Award

GRSS President introducing 2019 IGARSS awards - Paolo Gamba

Symposium Awards - Francesca Bovolo

IEEE GRSS Symposium Prize Paper Award
IEEE GRSS Symposium Interactive Session Prize Paper Award

GRSS President introducing the Student Paper Competition Award - Paolo Gamba

Symposium Awards Chair, Francesca Bovolo, and GRSS President, Paolo Gamba will present three IEEE GRSS Student Prize Paper Awards including the IEEE Mikio Takagi Student Prize

GRSS President, awards remarks - Paolo Gamba

GRSS REMOTE SENSING MOOC - J. Richards

GRSS 2nd Student Grand Challenge and NSSTC Presentation - Adriano Camps

2020 IGARSS PRIZE DRAWING - Ryan Perry

From IGARSS 2020 to IGARSS 2021

William Emery and Adriano Camps Ramon Hanssen and Joost Vandenabeele

IEEE IGARSS 2020 DIGITAL GIFT - William Emery and Adriano Camps

HAWAIIAN FAREWELL - William Emery and Adriano Camps

2 of 2 10/5/20, 11:50 AM

IGARSS 2020

Session Index

Monday, September 28, 07:30 - 09:30

MO2.R1 - Land Use Applications I

MO2.R2 - Advanced Flood Monitoring and Prediction for Disaster Risk Reduction and Resilient Infrastructure

MO2.R3 - SAR Interferometry I

MO2.R4 - International Spaceborne Imaging Spectroscopy Missions: Updates and News

MO2.R5 - Hyperspectral Image Classification I

MO2.R6 - SAR Tomography

MO2.R7 - Global Satellite Capability is Key to Effective Response to All Scales of Natural

Disasters

MO2.R8 - Ocean Biology, Temperature and Salinity

MO2.R9 - RS of Snow and Frozen Ground

MO2.R10 - Remote Sensing for Forest and Vegetation Structure

MO2.R11 - Remote Sensing for Crop Monitoring, Mapping and Classification I

MO2.R12 - Urban Remote Sensing I

MO2.R13 - Recent Advances in GNSS Reflectometry

MO2.R14 - Time Series Analysis

MO2.R15 - POLSAR / POLINSAR: Applications & Analysis

MO2.R16 - Image and Data Fusion I

MO2.R17 - Detection of Small Static and Moving Objects

MO2.R18 - Change Detection in SAR Images

MO2.R19 - Electromagnetic Scattering

Tuesday, September 29, 05:00 - 07:00

TU1.R1 - Land Use Applications II

TU1.R2 - Monitoring and Damage Assessment of Natural Disasters I

TU1.R3 - SAR Interferometry II

TU1.R4 - Novel Active and Passive Microwave Satellite Missions

TU1.R5 - 3D Terrain Mapping / Tomographic Imaging of Forest and Ionosphere

TU1.R6 - Advanced Learning Methods for Hyperspectral Classification

TU1.R7 - Learning and Transformation for Image Classification

TU1.R8 - Ocean Surface Winds and Currents I

TU1.R9 - Ice Sheets and Glaciers

TU1.R10 - GeoAl and Machine Learning for GIScience

TU1.R11 - Data Fusion: Optical

TU1.R12 - Change Detection in Optical Images

TU1.R13 - Monitoring and Preservation of Natural Reserves and Coastal Areas

TU1.R14 - Passive Optical, Hyperspectral Sensors and Calibration I

TU1.R15 - Remote Sensing Parameters and Models for Radiation Energy Budget

TU1.R16 - POLSAR Analytic Techniques

TU1.R17 - Machine Learning for Earth Observation I

TU1.R18 - Target Detection using SAR Data

TU1.R19 - Clouds and Numerical Weather Prediction

TU1.R20 - Student Paper Contest Finalists I

Tuesday, September 29, 07:30 - 09:30

TU2.R1 - NASA Soil Moisture Active Passive Mission Extended Phase Observations and

Results

TU2.R2 - Monitoring and Damage Assessment of Natural Disasters II

TU2.R3 - Differential SAR Interferometry I

TU2.R4 - Optical Satellite Missions I

TU2.R5 - Hyperspectral Image Classification II

TU2.R6 - IEEE GRSS Data Fusion Contest

TU2.R7 - Spatial Analysis, Modeling and Computing for GIScience

TU2.R8 - Ocean Surface Winds and Currents II

TU2.R9 - Sea Ice I

TU2.R10 - Remote Sensing for Forest and Vegetation Structure, Health and Growth I

TU2.R11 - Remote Sensing for Crop Parameters I

TU2.R12 - Multispectral Urban Remote Sensing

TU2.R13 - Advances in Reflectometry with GNSS and Signals of Opportunity (GNSS+R)

TU2.R14 - Advancements in the Open Data Cube and Analysis Ready Data

TU2.R15 - TanDEM-X Mission Status and Science Activities

TU2.R16 - Processing and Imaging Techniques I

TU2.R17 - Physical Modeling in Microwave and Optical Remote Sensing

TU2.R18 - Detection and Segmentation using Very High Resolution Imaging

TU2.R19 - Clouds and Precipitation I

TU2.R20 - Student Paper Contest Finalists II

Wednesday, September 30, 05:00 - 07:00

WE1.R1 - Soil Moisture I

WE1.R2 - Monitoring and Damage Assessment of Natural Disasters III

WE1.R3 - Differential SAR Interferometry II

WE1.R4 - Lidar Science and Technology

WE1.R5 - Advanced Clustering Methods for Remote Sensing Data I

WE1.R6 - Model Inversion and Parameter Estimation

WE1.R7 - Optical Satellite Missions II

WE1.R8 - Coastal Zone

WE1.R9 - Sea Ice II and Permafrost

WE1.R10 - Remote Sensing for Forest and Vegetation Classification, Growth, and Dynamics

WE1.R11 - Remote Sensing for Crop Monitoring, Mapping and Classification II

WE1.R12 - SAR Instruments and Calibration

WE1.R13 - Recent Advances in GNSS-Reflectometry: Calibration, Coherent/Incoherent

Scattering, and Land Applications

WE1.R14 - Data Management and Systems I

WE1.R15 - Passive Optical, Hyperspectral Sensors and Calibration II

WE1.R16 - Processing and Imaging Techniques II

WE1.R17 - Detection and Classification in Urban Environment

WE1.R18 - Vessels Detection using Remote Sensing Data

WE1.R19 - Clouds and Precipitation II

WE1.R20 - Processing Schemes for Hyperspectral Imaging

Wednesday, September 30, 07:30 - 09:30

- WE2.R1 Soil Moisture Related Applications
- WE2.R2 Monitoring and Damage Assessment of Natural Disasters IV
- WE2.R3 Spatial and Temporal Interpolation Approaches and Applications
- WE2.R4 Space Lidar: Missions, Technologies and Observations
- WE2.R5 Advanced Clustering Methods for Remote Sensing Data II
- WE2.R6 Ground Penetrating Radar
- WE2.R7 Incorporating Physics into Deep Learning
- WE2.R8 Remote Sensing Measurements of Small Scale and Submesoscale Processes in the Ocean
- WE2.R9 Adaptive Segmentation and Optimization
- WE2.R10 Remote Sensing for Forest and Vegetation Structure, Health and Growth II
- WE2.R11 Remote Sensing for Crop Monitoring, Mapping and Classification III
- WE2.R12 Advances in Regression, Super-resolution and Denoising
- WE2.R13 Recent Advances in GNSS-Reflectometry: Cryospheric Applications and Novel Techniques
- WE2.R14 Data Management and Education I
- WE2.R15 KOMPSAT and New Space SAR Instruments and Constellations
- WE2.R16 Processing and Imaging Techniques III
- WE2.R17 UAV and Airborne Platforms Applications I
- WE2.R18 Deep and Semantic Learning for Object Detection
- WE2.R19 Global Precipitation Measurement Mission with Emphasis on Coastal Observations

Thursday, October 1, 05:00 - 07:00

- TH1.R1 Soil Moisture II
- TH1.R2 Adaptive and Neural Methods for Object Recognition
- TH1.R3 Feature Reduction by Neural and/or Spatial Characterization I
- TH1.R4 Wetlands and Inland Waters I
- TH1.R5 Classification Methods for SAR Data
- TH1.R6 Land Cover Dynamics I
- TH1.R7 Target Detection II
- TH1.R8 Ocean Surface Winds and Currents III
- TH1.R9 Semantic Learning for Image Analysis
- TH1.R10 Remote Sensing for Forest and Vegetation Growth and Dynamics
- TH1.R11 Remote Sensing for Crop Monitoring, Mapping and Classification IV
- TH1.R12 Regression and Estimation Methods and Applications
- TH1.R13 Microwave Radiometer Calibration and RFI I
- TH1.R14 Data Management and Education II
- TH1.R15 Passive Optical, Hyperspectral Sensors and Calibration III
- TH1.R16 Spaceborne Imaging Techniques
- TH1.R17 Learning and Adaptive Methods for Image Clustering
- TH1.R18 Analysis of Multitemporal Images
- TH1.R19 Atmospheric Sounding: Missions, Technology, Methods and Applications

Thursday, October 1, 07:30 - 09:30

- TH2.R1 Soil Properties
- TH2.R2 Analytic Center Frameworks for Monitoring and Assessing Disasters at Diverse Spatiotemporal Scales

<u> TH2.R3 - Feature Reduction l</u>	<u> </u>	Neura	l and/or	<u>S</u> r	<u>patial</u>	Chara	<u>acterization II</u>
--------------------------------------	----------	-------	----------	------------	---------------	-------	------------------------

TH2.R4 - Next Generation of LEO/GEO Microwave and Infrared Sounders

TH2.R5 - Data Fusion: SAR and Optical

TH2.R6 - Land Cover Dynamics II

TH2.R7 - Integrating Physical Models into Machine Learning (ML) Models

TH2.R8 - Ocean Altimetry

TH2.R9 - Airborne/Ground-base and Processing Imaging Techniques

TH2.R10 - Remote Sensing Methods for Forest and Vegetation Properties

TH2.R11 - Envisioning the Role of Remote Sensing in Agriculture in 2030

TH2.R12 - Advanced Remote Sensing Data Analysis for Sustainable Development

TH2.R13 - Radio Frequency Interference (RFI) in Microwave Remote Sensing

TH2.R14 - Data Management and Systems II

TH2.R15 - ALOS-2/-4

TH2.R16 - Remote Sensing in the Energy Industry: A Tool to Monitor Environmental Footprints and Reduce Risks

TH2.R17 - Global Sensing through New Observing Strategies for Local Solutions

TH2.R18 - Hyperspectral Unmixing

TH2.R19 - Satellite Remote Sensing of Atmospheric Composition: Algorithms, Applications,

and Process Studies I

TH2.R20 - Detection of Objects in Complex Environments

Friday, October 2, 05:00 - 07:00

```
FR1.R1 - Soils and Hydrology
```

FR1.R2 - Machine Learning for Earth Observation II

FR1.R3 - SAR Polarimetry: Theory and Applications

FR1.R4 - Wetlands and Inland Waters II

FR1.R5 - Networks and Time Series Methods for Remote Sensing

FR1.R6 - Image and Data Fusion II

FR1.R7 - Data Fusion: The AI Era

FR1.R8 - Ocean Biology, Temperature and Salinity, Altimetry and Coastal Zone

FR1.R9 - Processing and Imaging Techniques IV

FR1.R10 - Topography, Geology and Geomorphology I

FR1.R11 - Remote Sensing for Crop Parameters II

FR1.R12 - Unmixing and Anomaly Detection

FR1.R13 - Microwave Radiometer Calibration and RFI II

FR1.R14 - Target Detection and Localization

FR1.R15 - UAV and Airborne Platforms Applications II

FR1.R16 - Processing and Imaging Techniques V

FR1.R17 - Machine Learning for Multitemporal Image Analysis

FR1.R18 - Network Based Classifier

FR1.R19 - Satellite Remote Sensing of Atmospheric Composition: Algorithms, Applications,

and Process Studies II

Friday, October 2, 07:30 - 09:30

FR2.R1 - Hydrologic Remote Sensing, Modeling and Data Assimilation

FR2.R2 - Machine Learning and Artificial Intelligence for Remote Sensing

FR2.R3 - Object Detection and Segmentation

FR2.R4 - New Algorithms for NewSpace: Detecting Difficult Targets

FR2.R5 - Data Fusion: Hyperspectral and Lidar

FR2.R6 - Advanced Processing Tools for Feature Extraction and Reductions

FR2.R7 - Deep Learning Meets Earth Sciences: From Hybrid Modeling to Explainability

FR2.R8 - Marine Coastal Processes monitored by SAR

FR2.R9 - Classification Methods

FR2.R10 - Topography, Geology and Geomorphology II

FR2.R11 - Remote Sensing for Crop Parameters III

FR2.R12 - Target Detection I

FR2.R13 - Microwave Radiometer Instrumentation and Data Analysis

FR2.R14 - Remote Sensing for Mineral and Oil & Gas Exploration and Production

FR2.R15 - Copernicus C- and L- band SAR Missions: Status, Evolution and Contribution to

Monitoring of Geohazards, Natural Disasters and Cryosphere Dynamics

FR2.R16 - Enhancement Methods for Image Analysis

FR2.R17 - Bistatic and Digital Beamforming SAR

FR2.R18 - Analysis of Satellite Images Time Series

FR2.R19 - Satellite Remote Sensing of Atmospheric Composition: Algorithms, Applications, and Process Studies III

MO2.R1 - Land Use Applications I Monday, September 28, 07:30 - 09:30 • Room 1

MO2.R1.1: A MULTI-STAGE NETWORK FOR IMPROVING THE SAMPLE QUALITY IN AERIAL IMAGE OBJECT DETECTION

Han, Wei, China University of Geosciences (Wuhan), China Feng, Ruyi, China University of Geosciences (Wuhan), China Wang, Lizhe, China University of Geosciences (Wuhan), China Li, Fengpeng, China University of Geosciences (Wuhan), China Wu, Lin, China University of Geosciences (Wuhan), China

MO2.R1.2: URBAN LAND-USE AND LAND-COVER MAPPING BASED ON THE CLASSIFICATION OF TRANSPORT DEMAND AND REMOTE SENSING DATA

<u>Tacconi, Chiara</u>, University of Genoa, Italy <u>Tuscano, Maria Pia</u>, University of Genoa, Italy <u>Moser, Gabriele</u>, University of Genoa, Italy <u>Sacco, Nicola</u>, University of Genoa, Italy

MO2.R1.3: A STUDY OF DETECTING COAL SEAM FIRES BY REMOVING OTHER HIGH TEMPERATURE LOCATIONS FROM LANDSAT 8 OLI_ITIRS IMAGES

<u>Mukherjee. Jit</u>, Indian Institute of Technology Kharagpur, India <u>Mukhopadhyay, Jayanta</u>, Indian Institute of Technology Kharagpur, India <u>Chakravarty, Debashish</u>, Indian Institute of Technology Kharagpur, India <u>Aikat, Subhas</u>, Indian Institute of Technology Kharagpur, India

MO2.R1.4: ANALYSIS OF OIL STORAGE TREND USING KOMPSAT-5 SAR DATA

Back, Minyoung, SI Analytics, Korea (South) Jeon, Taegyun, SI Analytics, Korea (South)

MO2.R1.5: DENSE GREENHOUSE EXTRACTION IN HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGERY

<u>Chen, Dingyuan</u>, Wuhan University, China <u>Zhong, Yanfei</u>, Wuhan University, China <u>Ma, Ailong</u>, Wuhan University, China <u>Cao, Liqin</u>, Wuhan University, China

MO2.R1.6: DETECTION OF LANDSLIDES INDUCED BY THE 2018 HOKKAIDO EASTERN IBURI EARTHQUAKE USING MULTI-TEMPORAL ALOS-2 IMAGERY

<u>Liu, Wen</u>, Chiba University, Japan <u>Yamazaki, Fumio</u>, National Research Institute for Earth Science and Disaster Resilience, Japan

MO2.R1.7: SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER

Prudente, Victor Hugo Rohden, National Institute for Space Research, United States Sanches, leda Del'Arco, National Institute for Space Research, Brazil Adami, Marcos, National Institute for Space Research, Brazil Skakun, Sergii, University of Maryland, United States Oldoni, Lucas Volochen, National Institute for Space Research, Brazil Xaud, Haron Abrahim Magalhaes, Brazilian Agricultural Research Corporation, Brazil Xaud, Maristela Ramalho, Brazilian Agricultural Research Corporation, Brazil Zhang, Yiming, University of Maryland, United States

MO2.R1.8: VERIFYING RAPID INCREASING OF MEGA-SOLAR PV POWER PLANTS IN JAPAN BY APPLYING A CNN-BASED CLASSIFICATION METHOD TO SATELLITE IMAGES

Kouyama, Toru, National Institute of Advanced Industrial Science and Technology, Japan Imamoglu, Nevrez, National Institute of Advanced Industrial Science and Technology, Japan Imai, Masataka, National Institute of Advanced Industrial Science and Technology, Japan Nakamura, Ryosuke, National Institute of Advanced Industrial Science and Technology, Japan

MO2.R1.9: AGRICULTURE MULTISPECTRAL UAV IMAGE REGISTRATION USING SALIENT FEATURES AND MUTUAL INFORMATION

Stempliuk, Sergio, Agricultural Innovation, Brazil Menotti, David, Federal University of Paraná, Brazil

MO2.R1.10: INTRINSIC IMAGE DECOMPOSITION-BASED RESOLUTION ENHANCEMENT FOR MINERAL MAPPING

<u>Duan, Puhong</u>, Hunan University, China <u>Ghamisi, Pedram</u>, Helmholtz Institute Freiberg for Resource Technology, Germany <u>Jackisch</u>, <u>Robert</u>, Helmholtz Institute Freiberg for Resource Technology, Germany <u>Kang</u>, <u>Xudong</u>, Hunan University, China <u>Gloaguen</u>, <u>Richard</u>, Helmholtz Institute Freiberg for Resource Technology, Germany <u>Li</u>, <u>Shutao</u>, Hunan University, China

MO2.R1.11: IMPACT OF SMALL DAMS ON VEGETATION COVER IN THE POTOHAR REGION OF PAKISTAN

Pahnwar, Vengus, U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology Jamshoro, Pakistan <u>Ullah, Asmat</u>, U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology Jamshoro, Pakistan <u>Zaidi, Arjumand</u>, U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology Jamshoro, Pakistan

MO2.R2 - Advanced Flood Monitoring and Prediction for

Monday, September 28, 07:30 - 09:30 \circ Room 2

Disaster Risk Reduction and Resilient Infrastructure

MO2.R2.1: APPLYING REMOTE SENSING TO SUPPORT FLOOD RISK ASSESSMENT AND RELIEF AGENCIES: A GLOBAL TO LOCAL APPROACH

<u>Kettner, Albert J.</u>, University of Colorado, United States <u>Schumann, Guy J.-P.</u>, Remote Sensing Solutions, United States <u>Brakenridge, G. Robert</u>, University of Colorado, United States

MO2.R2.2: AUTOMATIC NEAR-REAL TIME FLOOD EXTENT AND DURATION MAPPING BASED ON MULTI-SENSOR EARTH OBSERVATION DATA

<u>Martinis, Sandro</u>, German Aerospace Center (DLR), Germany <u>Wieland, Marc</u>, German Aerospace Center (DLR), Germany <u>Rättich, Michaela</u>, German Aerospace Center (DLR), Germany <u>Böhnke, Christian</u>, German Aerospace Center (DLR), Germany <u>Riedlinger, Torsten</u>, German Aerospace Center (DLR), Germany

MO2.R2.3: FLOOD MAPPING USING UAVSAR AND CONVOLUTIONAL NEURAL NETWORKS

Denbina, Michael, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Towfic, Zaid, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Thill, Matthew, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Bue, Brian, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Kasraee, Neda, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Peacock, Annemarie, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Lou, Yunling, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

MO2.R2.4: SYSTEMATIC AND AUTOMATIC LARGE-SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA

Chini, Marco, Luxembourg Institute of Science and Technology, Luxembourg Pelich, Ramona, Luxembourg Institute of Science and Technology, Luxembourg Hostache, Renaud, Luxembourg Institute of Science and Technology, Luxembourg Matgen, Patrick, Luxembourg Institute of Science and Technology, Luxembourg Bossung, Christian, Luxembourg Institute of Science and Technology, Luxembourg Campanella, Paolo, FadeOut Software srl, Italy Rudari, Roberto, CIMA Research Foundation, Italy Bally, Philippe, European Space Agency (ESA-

ESRIN), Italy

MO2.R2.5: THE ROLE OF CO- AND CROSS-POLARIZATIONS INSAR COHERENCES IN MAPPING FLOODED URBAN AREAS

Chini, Marco, Luxembourg Institute of Science and Technology, Luxembourg Pelich, Ramona, Luxembourg Institute of Science and Technology, Luxembourg Pulvirenti, Luca, CIMA Research Foundation, Italy Pierdicca, Nazzareno, Sapienza University of Rome, Italy Hostache, Renaud, Luxembourg Institute of Science and Technology, Luxembourg Matgen, Patrick, Luxembourg Institute of Science and Technology, Luxembourg

MO2.R2.6: A STUDY OF AUTOMATIC FLOOD-AREA DETECION USING ALOS-2 AND ANCILLARY DATA

Ohki, Masato, Japan Aerospace Exploration Agency, Japan <u>Yamamoto, Kosuke</u>, Japan Aerospace Exploration Agency, Japan <u>Tadono, Takeo</u>, Japan Aerospace Exploration Agency, Japan

MO2.R2.7: MULTI-PERSPECTIVE FRAMEWORK FOR 4D-BIM-INFRASTRUCTURE MANAGEMENT BY UTILIZING EO DATA

<u>Kwak, Young-Joo</u>, National Institute for Land and Infrastructure Management (NILIM-MLIT), lapan

MO2.R2.8: AUTOMATED INDUNATION MAPPING: COMPARISON OF METHODS

<u>Gebrehiwot, Asmamaw</u>, North Carolina Agricultural and Technical State University, United States <u>Hashemi-Beni, Leila</u>, North Carolina Agricultural and Technical State University, United States

MO2.R3 - SAR Interferometry I

Monday, September 28, 07:30 - 09:30 • Room 3

MO2.R3.1: GULF STREAM DETECTION AND ESTIMATION WITH RADARSAT-2 ALONG-TRACK INTERFEROMETRY

Rashid, Mamoon, Defence Research and Development Canada (DRDC), Canada Gierull, Christoph, Defence Research and Development Canada (DRDC), Canada

MO2.R3.2: EXPERIMENTAL STUDY ON ALONG TRACK TARGET VELOCITY ESTIMATION FOR MULTIPLE APERTURE SAR-MTI CONFIGURATION

<u>Suwa, Kei</u>, Mitsubishi Electric Corporation, Japan <u>Wakayama, Toshio</u>, Mitsubishi Electric Corporation, Japan

MO2.R3.3: ON THE USE OF PRF DITHERING FOR WIDE SWATH, FINE RESOLUTION INSAR

Zebker, Howard, Stanford University, United States

MO2.R3.4: FEASIBILITY OF RETRIEVING SOIL MOISTURE FROM INSAR DECORRELATION PHASE AND CLOSURE PHASE

<u>Michaelides, Roger</u>, Stanford University, United States <u>Zebker</u>, <u>Howard</u>, Stanford University, United States

MO2.R3.5: A PHYSICS-BASED DECORRELATION PHASE COVARIANCE MODEL FOR EFFECTIVE DECORRELATION NOISE REDUCTION IN INTERFEROGRAM STACKS

Zheng, Yujie, California Institute of Technology, United States Zebker, Howard, Stanford University, United States Michaelides, Roger, Stanford University, United States

MO2.R3.6: A DEEP LEARNING BASED METHOD FOR LOCAL SUBSIDENCE DETECTION AND INSAR PHASE UNWRAPPING: APPLICATION TO MINING DEFORMATION MONITORING

<u>Wu, Zhipeng</u>, Aerospace Information Research Institute, China <u>Zhang, Heng</u>, Aerospace Information Research Institute, China <u>Wang, Yingjie</u>, Aerospace Information Research Institute, China <u>Wang, Teng</u>, Peking University, China <u>Wang, Robert</u>, Aerospace Information Research Institute, China

MO2.R3.7: A THREE-STAGE FRAMEWORK FOR MULTI-BASELINE INSAR PHASE UNWRAPPING

Xu. Junyi, Northwestern Polytechnical University, China <u>Yu, Hanwen</u>, University of Houston, United States <u>Liu, Songlin</u>, Wuhan University, China

MO2.R3.8: IMPROVED INSAR LAYOVER AND SHADOW DETECTION USING MULTI-**FEATURE**

Wang, Siyuan, Beihang University, China Xu, Huaping, Beihang University, China Yang, Bo, Beihang University, China Luo, Yao, Beihang University, China

MO2.R3.9: AN ADAPTIVE STATISTICAL MULTI-GRID DINSAR TECHNIQUE FOR STUDYING MULTI-SCALE EARTH SURFACE DEFORMATION PHENOMENA

Mastro, Pietro, Università degli Studi della Basilicata, Italy Falabella, Francesco, Università degli Studi della Basilicata, Italy Pepe, Antonio, Italian National Council of Research, Italy

MO2.R3.10: QUANTIFYING THE EFFECT OF THE WIND ON FOREST CANOPY HEIGHT ESTIMATION USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR SYSTEMS

Benson, Michael, University of Michigan, United States Pierce, Leland, University of Michigan, United States Sarabandi, Kamal, University of Michigan, United States

MO2.R4 - International

Monday, September 28, 07:30 - 09:30 • Room 4

Spaceborne Imaging

Spectroscopy Missions: Updates and News

MO2.R4.1: NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND **NEXT STEPS**

Thompson, David, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Schimel, David, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Poulter, Benjamin, NASA Goddard Space Flight Center, United States Brosnan, lan, NASA Ames Research Center, United States Hook, Simon, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Green, Robert, NASA Jet Propulsion Laboratory, United States Glenn, Nancy, University of New South Wales, Australia Guild, Liane, NASA Ames Research Center, United States Henn, Christopher, NASA Goddard Space Flight Center, United States Cawse-Nicholson, Kerry, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Kokaly, Ray, United States Geological Survey, United States Lee, Christine, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Luvall, Jeffrey, NASA Marshall Space Flight Center, United States Miller, Charles, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Nastal, Jamie, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Pavlick, Ryan, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Phillips, Benjamin, National Aeronautics and Space Administration (NASA), United States Schneider, Fabian, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Schollaert Uz, Stephanie, NASA Goddard Space Flight Center, United States Serbin, Shawn, Brookhaven National Laboratory, United States Stavros, Natasha, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Townsend, Philip, University of Wisconsin-Madison, United States Turner, Woody, National Aeronautics and Space Administration (NASA), United States Turpie, Kevin, University of Maryland Baltimore County, United States Wang, Weile, NASA Ames Research Center, United States

MO2.R4.2: HYPERSPECTRAL IMAGER SUITE (HISUI): ITS LAUNCH AND CURRENT **STATUS**

Matsunaga, Tsuneo, National Institute for Environmental Studies, Japan Iwasaki, Akira, University of Tokyo, Japan <u>Tachikawa, Tetsushi</u>, Japan Space Systems, Japan <u>Tanii, Jun</u>, Japan Space Systems, Japan Kashimura, Osamu, Japan Space Systems, Japan Mouri, Koichiro, Japan Space Systems, Japan Inada, Hitomi, Japan Space Systems, Japan Tsuchida, Satoshi, National Institute of Advanced Industrial Science and Technology, Japan Nakamura, Ryosuke, National Institute of Advanced Industrial Science and Technology, Japan Yamamoto, Hirokazu, National Institute of Advanced Industrial Science and Technology, Japan Iwao, Koki, National Institute of Advanced Industrial Science and Technology, Japan

MO2.R4.3: DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS

Heiden, Uta, German Aerospace Center (DLR) Oberpfaffenhofen, Germany Alonso Gonzalez, Kevin, German Aerospace Center (DLR) Oberpfaffenhofen, Germany Bachmann, Martin, German Aerospace Center (DLR) Oberpfaffenhofen, Germany Burch, Kara, Innovative

Imaging and Research, Corp. (I2R), United States <u>Carmona, Emiliano</u>, German Aerospace Center (DLR) Oberpfaffenhofen, Germany <u>Cerra, Daniele</u>, German Aerospace Center (DLR) Oberpfaffenhofen, Germany <u>de los Reyes, Raquel</u>, German Aerospace Center (DLR) Oberpfaffenhofen, Germany <u>Dietrich, Daniele</u>, German Aerospace Center (DLR) Oberpfaffenhofen, Germany <u>Knodt, Uwe</u>, German Aerospace Center (DLR) Koeln, Germany <u>Krutz, David</u>, German Aerospace Center (DLR) Berlin, Germany <u>Mueller, Rupert</u>, German Aerospace Center (DLR) Oberpfaffenhofen, Germany <u>Pagnutti, Maria</u>, Innovative Imaging and Research, Corp. (I2R), United States <u>Richter, Rudolf</u>, German Aerospace Center (DLR) Oberpfaffenhofen, United States <u>Ryan, Robert</u>, Innovative Imaging and Research, Corp. (I2R), United States <u>Sebastian</u>, <u>Ilse</u>, German Aerospace Center (DLR) Berlin, Germany <u>Tegler, Mirco</u>, German Aerospace Center (DLR) Neustrelitz, Germany

MO2.R4.4: THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES

Chabrillat, Sabine, Helmholtz Center Potsdam GFZ German Research Center for Geosciences, Germany Guanter, Luis, Universitat Politècnica de València, Spain Segl, Karl, Helmholtz Center Potsdam GFZ German Research Center for Geosciences, Germany Foerster, Saskia, Helmholtz Center Potsdam GFZ German Research Center for Geosciences, Germany Fischer, Sebastian, German Aerospace Center (DLR), Germany Rossner, Godela, German Aerospace Center (DLR), Germany Schickling, Anke, German Aerospace Center (DLR), Germany Honold, Hans-Peter, OHB System AG, Germany Storch, Tobias, German Aerospace Center (DLR), Germany

MO2.R4.5: THE HYPERSPECTRAL PRISMA MISSION IN OPERATIONS

Caporusso, Giacomo, Politecnico di Bari, Italy Lopinto, Ettore, ASI-Agenzia Spaziale Italiana, Italy Lorusso, Rino, ASI-Agenzia Spaziale Italiana, Italy Loizzo, Rosa, Agenzia Spaziale Italiana, Italy Guarini, Rocchina, ASI-Agenzia Spaziale Italiana, Italy Daraio, Maria Girolamo, ASI-Agenzia Spaziale Italiana, Italy Sacco, Patrizia, ASI-Agenzia Spaziale Italiana, Italy

MO2.R4.6: CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS

Shea, Yolanda, NASA Langley Research Center, United States Fleming, Gary, NASA Langley Research Center, United States Kopp, Greg, Laboratory for Atmospheric and Space Physics, United States Lukashin, Constantine, NASA Langley Research Center, United States Pilewskie, Peter, Laboratory for Atmospheric and Space Physics, United States Smith, Paul, Laboratory for Atmospheric and Space Physics, United States Thome, Kurtis, NASA Goddard Space Flight Center, United States Wielicki, Bruce, NASA Langley Research Center, United States Liu, Xu, NASA Langley Research Center, United States Wu, Wan, Science Systems and Applications, Inc., United States

MO2.R5 - Hyperspectral Image Monday, September 28, 07:30 - 09:30 • Room 5 Classification I

MO2.R5.1: TRAINING CAPSNETS VIA ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Paoletti, Mercedes E.</u>, University of Extremadura, Spain <u>Haut, Juan M</u>, University of Extremadura, Spain <u>Plaza, Javier</u>, University of Extremadura, Spain <u>Plaza, Antonio</u>, University of Extremadura, Spain

MO2.R5.2: DIMENSIONALITY REDUCTION WITH WEIGHTED K-MEANS FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Wong, Michael</u>, Kennesaw State University, United States <u>Hung, Chih-Cheng</u>, Kennesaw State University, United States

MO2.R5.3: STATISTICAL PERSPECTIVE OF SOM AND CSOM FOR HYPER-SPECTRAL IMAGE CLASSIFICATION

<u>Mallapragada, Srivatsa</u>, Kennesaw State University, United States <u>Hung, Chih-Cheng</u>, Kennesaw State University, United States

MO2.R5.4: HYPERSPECTRAL BAND SELECTION WITHIN A DEEP REINFORCEMENT LEARNING FRAMEWORK

<u>Michel, Andreas</u>, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Germany <u>Gross, Wolfgang</u>, Fraunhofer Institute of Optronics, System

Technologies and Image Exploitation, Germany <u>Schenkel, Fabian</u>, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Germany <u>Middelmann, Wolfgang</u>, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Germany

MO2.R5.5: SUPERPIXEL-LEVEL CONSTRAINT REPRESENTATION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION

<u>Yu, Haoyang</u>, Dalian Maritime University, China <u>Zhang, Xiao</u>, Dalian Maritime University, China <u>Song, Meiping</u>, Dalian Maritime University, China <u>Hu, Jiaochan</u>, Dalian Maritime University, China <u>Gao, Lianru</u>, Chinese Academy of Sciences, China

MO2.R5.6: SELF-PACED LEARNING WITH SUPERPIXELWISE FEATURES FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Tai, Xiaoxiao</u>, China University of Petroleum (East China), China <u>Wang, Guangxing</u>, China University of Petroleum (East China), China <u>Han, Lirong</u>, China University of Petroleum (East China), China <u>Zhang, Xiaoyu</u>, China University of Petroleum (East China), China <u>Ren, Peng</u>, China University of Petroleum (East China), China

MO2.R5.7: MULTISCALE CONVOLUTION NETWORK WITH REGION-BASED MAX VOTING FOR HYPERSPECTRAL IMAGES CLASSIFICATION

<u>Zhang, Xuming</u>, China University of Petroleum (East China), China <u>Zhang, Aizhu</u>, China University of Petroleum (East China), China <u>Sun, Genyun</u>, China University of Petroleum (East China), China <u>Yao, Yanjuan</u>, Ministry of Environmental protection of China, China

MO2.R5.8: IMPROVED LOCAL COVARIANCE MATRIX REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Zhang, Xinyu</u>, Central China Normal University, China <u>Wei, Yantao</u>, Central China Normal University, China <u>Yao, Huang</u>, Central China Normal University, China <u>Zhou, Yicong</u>, University of Macau, China

MO2.R5.9: HYPERSPECTRAL IMAGE CLASSIFICATION VIA OBJECT-ORIENTED SEGMENTATION-BASED SEQUENTIAL FEATURE EXTRACTION AND RECURRENT NEURAL NETWORK

Ma. Andong, Texas A&M University, United States Filippi, Anthony M., Texas A&M University, United States

MO2.R5.10: 2D-SSA BASED MULTISCALE FEATURE FUSION FOR FEATURE EXTRACTION AND DATA CLASSIFICATION IN HYPERSPECTRAL IMAGERY

Fu, Hang, China University of Petroleum (East China), China Sun, Genyun, China University of Petroleum (East China), China Ren, Jinchang, University of Strathclyde, United Kingdom Zabalza, Jamie, University of Strathclyde, United Kingdom Zhang, Aizhu, China University of Petroleum (East China), China Yao, Yanjuan, Ministry of Environmental protection of China, China

MO2.R5.11: MULTISCALE FEATURE EXTRACTION WITH GAUSSIAN CURVATURE FILTER FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Hao, Qiaobo</u>, Hunan University, China <u>Li, Shutao</u>, Hunan University, China <u>Fang, Leyuan</u>, <u>Hunan University, China Kang, Xudong, Hunan University, China</u>

MO2.R6 - SAR Tomography

Monday, September 28, 07:30 - 09:30 • Room 6

MO2.R6.1: CHANNEL IMBALANCE CALIBRATION METHOD FOR AIRBORNE TOMOSAR SYSTEM

Jiao, Zekun, Aerospace Information Research Institute, Chinese Academy of Sciences, China Ding, Chibiao, Aerospace Information Research Institute, Chinese Academy of Sciences, China Qiu, Xiaolan, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhou, Liangjiang, Aerospace Information Research Institute, Chinese Academy of Sciences, China Guo, Jiayi, Aerospace Information Research Institute, Chinese Academy of Sciences, China Han, Dong, Aerospace Information Research Institute, Chinese Academy of Sciences, China

MO2.R6.2: RADIOMETRIC ISSUES IN BIOMASS TOMOGRAPHIC IMAGING

<u>Mariotti d'Alessandro, Mauro</u>, Politecnico di Milano, Italy <u>Tebaldini, Stefano</u>, Politecnico di Milano, Italy

MO2.R6.3: ARRAY MANIFOLD CALIBRATION FOR MULTICHANNEL RADAR ICE

SOUNDERS

<u>Moore, Theresa</u>, University of Kansas, United States <u>Paden, John</u>, University of Kansas, United States

MO2.R6.4: BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION

Hensley, Scott, NASA Jet Propulsion Laboratory, United States Ahmed, Razi, NASA Jet Propulsion Laboratory, United States Chapman, Bruce, NASA Jet Propulsion Laboratory, United States Hawkins, Brian, NASA Jet Propulsion Laboratory, United States Lavalle, Marco, NASA Jet Propulsion Laboratory, United States Pinto, Naiara, NASA Jet Propulsion Laboratory, United States Pardini, Matteo, German Aerospace Center, Germany Papathanassiou, Konstantinos, German Aerospace Center, Germany Siqueira, Paul, University of Massachusetts, Amherst, United States Treuhaft, Robert, NASA Jet Propulsion Laboratory, United States

MO2.R6.5: HIGH-RESOLUTION SAR TOMOGRAPHY VIA SEGMENTED DECHIRPING

<u>Liu, Minkun</u>, School of Information and Electronics, Beijing Institute of Technology, China <u>Wang, Yan</u>, School of Information and Electronics, Beijing Institute of Technology, China <u>Ding, Zegang</u>, School of Information and Electronics, Beijing Institute of Technology, China <u>Li, Linghao</u>, School of Information and Electronics, Beijing Institute of Technology, China <u>Zeng, Tao</u>, School of Information and Electronics, Beijing Institute of Technology, China

MO2.R6.6: PROCESSING OPTIONS FOR HIGH-RESOLUTION SAR TOMOGRAPHY FROM IRREGULAR TRAJECTORIES

<u>Yu, Yanghai</u>, Wuhan University & Politecnico di Milano, China <u>Tebaldini, Stefano</u>, politecnico di milano, Italy <u>Mariotti d'Alessandro, Mauro</u>, Politecnico di Milano, Italy <u>Liao, Mingsheng</u>, Wuhan University, China

MO2.R6.7: REGULARIZED SAR TOMOGRAPHY APPROACHES

Budillon, Alessandra, Dipartimento di Igegneria Univ. of Napoli Parthenope, Italy <u>Denis, Loic</u>, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School, France <u>Rambour, Clement</u>, LTCI, Telecom Paris, Institut Polytechnique de Paris, France <u>Schirinzi, Gilda</u>, Dipartimento di Igegneria Univ. of Napoli Parthenope, Italy <u>Tupin, Florence</u>, LTCI, Telecom Paris, Institut Polytechnique de Paris, France

MO2.R6.8: 3D HIGH-RESOLUTION IMAGING OF MB-TOMOSAR BASED ON SBRIM ALGORITHM

Zhang, Xingyue, University of Electronic Science and Technology of China, China Zhang, Xiaoling, University of Electronic Science and Technology of China, China Chen, Yifei, University of Electronic Science and Technology of China, China Zhan, Xu, University of Electronic Science and Technology of China, China Wei, Shunjun, University of Electronic Science and Technology of China, China Shi, Jun, University of Electronic Science and Technology of China, China China China China, China China, China

MO2.R6.9: A MULTI-RESOLUTION GLRT TEST FOR THE DETECTION OF PERSISTENT SCATTERERS IN SAR TOMOGRAPHY

Fornaro, Gianfranco, Institute for the Electromagnetic Sensing of the Environment, Italy Pauciullo, Antonio, Institute for the Electromagnetic Sensing of the Environment, Italy Reale, Diego, Institute for the Electromagnetic Sensing of the Environment, Italy Verde, Simona, Institute for the Electromagnetic Sensing of the Environment, Italy

MO2.R6.10: GEN-CAPON AND GEN-MUSIC DIFF-TOMO FOR NON-STATIONARY DISTRIBUTED MEDIA: EXPLORATION OF POTENTIAL FOR SUBCANOPY SUBSIDENCE MONITORING

<u>Lombardini, Fabrizio</u>, University of Pisa, Italy <u>Bordbari, Reza</u>, University of Pisa, Italy

MO2.R6.11: SINGLE-PASS SPACEBORNE TRANSMITTER-STATIONARY RECEIVER BISTATIC SAR TOMOGRAPHY - NOVEL SOLUTION WITH 3 IMAGING CHANNELS

<u>Ciuca, Madalina</u>, University Politehnica of Bucharest, Romania <u>Anghel, Andrei</u>, University Politehnica of Bucharest, Romania <u>Cacoveanu, Remus</u>, University Politehnica of Bucharest / EOS Electronic Systems, Romania <u>Rommen, Bjorn</u>, European Space Agency (ESA-ESTEC), Netherlands <u>Ciochina, Silviu</u>, University Politehnica of Bucharest, Romania

MO2.R7 - Global Satellite

Monday, September 28, 07:30 - 09:30 • Room 7

Capability is Key to Effective Response to All Scales of Natural Disasters

MO2.R7.1: THE JOINT POLAR SATELLITE SYSTEM AND THE INTERNATIONAL CONSTELLATION: SUPPORTING ENVIRONMENTAL APPLICATIONS ACROSS THE GLOBE

Goldberg, Mitchell, NOAA, United States Price, Julie, Science and Technology Corporation, United States

MO2.R7.2: NOAA SATELLITES: PROVIDING CRITICAL GLOBAL DATA FOR LOCAL ENVIRONMENTAL CHALLENGES

Sjoberg, Bill, GST Contractor support to JPSS Program, United States Goldberg, Mitch, JPSS Program, United States Straka, William, JPSS Program, United States

MO2.R7.3: USING SATELLITE CAPABILITIES TO HANDLE THE PACIFIC'S STRONGEST TYPHOONS

Edson, Roger, NOAA/NWS, United States

MO2.R7.4: OVERCOMING BARRIERS TO THE USE OF SATELLITE DATA IN FISHERIES MANAGEMENT

<u>Wilson, Cara</u>, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, United States <u>Robinson, Dale</u>, University of California, Santa Cruz, United States <u>Shotwell, S. Kalei</u>, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, United States

MO2.R7.5: MONITORING THE CHANGES OF THE ARCTIC ENVIRONMENT WITH THE JOINT POLAR SATELLITE SYSTEM (JPSS) SOUNDING DATA PRODUCTS

Zhou, Lihang, NOAA/NESDIS/JPSS, United States

MO2.R7.6: MONITORING HEAVY PRECIPITATION WITH THE CMORPH INTEGRATED SATELLITE PRECIPITATION ESTIMATES

Xie, Pingping, NOAA/NWS/NCEP, United States Joyce, Robert, NOAA/NWS/NCEP, United States Wu, Shaorong, NOAA/NWS/NCEP, United States Ren, Li, NOAA/NWS/NCEP, United States Katz, Bert, NOAA/NWS/NCEP, United States

MO2.R7.7: TAILORING NATIONAL WEATHER SERVICE TRAINING TO SERVE THE PACIFIC'S MOST REMOTE LOCATIONS

<u>Lindstrom, Scott</u>, UW-Madison, United States <u>Schmit, Timothy</u>, NOAA/NESDIS ASPB, United States <u>Gerth, Jordan</u>, NOAA/NWS/OBS, United States <u>Lau, Eric</u>, NOAA/NWS/PRH, United States <u>Eckstein</u>, <u>Nathan</u>, NOAA/NWS, United States

MO2.R7.8: APPLYING THE NOAA UNIQUE COMBINED ATMOSPHERIC PROCESSING SYSTEM (NUCAPS) TO SUPPORT FORECASTERS AT THE US NAVY AND US AIR FORCE IN MONITORING IMPACTFUL PACIFIC WEATHER EVENTS

Kuciauskas, Arunas, Naval Research Laboratory, United States Esmaili, Rebekah, Science and Technology Corporation, United States Reale, Anthony, National Oceanographic and Atmospheric Administration/ National Environmental Satellite, Data, and Information Service, United States Nalli, Nicholas, National Oceanographic and Atmospheric Administration/I M Systems Group, United States

MO2.R8 - Ocean Biology, Temperature and Salinity

Monday, September 28, 07:30 - 09:30 • Room 8

MO2.R8.1: SPATIAL AND SEASONAL VARIATIONS OF THE UPPER OCEAN CHLOROPHYLL CONCENTRATION IN THE EASTERN NORTH PACIFIC

Ning, Jue, Hohai University, China Xu, Qing, Hohai University, China Wang, Tao, Ocean University of China, China

MO2.R8.2: MACHINE LEARNING CLASSIFICATION, FEATURE RANKING AND REGRESSION FOR WATER QUALITY PARAMETERS RETRIEVAL IN VARIOUS OPTICAL WATER TYPES FROM HYPER-SPECTRAL OBSERVATIONS

Blix, Katalin, UiT The Arctic University of Norway, Norway

MO2.R8.3: MAPPING RED TIDE INTENSITY USING MULTISPECTRAL CAMERA ON

UNMANNED AERIAL VEHICLE: A CASE STUDY IN KOREAN SOUTH COAST

Kim, Wonkook, Pusan National University, Korea (South) Jung, Sunghun, Dongshin University, Korea (South) Kim, Keunyong, Korea Institute of Ocean Science and Technology, Korea (South) Ryu, Joo-Hyung, Korea Institute of Ocean Science and Technology, Korea (South) Moon, Yongseon, Sunchon National University, Korea (South)

MO2.R8.4: ESTIMATION OF COLORED DISSOLVED ORGANIC MATTER USING SENTINEL-2 DATA IN THE COASTAL WATERS OF SINGAPORE

<u>Wong, Joel</u>, National University of Singapore, Singapore <u>Wong, Elizabeth Wing-See</u>, National University of Singapore, Singapore <u>Liew, Soo Chin</u>, National University of Singapore, Singapore <u>Chee, Sandric Yew Leong</u>, National University of Singapore, Singapore

MO2.R8.5: OCEAN COLOR MODELING IN THE CENTRAL RED SEA USING OCEANOGRAPHICAL OBSERVATION AND SIMULATED PARAMETERS

<u>Li, Wenzhao</u>, Computational and Data Sciences Graduate Program, United States <u>Tiwari, Surya</u>, Computational and Data Sciences Graduate Program, Saudi Arabia <u>Karuppasamy</u>

<u>Ponnambalam, ManiKandan</u>, KFUPM, Saudi Arabia <u>El-Askary, Hesham</u>, Center of Excellence of Earth Observations and Modeling, United States

MO2.R8.6: MONITORING OF TIANWAN NUCLEAR POWER PLANT THERMAL POLLUTION BASED ON REMOTELY SENSED LANDSAT DATA

Nie, Pingjing, State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Haitao, Zhu, Ministry of Ecology and Environment Center for Satellite Application on Ecology and Environment, Beijing, China Honggen, Xu, Wuhan Center of China Geological Survey (Central South China Innovation Center for Geosciences), China Huang, Yaohuan, University of Chinese Academy of Sciences, China Wu, Hua, State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China

MO2.R8.7: DEBYE DIELECTRIC MODEL FUNCTION FOR SEAWATER BASED ON EXPANDED L-BAND MEASUREMENT DATA SET

Zhou, Yiwen, George Washington University, United States Lang, Roger, George Washington University, United States Park, Young Soung, George Washington University, United States Dinnat, Emmanuel, National Aeronautics and Space Administration, United States Le Vine, David, National Aeronautics and Space Administration, United States

MO2.R8.8: SEA SURFACE SALINITY SUBFOOTPRINT VARIABILITY FROM A GLOBAL HIGH-RESOLUTION MODEL

<u>Bingham, Frederick</u>, Univeristy of North Carolina Wilmington, United States <u>D'Addezio</u>, <u>Joseph</u>, Naval Research Laboratory, United States <u>Fournier</u>, <u>Severine</u>, California Institute of Technology, United States <u>Zhang</u>, <u>Hong</u>, University of California, Los Angeles, United States <u>Ulfsax</u>, <u>Karly</u>, University of North Carolina Wilmington, United States

MO2.R8.9: SIMULATION ANALYSIS OF PAYLOAD IMR AND MICAP ONBOARD CHINESE OCEAN SALINITY SATELLITE

Li, Yan, Beijing Piesat Information Technology Co. Ltd, China Yin, Xiaobin, Beijing Piesat Information Technology Co. Ltd, China Zhou, Wu, National Satellite Ocean Application Service, China Lin, Mingsen, National Satellite Ocean Application Service, China Ma, Chaofei, National Satellite Ocean Application Service, China Jin, Rong, Huazhong University of Science and Technology, China Liu, Hao, National Space Science Center, Chinese Academy of Sciences, China Li, Yinan, China Academy of Space Technology, China

MO2.R8.10: AN EMPIRICAL SEA ICE CORRECTION ALGORITHM FOR SMAP SSS RETRIEVAL IN THE ARCTIC OCEAN

<u>Tang, Wenqing</u>, NASA Jet Propulsion Laboratory, United States <u>Yueh, Simon</u>, NASA Jet Propulsion Laboratory, United States <u>Fore, Alexander</u>, NASA Jet Propulsion Laboratory, United States <u>Hayashi, Akiko</u>, NASA Jet Propulsion Laboratory, United States

MO2.R8.11: SEA SURFACE SALINITY RETRIEVAL FROM AQUARIUS IN THE SOUTH CHINA SEA USING MACHINE LEARNING ALGORITHM

Zhang, Lanjie, Beijing Information Science and Technology University, China Zhang, Ruanyu, Shanghai Spaceflight Institute of TT&C and Telecommunication, China He, Qiurui, School of

MO2.R9 - RS of Snow and Frozen Monday, September 28, 07:30 - 09:30 • Room 9 Ground

MO2.R9.1: SNOW SIZE DISTRIBUTION AND AGGREGATION MODELING BASED ON THE BICONTINUOUS MODEL

<u>Zhu, Jiyue</u>, University of Michigan, United States <u>Tsang, Leung</u>, University of Michigan, United States <u>Shen, Haoran</u>, University of Michigan, United States <u>Xu, Xiaolan</u>, NASA Jet Propulsion Laboratory, United States

MO2.R9.2: SNOW GRAIN SIZE ESTIMATES FROM AIRBORNE KA-BAND RADAR MEASUREMENTS

<u>Li, Jilu</u>, University of Kansas, United States <u>Camps-Raga, Bruno</u>, University of Kansas, United States <u>Rodriguez-Morales, Fernando</u>, University of Kansas, United States <u>Gomez-Garcia</u>, <u>Daniel</u>, University of Kansas, United States <u>Paden, John</u>, University of Kansas, United States <u>Leuschen, Carl</u>, University of Kansas, United States

MO2.R9.3: VALIDATION OF THE COMBINED ACTIVE AND PASSIVE MICROWAVE SNOW RETRIEVAL ALGORITHM USING ESA SNOWSAR APPLIED TO CANADA AND US

<u>Kang, Dohyuk</u>, University of Maryland, United States <u>Zhu, Jiyue</u>, University of Michigan, United States <u>Kim, Edward</u>, NASA Goddard Space Flight Center, United States <u>Tsang, Leung</u>, University of Michigan, United States

MO2.R9.4: MULTI-FREQUENCY SAR IMAGES FOR SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES

Pettinato, Simone, CNR-IFAC, Italy Paloscia, Simonetta, CNR-IFAC, Italy Santi, Emanuele, CNR-IFAC, Italy Palchetti, Enrico, CNR-IFAC, Italy De Gregorio, Ludovica, EURAC, Italy Notarnicola, Claudia, EURAC, Italy Cuozzo, Giovanni, EURAC, Italy Marin, Carlo, EURAC, Italy Cigna, Francesca, ASI-Agenzia Spaziale Italiana, Italy Tapete, Deodato, ASI-Agenzia Spaziale Italiana, Italy

MO2.R9.5: AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT

Taylor, Drew, University of Alabama, United States Yan, Stephen, University of Alabama, United States O'Neill, Charles, University of Alabama, United States Gogineni, Prasad, University of Alabama, United States Gurbuz, Sevgi, University of Alabama, United States Aslan, Barbaros, University of Alabama, United States Larson, Jordan, University of Alabama, United States Elluru, Deepak, University of Alabama, United States Kolpuke, Shriniwas, University of Alabama, United States Li, Linfeng, University of Alabama, United States Mahjabeen, Farin, University of Alabama, United States Nunn, Josh, University of Alabama, United States Rahman, Mahbubur, University of Alabama, United States Reyhani, Omid, University of Alabama, United States Simpson, Christopher D., University of Alabama, United States Thomas, Ryan, University of Alabama, United States Wattal, Shashank, University of Alabama, United States Blake, Jonathan, University of Alabama, United States Boyle, Carter, University of Alabama, United States Glidden, John, University of Alabama, United States Higgs, MacKenzie, University of Alabama, United States

MO2.R9.6: ASSESSING THE PERFORMANCES OF FY-3D/MWRI AND DMSP SSMIS IN GLOBSNOW-2 ASSIMILATION SYSTEM FOR SWE ESTIMATION

<u>Yang, Jianwei</u>, Beijing Normal University, China <u>Jiang, Lingmei</u>, Beijing Normal University, China <u>Luojus, Kari</u>, Finnish Meteorological Institute, Finland <u>Lemmetyinen, Juha</u>, Finnish Meteorological Institute, Finland <u>Takala, Matias</u>, Finnish Meteorological Institute, Finland

MO2.R9.7: DIAGNOSTIC ANALYSIS OF A DATA ASSIMILATION FRAMEWORK FOR IMPROVING SNOW MASS ESTIMATION IN COMPLEX TERRAIN

<u>Ahmad, Jawairia</u>, University of Maryland, United States <u>Forman, Barton</u>, University of Maryland, United States

MO2.R9.8: THE VALIDATION OF SNOW COVER PRODUCT OVER HIGH MOUNTAIN ASIA

<u>Su, Xu</u>, Beijing Normal University, China <u>Jiang, Lingmei</u>, Beijing Normal University, China <u>Wang, Gongxue</u>, Beijing Normal University, China <u>Wang, Jian</u>, Beijing Normal University, China

MO2.R9.9: OBSERVING SYSTEM SIMULATION EXPERIMENT FOR REMOTE SENSING OF SNOW AT P-BAND

Xu, Xiaolan, NASA Jet Propulsion Laboratory, United States Shah, Rashmi, NASA Jet Propulsion Laboratory, United States Yueh, Simon, NASA Jet Propulsion Laboratory, United States Margulis, Steve, University of California, Los Angeles, United States

MO2.R9.10: CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM

Harkati, Lekhmissi, IETR/University of Rennes 1, France Abdo, Ray, IETR/University of Rennes 1, France Avrillon, Stephane, IETR/University of Rennes 1, France Ferro-Famil, Laurent, IETR/University of Rennes 1, France Gouttevin, Isabelle, Météo-France/CNRS, France Deliot, Yannick, Météo-France/CNRS, France Merzisen, Hugo, Météo-France/CNRS, France Salze, Pascal, Météo-France/CNRS, France Delbert, Franck, Météo-France/CNRS, France Lapalus, Philipe, Météo-France/CNRS, France Lejeune, Yves, Météo-France/CNRS, France Le Gac, Erwan, Météo-France/CNRS, France Bellot, Hervé, Météo-France/CNRS, France Ravana, Xavier, Météo-France/CNRS, France Karbou, Fatima, Météo-France/CNRS, France

MO2.R9.11: ESTIMATING EFFECTIVE SNOW GRAIN SIZE USING NORMALIZED CHANNEL RATIOS OF MODIS 0.86 AND 1.64 MICRON BANDS

Hong, Gang, Science Systems and Applications, Inc., United States Smith Jr., William, NASA Langley Research Center, United States Sun-Mack, Sunny, Science Systems and Applications, Inc., United States Minnis, Patrick, Science Systems and Applications, Inc., United States Chen, Yan, Science Systems and Applications, Inc., United States

MO2.R9.12: SNOW RADAR LAYER TRACKING USING ITERATIVE NEURAL NETWORK APPROACH

<u>Ibikunle, Oluwanisola</u>, CReSIS / University of Kansas, United States <u>Paden, John</u>, Center for Remote Sensing Ice Sheet, United States <u>Rahnemoonfar, Maryam</u>, University of Maryland, Baltimore County, Maryland, United States <u>Crandall, David</u>, Indiana University School of <u>Informatics</u>, <u>United States Yari, Masoud</u>, Texas A&M University-Corpus Christi, United States

MO2.R10 - Remote Sensing for Monday, September 28, 07:30 - 09:30 • Room 10 Forest and Vegetation Structure

MO2.R10.1: THE RELATIONSHIP BETWEEN CANOPY CLUMPING INDEX (CI), FRACTIONAL VEGETATION COVER (FVC), AND LEAF AREA INDEX (LAI): AN ANALYSIS OF GLOBAL SATELLITE PRODUCTS

Fang, Hongliang, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Li, Sijia, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Zhang, Yinghui, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Wei, Shanshan, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Wang, Yao, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China

MO2.R10.2: INTEGRATING UAV AND LIDAR DATA FOR RETRIEVING TREE VOLUME OF HINOKI FORESTS

<u>Yoshii, Tatsuki</u>, Mie University, Japan <u>Matsumura, Naoto</u>, Mie University, Japan <u>Lin, Chinsu</u>, National Chiayi University, Taiwan

MO2.R10.3: STUDY ON UAV SENSED CANOPY LEAF DISTRIBUTION USING COMPUTER SIMULATION

<u>Wu, Haobo</u>, Peking University, China <u>Yang, Siqi</u>, Peking University, China <u>Qi, Jianbo</u>, Beijing Forestry University, China <u>Hu, Ling</u>, Peking University, China <u>Fan, Wenjie</u>, Peking University, China

MO2.R10.4: A FUZZY APPROACH TO INDIVIDUAL TREE CROWN DELINEATION IN UAV BASED PHOTOGRAMMETRIC MULTISPECTRAL DATA

<u>Harikumar, Aravind</u>, University of Toronto, Canada <u>D'Odorico, Petra</u>, Swiss Federal Institute for Forest, Snow and Landscape Research, Switzerland <u>Ensminger, Ingo</u>, University of Toronto. Canada

MO2.R10.5: MAPPING TREE CANOPY COVER AND CANOPY HEIGHT WITH L-BAND

SAR USING LIDAR DATA AND RANDOM FORESTS

<u>Chen, Richard</u>, NASA Jet Propulsion Laboratory, United States <u>Pinto, Naiara</u>, NASA Jet Propulsion Laboratory, United States <u>Duan, Xueyang</u>, NASA Jet Propulsion Laboratory, United States <u>Tabatabaeenejad, Alireza</u>, University of Southern California, United States <u>Moghaddam</u>, Mahta, University of Southern California, United States

MO2.R10.6: DOES REPEATED PRESCRIBED BURNING RESULT IN FOREST STRUCTURE SIMILAR TO THAT OF WILDFIRE? INSIGHT FROM ANALYSIS OF LIDAR DATA OF THE NEW JERSEY PINELANDS NATIONAL RESERVE

<u>Warner, Timothy</u>, West Virginia University, United States <u>Skowronski, Nicholas</u>, USDA Forest Service, United States <u>La Pama, Inga</u>, Rutgers University, United States

MO2.R10.7: MULTISCALE MODEL OF MOVING VEGETATIVE CLUTTER IN ISAR IMAGING

<u>Mitchell, Jon</u>, University of Texas at Arlington, United States <u>Tjuatja, Saibun</u>, University of Texas at Arlington, United States

MO2.R10.8: INITIAL TESTS FOR THE GENERATION OF A SPANISH NATIONAL MAP OF FOREST HEIGHT FROM TANDEM-X DATA

Gomez, Cristina, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spain Romero-Puig, Noelia, University of Alicante, Spain Lopez-Sanchez, Juan M., University of Alicante, Spain Mestre-Quereda, Alejandro, University of Alicante, Spain Zhu, Jianjun, Central South University, China Fu, Haigiang, Central South University, China He, Wenjie, Central South University, China Xie, Qinghua, China University of Geosciences, China

MO2.R10.9: ESTIMATION OF STEM DENSITY IN HEMI-BOREAL FORESTS USING AIRBORNE LOW-FREQUENCY SYNTHETIC APERTURE RADAR

<u>Fransson, Johan</u>, Swedish University of Agricultural Sciences, Sweden <u>Wallerman, Jörgen</u>, Swedish University of Agricultural Sciences, Sweden <u>Persson, Henrik</u>, Swedish University of Agricultural Sciences, Sweden <u>Ulander, Lars</u>, Chalmers University of Technology, Sweden

MO2.R10.10: DAMAGED TREES DETECTION USING THE EXPANSION OF DEEP LEARNING MODEL FROM UAV RGB IMAGES TO MULTISPECTRAL IMAGES

<u>Lee, Hwa-Seon</u>, Inha University, Korea (South) <u>Seo, Won-Woo</u>, Inha University, Korea (South) <u>Lee, Kyu-Sung</u>, Inha University, Korea (South)

MO2.R10.11: DELINEATION OF INDIVIDUAL TREE CROWNS IN WORLDVIEW-3 SATELLITE IMAGERY WITH MULTISCALE FITTING METHOD

<u>Tong, Fei</u>, University of New Brunswick, Canada <u>Zhang, Yun</u>, University of New Brunswick, Canada

MO2.R11 - Remote Sensing for Monday, September 28, 07:30 - 09:30 • Room 11 Crop Monitoring, Mapping and Classification I

MO2.R11.1: APPLICATION OF DEEP LEARNING TO OPTICAL AND SAR IMAGES FOR THE CLASSIFICATION OF AGRICULTURAL AREAS IN ITALY

Lapini, Alessandro, Consiglio Nazionale delle Ricerche - Istituto di Fisica Applicata "Nello Carrara", Italy Fontanelli, Giacomo, Consiglio Nazionale delle Ricerche - Istituto di Fisica Applicata "Nello Carrara", Italy Pettinato, Simone, Consiglio Nazionale delle Ricerche - Istituto di Fisica Applicata "Nello Carrara", Italy Santi, Emanuele, Consiglio Nazionale delle Ricerche - Istituto di Fisica Applicata "Nello Carrara", Italy Paloscia, Simonetta, Consiglio Nazionale delle Ricerche - Istituto di Fisica Applicata "Nello Carrara", Italy Tapete, Deodato, Italian Space Agency, Italy Cigna, Francesca, Italian Space Agency, Italy

MO2.R11.2: EARLY-SEASON CROP CLASSIFICATION WITH RADARSAT-2 POLARIMETRIC SYNTHETIC APERTURE RADAR IMAGERY

<u>Tan, Weikai</u>, Unviersity of Waterloo, Canada <u>Sinha, Abhijit</u>, A.U.G. Signals Ltd., Canada <u>Li, Yifeng</u>, A.U.G. Signals Ltd., Canada <u>Ma, Lingfei</u>, University of Waterloo, Canada <u>Li, Jonathan</u>, University of Waterloo, Canada

MO2.R11.3: FINE CLASSIFICATION OF RICE IN NORTHEAST THAILAND USING C- AND L-BAND TIME-SERIES SAR IMAGES

Xu, Lu, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

Zhang, Hong, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Wang, Chao, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China Wei, Sisi, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China

MO2.R11.4: CROP HARVEST MONITORING USING POLARIMETRIC SAR PARAMETERS

<u>Hosseini, Mehdi</u>, University of Maryland, United States <u>Becker-Reshef, Inbal</u>, University of Maryland, United States <u>Justice, Chris</u>, University of Maryland, United States

MO2.R11.5: A SATELLITE AGNOSTIC APPROACH TO QUANTIFYING HAIL DAMAGE SWATHS ACROSS THE CENTRAL UNITED STATES AND OTHER AGRICULTURAL REGIONS

Bell, Jordan, NASA Marshall Space Flight Center, United States Molthan, Andrew, NASA Marshall Space Flight Center, United States Hain, Christopher, NASA Marshall Space Flight Center, United States Meyer, Franz, University of Alaska Fairbanks, United States Schultz, Christopher, NASA Marshall Space Flight Center, United States Elmer, Nicholas, NASA Marshall Space Flight Center, United States

MO2.R11.6: WINTER WHEAT MAPPING FROM LANDSAT NDVI TIME SERIES DATA USING TIME-WEIGHTED DYNAMIC TIME WARPING AND PHENOLOGICAL RULES

Qu, Chang, Peking University, China Li, Peijun, Peking University, China

MO2.R11.7: CROPNET: DEEP SPATIAL-TEMPORAL-SPECTRAL FEATURE LEARNING NETWORK FOR CROP CLASSIFICATION FROM TIME-SERIES MULTI-SPECTRAL IMAGES

<u>Luo, Chang, Wuhan University, China Meng, Shiyao</u>, Wuhan University, China <u>Hu, Xin</u>, Wuhan University, China <u>Wang, Xinyu</u>, Wuhan University, China <u>Zhong, Yanfei</u>, Wuhan University, China

MO2.R11.8: AN ADAPTIVE NEURO-FUZZY APPROACH FOR DECOMPOSITION OF MIXED PIXELS TO IMPROVE CROP AREA ESTIMATION USING SATELLITE IMAGES

<u>Dwivedi, Arun Kant</u>, Indian Institute of Technology Roorkee, India <u>Roy, Sudip</u>, Indian Institute of Technology Roorkee, India <u>Singh, Dharmendra</u>, Indian Institute of Technology Roorkee, India

MO2.R11.9: MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE

Adão, Telmo, University of Trás-os-Montes e Alto Douro, Portugal Soares, Abel, University of Minho, Portugal Pádua, Luís, University of Trás-os-Montes e Alto Douro, Portugal Guimarães, Nathalie, University of Trás-os-Montes e Alto Douro, Portugal Pinho, Tatiana, University of Trás-os-Montes e Alto Douro, Portugal Sousa, Joaquim J., University of Trás-os-Montes e Alto Douro, Portugal Morais, Raul, University of Trás-os-Montes e Alto Douro, Portugal Peres, Emanuel, University of Trás-os-Montes e Alto Douro, Portugal

MO2.R11.10: WEED AND CROP DISCRIMINATION USING U-NET LEARNING

Hashemi-Beni, Leila, North Carolina A&T State University, United States Gebrehiwot,
Asmamaw, North Carolina A&T State University, United States Karimoddini , Ali, North
Carolina A&T State University, United States Shahbazi, Abolghasem, North Carolina A&T
State University, United States

MO2.R11.11: RESEARCH OF METHANE EMISSIONS BASED ON BIOGEOCHEMICAL MODEL AND ACTIVE MICROWAVE MEASUREMENT

Tan, Longfei, University of Electronic Science and Technology of China, China Li, Yuxia, University of Electronic Science and Technology of China, China Zhang, Yang, North China Power Engineering Co., Ltd. of China, China Yang, Ting, West China School of Public Health and West China Fourth Hospital, Sichuan University, China Xiao, Fanghong, University of Electronic Science and Technology of China, China

MO2.R12 - Urban Remote Sensing I Monday, September 28, 07:30 - 09:30 • Room 12

MO2.R12.1: AN INTERFEROMETRIC W-BAND RADAR FOR LARGE STRUCTURES MONITORING

<u>Pieraccini, Massimiliano</u>, University of Florence, Italy <u>Miccinesi, Lapo</u>, University of Florence, Italy <u>Morini, Francesco</u>, University of Florence, Italy

MO2.R12.2: A NOVEL BUILDING RECONSTRUCTION FRAMEWORK USING SINGLE-VIEW REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORKS

Zhao, Chunhui, Harbin Engineering University, China Zhang, Chi, Harbin Engineering University, China Su., Nan, Harbin Engineering University, China Yan, Yiming, Harbin Engineering University, China Huang, Bowen, Jushri Technologies, INC, China

MO2.R12.3: SENTINEL-1 INSAR ASSESSMENT OF PRESENT-DAY LAND SUBSIDENCE DUE TO EXPLOITATION OF GROUNDWATER RESOURCES IN CENTRAL MEXICO

<u>Cigna, Francesca</u>, Italian Space Agency (ASI), Italy <u>Tapete, Deodato</u>, Italian Space Agency (ASI), Italy

MO2.R12.4: DERIVING URBAN MASS CONCENTRATIONS USING TANDEM-X AND SENTINEL-2 DATA FOR THE ASSESSMENT OF MORPHOLOGICAL POLYCENTRICITY

Standfuß, Ines, German Aerospace Center, Germany Geiß, Christian, German Aerospace Center, Germany Kühnl, Marlene, German Aerospace Center, Germany Wurm, Michael, German Aerospace Center, Germany Siedentop, Stefan, Research Institute for Regional and Urban Development, Germany Heider, Bastian, Research Institute for Regional and Urban Development, Germany Taubenböck, Hannes, German Aerospace Center, Germany

MO2.R12.5: COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT

Chrysoulakis, Nektarios, Foundation for Research and Technology Hellas (FORTH), Greece Mitraka, Zina, Foundation for Research and Technology Hellas (FORTH), Greece Marconcini, Mattia, German Aerospace Center (DLR), Germany Ludlow, David, UWE, United Kingdom Khan, Zaheer, UWE, United Kingdom Holt Andersen, Birgitte, ApHER, Denmark Soukup, Tomas, GISAT, Czech Republic Dohr, Mario, GEOVILLE, Austria Gandini, Alessandra, TECNALIA, Spain Kropp, Jürgen, PIK, Germany Lauwaet, Dirk, VITO, Germany Feigenwinter, Christian, UNIBAS, Germany

MO2.R12.6: DEFORMATION PROFILE ANALYSIS USING UNIFORM MANIFOLD APPROXIMATION AND PROJECTION

<u>Toma, Stefan-Adrian</u>, Military Technical Academy, Romania <u>Sebacher, Bogdan</u>, Military Technical Academy, Romania <u>Teleaga, Delia</u>, Terrasigna, Romania <u>Focsa, Adrian</u>, Military Technical Academy, Romania

MO2.R12.7: A DYNAMIC END-TO-END FUSION FILTER FOR LOCAL CLIMATE ZONE CLASSIFICATION USING SAR AND MULTI-SPECTRUM REMOTE SENSING DATA

Feng, Pengming, China Aerospace Science and Technology Corporation, China Lin, Youtian, Harbin Engineering University, China He, Guangjun, China Aerospace Science and Technology Corporation, China Guan, Jian, Harbin Engineering University, China Wang, Jin, China Aerospace Science and Technology Corporation, China Shi, Huifeng, China Aerospace Science and Technology Corporation, China

MO2.R12.8: APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC INFRASTRUCTURE MONITORING

<u>De Corso, Tony</u>, University of Sannio, Italy <u>Mignone, Luca</u>, University of Sannio, Italy <u>Sebastianelli, Alessandro</u>, University of Sannio, Italy <u>Del Rosso, Maria Pia</u>, University of Sannio, Italy <u>Yost, Claire</u>, Massachusetts Institute of Technology, United States <u>Ciampa</u>, <u>Elena</u>, University of Sannio, Italy <u>Pecce, Marisa</u>, University of Sannio, Italy <u>Ullo, Silvia Liberata</u>, University of Sannio, Italy

MO2.R12.9: ASSESSMENT OF URBAN BUILT-UP VOLUME USING GEOSPATIAL METHODS: A CASE STUDY OF BANGALORE

<u>P S, Prakash</u>, Indian Institute of Technology Kharagpur, India <u>H Aithal, Bharath</u>, Indian Institute of Technology Kharagpur, India

MO2.R12.10: ASSESSING LAND SUITABILITY FOR MANAGING URBAN GROWTH: AN APPLICATION OF GIS AND RS

Shah, Pooja B., NIT Surat, India Sheladiya, Kaushik P., NIT Surat, India Patel, Jaldeep, NIT Surat, India Patel, Dr. Chetan R., NIT Surat, India Tailor, Dr. Ravin M., NIT Surat, India

MO2.R12.11: EXTENDED PATTERN OF URBAN SPRAWL ANALYSIS FROM REMOTE SENSING DATA IN ULAANBAATAR, MONGOLIA

<u>Myagmartseren, Purevtseren,</u> National University of Mongolia, Mongolia <u>Myagmarjav, Indra</u>, Mongolian University of Life Sciences, Mongolia <u>Byambakhuu, Gantumur</u>, National University of Mongolia, Mongolia <u>Enkhtuya, Nergui</u>, National University of Mongolia, Mongolia

MO2.R13 - Recent Advances in Monday, September 28, 07:30 - 09:30 • Room 13 GNSS Reflectometry

MO2.R13.1: SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL ON A GLOBAL SCALE BY USING CYGNSS DATA AND ARTIFICIAL NEURAL NETWORKS

Dahuvila Innar Mangalia Narmal University Chin

Santi, Emanuele, National Research Council - Institute of Applied Physics, Italy Pettinato.

Simone, National Research Council - Institute of Applied Physics (IFAC - CNR), Italy Paloscia,
Simonetta, National Research Council - Institute of Applied Physics (IFAC - CNR), Italy Clarizia,
Maria Paola, Deimos Space UK Ltd., United Kingdom Dente, Laura, University of Rome Tor
Vergata, Italy Guerriero, Leila, University of Rome Tor Vergata, Italy Comite, Davide,
University of Rome La Sapienza, Italy Pierdicca, Nazzareno, University of Rome La Sapienza,
Italy

MO2.R13.2: IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE

Wang, Tianlin, University of Michigan, United States Zavorotny, Valery, University of Colorado, United States Johnson, Joel, The Ohio State University, United States Yi, Yuchan, The Ohio State University, United States Ruf, Christopher, University of Michigan, United States Gleason, Scott, University Corporation for Atmospheric Research, United States McKague, Darren, University of Michigan, United States Hwang, Paul, Naval Research Laboratory, United States Rogers, Erick, Naval Research Laboratory, United States Chen, Shuyi, University of Washington, United States Pan, Yulin, University of Washington, United States Bakker, Thomas, University of Washington, United States

MO2.R13.3: SIMULATION STUDY OF CYGNSS OBSERVABILITY OF DYNAMIC INUNDATION EVENTS

<u>Downs, Brandi</u>, The Ohio State University, United States <u>Loria, Eric</u>, The Ohio State University, United States <u>O'Brien, Andrew</u>, The Ohio State University, United States <u>Zavorotny, Valery</u>, University of Colorado Boulder, United States <u>Zuffada, Cinzia</u>, California Institute of Technology, United States

MO2.R13.4: INVESTIGATION OF COHERENT AND INCOHERENT SCATTERING FROM LAKES USING CYGNSS OBSERVATIONS

Zavorotny, Valery, University of Colorado Boulder, United States Loria, Eric, Ohio State University, United States O'Brien, Andrew, Ohio State University, United States Downs, Brandi, Ohio State University, United States Zuffada, Cinzia, California Institute of Technology, United States

MO2.R13.5: AN ADAPTIVE INTEGRATION ALGORITHM FOR IMPROVED COHERENT REFLECTION MEASUREMENT IN GNSS-R INSTRUMENTS

<u>Loria, Eric</u>, The Ohio State University, United States <u>O'Brien, Andrew</u>, The Ohio State University, United States

MO2.R13.6: UNTANGLING THE GNSS-R COHERENT AND INCOHERENT COMPONENTS: EXPERIMENTAL EVIDENCES OVER THE OCEAN

Munoz-Martin, Joan Francesc, Universitat Politècnica de Catalunya (UPC), Spain Onrubia, Raul, Universitat Politècnica de Catalunya (UPC), Spain Pascual, Daniel, Universitat Politècnica de Catalunya (UPC), Spain Park, Hyuk, Universitat Politècnica de Catalunya (UPC), Spain Camps, Adriano, Universitat Politècnica de Catalunya (UPC), Spain Rüdiger, Christopher, Monash University, Australia Walker, Jeffrey, Monash University, Australia Monerris, Alessandra, University of Melbourne, Australia

MO2.R13.7: VALIDATION OF SUPER-RESOLUTION GNSS-R USING AN AIRBORNE FIELD TRIAL

<u>Cheong, Joon Wayn</u>, University of New South Wales Sydney, Australia <u>Kuthethoor, Prahalad</u>, University of New South Wales Sydney, Australia <u>Dempster, Andrew G.</u>, University of New South Wales Sydney, Australia

MO2.R13.8: DEVELOPMENT OF AN END-TO-END MISSION SIMULATOR FOR LAND

REMOTE SENSING WITH SIGNALS OF OPPORTUNITY

<u>Kim, Seho</u>, Purdue University, United States <u>Garrison, James L.</u>, Purdue University, United States

MO2.R13.9: IONOSPHERIC SCINTILLATION MODEL LIMITATIONS AND IMPACT IN GNSS-R MISSIONS

<u>Camps, Adriano</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Gonzalez-Casado</u>, <u>Guillermo</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Juan, José Miguel</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Park, Hyuk</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Barbosa, José</u>, RDA -Research and Development in Aerospace GmbH, Switzerland

MO2.R13.10: NOC GNSS-R GLOBAL OCEAN WIND SPEED AND SEA-ICE PRODUCTS USING DATA FROM THE TECHDEMOSAT-1 MISSION

Foti, Giuseppe, National Oceanography Centre, United Kingdom Hammond, Matthew, National Oceanography Centre, United Kingdom Gommenginger, Christine, National Oceanography Centre, United Kingdom Srokosz, Meric, National Oceanography Centre, United Kingdom Unwin, Martin, Surrey Satellite Technology Ltd., United Kingdom Rosello, Josep, European Space Agency, United Kingdom

MO2.R14 - Time Series Analysis Monday, September 28, 07:30 - 09:30 • Room 14

MO2.R14.1: GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS

Nemani, Ramakrishna, NASA Ames Research Center, United States Wang, Weile, ARC-CREST/NASA Ames Research Center, United States Hashimoto, Hirofumi, ARC-CREST/NASA Ames Research Center, United States Michaelis, Andrew, ARC-CREST/NASA Ames Research Center, United States Vandal, Thomas, ARC-CREST/NASA Ames Research Center, United States Lyapustin, Alexei, NASA Goddard Space Flight Center, United States Zhang, Jia, Carnegie Mellon University, United States Lee, Tsengdar, NASA/HQ, United States Kalluri, Satya, NOAA, United States Takenaka, Hideaki, Japan Aerospace Exploration Agency, Japan Higuchi, Atsushi, Chiba University, Japan Ichii, Kazuhito, Chiba University, Japan Li, Shuang, Guiyang Education University, China Yeom, Jong-Min, Korea Aerospace Research Institute, KARI, Korea (South)

MO2.R14.2: TEMPORAL CONSOLIDATION STRATEGY FOR GROUND BASED IMAGE DISPLACEMENT TIME SERIES

<u>Marsy, Guilhem</u>, Université Savoie Mont Blanc, France <u>Vernier, Flavien</u>, Université Savoie Mont Blanc, France <u>Bodin, Xavier</u>, CNRS, France <u>Castaings, William</u>, TENEVIA, France <u>Trouvé, Emmanuel</u>, Université Savoie Mont Blanc, France

MO2.R14.3: PREDICTION OF PLANT GROWTH BASED ON STATISTICAL MEASUREMENTS USING SATELLITE IMAGE TIME SERIES

Hachicha, Marwa, Advanced Technologies for Image and Signal Processing, Tunisia Louati, Mahdi, National School of Electronics and Telecommunications of Sfax, Tunisia Kallel, Abdelaziz, Digital Research Center of Sfax, Tunisia Gastellu-Etchegorry, Jean-Philippe, Centre d'Etudes Spatiales de la Biosphère, CESBIO; Toulouse University (CNRS, CNES, IRD, Paul Sabatier University), France

MO2.R14.4: CLASSIFICATION OF WHEAT AND BARLEY FIELDS USING SENTINEL-1 BACKSCATTER

<u>Pfeil, Isabella</u>, TU Wien, Austria <u>Reuß, Felix</u>, TU Wien, Austria <u>Vreugdenhil, Mariette</u>, TU Wien, Austria <u>Navacchi, Claudio</u>, TU Wien, Austria <u>Wagner, Wolfgang</u>, TU Wien, Austria

MO2.R14.5: COMPARISON BETWEEN MULTITEMPORAL GRAPH BASED CLASSICAL LEARNING AND LSTM MODEL CLASSIFICATIONS FOR SITS ANALYSIS

<u>Chaabane, Ferdaous</u>, SUP'COM, Carthage University, Tunisia <u>Réjichi, Safa</u>, SUP'COM, Carthage University, Tunisia <u>Tupin, Florence</u>, Telecom ParisTech, France

MO2.R14.6: FUZZY NEURAL NETWORK-BASED ASSESSMENT OF ROAD TRAFFIC SITUATIONS USING EXTRACTED INFORMATION OBTAINED FROM OPTICAL HIGH-RESOLUTION SATELLITE REMOTE SENSING IMAGES

Ma, Xiaoyang, Harbin Institute of Technology, China Hao, Xiaolong, Beijing Tracking and

Communication Technology Research Institute, China Chen, Hao, Harbin Institute of Technology, China

MO2.R14.7: PHOTOVOLTAIC PANEL CONSTRUCTION CHANGE MONITORING BASED ON LSTM MODELS

<u>Chen, Liuliang</u>, Shanghai Jiao Tong University, China <u>Guo, Weiwei</u>, Tongji University, China <u>Liu, Zeyu</u>, Shanghai Jiao Tong University, China <u>Zhang, Zenghui</u>, Shanghai Jiao Tong University, China <u>Yu, Wenxian</u>, Shanghai Jiao Tong University, China

MO2.R14.8: UNCERTAINTIES IN VIIRS NIGHTTIME LIGHT TIME SERIES ANALYSIS

Wang, Zhuosen, University of Maryland College Park/NASA GSFC, United States Román.

Miguel, Universities Space Research Association, United States Kalb, Virginia, NASA Goddard
Space Flight Center, United States Shrestha, Ranjay, Science Systems and Applications, Inc.,
United States Stokes, Eleanor, University of Maryland College Park/NASA GSFC, United States
Paynter, Jan, Universities Space Research Association/NASA GSFC, United States

MO2.R14.9: TEMPORAL AND SPATIAL CHANGE PATTERN RECOGNITION BY MEANS OF SENTINEL-1 SAR TIME-SERIES

Che, Meigin, University of Pavia, Italy Gamba, Paolo, University of Pavia, Italy

MO2.R14.10: VISION-BASED SCATTERING KEY-FRAME EXTRACTION FOR VIDEOSAR SUMMARIZATION

<u>Zhang, Ying</u>, Nanjing University of Aeronautics and Astronautics, China <u>Mou, Lichao</u>, German Aerospace Center, Germany <u>Zhu, Daiyin</u>, Nanjing University of Aeronautics and Astronautics, China <u>Zhu, Xiao Xiang</u>, German Aerospace Center, Germany

MO2.R14.11: ASSESSING DIFFERENTIATION BETWEEN PASTURE AND CROPLANDS USING REMOTE SENSING IMAGE TIME SERIES METRICS

Rodrigues, Marcos, INPE, Brazil Bendini, Hugo, INPE, Brazil Soareas, Anderson, INPE, Brazil Körting, Thales, INPE, Brazil Fonseca, Leila, INPE, Brazil

MO2.R15 - POLSAR / POLINSAR: Monday, September 28, 07:30 - 09:30 • Room 15 Applications & Analysis

MO2.R15.1: FOUR-COMPONENT DECOMPOSITION METHOD OF POLARIMETRIC SAR INTERFEROMETRY USING REFINED VOLUME SCATTERING MODELS

Wang, Yu, Institute of Electronics, Chinese Academy of Sciences, Germany Yu, Weidong, Institute of Electronics, Chinese Academy of Sciences, China Wang, Chunle, Institute of Electronics, Chinese Academy of Sciences, China Liu, Xiuqing, Institute of Electronics, Chinese Academy of Sciences, China

MO2.R15.2: EVALUATION OF A_S1 FOR BUILDING DAMAGE MAPPING BASED ON TOUZI DECOMPOSITION

Pang, Lei, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhang, Fengli, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wang, Guojun, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liu, Na, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Lu, Aerospace Information Research Institute, Chinese Academy of Sciences, China Shao, Yun, Aerospace Information Research Institute, Chinese Academy of Sciences, China Chinese Academy of Sciences, China Chi

MO2.R15.3: X-BAND POLINSAR VEGETATION CANOPY HEIGHT INVERSION STRATEGY BASED ON FREQUENCY SEGMENTATION

Tang, Fanyi, Xidian University, China Xie, Jinwei, Nanjing Research Institute of Electronic Technology, China Suo, Zhiyong, Xidian University, China Li, Han, Xidian University, China Li, Zhenfang, Xidian University, China

MO2.R15.4: DISCUSSION ON BUILDING ORIENTATION ESTIMATION USING POLARIMETRIC SYNTHETIC APERTURE RADAR DATA

<u>Shang, Fang</u>, University of Electro-Communications, Japan

MO2.R15.5: COMPARISON OF MACHINE LEARNING METHODS FOR PREDICTING QUAD-POLARIMETRIC PARAMETERS FROM DUAL-POLARIMETRIC SAR DATA

Blix, Katalin, UiT The Arctic University of Norway, Norway M. Espeseth, Martine, UiT The

Arctic University of Norway, Norway <u>Eltoft, Torbjørn</u>, UiT The Arctic University of Norway, Norway

MO2.R15.6: MULTIPLICATIVE PROCESSING FOR POLARIMETRIC SAR INTERFEROMETRY

Kasilingam, Dayalan, University of Massachusetts Dartmouth, United States

MO2.R15.7: A MODIFIED SIFT ALGORITHM FOR POLSAR IMAGE REGISTRATION

Wang, Hongmiao, Tsinghua University, China Wang, Jing, Science and Technology on Information System Engineering Laboratory, China Yin, Junjun, University of Science and Technology Beijing, China Yang, Jian, Tsinghua University, China

MO2.R15.8: DEEP LEARNING BASED CLASSIFICATION USING SEMANTIC INFORMATION FOR POLSAR IMAGE

Zhang, Lu, Xi'an University of Posts and Telecommunication, China Xie, Wen, Xi'an University of Posts and Telecommunications, China Zhao, Feng, Xi'an University of Posts and Telecommunication, China Liu, Hanqiang, Shaanxi Normal University, China Duan, Yiping, Tsinghua University, China

MO2.R15.9: POLSAR IMAGE CLASSIFICATION VIA COMPLEX-VALUED MULTI-SCALE CONVOLUTIONAL NEURAL NETWORK

<u>Zhang, Lamei</u>, Harbin Institute of Technology, China <u>Zhang, Siyu</u>, Harbin Institute of Technology, China <u>Dong, Hongwei</u>, Harbin Institute of Technology, China <u>Lu, Da</u>, AVIC Leihua Electric Technology Research Institute, China

MO2.R15.10: COMPARISON STUDY OF MULTITEMPORAL POLSAR CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS

<u>Tao, Chen-Song</u>, National University of Defense Technology, China <u>Chen, Si-Wei</u>, National University of Defense Technology, China <u>Xiao, Shun-Ping</u>, National University of Defense Technology, China

MO2.R15.11: A NOVEL MODEL-BASED POLARIMETRIC SAR DATA DECOMPOSITION APPROACH AND ITS APPLICATIONS

Wang, Zezhong, Peking University, China Zeng, Qiming, Peking University, China

MO2.R16 - Image and Data Fusion I

Monday, September 28, 07:30 - 09:30 • Room 16

MO2.R16.1: INTEGRATING TIME-SERIES AND HIGH-SPATIAL REMOTE SENSING DATA BASED ON MULTILEVEL DECISION FUSION

Guan, Xudong, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China Huang, Chong, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Liu, Gaohuan, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Liu, Qingsheng, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China

MO2.R16.2: PAN-SHARPENING WITH A CNN-BASED TWO STAGE RATIO ENHANCEMENT METHOD

Zhou, <u>Huanyu</u>, Beihang University, China <u>Liu, Qingjie</u>, Beihang University, China <u>Xu, Qizhi</u>, Beijing University of Chemical Technology, China <u>Wang, Yunhong</u>, Beihang University, China

MO2.R16.3: A NO-REFERENCE SUPER RESOLUTION FOR SATELLITE IMAGE QUALITY ENHANCEMENT FOR KOMPSAT-3

<u>Choi, Yeonju</u>, Korea Aerospace Research Institute, Korea (South) <u>Kim, Yongwoo</u>, Sangmyung University, Korea (South)

MO2.R16.4: MULTISCALE INFRARED AND VISIBLE IMAGE FUSION BASED ON PHASE CONGRUENCY AND SALIENCY

<u>Chen, Jun</u>, China University of Geosciences, China <u>Wu, Kangle</u>, China University of Geosciences, China <u>Luo, Linbo</u>, China University of Geosciences, China <u>Chen, Xiaoqiang</u>, China University of Geosciences, China <u>Gu, Yue</u>, China University of Geosciences, China <u>Tian, Xin</u>, Wuhan University, China

MO2.R16.5: AUTOMATIC FINE ALIGNMENT OF MULTISPECTRAL AND PANCHROMATIC

IMAGES

<u>Arienzo, Alberto</u>, University of Florence, Italy <u>Alparone, Luciano</u>, University of Florence, Italy <u>Aiazzi, Bruno</u>, CNR - National Research Council, Italy <u>Garzelli, Andrea</u>, University of Siena, Italy

MO2.R16.6: SPATIO-TEMPORAL FUSION OF NIGHT-TIME LIGHT IMAGES WITH DEEP LEARNING

<u>Liu, Peng</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Shan, Wei</u>, Yanshan University, China <u>Li, Lei</u>, University of Chinese Academy of Sciences, China <u>Chen, Lajiao</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Ma, Yan</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Zhao, Lingjun</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China

MO2.R16.7: EVALUATION OF SPATIOTEMPORAL FUSION MODELS IN LAND SURFACE TEMPERATURE USING POLAR-ORBITING AND GEOSTATIONARY SATELLITE DATA

<u>Li, Yitao</u>, Chinese Academy of Sciences, China <u>Wu, Hua</u>, Chinese Academy of Sciences, China <u>Li, Zhao-Liang</u>, Institute of Agricultural Resources and Regional Planning, China <u>Duan, Sibo</u>, Institute of Agricultural Resources and Regional Planning, China <u>Ni, Li</u>, Chinese Academy of Sciences, China

MO2.R16.8: OPTIMIZATION OF DSM PRODUCT GENERATION OF ZY-3 SATELLITE IMAGES BASED ON IMAGE FREQUENCY-DOMAIN FUSION AND FILTERING

Peng, Shuying, University of Electronic Science and Technology of China, China Huang, Fang, University of Electronic Science and Technology of China, China Lu, Jun, University of Electronic Science and Technology of China, China Tie, Bo, University of Electronic Science and Technology of China, China Chen, Yinjie, University of Electronic Science and Technology of China, China China, China Chi

MO2.R16.9: INTERPOLATION OF GEOCHEMICAL DATA WITH ASTER IMAGES BASED ON ALEXNET CONVOLUTION NEURAL NETWORK

<u>Bai, Shi</u>, China University of Geosciences (Beijing), China <u>Zhao, Jie</u>, China University of Geosciences (Beijing), China

MO2.R16.10: SHIP DETECTION ON SINGLE-BAND GRAYSCALE IMAGERY USING DEEP LEARNING AND AIS SIGNAL MATCHING USING NON-RIGID TRANSFORMATIONS

Talon, Patrick, Deimos Space UK Ltd., United Kingdom Bravo Pérez-Villar, Juan Ignacio,
Deimos Space UK Ltd., United Kingdom Hadland, Anneley, ESRI UK, United Kingdom
Wyniawskyj, Nina Sofia, Deimos Space UK Ltd., United Kingdom Petit, David, Deimos Space
UK Ltd., United Kingdom Wilson, Mark, BMT SCD, United Kingdom

MO2.R16.11: ADAPTIVE-WEIGHT FUSION NETWORK FOR LAND COVER CLASSIFICATION USING HETEROGENEOUS REMOTE SENSING IMAGES

<u>Li, Xiao</u>, National University of Defense Technology, China <u>Lei, Lin</u>, National University of Defense Technology, China <u>Sun, Yuli</u>, National University of Defense Technology, China <u>Kuang, Gangyao</u>, National University of Defense Technology, China

MO2.R17 - Detection of Small Static and Moving Objects

Monday, September 28, 07:30 - 09:30 • Room 17

MO2.R17.1: VEHICLE DETECTION AND COUNTING FROM VHR SATELLITE IMAGES: EFFORTS AND OPEN ISSUES

Froidevaux, Alice, QuantCube Technology, France Julier, Andréa, QuantCube Technology, France Lifschitz, Agustin, QuantCube Technology, France Pham, Minh-Tan, Université
Bretagne Sud - IRISA, France Dambreville, Romain, Université Bretagne Sud - IRISA, France Lefèvre, Sébastien, Université Bretagne Sud - IRISA, France Lassalle, Pierre, Centre National d'Etudes Spatiales (CNES), France Huynh, Thanh-Long, QuantCube Technology, France

MO2.R17.2: SMALL OBJECT DETECTION FROM REMOTE SENSING IMAGES WITH THE HELP OF OBJECT-FOCUSED SUPER-RESOLUTION USING WASSERSTEIN GANS

<u>Courtrai, Luc</u>, Univ. Bretagne Sud-IRISA, France <u>Pham, Minh-Tan</u>, Univ. Bretagne Sud-IRISA, France <u>Friguet, Chloé</u>, Univ. Bretagne Sud-IRISA, France <u>Lefèvre, Sébastien</u>, Univ. Bretagne Sud-IRISA, France

MO2.R17.3: AIRPLANE RECOGNITION FROM REMOTE SENSING IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORK

<u>Chen, Fen</u>, University of Electronic Science and Technology of China, China <u>Ren, Ruilong</u>, University of Electronic Science and Technology of China, China <u>Xu, Wenbo</u>, University of Electronic Science and Technology of China, China <u>Van de Voorde, Tim</u>, Ghent University, Belgium

MO2.R17.4: VEHSAT: A LARGE-SCALE DATASET FOR VEHICLE DETECTION IN SATELLITE IMAGES

Drouyer, Sebastien, ENS Paris Saclay, France

MO2.R17.5: SMALL OBJECT DETECTION IN OPTICAL REMOTE SENSING VIDEO WITH MOTION GUIDED R-CNN

<u>Feng. Jie</u>, Xidian University, China <u>Liang, Yuping</u>, Xidian University, China <u>Ye, Zhanwei</u>, Xidian University, China <u>Wu, Xiande</u>, Xidian University, China <u>Zeng, Dening</u>, Xidian University, China <u>Tang, Xiangrong</u>, Xidian University, China <u>Tang, Xu</u>, Xidian University, China <u>Tang, Xu</u>, Xidian University, China

MO2.R17.6: CONCURRENT SEGMENTATION AND OBJECT DETECTION CNNS FOR AIRCRAFT DETECTION AND IDENTIFICATION IN SATELLITE IMAGES

<u>Grosgeorge, Damien</u>, Earthcube, France <u>Arbelot, Maxime</u>, Earthcube, France <u>Goupilleau</u>, <u>Alex</u>, Earthcube, France <u>Ceillier, Tugdual</u>, Earthcube, France <u>Allioux, Renaud</u>, Earthcube, France

MO2.R17.7: GEOSPATIAL OBJECT DETECTION WITH SINGLE SHOT ANCHOR-FREE NETWORK

<u>Guo, Yiyou</u>, Tongji University, China <u>Ji. Jinsheng</u>, Shanghai Jiao Tong University, China <u>Lu.</u>
<u>Xiankai</u>, Inception Institute of Artificial Intelligence, United Arab Emirates <u>Xie, Huan</u>, Tongji
University, China <u>Tong, Xiaohua</u>, Tongji University, China

MO2.R17.8: IMPROVING SAR TARGET RECOGNITION WITH MULTI-TASK LEARNING

<u>Du, Wenrui</u>, Beijing University of Chemical Technology, China <u>Zhang, Fan</u>, Beijing University of Chemical Technology, China <u>Ma, Fei</u>, Beijing University of Chemical Technology, China <u>Yin</u>, <u>Qiang</u>, Beijing University of Chemical Technology, China <u>Zhou, Yongsheng</u>, Beijing University of Chemical Technology, China

MO2.R17.9: VEHICLE DETECTION WITH PARTIAL ANCHORS IN REMOTE SENSING IMAGES

Ma, Fuyan, Hunan University, China Sun, Bin, Hunan University, China Li, Shutao, Hunan University, China Sun, Jun, Fujitsu Research and Develop Center, China

MO2.R17.10: WEAK TARGET DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES BY COMBINING SUPER-RESOLUTION AND DEFORMABLE FPN

<u>Bai, Yang</u>, Harbin Institute of Technology, China <u>Zou, Tongyuan</u>, Space Star Technology Co., Ltd. (SST), China <u>Ye, Shujia</u>, Harbin Institute of Technology, China <u>Qin, Zhenqiang</u>, Harbin Institute of Technology, China <u>Gu, Yanfeng</u>, Harbin Institute of Technology, China <u>Gu, Yanfeng</u>, Harbin Institute of Technology, China

MO2.R17.11: VESSEL TARGET MONITORING WITH BISTATIC COMPACT HF SURFACE WAVE RADAR

Ji., Yonggang, First Institute of Oceanography, Ministry of Natural Resources, China Zhang, Jie, First Institute of Oceanography, Ministry of Natural Resources, China Wang, Yiming, First Institute of Oceanography, Ministry of Natural Resources, China Meng, Junmin, First Institute of Oceanography, Ministry of Natural Resources, China Yu, Changjun, Harbin Institute of Technology at Weihai, China Li, Ming, Ocean University of China, China Sun, Weifeng, China University of Petroleum, China

MO2.R18 - Change Detection in Monday, September 28, 07:30 - 09:30 • Room 18 SAR Images

MO2.R18.1: SMALL OBJECT CHANGE DETECTION BASED ON MULTITASK SIAMESE NETWORK

<u>Sharma, Shreya</u>, NEC Corporation, Japan <u>Kaneko, Eiji</u>, NEC Corporation, Japan <u>Toda, Masato</u>, NEC Corporation, Japan

MO2.R18.2: EFFICIENT GPU-BASED LOCAL HISTOGRAM ANALYZER FOR CHANGE DETECTION IN SATELLITE SAR IMAGES

<u>Gocho, Masato</u>, Mitsubishi Electric Corporation, Japan <u>Arii, Motofumi</u>, Mitsubishi Electric Corporation, Japan

MO2.R18.3: POTENTIAL OF FOREST MONITORING WITH MULTI-TEMPORAL TANDEM-X HEIGHT MODELS

Schlund, Michael, University of Göttingen, Germany Kukunda, Collins B., University of Göttingen, Germany Baumann, Sabine, German Aerospace Center, Germany Wessel, Birgit, German Aerospace Center, Germany Kiefl, Nadine, Airbus Defence and Space, Germany von Poncet, Felicitas, Airbus Defence and Space, Germany

MO2.R18.4: SAR IMAGE CHANGE DETECTION METHOD VIA A PYRAMID POOLING CONVOLUTIONAL NEURAL NETWORK

<u>Wang, Rongfang</u>, Xidian University, China <u>Ding, Fan</u>, Xidian University, China <u>Chen, Jia-Wei</u>, Xidian University, China <u>Liu, Bo</u>, Xidian University, China <u>Zhang, Jie</u>, Xidian University, China <u>Jiao, Licheng</u>, Xidian University, China

MO2.R18.5: A COMPOUND POLARIMETRIC-TEXTURAL APPROACH FOR UNSUPERVISED CHANGE DETECTION IN MULTI-TEMPORAL FULL-POL SAR IMAGERY

<u>Pirrone, Davide</u>, Université Savoie Mont Blanc, France <u>Pham, Minh-Tan</u>, Université Bretagne-Sud, France

MO2.R18.6: PARAMETER OPTIMIZATION FOR DETECTING SEISMIC GROUND DEFORMATION FROM AIRBORNE SAR IMAGES

<u>Ito, Koichi</u>, Tohoku University, Japan <u>Imai, Haruki</u>, Tohoku University, Japan <u>Aoki, Takafumi</u>, Tohoku University, Japan <u>Uemoto, Jyunpei</u>, National Institute of Information and Communications Technology, Japan

MO2.R18.7: VOLCANIC ERUPTION MONITORING USING COHERENCE CHANGE DETECTION MATRIX

<u>Le, Thu Trang</u>, Clermont Auvergne University, France <u>Froger, Jean-Luc</u>, Clermont Auvergne University, France <u>Baghdadi, Nicolas</u>, University of Montpellier, France <u>Ho Tong Minh, Dinh</u>, University of Montpellier, France

MO2.R18.8: UNSUPERVISED AUTOMATIC TARGET DETECTION FOR MULTITEMPORAL SAR IMAGES BASED ON ADAPTIVE K-MEANS ALGORITHM

<u>Campos, Alexandre</u>, Aeronautics Institute of Technology, Brazil <u>Molin Jr., Ricardo</u>, Aeronautics Institute of Technology, Brazil <u>Vu, Viet</u>, Blekinge Institute of Technology, Sweden <u>Pettersson</u>, <u>Mats</u>, Blekinge Institute of Technology, Sweden <u>Machado</u>, <u>Renato</u>, Aeronautics Institute of Technology, Brazil

MO2.R18.9: BIPARTITE RESIDUAL NETWORK FOR CHANGE DETECTION IN HETEROGENEOUS OPTICAL AND RADAR IMAGES

<u>Zhang, Haocheng</u>, Nanjing University of Science and Technology, China <u>Liu, Jia</u>, Nanjing University of Science and Technology, China <u>Xiao</u>, <u>Liang</u>, Nanjing University of Science and Technology, China

MO2.R18.10: CHANGE DETECTION OF POLARIMETRIC SAR IMAGES USING MINKOWSKI LOG-RATIO DISTANCE

<u>Chen, Shuailin</u>, Wuhan University, China <u>Yang, Xiangli</u>, Wuhan University, China <u>Zou, Tongyuan</u>, Space Star Technology Co., Ltd. (SST), China <u>Peng, Dong</u>, Wuhan University, China <u>Yang, Wen, Wuhan University, China Li, Heng-Chao</u>, Southwest Jiaotong University, China

MO2.R19 - Electromagnetic Scattering

Monday, September 28, 07:30 - 09:30 • Room 19

MO2.R19.1: RESEARCH ON COMPOSITE ELECTROMAGNETIC SCATTERING COMPUTATION OF SEA SURFACE AND SHIP TARGET

<u>Guo, Yuhua</u>, Beijing Institute of Satellite Information Engineering, China <u>Liu, Jiachuan</u>, China Academy of Space Technology, China <u>Shi, Huifeng</u>, Beijing Institute of Satellite Information Engineering, China <u>Tian, Luyun</u>, Beijing Institute of Satellite Information Engineering, China

MO2.R19.2: SIMULATION OF MICROWAVE BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL

<u>Zheng, Honglei</u>, China University of Petroleum (East China), China <u>Zhang, Jie</u>, China University of Petroleum (East China), China <u>Khenchaf, Ali</u>, ENSTA Bretagne, France <u>Zhang, Yanmin</u>, Ocean University of China, China <u>Wang, Yunhua</u>, Ocean University of China, China

MO2.R19.3: POLARIMETRIC TWO-SCALE MODEL FOR THE EVALUATION OF BISTATIC SCATTERING FROM ANISOTROPIC SEA SURFACES

<u>Di Martino, Gerardo</u>, University of Naples Federico II, Italy <u>Di Simone, Alessio</u>, University of Naples Federico II, Italy <u>Iodice, Antonio</u>, University of Naples Federico II, Italy <u>Riccio, Daniele</u>, University of Naples Federico II, Italy

MO2.R19.4: EFFECTS OF ROUGHNESS SCALE ON OCEAN RADAR SCATTERING USING NUMERICAL SIMULATIONS

<u>Du, Yanlei</u>, Tsinghua University, China <u>Yin, Junjun</u>, University of Science and Technology Beijing, China <u>Tan, Shurun</u>, University of Illinois at Urbana-Champaign, United States <u>Yang</u>, <u>Jian</u>, Tsinghua University, China

MO2.R19.5: MODELING TEMPORAL DECORRELATION AT X-BAND BY COMBINING TANDEM-X AND PAZ INSAR DATA

Sica, Francescopaolo, German Aerospace Center (DLR), Germany Bretzke, Sofie, German Aerospace Center (DLR), Germany Pulella, Andrea, German Aerospace Center (DLR), Germany Martone, Michele, German Aerospace Center (DLR), Germany Bueso Bello, José Luis, German Aerospace Center (DLR), Germany Gonzáles Bonilla, María José, Instituto Nacional de Tecnica Aerospacial (INTA), Spain Rizzoli, Paola, German Aerospace Center (DLR), Germany

MO2.R19.6: EVALUATION OF LORA FOR DATA RETRIEVAL OF OCEAN MONITORING SENSORS WITH LEO SATELLITES

<u>Fernandez, Lara</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Ruiz-de-Azua, Joan A.</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Calveras, Anna</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Camps, Adriano</u>, Universitat Politècnica de Catalunya (UPC), Spain

MO2.R19.7: A PHYSICAL PATCH MODEL FOR GNSS-R LAND APPLICATIONS WITH TOPOGRAPHY EFFECTS AND DDM SIMULATIONS

Xu, Haokui, University of Michigan, United States Zhu, jiyue, University of Michigan, United States <u>Tsang</u>, <u>Leung</u>, University of Michigan, United States <u>Kim</u>, <u>Seungbum</u>, NASA Jet Propulsion Laboratory, United States <u>Nghiem</u>, <u>Son.V.</u>, NASA Jet Propulsion Laboratory, United States

MO2.R19.8: ELECTROMAGNETIC SCATTERING COMPUTATION OF A SNOW LAYER OVER ROUGH SURFACE USING SSWAP-SD TECHNIQUE

Zaky, Mostafa, University of Michigan, United States Sarabandi, Kamal, University of Michigan, United States

MO2.R19.9: IMPROVED DETECTION TECHNIQUES FOR NEW MILLIMETER WAVE AUTOMOTIVE RADARS

Alaqeel, Abdulrahman, University of Michigan, Ann Arbor, United States Nashashibi, Adib, University of Michigan, Ann Arbor, United States Sarabandi, Kamal, University of Michigan, Ann Arbor, United States Shaman, Hussein, King Abdulaziz City for Science and Technology, Saudi Arabia

MO2.R19.10: NON CONVEX OPERATORS FOR ELECTROMAGNETIC GEOSOUNDING NOISE

Hidalgo-Silva, Hugo, CICESE, Mexico Gomez-Trevino, Enrique, CICESE, Mexico

MO2.R19.11: SOLAR ACTIVITY IS ONE OF TRIGGERS OF EARTHQUAKES WITH MAGNITUDES LESS THAN 6

<u>Nishii, Ryuei</u>, Nagasaki University, Japan <u>Qin, Pan</u>, Dalian University of Technology, China <u>Kikuyama, Ryosuke</u>, Mazda Motor Company, Japan

MO2.R19.12: SCATTERING MECHANISM OF LARGE-FOOTPRINT FULL-WAVEFORM LIDAR OVER MOUNTAINOUS FOREST AREAS

<u>Yang, Xuebo</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Wang, Cheng</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Xi, Xiaohuan</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Zhou, Guoqing</u>, Guilin University of Technology, China

TU1.R1 - Land Use Applications II Tuesday, September 29, 05:00 - 07:00 • Room 1

TU1.R1.1: ELASTIC MAPPING THROUGH THE COPERNICUS GLOBAL LAND COVER LAYERS

<u>Smets, Bruno</u>, VITO NV, Belgium <u>Souverijns, Niels</u>, VITO, Belgium <u>Jaffrain, Gabriel</u>, IGN-FI, France <u>Buchhorn, Marcel</u>, VITO NV, Belgium <u>Moiret, Adrien</u>, IGN-FI, France <u>Quang, An Vo</u>, IGN-FI, France <u>Lesiv, Myroslava</u>, IIASA, Austria <u>Tsendbazar, Nandin-Erdene</u>, Wageningen University, Netherlands

TU1.R1.2: MODELLING TERRESTRIAL TORTOISES RESPONSE TO FIRE EVENTS

<u>Duarte, Lia</u>, Faculty of Sciences, University of Porto, Portugal <u>Santos, Xavier</u>, CIBIO/InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto), Portugal <u>Teodoro, Ana Cláudia</u>, Faculty of Sciences, University of Porto, Portugal <u>Sillero, Neftallí</u>, CICGE: Centro de Investigação em Ciências Geo-Espaciais, Portugal

TU1.R1.3: SENTINEL-2 MULTI-TEMPORAL DATA FOR RICE CROP CLASSIFICATION IN NEPAL

<u>Baidar, Tina</u>, University Jaume I, Spain <u>Fernandez-Beltran, Ruben</u>, University Jaume I, Spain <u>Pla, Filiberto</u>, University Jaume I, Spain

TU1.R1.4: FIRE OCCURRENCE IN THE BRAZILIAN SAVANNA CONSERVATION UNITS AND THEIR BUFFER ZONES

Hoffmann, Tânia Beatriz, National Institute for Space Research, Brazil <u>Dutra, Andeise</u>, National Institute for Space Research, Brazil <u>Shimabukuro, Yosio</u>, National Institute for Space Research, Brazil <u>Arai, Egidio</u>, National Institute for Space Research, Brazil <u>Cassol, Henrique Luis</u>, National Institute for Space Research, Brazil <u>Di Girolamo Neto, Cesare</u>, National Institute for Space Research, Brazil <u>Duarte, Valdete</u>, National Institute for Space Research, Brazil

TU1.R1.5: COMPARISON OF SPATIAL MODELLING APPROACHES TO PREDICT URBAN GROWTH OF LUCKNOW CITY, INDIA

Shukla, Anugya, Indian Institute of Technology Roorkee, India Jain, Kamal, Indian Institute of Technology Roorkee, India

TU1.R1.6: INTEGRATED PLATFORM FOR ECOSYSTEMS MONITORING BASED ON REMOTE AND IN SITU MEASUREMENTS

Sacaleanu, Dragos Ioan, University Politehnica of Bucharest, Romania Adamescu, Mihai, University of Bucharest, Romania Faur, Daniela, University Politehnica of Bucharest, Romania Cazacu, Constantin, University of Bucharest, Romania Florea, Bogdan Cristian, University Politehnica of Bucharest, Romania Griparis, Andreea, University Politehnica of Bucharest, Romania Racoviceanu, Tudor, University of Bucharest, Romania Giuca, Relu Constantin, University of Bucharest, Romania

TU1.R1.7: FRACTAL CHARACTERISTICS AND EVOLUTION OF URBAN LAND-USE: A CASE STUDY IN THE SHENZHEN CITY (1988-2015)

<u>Cheng, Luxiao</u>, China University of Geosciences, China <u>Wang, Lizhe</u>, China University of Geosciences, China <u>Feng, Ruyi</u>, China University of Geosciences, China

TU1.R1.8: LAND USE AND LAND COVER CHANGE OF GHANA

Hou, Ankai, University of Electronic Science and Technology of China, China Samuel, Abrado Blankson, University of Electronic Science and Technology of China, China Li, Mujie, University of Electronic Science and Technology of China, China Zheng, Zezhong, University of Electronic Science and Technology of China, China Xia, Jun, University of Electronic Science and Technology of China, China Zhang, Xiang, Wuhan University, China Zhou, Guoqing, Guilin University of Technology, China

TU1.R1.9: CLASSIFICATION OF WIDE-AREA SAR MOSAICS: DEEP LEARNING APPROACH FOR CORINE BASED MAPPING OF FINLAND USING MULTITEMPORAL SENTINEL-1 DATA

<u>Antropov, Oleg</u>, VTT Technical Research Centre of Finland, Finland <u>Rauste, Yrjö</u>, VTT Technical Research Centre of Finland, Finland <u>Scepanovic, Sanjaaa</u>, ICEYE, United Kingdom <u>Lönnqvist</u>, <u>Anne</u>, VTT Technical Research Centre of Finland, Finland <u>Ignatenko, Vladimir</u>, ICEYE Oy, Finland <u>Praks, Jaan</u>, Aalto University, Finland

TU1.R1.10: INTEGRATION OF GENETIC ALGORITHM AND AGENT BASED MODEL TO

VISUALIZE NEAR REALISTIC SUSTAINABLE URBAN GROWTH: A COMPARATIVE STUDY

M.C., Chandan, Indian Institute of Technology Kharagpur, India J.S., Aadithyaa, Indian Institute of Technology Kharagpur, India H.A., Bharath, Indian Institute of Technology Kharagpur, India

TU1.R1.11: LAND USE AND LAND COVER MAPPING USING FRACTION IMAGES DERIVED FROM ANNUAL VIIRS-NPP DATASET

<u>Shimabukuro, Yosio Edemir</u>, National Institute for Space Research, Brazil <u>Arai, Egidio</u>, National Institute for Space Research, Brazil <u>Dutra, Andeise Cerqueira</u>, National Institute for Space Research, Brazil <u>Duarte, Valdete</u>, National Institute for Space Research, Brazil

TU1.R2 - Monitoring and Damage Tuesday, September 29, 05:00 - 07:00 • Room 2 Assessment of Natural Disasters I

TU1.R2.1: INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY

Carney, Richard, University of Hawaii, United States Chyba, Monique, University of Hawaii, United States Gray, Chris, University of Hawaii, United States Pereda, Julian, University of Hawaii, United States Swantek, Elizabeth, University of Hawaii, United States Tong, Alan, University of Hawaii, United States Baek, Kyungim, University of Hawaii, United States Koch, William, University of Hawaii, United States Poisson, Guylaine, University of Hawaii, United States Perroy, Ryan, University of Hawaii, Hilo, United States Sullivan, Timothy, University of Hawaii, Hilo, United States Tommy, Charlie, University of Hawaii, Hilo, United States Lay, Norman, NASA, United States Oudrihi, Kamal, NASA, United States

TU1.R2.2: UNMANNED AERIAL VEHICLE-BASED AUTOMATED BRIDGE MULTI-HAZARD ASSESSMENT SYSTEM

Özcan, Orkan, Istanbul Technical University, Turkey Özcan, Okan, Akdeniz University, Turkey

TU1.R2.3: LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS

Minardo, Aldo, University of Campania Luigi Vanvitelli, Italy Catalano, Ester, University of Campania Luigi Vanvitelli, Italy Coscetta, Agnese, University of Campania Luigi Vanvitelli, Italy Zeni, Giovanni, National Research Council (CNR), Italy Di Maio, Caterina, University of Basilicata, Italy Vassallo, Roberto, University of Basilicata, Italy Picarelli, Luciano, University of Campania Luigi Vanvitelli, Italy Coviello, Roberto, Rete Ferroviaria Italiana (Ferrovie dello Stato Italiane Group), Italy Macchia, Giuseppe, Rete Ferroviaria Italiana (Ferrovie dello Stato Italiane Group), Italy Zeni, Luigi, University of Campania Luigi Vanvitelli, Italy

TU1.R2.4: LANDSLIDE SUSCEPTIBILITY USING REMOTE SENSING DATA & GIS IN A HIGH ANDEAN AREA OF CENTRAL CHILE

<u>Vidal Páez, Paulina</u>, Hémera Centro de Observación de la Tierra, Universidad Mayor, Chile <u>Clavero, Jorge</u>, Amawta Geoconsultores, Chile <u>Droguett, Bárbara</u>, Amawta Geoconsultores, Chile <u>Pérez Martínez, Waldo</u>, Hémera Centro de Observación de la Tierra, Universidad Mayor, Chile <u>Briceño de Urbaneja, Idania</u>, Hémera Centro de Observación de la Tierra, Universidad Mayor, Chile <u>Oliva, Patricia</u>, Hémera Centro de Observación de la Tierra, Universidad Mayor, Chile

TU1.R2.5: EARTHQUAKE-INDUCED BUILDING DAMAGE ASSESSMENT ON SAR MULTI-TEXTURE FEATURE FUSION

<u>Du, Yankai</u>, Institute of Crustal Dynamics, China Earthquake Administration, China <u>Gong</u>, <u>Lixia</u>, Institute of Crustal Dynamics, China Earthquake Administration, China <u>Li, Qiang</u>, Institute of Crustal Dynamics, China Earthquake Administration, China <u>Wu, Fan</u>, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

TU1.R2.6: TECTONIC DIFFERENCE BETWEEN THE QAIDAM BASIN AND THE EASTERN KUNLUN SHAN: INSIGHT FROM BUFFER ANALYSIS OF THE EARTHQUAKES AND FAULTS IN THE NORTH TIBET

<u>Wang, Lin</u>, Peking University, China <u>Hou, Kaihua</u>, Peking University, China <u>Cheng, Feng</u>, University of Rochester, United States

TU1.R2.7: THREE-DIMENSIONAL VARIATIONS OF CARBON MONOXIDE
CONCENTRATION ASSOCIATED WITH WENCHUAN EARTHQUAKE BASED ON AIRS
DATA

Cui, Yueju, Institute of Earthquake Forecasting, CEA, China Du, Jianguo, Institute of Earthquake Forecasting, CEA, China Zhang, Ying, Institute of Remote Sensing Applications Chinese Academy of Sciences, China Wang, Shumin, Institute of Earthquake Forecasting, CEA, China Li, Xinyan, Earthquake Agency of Ningxia Hui Autonomous Region, China Zou, Zhenyu, Institute of Earthquake Forecasting, CEA, China Jiang, Li, Institute of Earthquake Forecasting, CEA, China CEA, China

TU1.R2.8: CONVOLUTIONAL RECURRENT NEURAL NETWORKS FOR EARTHQUAKE EPICENTRAL DISTANCE ESTIMATION USING SINGLE-CHANNEL SEISMIC WAVEFORM

<u>Kim, Gwantae</u>, Korea University, Korea (South) <u>Ku, Bonhwa</u>, Korea University, Korea (South) <u>Li, Yuanming</u>, Korea University, Korea (South) <u>Min, Jeongki</u>, Korea University, Korea (South) <u>Lee, Jimin</u>, Korea Meteorological Administration, Korea (South) <u>Ko, Hanseok</u>, Korea University, Korea (South)

TU1.R2.9: USING MULTIMODAL LEARNING MODEL FOR EARTHQUAKE DAMAGE DETECTION BASED ON OPTICAL SATELLITE IMAGERY AND STRUCTURAL ATTRIBUTES

<u>Miyamoto, Takashi</u>, University of Yamanashi, Japan <u>Yamamoto, Yudai</u>, University of Yamanashi, Japan

TU1.R2.10: SEISMIC ANALYSIS ON HISTORICAL BRIDGE USING PHOTOGRAMMETRY AND FINITE ELEMENTS

<u>Parra, Hector</u>, Universidad Distrital Francisco José de Caldas, Colombia <u>Angulo, Victor</u>, Universidad Distrital Francisco José de Caldas, Colombia <u>Gaona, Elvis</u>, Universidad Distrital Francisco José de Caldas, Colombia

TU1.R2.11: CONSTRUCTION AND APPLICATION OF A POST-QUAKE HOUSE DAMAGE MODEL BASED ON MULTISCALE SELF-ADAPTIVE FUSION OF SPECTRAL TEXTURES IMAGES

Zhang, Rui, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhou, Yi, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wang, Shixin, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wang, Futao, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhang, Tao, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China He, Yun, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China You, Shucheng, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China

TU1.R2.12: EARTHQUAKE EARLY WARNING USING LOW-COST MEMS SENSORS

<u>Kwon, Young-Woo</u>, Kyungpook National University, Korea (South) <u>Ahn, Jae-Kwang</u>, Korea Meteorological Administration, Korea (South) <u>Lee, Jimin</u>, Korea Meteorological Administration, Korea (South) <u>Lee, Chul-Ho</u>, Florida Institute of Technology, Korea (South)

TU1.R3 - SAR Interferometry II Tuesday, September 29, 05:00 - 07:00 • Room 3

TU1.R3.1: MEKONG SAR INTERFEROMETRY BIG DATA: PRELIMINARY RESULTS

Ho Tong Minh, Dinh, INRAE, France Le, Trung Chon, Ho Chi Minh city University of Technology, Viet Nam Ngo, Yen-Nhi, INRAE, France Nguyen, Cam Chi, Department of Survey, Mapping and Geographic Information, Viet Nam Pham, Thanh An, Defense Mapping Agency, Viet Nam Le Toan, Thuy, Centre d'Etudes Spatiales de la Biosphère, CESBIO, Viet Nam

TU1.R3.2: A NOVEL GROUND MOVING TARGET RADIAL VELOCITY ESTIMATION METHOD FOR DUAL-BEAM ALONG-TRACK INTERFEROMETRIC SAR

Tang, Xinxin, University of Electronic Science and Technology of China, China Zhang, Xiaoling, University of Electronic Science and Technology of China, China Shi, Jun, University of Electronic Science and Technology of China, China Wei, Shunjun, University of Electronic Science and Technology of China, China

TU1.R3.3: INTERFEROMETRIC PHASE STACK DATA FILTER METHOD VIA BAYESIAN CP FACTORIZATION

<u>Wang, Rui</u>, Beijing University of Posts and Telecommunications, China <u>You, Yanan</u>, Beijing University of Posts and Telecommunications, China <u>Zhou, Wenli</u>, Beijing University of Posts

and Telecommunications, China

TU1.R3.4: PHASE UNWRAPPING VIA DEEP LEARNING BASED REGION SEGMENTATION

Zhang, Ziwen, University of Electronic Science and Technology of China, China Qian, Jiang, University of Electronic Science and Technology of China, China Wang, Yong, University of Electronic Science and Technology of China, China Yang, Xiaobo, University of Electronic Science and Technology of China, China

TU1.R3.5: AN INFINITY-NORM-BASED PHASE UNWRAPPING METHOD WITH TSPA FRAMEWORK FOR MULTI-BASELINE SAR INTERFEROGRAMS

<u>Lan, Yang</u>, Xidian University, China <u>Yu, Hanwen</u>, University of Houston, United States <u>Xing</u>, <u>Mengdao</u>, Xidian University, China <u>Fu, Jixiang</u>, Xidian University, China

TU1.R3.6: IMPROVED BRANCH-CUT ALGORITHM FOR MULTIBASELINE PHASE UNWRAPPING USING SAR INTERFEROGRAMS

Zhou, Lifan, Changshu Institute of Technology, China <u>Yu, Hanwen</u>, University of Houston, United States <u>Lan, Yang</u>, Xidian University, China

TU1.R3.7: A DEM FUSION METHOD OF MULTI-BASELINE INSAR BASED ON PRIOR TERRAIN AND GUIDED FILTER

<u>Liu, Zhi</u>, University of Electronic Science and Technology of China, China <u>Zhang, Xiaoling</u>, University of Electronic Science and Technology of China, China <u>Chen, Yifei</u>, University of Electronic Science and Technology of China, China <u>Zhan, Xu</u>, University of Electronic Science and Technology of China, China <u>Wei, Shunjun</u>, University of Electronic Science and Technology of China, China <u>Shi, Jun</u>, University of Electronic Science and Technology of China, China

TU1.R3.8: INVESTIGATION OF ALONG-TRACK INTERFEROMETIC SAR USING ELECTROMAGNETIC SIMULATION

<u>Lee, Seungchul</u>, Seoul National University, Korea (South) <u>Kim, Duk-jin</u>, Seoul National University, Korea (South) <u>Kang, Ki-mook</u>, Seoul National University, Korea (South)

TU1.R3.9: A NEW FOREST HEIGHT INVERSION METHOD BASED ON L-BAND REPEAT-PASS SPACEBORNE POL-INSAR DATA

<u>Zhang, Qi</u>, University of New South Wales, Australia <u>Ge, Linlin</u>, University of New South Wales, Australia <u>Du, Zheyuan</u>, University of New South Wales, Australia

TU1.R3.10: DUAL-BASELINE INTERFEROMETRIC ISAR IMAGING

Ji, Zhenyuan, Harbin Institute of Technology, China Yu, Ting, Harbin Institute of Technology, China Zhang, Yun, Harbin Institute of Technology, China

TU1.R3.11: COMPLEX-VALUED CONVOLUTIONAL NEURAL NETWORKS IN INTERFEROMETRIC SYNTHETIC APERTURE RADAR AND THEIR TEACHER-IMAGE POLLUTION INFLUENCE ON THE PERFORMANCE

<u>Sunaga, Yuki</u>, University of Tokyo, Japan <u>Natsuaki, Ryo</u>, University of Tokyo, Japan <u>Hirose, Akira</u>, University of Tokyo, Japan

TU1.R3.12: GEOMETRICAL CORRECTIONS FOR GROUND CANCELED SAR IMAGES

<u>Mariotti d'Alessandro, Mauro</u>, Politecnico di Milano, Italy <u>Tebaldini, Stefano</u>, Politecnico di <u>Milano, Italy</u>

TU1.R4 - Novel Active and Passive Microwave Satellite Missions

Tuesday, September 29, 05:00 - 07:00 • Room 4

TU1.R4.1: YAW STEERING USING ADAPTIVE FILTERING FOR SPACEBORNE SAR SYSTEMS

<u>Chen, Tao</u>, Aviation Industry of China (AVIC), China <u>Ding, Yongfei</u>, Aviation Industry of China (AVIC), China <u>Pang, Ruifan</u>, Aviation Industry of China (AVIC), China <u>Gong, Cheng</u>, Aviation Industry of China (AVIC), China <u>Xu, Dinghai</u>, Aviation Industry of China (AVIC), China <u>Zhang</u>, <u>Hengyang</u>, Airforce Engineering University, China <u>Chen, Bo</u>, Shanghai University, China

TU1.R4.2: THE CASE FOR 6-HOUR REPEAT INSAR

Zebker, Howard, Stanford University, United States Rosen, Paul, NASA Jet Propulsion

Laboratory, United States

TU1.R4.3: POTENTIAL OF MULTITEMPORAL ICEYE SAR DATA IN LAND COVER MAPPING APPLICATIONS

<u>Ignatenko, Vladimir</u>, ICEYE Oy, Finland <u>Laurila, Pekka</u>, ICEYE Oy, Finland <u>Friberg, Tapio</u>, ICEYE Oy, Finland <u>Scepanovic, Sanja</u>, ICEYE, Finland <u>Praks, Jaan</u>, Aalto University, Finland <u>Antropov</u>, <u>Oleg</u>, VTT Technical Research Centre of Finland, Finland

TU1.R4.4: CONCEPT STUDY OF FUTURE LAND OBSERVATION SATELLITE TECHNIQUES WHEN UTILIZING KHATRI-RAO (KR) PRODUCT ARRAY PROCESSING

<u>Hirahara, Daichi</u>, Japan Aerospace Exploration Agency, Japan <u>Motohka, Takeshi</u>, Japan Aerospace Exploration Agency, Japan <u>Uematsu, Akihisa</u>, Japan Aerospace Exploration Agency, Japan

TU1.R4.5: ENVISION MISSION TO VENUS: SUBSURFACE RADAR SOUNDING

<u>Bruzzone, Lorenzo</u>, University of Trento, Italy <u>Bovolo, Francesca</u>, Fondazione Bruno Kessler (FBK), Italy <u>Thakur, Sanchari</u>, University of Trento, Italy <u>Carrer, Leonardo</u>, University of Trento, Italy <u>Donini, Elena</u>, Fondazione Bruno Kessler (FBK), Italy <u>Gerekos, Christopher</u>, University of Trento, Italy <u>Paterna, Stefano</u>, University of Trento, Italy <u>Santoni, Massimo</u>, University of Trento, Italy <u>Sbalchiero, Elisa</u>, University of Trento, Italy

TU1.R4.6: EVALUATING CURRENT AND FUTURE SENSOR-SPECIFIC BIOMASS CALIBRATION IN THE TALLEST MANGROVE FOREST ON EARTH

Stovall, Atticus, NASA Goddard Space Flight Center, United States Lagomasino, David, NASA Goddard Space Flight Center, United States Lee, Seung-Kuk, NASA Goddard Space Flight Center, United States Simard, Marc, NASA Jet Propulsion Laboratory, United States Thomas, Nathan, NASA Goddard Space Flight Center, United States Trettin, Carl, USDA, United States Fatoyinbo, Temilola, NASA Goddard Space Flight Center, United States

TU1.R4.7: AN AUTOMATIC PLANNING AND SCHEDULING METHOD BASED ON MULTI-OBJECTIVE GENETIC ALGORITHMS FOR PLANETARY RADAR SOUNDER OBSERVATIONS

<u>Paterna, Stefano</u>, University of Trento, Italy <u>Santoni, Massimo</u>, University of Trento, Italy <u>Bruzzone, Lorenzo</u>, University of Trento, Italy

TU1.R4.8: NEW INSIGHTS FROM AUSTRALIA'S SYNTHETIC APERTURE RADAR CAPABILITY, NOVASAR-1

Parker, Amy, Commonwealth Scientific and Industrial Research Organisation, Australia Zhou, Zheng-Shu, Commonwealth Scientific and Industrial Research Organisation, Australia Held. Alex, Commonwealth Scientific and Industrial Research Organisation, Australia Brindle, Laura, Commonwealth Scientific and Industrial Research Organisation, Australia Rosenqvist, Ake, solo Earth Observation, Japan

TU1.R4.9: THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS

Kerr, Yann, Centre d'Etudes Spatiales de la Biosphère, France Rodriguez-Fernandez, Nemesio, Centre d'Etudes Spatiales de la Biosphère, France Anterrieu, Eric, Centre d'Etudes Spatiales de la Biosphère, France Escorihuela, Maria-José, isardSat, Spain Drusch, Matthias, European Space Agency (ESA-ESTEC), Netherlands Closa, Josep, Airbus Defence and Space, Spain Zurita, Alberto, Airbus Defence and Space, Spain Cabot, François, Centre d'Etudes Spatiales de la Biosphère, France Amiot, Thierry, CNES, France Bindlish, Rajat, NASA, United States O'Neill, Peggy, NASA, United States

TU1.R4.10: A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)

Rodriguez-Fernandez, Nemesio, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Anterrieu, Eric, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Cabot, Francois, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Boutin, Jacqueline, LOCEAN, France Picard, Ghislain, IGE, France Pellarin, Thierry, IGE, France Merlin, Olivier, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Vialard, Jerome, LOCEAN, France Vivier, Frederic, LOCEAN, France Costeraste, Josiane, CNES, France Palacin, Baptiste, CNES, France Rodriguez-Suquet, Raquel, CNES, France Amiot, Thierry, CNES, France Khazaal, Ali, RDIS Conseils, France Rougé, Bernard, CMLA, France Morel, Jean-Michel, CMLA, France Colom, Miguel, CMLA, France Decoopman, Thibaut, Airbus Defence and Space, France Jeannin,

Nicolas, Airbus Defence and Space, France Caujolle, Romain, Airbus Defence and Space, France Escorihuela, Maria Jose, isardSat, Spain Al Bitar, Ahmad, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Richaume, Philippe, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Mialon, Arnaud, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Suere, Christophe, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Kerr, Yann, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France

TU1.R4.11: AMSR-2 OBSERVATIONS OF HURRICANE DORIAN

Jelenak, Zorana, University Corporation For Atmospheric Research, United States Sapp, Joe, Global Science and Technology Inc., United States Alsweiss, Suleiman, Global Science and Technology Inc., United States Chang, Paul, NOAA/NESDIS/Center for Satellite Applications and Research, United States

TU1.R4.12: RITA: REQUIREMENTS AND PRELIMINARY DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT

Pérez, Adrián, CommSensLab – UPC, Universitat Politècnica de Catalunya – BarcelonaTech, and Institute of Space Studies of Catalonia (IEEC) - CTE-UPC, Spain Fabregat, Pau, IEEE Barcelona Student Branch, Spain Badia, Marc, CommSensLab – UPC, Universitat Politècnica de Catalunya – BarcelonaTech, and Institute of Space Studies of Catalonia (IEEC) - CTE-UPC, Spain Sobrino, Marco, CommSensLab – UPC, Universitat Politècnica de Catalunya – BarcelonaTech, and Institute of Space Studies of Catalonia (IEEC) - CTE-UPC, Spain Molina, Carlos, CommSensLab – UPC, Universitat Politècnica de Catalunya – BarcelonaTech, and Institute of Space Studies of Catalonia (IEEC) - CTE-UPC, Spain Muñoz, Joan Francesc, CommSensLab – UPC, Universitat Politècnica de Catalunya – BarcelonaTech, and Institute of Space Studies of Catalonia (IEEC) - CTE-UPC, Spain Fernandez, Lara, CommSensLab – UPC, Universitat Politècnica de Catalunya – BarcelonaTech, and Institute of Space Studies of Catalonia (IEEC) - CTE-UPC, Spain Rayon, Laura, IEEE Barcelona Student Branch, Spain Ramos, Juan José, Institute of Space Studies of Catalonia (IEEC), and Department of Electrical Engineering, Universitat Politècnica de Catalunya – BarcelonaTech, Spain

TU1.R5 - 3D Terrain Mapping / Tomographic Imaging of Forest and Ionosphere Tuesday, September 29, 05:00 - 07:00 • Room 5

TU1.R5.1: 3D RECONSTRUCTION IN MOUNTAIN AREA FOR ARRAY TOMOSAR

Li, Xiaowan, Aerospace Information Research Institute, Chinese Academy of Sciences; National Key Lab of Microwave Imaging Technology; University of Chinese Academy of Sciences, China Liang, Xingdong, Aerospace Information Research Institute, Chinese Academy of Sciences; National Key Lab of Microwave Imaging Technology, China Zhang, Fubo, Aerospace Information Research Institute, Chinese Academy of Sciences; National Key Lab of Microwave Imaging Technology, China

TU1.R5.2: ROBUST 3D TOMOGRAPHIC IMAGING OF THE IONOSPHERIC ELECTRON DENSITY

Xu, Xiaojian, Washington University in St. Louis, United States <u>Dhifallah, Oussama</u>, Harvard University, United States <u>Mansour, Hassan</u>, Mitsubishi Electric Research Laboratories, United States <u>Boufounos, Petros</u>, Mitsubishi Electric Research Laboratories, United States <u>Orlik, Philip</u>, Mitsubishi Electric Research Laboratories, United States

TU1.R5.3: COASTLINE EROSION STUDY VIA UAV DRONE REMOTE SENSING USING PYTHON MODELLING ELECTRICAL RESISTIVITY IMAGING (PYMERI)

Antoine, Raphaël, CEREMA Normandie, France Ciotir, Ioana, INSA Rouen Normandie, France Costa, Stéphane, Université de Caen, France Fargier, Yannick, IFSTTAR - Bron, France Fauchard, Cyrille, CEREMA Normandie, France Gout, Christian, INSA Rouen, France Le Guyader, Carole, INSA Rouen Normandie, France Maquaire, Olivier, Université de Caen, France Taoum, Sam, CEREMA Normandie, France Tonnoir, Antoine, INSA Rouen, France

TU1.R5.4: OPERATIONAL PIPELINE FOR LARGE-SCALE 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGES

<u>Tripodi, Sebastien</u>, LuxCarta Technology, France <u>Duan, Liuyun</u>, LuxCarta Technology, France <u>Poujade, Veronique</u>, LuxCarta Technology, France <u>Trastour, Frederic</u>, LuxCarta Technology,

France <u>Bauchet, Jean-Philippe</u>, LuxCarta Technology, France <u>Laurore, Lionel</u>, LuxCarta Technology, France <u>Tarabalka, Yuliya</u>, LuxCarta Technology, France

TU1.R5.5: PERSISTENT SCATTERER DETECTION AND 3-D RECONSTRUCTION OF TRANSMISSION TOWER IN MOUNTAIN AREA BASED ON SAR TOMOGRAPHY

Du, Min, University of Electronic Science and Technology of China, China Chen, Yan, University of Electronic Science and Technology of China, China Chen, Yunping, University of Electronic Science and Technology of China, China Lu, Youchun, China Centre for Resources Satellite Data and Application, China Li, Baihui, University of Electronic Science and Technology of China, China Jiang, Linghai, University of Electronic Science and Technology of China, China

TU1.R5.6: CARS: A PHOTOGRAMMETRY PIPELINE USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL

Youssefi, David, Centre National d'Etudes Spatiales (CNES), France Michel, Julien, Centre National d'Etudes Spatiales (CNES), France Sarrazin, Emmanuelle, Centre National d'Etudes Spatiales (CNES), France Buffe, Fabrice, Centre National d'Etudes Spatiales (CNES), France Cournet, Myriam, Centre National d'Etudes Spatiales (CNES), France Delvit, Jean-Marc, Centre National d'Etudes Spatiales (CNES), France L'Helguen, Céline, Centre National d'Etudes Spatiales (CNES), France Melet, Olivier, Centre National d'Etudes Spatiales (CNES), France Emilien, Aurélie, CS, France Bosman, Julien, CS, France

TU1.R5.7: TOTAL REFRACTIVITY FIELDS FROM GNSS TROPOSPHERIC DELAYS RECONSTRUCTED WITH COLLOCATION METHODS

<u>Shehaj, Endrit</u>, ETH Zurich, Switzerland <u>Geiger, Alain</u>, ETH Zurich, Switzerland <u>Moeller</u>, <u>Gregor</u>, ETH Zurich, Switzerland

TU1.R5.8: DEM EXTRACTION FROM AIRBORNE LIDAR POINT CLOUD IN THICK-FORESTED AREAS VIA CONVOLUTIONAL NEURAL NETWORK

<u>Zhang, Yongjun</u>, Wuhan University, China <u>Xiang, Sizhe</u>, Wuhan University, China <u>Wan, Yi</u>, Wuhan University, China <u>Cao, Hui</u>, Wuhan University, China <u>Luo, Yimin</u>, King's College London, United Kingdom <u>Zheng, Zhi</u>, Wuhan University, China

TU1.R5.9: TOWARD A STRUCTURAL DESCRIPTION OF ROW CROPS USING UAS-BASED LIDAR POINT CLOUDS

Zhang, Fei, Rochester Institute of Technology, United States Hassanzadeh, Amirhossein, Rochester Institute of Technology, United States Kikkert, Julie, Cornell University, United States Pethybridge, Sarah, Cornell University, United States van Aardt, Jan, Rochester Institute of Technology, United States

TU1.R5.10: UAV INTELLIGENT OPTIMAL PATH PLANNING METHOD FOR DISTRIBUTED RADAR SHORT-TIME APERTURE SYNTHESIS

Xu. Fanyun, University of Electronic Science and Technology of China, China Wang, Rufei, University of Electronic Science and Technology of China, China Zhao, Lu, University of Electronic Science and Technology of China, China Zhang, Yongchao, University of Electronic Science and Technology of China, China Zhang, Yin, University of Electronic Science and Technology of China, China Huang, Yulin, University of Electronic Science and Technology of China, China Yang, Jianyu, University of Electronic Science and Technology of China, China

TU1.R5.11: INVESTIGATION OF DIURNAL FLUCTUATIONS OF HEAT AND WATER DISTRIBUTIONS AROUND LANDMINES IMPACTED BY SOIL HETEROGENEITY

<u>Wallen, Benjamin</u>, United States Military Academy, United States <u>Wright, William</u>, United States Military Academy, United States <u>Oxendine, Christopher</u>, United States Military Academy, United States

TU1.R6 - Advanced Learning Methods for Hyperspectral Classification

Tuesday, September 29, 05:00 - 07:00 • Room 6

TU1.R6.2: HYPERSPECTRAL CLASSIFICATION USING LOW RANK AND SPARSITY MATRICES DECOMPOSITION

<u>Cao, Hongju</u>, Dalian Maritime University, China <u>Shang, Xiaodi</u>, Dalian Maritime University, China <u>Yu, Chunyan</u>, Dalian Maritime University, China <u>Song, Meiping</u>, Dalian Maritime

University, China Chang, Chein-I, Dalian Maritime University, China

TU1.R6.3: MULTIFRACTAL PARAMETERS FOR CLASSIFICATION OF HYPERSPECTRAL DATA

Krupiński, Michał, Centrum Badań Kosmicznych Polskiej Akademii Nauk, Poland Wawrzaszek, Anna, Centrum Badań Kosmicznych Polskiej Akademii Nauk, Poland Drzewiecki, Wojciech, AGH University of Science and Technology, Poland Jenerowicz, Małgorzata, Centrum Badań Kosmicznych Polskiej Akademii Nauk, Poland Aleksandrowicz, Sebastian, Centrum Badań Kosmicznych Polskiej Akademii Nauk, Poland

TU1.R6.4: SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Quan, Yinghui, School of Electronic Engineering, Xidian University, China Dong, Shuxian, School of Electronic Engineering, Xidian University, China Feng, Wei, School of Electronic Engineering, Xidian University, China Dauphin, Gabriel, L2TI, Institut Galilée, University Paris XIII, France Zhao, Guoping, Shaan Xi Academy of Forestry, China Wang, Yong, School of Electronic Engineering, Xidian University, China Xing, Mengdao, Xidian University, China

TU1.R6.5: FEATURE SEPARATION BASED ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Feng, Wei, School of Electronic Engineering, Xidian University, China Quan, Yinghui, School of Electronic Engineering, Xidian University, China Dauphin, Gabriel, L2TI, Institut Galilée, University Paris XIII, France Wu, Puxia, Shaanxi Academy of Forestry, China Bie, Bowen, School of Electronic Engineering, Xidian University, China Tong, Yingping, Xidian University, China Yuan, Xiaoguang, Xidian University, China Li, Jing, Xidian University, China Xing, Mengdao, Xidian University, China

TU1.R6.6: HYPERSPECTRAL IMAGE CLASSIFICATION USING FISHER'S LINEAR DISCRIMINANT ANALYSIS FEATURE REDUCTION WITH GABOR FILTERING AND CNN

<u>Zhou, Meilun</u>, Mississippi State University, United States <u>Samiappan, Sathishkumar</u>, Mississippi State University, United States <u>Worch, Ethan</u>, Mississippi State University, United States <u>Ball, John E.</u>, Mississippi State University, United States

TU1.R6.7: A NEW HYPERSPECTRAL CLASSIFICATION METHOD BASED ON NON-SUBSAMPLED CONTOURLET TRANSFORM (NSCT) AND DEEP NEURAL NETWORK

<u>Bai, Jing, Xidian University, China Yu, Wentao</u>, Xidian University, China <u>Zhou, Huaji</u>, Xidian University, China <u>Xiao, Zhu</u>, Hunan University, China <u>Wang, Yonggang</u>, Xidian University, China

TU1.R6.8: DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION.

<u>Li, Yu</u>, Northwestern Polytechnical University, China <u>Zhang, Lei</u>, Northwestern Polytechnical University, China <u>Wei, Wei</u>, Northwestern Polytechnical University, China <u>Zhang, Yanning</u>, Northwestern Polytechnical University, China

TU1.R6.9: DECOUPLED NETWORK WITH ACTIVE LEARNING STRATEGY FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Bai, Jing</u>, Xidian University, China <u>Yuan, Anran</u>, Xidian University, China <u>Yu, Wentao</u>, Xidian University, China <u>Wang, Dingchen</u>, Xi'an Jiaotong University, China <u>Zhang, Fan</u>, Xidian University, China

TU1.R6.10: PARTICLE SWARM OPTIMIZATION BASED DEEP LEARNING ARCHITECTURE SEARCH FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Zhang, Chaochao</u>, China University of Geosciences, China <u>Liu, Xiaobo</u>, China University of Geosciences, China <u>Wang, Guangjun</u>, China University of Geosciences, China <u>Cai, Zhihua</u>, China University of Geosciences, China

TU1.R6.11: SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE USING PCA AND GABOR FILTERING

<u>Yan, Qingyu</u>, Harbin Institute of Technology, China <u>Zhang, Junping</u>, Harbin Institute of Technology, China <u>Feng, Jia</u>, Harbin Institute of Technology, China

TU1.R6.12: MULTI-GPU PARALLEL IMPLEMENTATION OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Deng, Weishi, Nanjing University of Science and Technology, China Wu, Zebin, Nanjing

University of Science and Technology, China Ma, Haoyang, Nanjing University of Posts and Telecommunications, China Wang, Qicong, Nanjing University of Science and Technology, China Sun, Jin, Nanjing University of Science and Technology, China Xu, Yang, Nanjing University of Science and Technology, China Yang, Jiandong, China Satellite Maritime Tracking and Control Department, China Wei, Zhihui, Nanjing University of Science and Technology,

China Liu Hongyi Maniing University of Science and Technology China

TU1.R7 - Learning and Transformation for Image Classification Tuesday, September 29, 05:00 - 07:00 • Room 7

TU1.R7.1: MULTI-LABEL REMOTE SENSING IMAGE CLASSIFICATION WITH DEFORMABLE CONVOLUTIONS AND GRAPH NEURAL NETWORKS

<u>Diao, Yingyu</u>, Zhejiang University, China <u>Chen, Jingzhou</u>, Zhejiang University, China <u>Qian, Yuntao</u>, Zhejiang University, China

TU1.R7.2: LEARNING MULTI-LABEL AERIAL IMAGE CLASSIFICATION UNDER LABEL NOISE: A REGULARIZATION APPROACH USING WORD EMBEDDINGS

<u>Hua, Yuansheng</u>, German Aerospace Center & Technical University of Munich, Germany <u>Lobry, Sylvain</u>, Wageningen University & Research, Netherlands <u>Mou, Lichao</u>, German Aerospace Center & Technical University of Munich, Germany <u>Tuia, Devis</u>, Wageningen University & Research, Netherlands <u>Zhu, Xiao Xiang</u>, German Aerospace Center & Technical University of Munich, Germany

TU1.R7.3: COMPARING THE PERFORMANCE OF MATHEMATICAL MORPHOLOGY AND BHATTACHARYYA DISTANCE FOR AIRPORT EXTRACTION

<u>Casaca, Wallace</u>, Universidade Estadual Paulista (UNESP), Brazil <u>Ederli, Daniel</u>, Universidade Estadual Paulista (UNESP), Brazil <u>Silva, Erivaldo</u>, Universidade Estadual Paulista (UNESP), Brazil <u>Baixo, Fernando</u>, Universidade Estadual Paulista (UNESP), Brazil <u>Godoy, Thamires</u>, Universidade Estadual Paulista, Brazil <u>Colnago, Marilaine</u>, Universidade Estadual Paulista (UNESP), Brazil

TU1.R7.4: SE-HRNET: A DEEP HIGH-RESOLUTION NETWORK WITH ATTENTION FOR REMOTE SENSING SCENE CLASSIFICATION

<u>Li, Lingling</u>, China University of Geosciences, China <u>Tian, Tian</u>, China University of Geosciences, China <u>Li, Hang</u>, Beijing Aerospace System Engineering Research Institute, China <u>Wang, Lizhe</u>, China University of Geosciences, China

TU1.R7.5: REMOTE SENSING SCENE CLASSIFICATION BASED ON GLOBAL AND LOCAL CONSISTENT NETWORK

<u>Ma, Jingjing</u>, Xidian University, China <u>Ma, Qiushuo</u>, Xidian University, China <u>Tang, Xu</u>, Xidian University, China <u>Zhang, Xiangrong</u>, Xidian University, China <u>Zhu, Cheng</u>, Xidian University, China <u>Peng, Qunnie</u>, Science and Technology on Electro-optic Control Laboratory, China <u>Jiao</u>, <u>Licheng</u>, Xidian University, China

TU1.R7.6: SEMI-SUPERVISED LEARNING-BASED REMOTE SENSING IMAGE SCENE CLASSIFICATION VIA ADAPTIVE PERTURBATION TRAINING

Wang, Chen, University of Electronic Science and Technology of China, China Shi, Jun, University of Electronic Science and Technology of China, China Ni, Yikai, University of Electronic Science and Technology of China, China Zhou, Yuanyuan, University of Electronic Science and Technology of China, China Yang, Xiaqing, University of Electronic Science and Technology of China, China Wei, Shunjun, University of Electronic Science and Technology of China, China Zhang, Xiaoling, University of Electronic Science and Technology of China, China

TU1.R7.7: GRAPH EMBEDDING FOR REMOTE SCENE IMAGE CLASSIFICATION BASED ON ATTENTION MODEL

<u>Ji, Jinsheng</u>, Shanghai Jiao Tong University, China <u>Lu, Xiankai</u>, Inception Institute of Artificial Intelligence, United Arab Emirates <u>Yang, Zhen</u>, Jiangxi Science and Technology Normal University, China <u>Guo, Yiyou</u>, Tongji University, China <u>Xiong, Huilin</u>, Shanghai Jiao Tong University, China

TU1.R7.8: REMOTE SENSING SCENE CLASSIFICATION USING SPATIAL TRANSFORMER FUSING NETWORK

Tong, Shun, China University of Geosciences (Wuhan), China Qi, Kunlun, China University of Geosciences (Wuhan), China Guan, Qingfeng, China University of Geosciences (Wuhan), China Zhu, Qiqi, China University of Geosciences (Wuhan), China Yang, Chao, China University of Geosciences (Wuhan), China Zheng, Jie, Wuhan University, China

TU1.R7.10: GREENHOUSE EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGERY WITH IMPROVED RANDOM FOREST

<u>Feng, Tianjing</u>, China University of Geosciences, China <u>Ma, Hairong</u>, Hubei Academy of Agricultural Science, China <u>Cheng, Xinwen</u>, China University of Geosciences, China

TU1.R7.11: LITHIUM (LI) PEGMATITE MAPPING USING ARTIFICIAL NEURAL NETWORKS (ANNS): PRELIMINARY RESULTS

<u>Cardoso-Fernandes, Joana</u>, Faculty of Sciences, University of Porto, Portugal <u>Teodoro, Ana Cláudia</u>, Faculty of Sciences, University of Porto, Portugal <u>Lima, Alexandre</u>, Faculty of Sciences, University of Porto, Portugal <u>Roda-Robles, Encarnación</u>, Universidad del País Vasco, Spain

TU1.R7.12: A WAVELET DOMAIN BASED CNN SHIP CLASSIFICATION METHOD FOR HIGH RESOLUTION OPTICAL SATELLITE REMOTE SENSING IMAGES

<u>Li, Mengyang</u>, Naval Aviation University, China <u>Sun, Weiwei</u>, Naval Aviation University, China <u>Xian, Darong</u>, The People's Liberation Army unit 93-155, China <u>Zhang, Xiaohan</u>, Naval Aviation University, China <u>Lin, Xun</u>, Naval Aviation University, China <u>Yao, Libo</u>, Naval Aviation University, China <u>Zhou, Pengyu</u>, Naval Aviation University, China

TU1.R8 - Ocean Surface Winds Tuesday, September 29, 05:00 - 07:00 • Room 8 and Currents I

TU1.R8.1: C-BAND CROSS-POLARIZATION AIRBORNE OCEAN SURFACE NRCS OBSERVATIONS IN HURRICANES: 2015--2019

Sapp. Joseph, National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service, United States Jelenak, Zorana, National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service, United States Chang, Paul, National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service, United States Frasier, Stephen, University of Massachusetts Amherst, United States

TU1.R8.2: TRAINING OF TROPICAL CYCLONE WIND SPEED ALGORITHMS FOR THE WINDSAT AND AMSR SENSORS

<u>Meissner, Thomas</u>, Remote Sensing Systems, United States <u>Ricciardulli, Lucrezia</u>, Remote Sensing Systems, United States <u>Manaster, Andrew</u>, Remote Sensing Systems, United States <u>Wentz, Frank</u>, Remote Sensing Systems, United States

TU1.R8.3: RAIN EFFECTS ON CFOSAT SCATTEROMETER: TOWARDS AN IMPROVED WIND QUALITY CONTROL

<u>Lin, Wenming</u>, Nanjing University of Information Science and Technology, China <u>Portabella.</u>
<u>Marcos</u>, Institute of Marine Sciences (ICM-CSIC), Spain <u>Zhao, Xiaokang</u>, Nanjing University of Information Science and Technology, China <u>Lang, Shuyan</u>, National Satellite Ocean Application Service, China

TU1.R8.4: AN OVERVIEW OF NOAA CYGNSS WIND PRODUCT VERSION 1.0

Said, Faozi, National Oceanic And Atmospheric Administration, United States Jelenak, Zorana, National Oceanic And Atmospheric Administration, United States Park, Jeonghwan, National Oceanic And Atmospheric Administration, United States Zhu, Qi, National Oceanic And Atmospheric Administration, United States Chang, Paul, National Oceanic And Atmospheric Administration, United States

TU1.R8.5: ABSORPTION AND SCATTERING BY SEA FOAM STREAKS AT MILLIMETER-WAVE FREQUENCIES

Anguelova, Magdalena, Naval Research Laboratory, United States

TU1.R8.6: APPLICATION OF COINCIDENT SUB-FOOTPRINT SCALE WINDS TO DEVELOP METHODS FOR ESTIMATING SEA SURFACE VORTICITY FROM THE RAPIDSCAT SCATTEROMETER KU-BAND NRCS

Weissman, David, Hofstra University, United States <u>Bourassa, Mark</u>, Florida State University, United States

TU1.R8.7: RETRIEVING OCEAN SURFACE CURRENTS FROM THE SENTINEL-1 DOPPLER SHIFT OBSERVATIONS: A CASE STUDY OF THE NORWEGIAN COASTAL CURRENT

<u>Moiseev, Artem</u>, Nansen Environmental and Remote Sensing Center, Norway <u>Johnsen</u>, <u>Harald</u>, NORCE, Norway <u>Johannessen</u>, <u>Johnny</u>, Nansen Environmental and Remote Sensing Center, Norway

TU1.R8.8: IMPACT OF SCALE SEPARATION IN THE COHERENT TWO-SCALE MODEL ON DOPPLER AND NORMALIZED CROSS SECTION PREDICTIONS FOR SEA BACKSCATTER - A NUMERICAL STUDY

Toporkov, Jakov, US Naval Research Laboratory, United States

TU1.R8.9: CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT

Tourain, Cédric, CNES, France Hauser, Danièle, LATMOS, France Hermozo, Laura, CNES, France Rodriguez Suquet, Raquel, CNES, France Schippers, Patricia, LATMOS, France Aouf, Lotfi, Météo France, France Dalphinet, Alice, Météo France, France Mouche, Alexis, Ifremer, France Chapron, Bertrand, Ifremer, France Collard, Fabrice, Ocean Data Lab, France Dufour, Christophe, LATMOS, France Gouillon, Flavien, CNES, France Ollivier, Annabelle, CLS, France Piras, Fanny, CLS, France Dalila, Maëva, CLS, France Guitton, Gilles, Ocean Data Lab, France Lachiver, Jean-Michel, CNES, France Tison, Céline, CNES, France

TU1.R8.10: MOTIONAL BEHAVIOR ESTIMATION USING SIMPLE SPECTRAL ESTIMATION: APPLICATION TO THE OFF-SHORE WIND LIDAR.

Salcedo-Bosch, Andreu, Universitat Politècnica de Catalunya (UPC), Spain Rocadenbosch, Francesc, Universitat Politècnica de Catalunya (UPC), Spain Gutierrez-Antunano, Miguel Angel, Universitat Politècnica de Catalunya (UPC), Spain Tiana-Alsina, Jordi, Universitat Politècnica de Catalunya (UPC), Spain

TU1.R8.11: DEVELOPMENT OF A TWO-SCALE OCEAN SURFACE EMISSIVITY MODEL APPLICABLE OVER A WIDE RANGE OF MICROWAVE FREQUENCIES

<u>Lee, Sang-Moo</u>, Center for Environmental Technology, United States <u>Gasiewski, Albin</u>, Center for Environmental Technology, United States

TU1.R9 - Ice Sheets and Glaciers Tuesday, September 29, 05:00 - 07:00 • Room 9

TU1.R9.1: LAKE ICE CLASSIFICATION FROM MODIS TOA REFLECTANCE IMAGERY USING A CONVOLUTIONAL NEURAL NETWORK: A CASE STUDY OF GREAT SLAVE LAKE, CANADA

<u>Wu, Yuhao</u>, University of Waterloo, Canada <u>Duguay, Claude</u>, University of Waterloo, Canada <u>Xu, Linlin</u>, University of Waterloo, Canada

TU1.R9.2: A STUDY OF COMBINED ACTIVE PASSIVE MICROWAVE SOUNDING OF ICE SHEET INTERNAL TEMPERATURE PROFILING

Bai, Dongjin, National Space Science Center, Chinese Academy of Sciences, China Dong, Xiaolong, National Space Science Center, Chinese Academy of Sciences, China Tjuatja, Saibun, University of Texas at Arlington, United States Zhu, Di, National Space Science Center, Chinese Academy of Sciences, China

TU1.R9.3: MELT DETECTION OVER GREENLAND USING SMAP RADIOMETER OBSERVATIONS

Mousavi, Seyedmohammad, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Colliander</u>, <u>Andreas</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Miller</u>, <u>Julie</u>, University of Colorado Boulder, United States <u>Entekhabi</u>, <u>Dara</u>, Massachusetts Institute of Technology, United States <u>Johnson</u>, <u>Joel</u>, The Ohio State University, United States <u>Shuman</u>, <u>Christopher</u>, University of Maryland, Baltimore County at NASA Godard Space Flight Center, United States <u>Kimball</u>, <u>John</u>, University of Montana, United States <u>Courville</u>, <u>Zoe</u>, Cold Regions Research and Engineering Laboratory, United States

TU1.R9.4: ESTIMATION OF CRYSTAL ORIENTATION FABRIC FROM AIRBORNE
POLARIMETRIC ICE SOUNDING RADAR DATA

Dall, Jørgen, Technical University of Denmark, Denmark

TU1.R9.5: AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS

Yan, Jie-Bang, University of Alabama, United States Kolpuke, Shriniwas, University of Alabama, United States Nunn, Joshua, University of Alabama, United States Li, Linfeng, University of Alabama, United States Gogineni, Prasad, University of Alabama, United States Taylor, Ryan, University of Alabama, United States O'Neill, Charles, University of Alabama, United States Steinhage, Daniel, Alfred Wegener Institute, Germany

TU1.R9.6: COMPARISON OF PASSIVE MICROWAVE MELT DETECTION OF GREENLAND: L-BAND AND XPGR

<u>Houtz, Derek</u>, Swiss Federal Research Institute WSL, Switzerland <u>Naderpour, Reza</u>, Swiss Federal Research Institute WSL, Switzerland <u>Schwank, Mike</u>, Swiss Federal Research Institute WSL, Switzerland

TU1.R9.7: GLACIER MELTING RISK: PREDICTIVE MODEL OF GLACIAL MELTING BY CORRELATING TIMESERIES ANALYSIS OF GEOGLACIAL DATA WITH FRACTAL-ANALYSIS OF REMOTE-SENSED IMAGES

Karamchedu, Mithra, Jesuit High School, United States

TU1.R9.8: GEOSTATISTICALLY SIMULATING SUBGLACIAL TOPOGRAPHY WITH SYNTHETIC TRAINING DATA

MacKie, Emma, Stanford University, United States Schroeder, Dustin, Stanford University, United States

TU1.R9.9: MULTI-FREQUENCY PASSIVE REMOTE SENSING OF ICE SHEETS FROM L-BAND TO W-BAND

<u>Aksoy, Mustafa</u>, University at Albany, State University of New York, United States <u>Kar, Rahul</u>, University at Albany, State University of New York, United States <u>Sugumar, Prethiga</u>, University at Albany, State University of New York, United States <u>Atrey, Pranjal</u>, University at Albany, State University of New York, United States

TU1.R9.10: SURGING GLACIER DYNAMICS IN TARIM BASIN USING SAR DATA

<u>Bandyopadhyay, Debmita</u>, Indian Institute of Technology Bombay, India <u>Singh, Gulab</u>, Indian Institute of Technology Bombay, India <u>Dasaundhi, Girjesh</u>, Indian Institute of Technology Bombay, India <u>Nela, Bala Raju</u>, Indian Institute of Technology Bombay, India <u>Patil, Akshay</u>, Indian Institute of Technology Bombay, India <u>Mohanty, Shradha</u>, Indian Institute of Technology Bombay, India

TU1.R9.11: ESTIMATING DYNAMIC PARAMETERS OF BARA SHIGRI GLACIER AND DERIVATION OF MASS BALANCE FROM VELOCITY

Nela, Bala Raju, Indian Institute of Technology Bombay, India Singh, Gulab, Indian Institute of Technology Bombay, India Bandyopadhyay, Debmita, Indian Institute of Technology Bombay, India Patil, Akshay, Indian Institute of Technology Bombay, India Mohanty, Shradha, Indian Institute of Technology Bombay, India Musthafa, Mohamed, Indian Institute of Technology Bombay, India Dasondhi, Girjesh, Indian Institute of Technology Bombay, India

TU1.R10 - GeoAl and Machine Tuesday, September 29, 05:00 - 07:00 • Room 10 Learning for GIScience

TU1.R10.1: STUDY OF ACADEMIC WRITING EVOLUTION IN GEOSPATIAL DOMAIN USING NATURAL LANGUAGE PROCESSING TECHNIQUES

<u>Barb, Adrian</u>, Pennsylvania State University, United States <u>Chaudhary, Namrata</u>, Pennsylvania State University, United States

TU1.R10.2: PROPOSAL OF A METHOD FOR WILDLIFE-VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING

Brum, Diego, Unisinos, Brazil Müller, Marianne, Unisinos, Brazil R. Veronez, Mauricio, Unisinos, Brazil M. de Souza, Eniuce, Unisinos, Brazil Gonzaga Jr., Luiz, Unisinos, Brazil J. A. Nhanga, Claudio, Unisinos, Brazil T. Conrado, Guilherme, Unisinos, Brazil Procksch, Natália, Unisinos, Brazil Dias, Julia, Unisinos, Brazil Viegas, Fabio, Unisinos, Brazil Cauduro, Guilherme, Unisinos, Brazil S. Silva, Vanessa, Unisinos, Brazil C. Lima, Gefersom, Unisinos, Brazil Amaral, Izidoro, Unisinos, Brazil M. Carvalho, Caroline, Unisinos, Brazil Oliveira

Gonçalves, Larissa, UFRGS, Brazil

TU1.R10.3: SUPER RESOLUTION GENERATIVE ADVERSARIAL NETWORK BASED IMAGE AUGMENTATION FOR SCENE CLASSIFICATION OF REMOTE SENSING IMAGES

Zhu, Qiqi, China University of Geosciences, China Fan, Xin, China University of Geosciences, China Zhong, Yanfei, Wuhan University, China Guan, Qingfeng, China University of Geosciences, China Zhang, Liangpei, Wuhan University, China Li, Deren, Wuhan University, China

TU1.R10.4: TOWARDS NATURAL LANGUAGE QUESTION ANSWERING OVER EARTH OBSERVATION LINKED DATA USING ATTENTION-BASED NEURAL MACHINE TRANSLATION

<u>Potnis, Abhishek</u>, Indian Institute of Technology Bombay, India <u>Shinde, Rajat</u>, Indian Institute of Technology Bombay, India <u>Durbha, Surya</u>, Indian Institute of Technology Bombay, India

TU1.R10.5: SAR IMAGE ENHANCEMENT BASED ON P-M NOLINEAR DIFFUSION AND COHERENT ENHANCEMENT DIFFUSION

<u>Gu, Zhoubo</u>, University of Electronic Science and Technology of China, China <u>Chen, Yan</u>, University of Electronic Science and Technology of China, China <u>Chen, Yunping</u>, University of Electronic Science and Technology of China, China <u>Lu, Youchun</u>, China Centre for Resources Satellite Data and Application, China

TU1.R10.6: LUNAR HYPERSPECTRAL IMAGE DESTRIPING METHOD USING LOW-RANK MATRIX RECOVERY AND GUIDED PROFILE

<u>Zhao, Shuheng</u>, Wuhan University, China <u>Yuan, Qiangqiang</u>, Wuhan University, China <u>Li, Jie</u>, Wuhan University, China <u>Shen, Huanfeng</u>, Wuhan University, China <u>Zhang, Liangpei</u>, Wuhan University, China

TU1.R10.7: ENTROPY AND BOUNDARY BASED ADVERSARIAL LEARNING FOR LARGE SCALE UNSUPERVISED DOMAIN ADAPTATION

<u>Makkar, Nikhil</u>, Oak Ridge National Laboratory, United States <u>Yang, Hsiuhan Lexie</u>, Oak Ridge National Laboratory, United States

TU1.R10.8: DEEP RECONSTRUCTION-ARRIVAL PICKING NETWORKS: TRANSFER LEARNING FROM SEISMIC P-WAVE TO ULTRASONIC LOGGING IMAGING

<u>Gao, Xuyang</u>, University of Electronic Science and Technology of China, China <u>Shi, Yibing</u>, University of Electronic Science and Technology of China, China <u>Yao, Zhenqiu</u>, University of Electronic Science and Technology of China, China <u>Zhu, Qi</u>, Southwest Petroleum University, China <u>Li, Zhipeng</u>, University of Electronic Science and Technology of China, China <u>Zhang</u>, <u>Wei</u>, University of Electronic Science and Technology of China, China

TU1.R10.9: CONSTRUCTION OF AN INDOOR KNOWLEDGE GRAPH FOR POSITIONING

<u>Guo, Sheng</u>, Chinese University of Hong Kong, Shenzhen, China <u>Pun, Man-On</u>, Chinese University of Hong Kong, Shenzhen, China <u>Wang, Yang</u>, Shanghai CAS-NOVA Satellite Technology Company Limited, China

TU1.R10.10: EXPLOITATION OF EARTH OBSERVATIONS: OGC CONTRIBUTIONS TO GRSS EARTH SCIENCE INFORMATICS

<u>Percivall, George</u>, Open Geospatial Consortium, United States <u>Simonis, Ingo</u>, Open Geospatial Consortium, Germany

TU1.R10.11: PARALLEL GENERATION OF A 3D DENSE POINT CLOUD BASED ON UAV IMAGING AND THE CMVS ALGORITHM

Tie, Bo, University of Electronic Science and Technology of China, China Huang, Fang, University of Electronic Science and Technology of China, China Lu, Jun, University of Electronic Science and Technology of China, China Peng, Shuying, University of Electronic Science and Technology of China, China Yang, Hao, University of Electronic Science and Technology of China, China

TU1.R11 - Data Fusion: Optical Tuesday, September 29, 05:00 - 07:00 • Room 11

TU1.R11.1: DEEPSUM++: NON-LOCAL DEEP NEURAL NETWORK FOR SUPERRESOLUTION OF UNREGISTERED MULTITEMPORAL IMAGES

Bordone Molini, Andrea, Politecnico di Torino, Italy Valsesia, Diego, Politecnico di Torino, Italy

Fracastoro, Giulia, Politecnico di Torino, Italy Magli, Enrico, Politecnico di Torino, Italy

TU1.R11.2: ZERO-SHOT SENTINEL-2 SHARPENING USING A SYMMETRIC SKIPPED CONNECTION CONVOLUTIONAL NEURAL NETWORK

<u>Nguyen, Han Van</u>, University of Iceland, Iceland <u>Úlfarsson, Magnús Örn</u>, University of Iceland, Iceland <u>Sveinsson, Jóhannes Rúnar</u>, University of Iceland, Iceland <u>Sigurdsson, Jakob</u>, University of Iceland, Iceland

TU1.R11.3: SUPER-RESOLUTION OF LARGE VOLUMES OF SENTINEL-2 IMAGES WITH HIGH PERFORMANCE DISTRIBUTED DEEP LEARNING

Zhang, Run, RWTH Aachen University, Germany <u>Cavallaro, Gabriele</u>, Forschungszentrum Jülich, Germany <u>Jitsev, Jenia</u>, Forschungszentrum Jülich, Germany

TU1.R11.4: IMPROVING SATELLITE ESTIMATES OF THE FRACTION OF ABSORBED PHOTOSYNTHETICALLY ACTIVE RADIATION THROUGH INTEGRATION

Tao, Xin, State University of New York at Buffalo, United States

TU1.R11.5: SUPER-RESOLUTION OF REMOTE SENSING IMAGES BASED ON A DEEP PLUG-AND-PLAY FRAMEWORK

Tao, Hongyuan, Sichuan University, China

TU1.R11.6: MULTISPECTRAL AND PANCHROMATIC IMAGE FUSION VIA CONVOLUTION SPARSE CODING WITH JOINT SPARSITY

<u>Zhang, Feng</u>, State Key Laboratory of Geo-information Engineering, China <u>Zhang, Kai</u>, State Key Laboratory of Geo-information Engineering, China

TU1.R11.7: UNSUPERVISED BLUR KERNEL LEARNING FOR PANSHARPENING

<u>Guo, Anjing</u>, Hunan University, China <u>Dian, Renwei</u>, Hunan University, China <u>Li, Shutao</u>, Hunan University, China

TU1.R11.8: MULTI-LEVEL STRATEGY-BASED SPATIAL INFORMATION PREDICTION FOR SPATIOTEMPORAL REMOTE SENSING IMAGERY FUSION

<u>Chen, Jia</u>, China University of Geosciences, China <u>Feng, Ruyi</u>, China University of Geosciences, China <u>Wang, Lizhe</u>, China University of Geosciences, China <u>Han, Wei</u>, China University of Geosciences, China <u>Huang, Jing</u>, China University of Geosciences, China

TU1.R11.9: EVALUATING SUPER-RESOLUTION OF SATELLITE IMAGES: A PROBA-V CASE STUDY

<u>Kawulok, Michal</u>, Silesian University of Technology, Poland <u>Benecki, Pawel</u>, Silesian University of Technology, Poland <u>Nalepa, Jakub</u>, Silesian University of Technology, Poland <u>Kostrzewa, Daniel</u>, Silesian University of Technology, Poland

TU1.R11.10: A CROSS-SCALE LOSS FOR CNN-BASED PANSHARPENING

<u>Vitale, Sergio</u>, Università di Napoli Parthenope, Italy <u>Scarpa, Giuseppe</u>, Università di Napoli Federico II, Italy

TU1.R11.11: OPTIMIZING WORKFLOW-EFFICIENCY OF MULTI-SOURCE CLOUD FREE OPTICAL IMAGE MOSAICS USING QUANTITATIVE TECHNIQUES

Lück, Wolfgang, PCI Geomatics, Canada Dyk, Andrew, Canadian Forest Service, Canada

TU1.R12 - Change Detection in Tuesday, September 29, 05:00 - 07:00 Room 12 Optical Images

TU1.R12.1: AN END-TO-END DEEP LEARNING CHANGE DETECTION FRAMEWORK FOR REMOTE SENSING IMAGES

<u>Yang, Yi,</u> Chinese Academy of Surveying and Mapping, China <u>Gu, Haiyan</u>, Chinese Academy of Surveying and Mapping, China <u>Han, Yanshun</u>, Chinese Academy of Surveying and Mapping, China <u>Li, Haitao</u>, Chinese Academy of Surveying and Mapping, China

TU1.R12.2: CHANGEMASK: LEARNING PERMUTATION-INVARIANT REPRESENTATION FOR END-TO-END LULC/LAND-COVER MAPPING AND CHANGE DETECTION

<u>Zheng, Zhuo</u>, Wuhan University, China <u>Zhong, Yanfei</u>, Wuhan University, China <u>Ma, Ailong,</u> Wuhan University, China

TU1.R12.3: A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM DESIGN TO FIRST RESULTS

<u>Vögtli, Marius</u>, University of Zurich, Switzerland <u>Schreiner, Simon</u>, Fraunhofer IOSB - Institute of Optronics, System Technologies and Image Exploitation, Germany <u>Böhler, Jonas</u>, University of Zurich, Switzerland <u>Gross, Wolfgang</u>, Fraunhofer IOSB - Institute of Optronics, System Technologies and Image Exploitation, Germany <u>Kuester, Jannick</u>, Fraunhofer IOSB - Institute of Optronics, System Technologies and Image Exploitation, Germany <u>Mispelhorn, Jonas</u>, Fraunhofer IOSB - Institute of Optronics, System Technologies and Image Exploitation, Germany <u>Hueni, Andreas</u>, University of Zurich, Switzerland <u>Middelmann, Wolfgang</u>, Fraunhofer IOSB - Institute of Optronics, System Technologies and Image Exploitation, Germany <u>Kneubühler, Mathias</u>, University of Zurich, Switzerland

TU1.R12.4: CHANGE DETECTION IN WIND-STORM DAMAGED FOREST USING RANDOM FORESTS AND ENSEMBLE MARGIN

Feng, Wei, Xidian University, China Boukir, Samia, Bordeaux INP, France

TU1.R12.5: ASSESSING MORPHOLOGICAL CHANGES OF MEANDERING RIVERS USING UNMANNED AERIAL VEHICLES

Özcan, Orkan, Istanbul Technical University, Turkey <u>Akay, Semih Sami</u>, Yildiz Technical University, Turkey

TU1.R12.6: BUILDING CHANGE DETECTION USING MODIFIED SIAMESE NEURAL NETWORKS

<u>Cummings, Sol</u>, PASCO Corporation, Japan <u>Nakamura, Sho</u>, PASCO Corporation, Japan <u>Shimazaki, Yasunobu</u>, PASCO Corporation, Japan

TU1.R12.7: CSDN: A CROSS SPATIAL DIFFERENCE NETWORK FOR SEMANTIC CHANGE DETECTION IN REMOTE SENSING IMAGES

Yang, Kunping, State Key Laboratory of LIESMARS, Wuhan University, China Liu, Zicheng, State Key Laboratory of LIESMARS, Wuhan University, China Xia, Gui-Song, State Key Laboratory of LIESMARS, Wuhan University, China Zhang, Liangpei, State Key Laboratory of LIESMARS, Wuhan University, China

TU1.R12.8: HETEROGENEOUS CHANGE DETECTION WITH SELF-SUPERVISED DEEP CANONICALLY CORRELATED AUTOENCODERS

<u>Tomenotti, Federico Figari</u>, University of Genoa, Italy <u>Luppino</u>, <u>Luigi Tommaso</u>, UiT The Arctic University of Norway, Norway <u>Hansen</u>, <u>Mads Adrian</u>, UiT The Arctic University of Norway, Norway <u>Moser</u>, <u>Gabriele</u>, University of Genoa, Italy <u>Anfinsen</u>, <u>Stian Normann</u>, UiT The Arctic University of Norway, Norway

TU1.R12.9: GENERATING FLOOD PROBABILITY MAP BASED ON COMBINED USE OF SYNTHETIC APERTURE RADAR AND OPTICAL IMAGERY

Jo. MinJeong, USRA/NASA-GSFC, United States <u>Osmanoglu, Batuhan</u>, NASA Goddard Space Flight Center, United States

TU1.R12.10: A NOVEL APPROACH TO UNSUPERVISED SEGMENTATION OF MULTITEMPORAL VHR IMAGES BASED ON DEEP LEARNING

Saha, Sudipan, Fondazione Bruno Kessler, Italy Mou, Lichao, German Aerospace Center, Germany Qiu, Chunping, Technical University of Munich, Germany Zhu, Xiao Xiang, German Aerospace Center, Germany Bovolo, Francesca, Fondazione Bruno Kessler, Italy Bruzzone, Lorenzo, University of Trento, Italy

TU1.R12.11: SPARSE REPRESENTATION-BASED IMAGE FUSION FOR MULTI-SOURCE NDVI CHANGE DETECTION

Zhang, Mengliang, Electronic Information School, Wuhan University, China Chen, Yuerong, Electronic Information School, Wuhan University, China Li, Song, Electronic Information School, Wuhan University, China Tian, Xin, Electronic Information School, Wuhan University, China

TU1.R13 - Monitoring and Tuesday, September 29, 05:00 - 07:00 • Room 13 Preservation of Natural Reserves and Coastal Areas

TU1.R13.1: BUDD: MULTI-MODAL BAYESIAN UPDATING DEFORESTATION DETECTIONS

Durieux, Alice, Descartes Labs, United States Ren, Christopher, Los Alamos National

Laboratory, United States <u>Calef. Matthew</u>, Descartes Labs, United States <u>Chartrand, Rick</u>, Descartes Labs, United States <u>Warren, Michael</u>, Descartes Labs, United States

TU1.R13.2: A RISK ASSESSMENT FRAMEWORK OF CYANOBACTERIA BLOOM USING LANDSAT DATA: A CASE STUDY OF LAKE LONGGAN (CHINA)

Wang, Siqi, Wuhan University, China Zhang, Xiang, Wuhan University, China Chen, Nengcheng, Wuhan University, China Du, Wenying, Wuhan University, China Hu, Chuli, China University of Geosciences, China Yang, Chao, China University of Geosciences, China Tan, Xicheng, Wuhan University, China

TU1.R13.3: SMALL SCALE SOIL EROSION SUSCEPTIBILITY MODELLING IN A PROTECTED MOUNTAINOUS GRASSLAND USING SENTINEL-2, FIELD, AND CLIMATE DATA

<u>Adagbasa, Efosa Gbenga</u>, University of the Free State, South Africa <u>Adelabu, Samuel</u> <u>Adewale</u>, University of the Free State, South Africa <u>Okello, Tom Were</u>, University of the Free State, South Africa

TU1.R13.4: ANALYZING MANGROVE ZONATION DYNAMICS USING TIME-SERIES HIGH-RESOLUTION SATELLITE IMAGES

<u>Liu, Mingfeng</u>, Chinese University of Hong Kong, China <u>Zhang, Hongsheng</u>, University of Hong Kong, China <u>Wan, Luoma</u>, Chinese University of Hong Kong, China <u>Lin, Yinyi</u>, Chinese University of Hong Kong, China <u>Lin, Hui</u>, Jiangxi Normal University, China

TU1.R13.5: REMOTE SENSING MONITORING OF MANGROVE VARIATION IN JIULONG RIVER ESTUARY OF FUJIAN FROM 1978 TO 2018

He, Yun, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhang, Tao, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China You, Shucheng, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Luo, Zhengyu, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhang, Xiang, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhang, Rui, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China China, China China, China China, China

TU1.R13.6: MONITORING MANGROVE CHANGES IN TONGMING BAY OF CHINA USING MULTI- TEMPORAL SATELLITE REMOTE SENSING IMAGERY

Zhang, Tao, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China He, Yun, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Gan, Yuhang, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhang, Rui, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China You, Shucheng, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China China

TU1.R13.7: STRATEGIC CONSERVATION OF GULF COAST LANDSCAPES USING MULTI-CRITERIA DECISION ANALYSIS AND OPEN SOURCE REMOTE SENSING AND GIS DATA

Samiappan, Sathishkumar, Mississippi State University, United States Shamaskin, Andrew, Mississippi State University, United States Liu, Jiangdong, Mississippi State University, United States Linhoss, Anna, Mississippi State University, United States Evans, Kristine, Mississippi State University, United States

TU1.R13.8: MONITORING CHANGES IN THE COASTAL ENVIRONMENT BASED ON SAR SENTINEL-1 TIME-SERIES

Pelich, Ramona, Luxembourg Institute of Science and Technology (LIST), Luxembourg Chini, Marco, Luxembourg Institute of Science and Technology (LIST), Luxembourg Hostache, Renaud, Luxembourg Institute of Science and Technology (LIST), Luxembourg Matgen, Patrick, Luxembourg Institute of Science and Technology (LIST), Luxembourg López-Martínez, Carlos, Universitat Politècnica de Catalunya (UPC), Spain

TU1.R13.9: MEASUREMENT OF COASTAL LAND MOTION OF TIDE GAUGES AT KOREAN PENINSULA USING SEQUENTIAL SBAS-INSAR TECHNIQUE

<u>Palanisamy Vadivel, Suresh Krishnan</u>, Seoul National University, Korea (South) <u>Kim, Duk-jin</u>, Seoul National University, Korea (South) <u>Jung, Jungkyo</u>, NASA Jet Propulsion Laboratory, Korea (South) <u>Cho, Yang-Ki</u>, Seoul National University, Korea (South)

TU1.R13.10: A NEW ALGORITHM FOR ESTIMATING SURFACE ROUGHNESS USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) DATA

<u>Wang, Ke</u>, University of Texas at Austin, United States <u>Chen, Jingyi</u>, University of Texas at Austin, United States <u>Kiaghadi, Amin</u>, University of Texas at Austin, United States <u>Dawson</u>, <u>Clint</u>, University of Texas at Austin, United States

TU1.R14 - Passive Optical, Hyperspectral Sensors and Calibration I Tuesday, September 29, 05:00 - 07:00 • Room 14

TU1.R14.1: GROUND REFLECTANCE FACTOR RETRIEVAL FROM LANDSAT (MSS, TM, ETM+, AND OLI) TIME SERIES DATA BASED ON SEMI-EMPIRICAL LINE APPROACH AND PSEUDOINVARIANT TARGETS IN ARID LANDSCAPE

<u>Bannari, Abderrazak</u>, Arabian Gulf University, Bahrain <u>Zahra, Al-Ali</u>, Arabian Gulf University, Bahrain

TU1.R14.2: A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER

Ma, Lingling, Academy of Opto-Electronics, Chinese Academy of Sciences, China Wang, Ning, Academy of Opto-Electronics, Chinese Academy of Sciences, China Zhao, Yongguang, Academy of Opto-Electronics, Chinese Academy of Sciences, China Liu, Yaokai, Academy of Opto-Electronics, Chinese Academy of Sciences, China Wang, Xinhong, Academy of Opto-Electronics, Chinese Academy of Sciences, China Song, Peilan, Academy of Opto-Electronics, Chinese Academy of Sciences, China Li, Wan, Academy of Opto-Electronics, Chinese Academy of Sciences, China Li, Chuanrong, Academy of Opto-Electronics, Chinese Academy of Sciences, China Tang, Lingli, Academy of Opto-Electronics, Chinese Academy of Sciences, China

TU1.R14.3: RETRIEVAL OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE AT RED SPECTRAL PEAK WITH TROPOMI ON SENTINEL-5 PRECURSOR

Zhao, Feng, Beihang University, China Zhao, Jun, Beihang University, China Ma, Weiwei, Beihang University, China Huang, Yanbo, United States Department of Agriculture-Agricultural Research Service, United States Naksomboon, Ratchanon, Beihang University, China Li, Zhenjiang, Beihang University, China

TU1.R14.4: MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY)

<u>Silvestri, Malvina</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Buongiorno, Maria Fabrizia</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Romaniello</u>, <u>Vito</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Marotta, Enrica</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Caputo, Teresa</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Bellucci Sessa, Eliana</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Belviso, Pasquale</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Avvisati, Gala</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Musacchio, Massimo</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Teggi, Sergio</u>, Università di Modena e Reggio Emilia, Italy

TU1.R14.5: A COLOR RESTORATION ALGORITHM FOR THIN-FILM CAMERA IMAGES

<u>Du, Yanlei</u>, Aerospace Information Research Institute, China <u>Yang, Xiaofeng</u>, Aerospace Information Research Institute, China <u>Ma, Yiping</u>, Beijing Municipal Commission of Planning and Natural Resources, China

TU1.R14.6: ON-ORBIT IMAGE SHARPNESS ASSESSMENT USING THE EDGE METHOD: METHODOLOGICAL IMPROVEMENTS FOR AUTOMATIC EDGE IDENTIFICATION AND SELECTION FROM NATURAL TARGETS

<u>Pampanoni, Valerio</u>, Sapienza University of Rome, Italy <u>Cenci, Luca</u>, Serco Italia SpA, Italy <u>Laneve, Giovanni</u>, Sapienza University of Rome, Italy <u>Santella, Carla</u>, SERCO Italia SpA, Italy <u>Boccia, Valentina</u>, European Space Agency, Italy

TU1.R14.7: EVALUATION OF THE GF1-B/C/D SATELLITE RADIOMETRIC PERFORMANCE USING RADCALNET BAOTOU SITE

Tang, Hongzhao, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Tang, Xinming, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Xie, Junfeng, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Li, Qi, Peking University, China

TU1.R14.8: ON-ORBIT GEOMETRIC CALIBRATION AND ACCURACY VERIFICATION OF HY-1C CZI

<u>Dai, Rongfan</u>, China University of Geosciences, China <u>Xu, Lina</u>, China University of Geosciences, China <u>Han, Jingyu</u>, National Satellite Ocean Application Service, China

TU1.R14.9: PROGRESS TOWARD EVALUATING PRELAUNCH THERMAL VACUUM TESTS OF THE JPSS-2 CRIS INSTRUMENT

Beierle, Peter, University of Maryland, United States Iturbide-Sanchez, Flavio, National Oceanic and Atmospheric Administration, United States Chen, Yong, Global Science and Technology Inc., United States Tremblay, Denis, Global Science and Technology Inc., United States Zhang, Kun, Global Science and Technology Inc., United States Lynch, Erin, University of Maryland, United States Johnson, David, National Aeronautics and Space Administration, United States Suwinski, Lawrence, L3 Harris Technologies, United States

TU1.R14.10: A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT

Iturbide-Sanchez, Flavio, National Oceanic and Atmospheric Administration, United States Chen, Yong, Global Science and Technology, Inc. at NOAA/NESDIS/STAR, United States Beierle, Peter, University of Maryland, United States Tremblay, Denis, Global Science and Technology, Inc. at NOAA/NESDIS/STAR, United States Jin, Xin, Global Science and Technology, Inc. at NOAA/NESDIS/STAR, United States Johnson, David, National Aeronautics and Space Administration, United States Predina, Joe, Logistikos Engineering LLC, United States Strow, Larrabee, University of Maryland Baltimore County, United States Tobin, David, University of Wisconsin-Madison, United States Suwinski, Lawrence, L3 Harris Technologies, Inc., United States

TU1.R14.11: LIGHTGUIDE, INTEGRAL FIELD SNAPSHOT IMAGING SPECTROMETER FOR ENVIRONMENTAL IMAGING AND EARTH OBSERVATIONS

<u>Tkaczyk, Tomasz</u>, Rice University, United States <u>Alexander, David</u>, Rice University, United States <u>Flynn, Christopher</u>, Rice University, United States <u>Lu, Jiawei</u>, Rice University, United States <u>Wang, Ye</u>, Rice University, United States <u>Stoian, Razvan</u>, Rice University, United States <u>Zheng</u>, <u>Desheng</u>, Rice University, United States

TU1.R14.12: IEEE P4001 HYPERSPECTRAL STANDARD IN 2019-2020: PROGRESS AND COOPERATION

Durell, Christopher, Labsphere, Inc, United States

TU1.R15 - Remote Sensing Parameters and Models for Radiation Energy Budget

Tuesday, September 29, 05:00 - 07:00 • Room 15

TU1.R15.1: MODTRAN®6 GENERATED SINGLE SCATTERING ADJACENCY FUNCTION

<u>Berk, Alexander</u>, Spectral Sciences, Inc., United States <u>Li, Fuqin</u>, Geoscience Australia, Australia <u>Jupp, David</u>, CSIRO, Australia

TU1.R15.2: MOON-BASED EARTH RADIATION BUDGET EXPERIMENT SITE SELECTION ANALYSIS BASED ON EARTH OBSERVATION GEOMETRY

Ye, Hanlin, Qianxuesen Laboratory of Space Technology, China Academy of Space Technology, China Guo, Huadong, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liu, Guang, Aerospace Information Research Institute, Chinese Academy of Sciences, China Ping, Jinsong, National Astronomical Observatories, Chinese Academy of Sciences, China

TU1.R15.3: EVALUATION OF DOWNWARD SHORTWAVE RADIATION ESTIMATIONS OVER TROPICAL OCEAN SURFACE BASED ON BAYESIAN MODEL AVERAGING METHOD

<u>Zhang, Weiyu</u>, Beijing Normal University, China <u>Zhang, Xiaotong</u>, Beijing Normal University,

China <u>Wei, Yu</u>, Beijing Normal University, China <u>Hou, Ning</u>, Beijing Normal University, China <u>Xu, Jiawen</u>, Beijing Normal University, China <u>Feng, Chunjie</u>, Beijing Normal University, China <u>Jia, Kun</u>, Beijing Normal University, China

TU1.R15.4: RADIATIVE TRANSFER MODELS FOR DERIVING GEOSTATIONARY
BROADBAND SHORTWAVE RADIANCES DIRECTLY FROM VISIBLE CHANNELS FOR THE
CERES SYN1DEG PRODUCT

<u>Doelling, David</u>, NASA, United States <u>Wrenn, Forrest</u>, SSAI, United States <u>Liang, Lusheng</u>, SSAI, United States

TU1.R15.5: HIGH-RESOLUTION BRDF AND ALBEDO PARAMETERS INVERSION FROM SENTINEL-2 MULTISPECTRAL INSTRUMENT DATA

<u>Chen, Fang, Jiangsu Normal University, China Li, Yingjie, Jiangsu Normal University, China Ma, Qingmiao, Jiangsu Normal University, China Li, Xin, Jiangsu Normal University, China Chen, Jing, Sun Yat-Sen University, China Li, Ming, Jiangsu Normal University, China Gao, Chengzhi, Jiangsu Normal University, China Yang, Xinyue, Jiangsu Normal University, China</u>

TU1.R15.6: SHORTWAVE RADIATION BUDGET PRODUCTS FROM GOES-R SERIES ABI

<u>Kim, Hye-Yun</u>, I. M. Systems Group, United States <u>Laszlo</u>, <u>Istvan</u>, Center for Satellite Applications and Research, NOAA/NESDIS, United States <u>Liu</u>, <u>Hongqing</u>, I. M. Systems Group, United States

TU1.R15.7: COMPARATIVE ASSESSMENT OF SOLAR RADIATION BY SATELLITE-BASED AND REANALYSIS PRODUCTS OVER VIETNAM REGIONS

Pham, Nga T. T., Vietnam Academy of Science and Technology, Viet Nam Nguyen, Hao T. P., Vietnam Academy of Science and Technology, Viet Nam Nguyen, Cong T., Vietnam Academy of Science and Technology, Viet Nam Vu, Hang T., Vietnam National University, Viet Nam Pham, Ha T., Vietnam National University, Viet Nam Pham, Hoa V., Vietnam Academy of Science and Technology, Viet Nam Pham, Hong V., Vietnam Academy of Science and Technology, Viet Nam Nakamura, Kenji, Dokkyo University, Japan

TU1.R15.8: AN APPROACH TO ESTIMATE NET SURFACE SHORTWAVE RADIATION ON CLEAR-SKY DAYS IN RUGGED TERRAIN BASED ON REMOTE SENSING DATA

Zhang, Yanli, Northwest Normal University, China

TU1.R15.9: LONG-TERM TRENDS OF ESTIMATED SURFACE INCIDENT SHORTWAVE RADIATION IN CHINA DURING 1970-2015

<u>Hou, Ning</u>, Beijing Normal University, China <u>Zhang, Xiaotong</u>, Beijing Normal University, China <u>Zhang, Weiyu</u>, Beijing Normal University, China <u>Wei, Yu</u>, Beijing Normal University, China <u>Xu, Jiawen</u>, Beijing Normal University, China <u>Feng, Chunjie</u>, Beijing Normal University, China

TU1.R15.10: ESTIMATION OF SURFACE ALBEDO BASED ON FY-3D MERSI-2 TOA DATA

Zhao, Chunliang, Chinese Academy of Agricultural Sciences, China Fan, Jinlong, China Meteorological Administration, China Qin, Zhihao, Chinese Academy of Agricultural Sciences, China Xu, Wenbo, University of Electronic Science and Technology of China, China Du, Wenhui, Chinese Academy of Agricultural Sciences, China Li, Shifeng, Chinese Academy of Agricultural Sciences, China Bllawal, Abbasi, Chinese Academy of Agricultural Sciences, China Bao, Kuanle, University of Electronic Science and Technology of China, China

TU1.R15.11: SCENE EDGE TARGET RECOVERY OF SCANNING RADAR ANGULAR SUPER-RESOLUTION BASED ON DATA EXTRAPOLATION

Mao, Deqing, University of Electronic Science and Technology of China, China Zhang, Yongchao, University of Electronic Science and Technology of China, China Kang, Yao, University of Electronic Science and Technology of China, China Zhang, Yin, University of Electronic Science and Technology of China, China Huo, Weibo, University of Electronic Science and Technology of China, China Huang, Yulin, University of Electronic Science and Technology of China, China Yang, Jianyu, University of Electronic Science and Technology of China, China

TU1.R15.12: 3D FDTD INVESTIGATION ON BISTATIC SCATTERING FROM 2D ROUGH SURFACE WITH CPML ABSORBING CONDITION

<u>Liao, Shan</u>, University of Electronic Science and Technology of China, China <u>Gao, Bo</u>, University of Electronic Science and Technology of China, China <u>Tong, Ling</u>, University of

Electronic Science and Technology of China, China <u>Li, Ming</u>, University of Electronic Science and Technology of China, China <u>Yang, Xun</u>, University of Electronic Science and Technology of China, China <u>Li, Yu</u>, University of Electronic Science and Technology of China, China <u>Luo</u>,

TU1.R16 - POLSAR Analytic Techniques

Tuesday, September 29, 05:00 - 07:00 • Room 16

TU1.R16.1: FURTHER INSIGHTS ON THE EFFECTS OF SURFACTANTS ON INTERNAL WAVE SAR SIGNATURES BY MEANS OF THE CO-POLARIZED PHASE DIFFERENCE

<u>de Macedo, Carina Regina</u>, University of Porto, Portugal <u>Bastos da Silva, José Carlos</u>, University of Porto, Portugal

TU1.R16.2: DUAL POLARIMETRIC SAR COVARIANCE MATRIX ESTIMATION USING DEEP LEARNING

<u>Mullissa, Adugna</u>, Wageningen University, Netherlands <u>Marcos, Diego</u>, Wageningen University, Netherlands <u>Herold, Martin</u>, Wageningen University, Netherlands <u>Reiche, Johannes</u>, Wageningen University, Netherlands

TU1.R16.3: ANALYSIS OF POLARIZATION ORIENTATION ANGLE ESTIMATION OF X-BAND POLSAR DATA AND EXPERIMENT INVESTIGATION

<u>Suo, Zhiyong</u>, Xidian University, China <u>Guo, Yuan</u>, Xidian University, China <u>Liao, Zhiqiang</u>, Sichuan Aerospace Electronic Equipment Research Institute, China

TU1.R16.4: POLSAR IMAGE CLASSIFICATION VIA ROBUST LOW-RANK FEATURE EXTRACTION AND MARKOV RANDOM FIELD

<u>Bi, Haixia</u>, University of Bristol, United Kingdom <u>Santos-Rodriguez, Raul</u>, University of Bristol, United Kingdom <u>Flach, Peter</u>, University of Bristol, United Kingdom

TU1.R16.5: COMPARISON OF TARGET DETECTION RESULTS IN A FOREST WHETHER THE BRANCHES ARE COVERED WITH SNOW BASED ON P-BAND AIRBORNE SAR QUAD-POL IMAGES

<u>Li, Peng</u>, University of Chinese Academy of Sciences, China <u>Liu, Dacheng</u>, Department of Space Microwave Remote Sensing System, China <u>Wang, Robert</u>, Department of Space Microwave Remote Sensing System, China <u>Deng, Yunkai</u>, Department of Space Microwave Remote Sensing System, China <u>Zhao, Fengjun</u>, Department of Space Microwave Remote Sensing System, China

TU1.R16.6: METRIC LEARNING BASED FINE-GRAINED CLASSIFICATION FOR POLSAR IMAGERY

<u>Ni, Jun</u>, Beijing University of Chemical Technology, China <u>Jia, Yunzhe</u>, Beijing University of Chemical Technology, China <u>Yin, Qiang</u>, Beijing University of Chemical Technology, China <u>Zhang</u>, Beijing University of Chemical Technology, China <u>Zhang</u>, <u>Fan</u>, Beijing University of Chemical Technology, China

TU1.R16.7: SYNERGIC USE OF SAR AND OPTICAL DATA FOR ESTIMATION OF SOIL MOISTURE IN VEGETATIVE REGION

<u>Verma, Nidhi</u>, Indian Institute of Information Technology Allahabad, India <u>Mishra, Pooja</u>, Indian Institute of Information Technology Allahabad, India <u>Purohit, Neetesh</u>, Indian Institute of Information Technology Allahabad, India

TU1.R16.8: STUDY ON POLARIMETRIC SCATTERING CHARACTERISTICS BASED ON DIFFERNENT BAND SAR IMAGES

Luo, Zheng Yu, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China You, Shu Cheng, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Gan, Yu Hang, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Liu, Ke, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Li, Chang, National Quality Inspection and Testing Center for Surveying and Mapping Products, China He, Yun, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China

TU1.R16.9: ISCE DOCKER TOOLS: AUTOMATED RADIOMETRIC TERRAIN CORRECTION AND IMAGE COREGISTRATION OF UAVSAR MLC DATA

Kraatz, Simon, University of Massachusetts at Amherst, United States Siqueira, Paul,

University of Massachusetts at Amherst, United States <u>Rose, Shannon</u>, University of Massachusetts at Amherst, United States

TU1.R16.10: SYNERGETIC USE OF MORPHOLOGICAL AND RADAR PARAMETER FOR LUNAR WATER ICE DETECTION

Shroff, Urvi, CEPT University, India <u>Dave, Bindi</u>, CEPT University, India <u>Mohan, Shiv</u>, PLANEX-PRL, India

TU1.R16.11: PORT DETECTION IN POLARIMETRIC SAR IMAGES BASED ON THREE-COMPONENT DECOMPOSITION

<u>Liu, Chun</u>, Northwestern Polytechnical University, China <u>Zheng, Jiangbin</u>, Northwestern Polytechnical University, China <u>Nie, Xuan</u>, Northwestern Polytechnical University, China

TU1.R17 - Machine Learning for Tuesday, September 29, 05:00 - 07:00 • Room 17 Earth Observation I

TU1.R17.1: MULTI-OBJECTIVE OPTIMIZATION FOR ACTIVE SENSOR FUSION

<u>Haan, Sebastian</u>, University of Sydney, Australia <u>Ramos, Fabio</u>, University of Sydney, Australia <u>Muller, Dietmar</u>, University of Sydney, Australia

TU1.R17.2: TRAINING GENERAL REPRESENTATIONS FOR REMOTE SENSING USING IN-DOMAIN KNOWLEDGE

<u>Neumann, Maxim</u>, Google, Switzerland <u>Pinto, Andre Susano</u>, Google, Switzerland <u>Zhai, Xiaohua</u>, Google, Switzerland <u>Houlsby, Neil</u>, Google, Switzerland

TU1.R17.3: REMOTE SENSING IMAGE CAPTIONING WITH SVM-BASED DECODING

Hoxha, Genc, University of Trento, Italy Melgani, Farid, University of Trento, Italy

TU1.R17.4: VISUAL LOCALIZATION BASED ON REMOTE SENSING SCENE MATCHING WITH SIAMESE FEATURE AGGREGATION NETWORK

<u>Chen, Wang</u>, Northwestern Polytechnical University, China <u>Yuan, Yuan</u>, Northwestern Polytechnical University, China <u>Liu, Ganchao</u>, Northwestern Polytechnical University, China

TU1.R17.5: STEREO MATCHING OF VHR REMOTE SENSING IMAGES VIA BIDIRECTIONAL PYRAMID NETWORK

Tao, Rongshu, Chinese Academy of Sciences, China Xiang, Yuming, Chinese Academy of Sciences, China You, Hongjian, Chinese Academy of Sciences, China

TU1.R17.6: ANGULAR LUMINANCE FOR MATERIAL SEGMENTATION

<u>Xue, Jia</u>, Rutgers University, United States <u>Purri, Matthew</u>, Rutgers University, United States <u>Dana, Kristin</u>, Rutgers University, United States

TU1.R17.7: REMOTE SENSING IMAGE SEGMENTATION METHOD BASED ON HRNET

<u>Cheng, Zhi</u>, Huanggang Polytechnic College, China <u>Fu, Daocai</u>, University of Electronic Science and Technology of China, China

TU1.R17.8: MULTI SEASONAL DEEP LEARNING CLASSIFICATION OF VENUS IMAGES

<u>Faran, Ido</u>, Bar Ilan University, Israel <u>Netanyahu, Nathan</u>, Bar Ilan University, Israel <u>David, Eli</u>, Bar Ilan University, Israel <u>Rud, Ronit</u>, Technion Israel Institute of Technology, Israel <u>Shoshany, Maxim</u>, Technion Israel Institute of Technology, Israel

TU1.R17.9: TRANSLATING MULTISPECTRAL IMAGERY TO NIGHTTIME IMAGERY VIA CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

<u>Huang, Xiao</u>, University of South Carolina, United States <u>Xu, Dong</u>, East China Normal University, China <u>Li, Zhenlong</u>, University of South Carolina, United States <u>Wang, Cuizhen</u>, University of South Carolina, United States

TU1.R17.10: A DEEP LEARNING MODEL FOR OCEANIC MESOSCALE EDDY DETECTION BASED ON MULTI-SOURCE REMOTE SENSING IMAGERY

<u>Liu, Yingjie</u>, Institute of Oceanology, Chinese Academy of Sciences, China <u>Li, Xiaofeng</u>, Institute of Oceanology, Chinese Academy of Sciences, United States <u>Ren, Yibin</u>, Institute of Oceanology, Chinese Academy of Sciences, China

TU1.R17.11: IDENTIFICATION OF ARCHAEOLOGICAL LAND USE EMPLOYING DEEP LEARNING TECHNIQUES: PROSPECTIVE STUDY WITHIN MEXICO

Villalon-Turrubiates, Ivan, Instituto Tecnológico y de Estudios Superiores de Occidente, ITESO,

Mexico Llovera-Torres, Maria, Universidad Autónoma de San Luis Potosí (UASLP), Mexico

TU1.R18 - Target Detection using SAR Data

Tuesday, September 29, $05:00 - 07:00 \circ Room 18$

TU1.R18.1: FUSION OF LINEAR AND NONLINEAR CLASSIFIERS FOR KERNEL DICTIONARY LEARNING: APPLICATION TO SAR TARGET RECOGNITION

Tao, Lei, Shanghai Jiao Tong University, China Jiang, Xue, Shanghai Jiao Tong University, China Li, Zhou, Beijing Institute of Remote Sensing Information, China Liu, Xingzhao, Shanghai Jiao Tong University, China

TU1.R18.2: TRIPWIRE DETECTION IN SAR IMAGES USING A MODIFIED RADON TRANSFORM

<u>Schartel, Markus</u>, Ulm University, Germany <u>Grathwohl, Alexander</u>, Ulm University, Germany <u>Schmid, Christopher</u>, Ulm University, Germany <u>Burr, Ralf</u>, Ulm University of Applied Sciences, Germany <u>Waldschmidt, Christian</u>, Ulm University, Germany

TU1.R18.3: CASE STUDIES WITH SAR DATA FOR ASSESSING THE UTILITY OF MANUAL FEATURE SELECTION IN MACHINE LEARNING

<u>Gray, Kyle</u>, National Geospatial-Intelligence Agency, United States <u>Mitchell, Thomas</u>, National Geospatial-Intelligence Agency, United States <u>Schwartzkopf, Wade</u>, National Geospatial-Intelligence Agency, United States

TU1.R18.4: INCREMENTAL MULTITASK SAR TARGET RECOGNITION WITH DOMINANT NEURON PRESERVATION

<u>Liu, Yingbing</u>, Beijing University Of Chemical Technology, China <u>Zhang, Fan</u>, Beijing University Of Chemical Technology, China <u>Ma, Fei</u>, Beijing University Of Chemical Technology, China <u>Yin, Qiang</u>, Beijing University Of Chemical Technology, China <u>Zhou, Yongsheng</u>, Beijing University Of Chemical Technology, China

TU1.R18.5: SALIENCY-DRIVEN TARGET DETECTION BASED ON COMMON VISUAL FEATURE CLUSTERING FOR MULTIPLE SAR IMAGES

<u>Wang, Shan</u>, Beijing Normal University, China <u>Sun, Qiaoyue</u>, Beijing Normal University, China <u>Ma, Sijia</u>, Beijing Normal University, China <u>Zhang, Libao</u>, Beijing Normal University, China

TU1.R18.6: AN INTEGRATED SAR SPECKLE REDUCTION AND TARGET DETECTION APPROACH

<u>Chen, Si-Wei</u>, National University of Defense Technology, China <u>Cui, Xing-Chao</u>, National University of Defense Technology, China <u>Wang, Xue-Song</u>, National University of Defense Technology, China <u>Xiao</u>, <u>Shun-Ping</u>, National University of Defense Technology, China

TU1.R18.7: HUMAN BODY RECOGNITION METHOD USING DIFFRACTION SIGNAL IN NLOS SCENARIO FOR MILLIMETER WAVE RADAR

<u>He, Jianghaomiao</u>, University of Electro-Communications, China <u>Terashima</u>, <u>Shota</u>, Mazda Motor Corp. Japan, Japan <u>Yamada</u>, <u>Hideyuki</u>, Mazda Motor Corp. Japan, Japan <u>Kidera</u>, <u>Shouhei</u>, University of Electro-Communications, Japan

TU1.R18.8: MICRO GESTURE RECOGNITION WITH TERAHERTZ RADAR BASED ON DIAGONAL PROFILE OF RANGE-DOPPLER MAP

Wang, Xing, University of Electronic Science and Technology of China, China Min, Rui, University of Electronic Science and Technology of China, China Cui, Zongyong, University of Electronic Science and Technology of China, China Cao, Zongjie, University of Electronic Science and Technology of China, China

TU1.R18.9: SHIP DETECTION BASED ON SUPERPIXELWISE LOCAL CONTRAST MEASUREMENT FOR POLSAR IMAGES

<u>Li, Tao</u>, Hangzhou Dianzi University, China <u>Peng, Dongliang</u>, Hangzhou Dianzi University, China <u>Guo, Baofeng</u>, Hangzhou Dianzi University, China <u>Chen, Zhikun</u>, Hangzhou Dianzi University, China <u>Fang, Feng</u>, Hangzhou Dianzi University, China

TU1.R18.10: MULTI-VIEW FUSION BASED ON EXPECTATION MAXIMIZATION FOR SAR TARGET RECOGNITION

Zhang, Yukun, University of Electronic Science and Technology of China, China <u>Guo</u>, <u>Xiansheng</u>, University of Electronic Science and Technology of China, China <u>Ren</u>, <u>Haohao</u>,

University of Electronic Science and Technology of China, China Wan, Qun, University of Electronic Science and Technology of China, China Shen, Xiaofeng, University of Electronic Science and Technology of China, China

TU1.R18.11: MULTI-ANGULAR SAR STATISTICAL PROPERTIES ANALYSIS AND MANMADE TARGET DETECTION

Teng, Fei, University of Chinese Academy of Sciences, China Lin, Yun, North China University of Technology, China Wang, Yanping, North China University of Technology, China Shen, Wenjie, University of Chinese Academy of Sciences, China Feng, Shanshan, University of Chinese Academy of Sciences, China Hong, Wen, Chinese Academy of Sciences, China

TU1.R19 - Clouds and Numerical Tuesday, September 29, 05:00 - 07:00 • Room 19 Weather Prediction

TU1.R19.1: AN INVESTIGATION OF A PROBABILISTIC NOWCAST SYSTEM FOR DUAL-POLARIZATION RADAR APPLICATIONS

Zhang, Jianchang, Ocean University of China, China Chen, Haonan, NOAA Physical Sciences Laboratory, United States Han, Lei, Ocean University of China, China

TU1.R19.2: ASSIMATION OF FY3D COMBINED MICROWAVE SOUNDER OBSERVATION IN ATMS ALIKE ONE DATA STREAM

<u>Dong, Peiming</u>, Chinese Academy of Meteorological Sciences, China <u>Yang, Jun</u>, Chinese Academy of Meteorological Sciences, China <u>Weng, Fuzhong</u>, Chinese Academy of Meteorological Sciences, China <u>Huang, Qien</u>, Chinese Academy of Meteorological Sciences, China <u>Kan, Wanlin</u>, Chinese Academy of Meteorological Sciences, China

TU1.R19.3: GAN-GENERATED ELEVATION MODELS IN COMPUTATIONAL FLUID DYNAMICS: A FEASIBILITY STUDY FOR COMPLEX URBAN TERRAIN

Langheinrich, Maximilian, German Aerospace Center (DLR), Germany Bittner, Ksenia, German Aerospace Center (DLR), Germany Reinartz, Peter, German Aerospace Center (DLR), Germany

TU1.R19.4: A SIMULATING METHOD OF AIRSHIP-BORNE POLARIMETRIC WEATHER RADAR FOR TYPHOON OBSERVATION

Zhao, Zewei, Beijing Institute of Technology, China Dong, Xichao, Beijing Institute of Technology, China Feng, Jianing, Chinese Academy of Meteorological Sciences, China Liang, Xudong, Chinese Academy of Meteorological Sciences, China Hu, Cheng, Beijing Institute of Technology, China

TU1.R19.5: ANALYSIS OF MICROWAVE SCATTERING PROPERTIES OF NON-SPHERICAL ICE PARTICLES USING DISCRETE DIPOLE APPROXIMATION

Yang, Jun, Chinese Academy of Meteorological Sciences, China Weng, Fuzhong, Chinese Academy of Meteorological Sciences, China

TU1.R19.6: ASSIMILATION OF GNSS-R DELAY-DOPPLER MAPS INTO WEATHER MODELS

Huang, Feixiong, Purdue University, United States Garrison, James, Purdue Univeristy, United States Leidner, Mark, Atmospheric and Environmental Research, United States Annane, Bachir, Cooperative Institute for Marine and Atmospheric Studies, United States Grieco, Giuseppe, Royal Netherlands Meteorological Institute, Netherlands Stoffelen, Ad, Royal Netherlands Meteorological Institute, Netherlands Hoffman, Ross, Atmospheric and Environmental Research, United States

TU1.R19.7: GENERATION, APPLICATION AND EVALUATION OF GF-1 WFV CLOUD DETECTION METHOD BASED CDAG ALGORITHM

<u>Wang, Kai</u>, ShanDong University of Science and Technology, China <u>Chen, Tingting</u>, ShanDong University of Science and Technology, China <u>Mi, Xueting</u>, ShanDong University of Science and Technology, China

TU1.R19.8: AN ALGORITHM TO REMOVE THIN CLOUDS BUT TO PRESERVE GROUND FEATURES IN VISIBLE BANDS

<u>Shan, Shuai</u>, University of Electronic Science and Technology of China, China <u>Wang, Yong</u>, East Carolina University, United States

TU1.R19.9: IMPROVEMENT OF A CIRRUS CORRECTION EMPIRICAL METHOD WITH

SENTINEL-2 DATA

<u>Salgado, Sandra</u>, ONERA, France <u>Poutier, Laurent</u>, ONERA, France <u>Mathieu, Sandrine</u>, Thales Alenia Space, France <u>Briottet, Xavier</u>, ONERA, France

TU1.R19.10: COMPARISON OF MODIS CLOUD MASK PRODUCTS WITH GROUND-BASED MILLIMETER-WAVE RADAR

<u>Huo, Juan</u>, Institute of Atmospheric Physics, China <u>Han, Congzheng</u>, Institute of Atmospheric Physics, China

TU1.R19.11: DESIGN AND DEVELOPMENT OF GROUND-BASED MICROWAVE RADIOMETER FOR METEOROLOGICAL AND CLIMATE APPLICATIONS

<u>He, Jieying</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Chen, Haonan</u>, NOAA Earth System Research Laboratory, United States <u>Zhang, Shengwei</u>, National Space Science Center, Chinese Academy of Sciences, China

TU1.R19.12: POLARIMETRIC RADAR MEASUREMENTS AND RAINFALL PERFORMANCE DURING A SEVERE RAINFALL EVENT IN COMPLEX TERRAIN OVER EASTERN CHINA

<u>Gou, Yabin</u>, Hangzhou Meteorological Bureau, China <u>Wang, Zhangwei</u>, Zhejiang Meteorological Administration, China <u>Hu, Yunli</u>, Hangzhou Meteorological Bureau, China <u>Chen, Haonan</u>, NOAA Earth System Research Laboratory, United States <u>He, Jieying</u>, National Space Science Center, China

TU1.R20 - Student Paper Contest Finalists I

Tuesday, September 29, 05:00 - 07:00 \circ Room 20

TU1.R20.1: SUN GLINT REMOVAL OF HYPERSPECTRAL IMAGES VIA TEXTURE-AWARE TOTAL VARIATION

<u>Duan, Puhong</u>, Hunan University, China <u>Kang, Jian</u>, Technical University of Berlin, Germany <u>Kang, Xudong</u>, Hunan University, China <u>Ghamisi, Pedram</u>, Helmholtz Institute Freiberg for Resource Technology, Germany <u>Li, Shutao</u>, Hunan University, China

TU1.R20.2: REMOTE SENSING IMAGE SPATIO-TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR

<u>Song, Yiyao</u>, Wuhan University, China <u>Zhang, Hongyan</u>, Wuhan University, China <u>Zhang, Liangpei</u>, Wuhan University, China

TU1.R20.3: NEW ALGORITHM FOR NEAR-FIELD ISAR IMAGING

<u>Fu, Jixiang</u>, Xidian University, China; Villanova University, United States <u>Lan, Yang</u>, Xidian University, China <u>Xing, Mengdao</u>, Xidian University, China <u>Sun, Guangcai</u>, Xidian University, China

TU1.R20.4: SPATIAL BIAS CORRECTION OF SOCIAL MEDIA DATA BY EXPLOITING REMOTE SENSING KNOWLEDGE IN DATA-DEFICIENT REGIONS

<u>Liu, Zhenjie</u>, Sun Yat-sen University, China <u>Li, Jun</u>, Sun Yat-sen University, China <u>Plaza, Javier</u>, University of Extremadura, Spain <u>Plaza, Antonio</u>, University of Extremadura, Spain

TU1.R20.5: A NON-MODEL BASED THREE COMPONENT SCATTERING POWER DECOMPOSITION FOR FULL POLARIMETRIC SAR DATA

<u>Dey, Subhadip</u>, Indian Institute of Technology Bombay, India <u>Ratha, Debanshu</u>, Indian Institute of Technology Bombay, India <u>Mandal, Dipankar</u>, Indian Institute of Technology Bombay, India <u>Bhattacharya, Avik</u>, Indian Institute of Technology Bombay, India <u>Frery, Alejandro C.</u>, Universidade Federal de Alagoas, Brazil

TU2.R1 - NASA Soil Moisture Active Passive Mission Extended Phase Observations and Results

Tuesday, September 29, 07:30 - 09:30 • Room 1

TU2.R1.1: SMAP MISSION STATUS AND PLAN

<u>Yueh, Simon</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Entekhabi, Dara</u>, MIT, United States <u>O'Neill, Peggy</u>, NASA Goddard Space Flight Center, United States <u>Entin, Jared</u>, NASA HQ, United States <u>Garcia, Mark</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

TU2.R1.2: ASSESSMENT OF THE IMPACTS OF NEAR REAL-TIME VEGETATION CORRECTION ON PASSIVE SOIL MOISTURE PRODUCT PERFORMANCE

<u>Chan, Steven</u>, NASA Jet Propulsion Laboratory, United States <u>Bindlish, Rajat</u>, NASA Goddard Space Flight Center, United States <u>O'Neill, Peggy</u>, NASA Goddard Space Flight Center, United States

TU2.R1.3: SMAP ESTIMATES AND SCIENCE APPLICATIONS OF VEGETATION OPTICAL DEPTH FOR GLOBAL ECOLOGY AND AGROECOSYSTEMS MONITORING

Entekhabi, Dara, MIT, United States

TU2.R1.4: SMAP MICROWAVE RADIOMETER CALIBRATION REVISIT APPROACHES AND PERFORMANNCE

Peng, Jinzheng, NASA Goddard Space Flight Center / Universities Space Research Center, United States Misra, Sidharth, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Piepmeier, Jeffrey, NASA Goddard Space Flight Center, United States Yueh, Simon, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Mohammed, Priscilla, NASA Goddard Space Flight Center, United States Le Vine, David, NASA Goddard Space Flight Center, United States Dinnat, Emmanuel, NASA Goddard Space Flight Center, United States Meissner, Thomas, Remote Sensing Systems, United States

TU2.R1.5: SATELLITE FLOOD ASSESSMENT AND FORECASTS FROM SMAP AND LANDSAT

<u>Du. Jinyang</u>, University of Montana, United States <u>Kimball, John</u>, University of Montana, United States <u>Sheffield, Justin</u>, University of Southampton, United Kingdom <u>Pan, Ming</u>, Princeton University; Princeton Climate Analytics, United States <u>Fisher, Colby</u>, Princeton Climate Analytics, United States <u>Beck, Hylke</u>, Princeton University; Princeton Climate Analytics, United States <u>Wood, Eric</u>, Princeton University; Princeton Climate Analytics, United States

TU2.R1.6: SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY

Colliander, Andreas, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Cosh, Michael H., USDA ARS Hydrology and Remote Sensing Laboratory, United States Misra, Sidharth, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Bourgeau-Chavez, Laura, Michigan Tech Research Institute, United States Kelly, Vicky, Cary Institute of Ecosystem Studies, United States Siqueira, Paul, University of Massachusetts Amherst, United States Roy, Alexandre, University of Quebec at Trois-Rivieres, Canada Lakhankar, Tarendra, City College of New York, United States Kraatz, Simon, University of Massachusetts Amherst, United States Konings, Alexandra G., Stanford University, United States Holtzman, Natan, Stanford University, United States Kurum, Mehmet, Mississippi State University, United States Entekhabi, Dara, Massachusetts Institute of Technology, United States O'Neill, Peggy, NASA Goddard Space Flight Center, United States Yueh, Simon, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

TU2.R2 - Monitoring and Damage Tuesday, September 29, 07:30 - 09:30 • Room 2 Assessment of Natural Disasters

Ш

TU2.R2.1: POST-FIRE ASSESSMENT OF BURNED AREAS WITH LANDSAT-8 AND SENTINEL-2 IMAGERY TOGETHER WITH MODIS AND VIIRS ACTIVE FIRE PRODUCTS

Angelino, Cesario Vincenzo, Centro Italiano Ricerche Aerospaziali, Italy Cicala, Luca, Centro Italiano Ricerche Aerospaziali, Italy Parrilli, Sara, Centro Italiano Ricerche Aerospaziali, Italy Fiscante, Nicomino, Università degli Studi del Sannio, Italy Ullo, Silvia Liberata, Università degli Studi del Sannio, Italy

TU2.R2.2: THE ACTIVE MICROWAVE DATA-BASED ANALYSIS OF FIRE RISK IN THE WILDLAND-URBAN INTERFACE

<u>Tan, Longfei</u>, Sichuan Fire Research Institute of Ministry of Emergency Management, China <u>Tong, Ling</u>, University of Electronic Science and Technology of China, China <u>Yang, Ting</u>, Sichuan University, West China School of Public Health and West China Fourth Hospital,

China Yang, Xun, University of Electronic Science and Technology of China, China

TU2.R2.3: ASSESSMENT OF THE EFFECT OF PROSAILH FOR OPEN AND CLOSED SHRUBLANDS LIVE FUEL MOISTURE CONTENT RETRIEVAL

<u>Lai. Gengke</u>, University of Electronic Science and Technology of China, China <u>Quan, Xingwen</u>, University of Electronic Science and Technology of China, China <u>He, Binbin</u>, University of Electronic Science and Technology of China, China

TU2.R2.4: EVALUATION OF HIMAWARI-8 FOR LIVE FUEL MOISTURE CONTENT RETRIEVAL

Zhu, Ying, University of Electronic Science and Technology of China, China Liu, Xiangzhuo, INRAE, UMR1391 ISPA, France Lai, Gengke, University of Electronic Science and Technology of China, China Quan, Xingwen, University of Electronic Science and Technology of China, China

TU2.R2.5: MONITORING THE 2019 AGRICULTURAL DROUGHT IN THE STATE OF SAN LUIS POTOSI, MEXICO

<u>Origel-Gutiérrez, Gabriel</u>, Universidad Autónoma del Estado de México, Mexico <u>Pérez-Flores, Anabell</u>, Universidad Nacional Autónoma de México, Mexico

TU2.R2.6: ACCURATE INSAR SURFACE DEFORMATION MAPPING OVER THE OIL-PRODUCING PERMIAN BASIN WITH AUTOMATED TROPOSPHERIC OUTLIER REMOVAL

Staniewicz, Scott, University of Texas at Austin, United States Chen, Jingyi, University of Texas at Austin, United States

TU2.R2.7: EVALUATING TREES CROWNS DAMAGE FOR THE 2017 LARGEST WILDFIRE IN JAPAN USING SENTINEL-2A NDMI

<u>Emang, Grace Puyang</u>, Tohoku University, Japan <u>Touge, Yoshiya</u>, Tohoku University, Japan <u>Kazama, So</u>, Tohoku University, Japan

TU2.R2.8: A REMOTE SENSING AND METEOROLOGICAL DATA-BASED METHODOLOGY FOR WILDFIRE DANGER ASSESSMENT FOR CHINA

Xie, Qian, University of Electronic Science and Technology of China, China Quan, Xingwen, University of Electronic Science and Technology of China, China He, Binbin, University of Electronic Science and Technology of China, China

TU2.R2.9: A MACHINE LEARNING SOLUTION FOR OPERATIONAL REMOTE SENSING OF ACTIVE WILDFIRES

McCarthy, Nicholas F., One Concern, Inc., United States Tohidi, Ali, One Concern, Inc., United States Valero, M. Miguel, One Concern, Inc., United States Dennie, Matt, One Concern, Inc., United States Aziz, Yawar, One Concern, Inc., United States Hu, Nicole, One Concern, Inc., United States

TU2.R2.10: FIRE RISK ANALYSIS BY USING SENTINEL-2 DATA: THE CASE STUDY OF THE VESUVIUS IN CAMPANIA, ITALY

Dell'Aglio, Domenico Antonio Giuseppe, University of Naples Federico II, Italy Gargiulo, Massimiliano, University of Naples Federico II, Italy Iodice, Antonio, University of Naples Federico II, Italy Riccio, Daniele, University of Naples Federico II, Italy Ruello, Giuseppe, University of Naples Federico II, Italy

TU2.R2.11: AUTOMATIC GENERATION OF DECISION SUPPORT REPORT FOR DISASTER RESPONSE USING REMOTE SENSING AND SDI

<u>Fang, Zhe</u>, Wuhan University, China <u>Yue, Peng</u>, Wuhan University, China <u>Huang, Qiujun</u>, Dongfeng Changxing Technology Co. , Ltd, China <u>Hu, Lei</u>, Wuhan University, China <u>Jiang, Liangcun</u>, Wuhan University, China <u>Zhang, Mingda</u>, Wuhan University, China

TU2.R2.12: ADAPTING 3-PG MODEL TO SIMULATE EARLY FOREST GROWTH DYNAMICS IN HIGHLY BURNT AREAS ACROSS DAXING ANLING MOUNTAIN IN CHINA

<u>Lin, Simei</u>, Beijing forestry university, China <u>Huang, Huaguo</u>, Beijing forestry university, China <u>Tian, Xin</u>, Chinese Academy of Forestry, China

TU2.R3 - Differential SAR Interferometry I

Tuesday, September 29, 07:30 - 09:30 • Room 3

<u>Heuff, Floris</u>, Delft University of Technology, Netherlands <u>Hanssen, Ramon</u>, Delft University of Technology, Netherlands

TU2.R3.2: A TIME-SERIES CLUSTERING APPROACH FOR ATMOSPHERIC PROPAGATION DELAY COMPENSATION IN GROUND-BASED RADAR INTERFEROMETRY

<u>Izumi, Yuta</u>, Tohoku University, Japan <u>Nico, Giovanni</u>, Consiglio Nazionale delle Ricerche, Italy <u>Sato, Motoyuki</u>, Tohoku University, Japan

TU2.R3.3: A POLARIMETRIC APPROACH FOR MULTIPATH SUPPRESSION/ MITIGATION IN GROUND-BASED INTERFEROMETRIC RADAR IMAGING

<u>Pieraccini, Massimiliano</u>, University of Florence, Italy <u>Miccinesi, Lapo</u>, University of Florence, Italy

TU2.R3.4: A GENERALIZED-SVD-BASED TECHNIQUE FOR ENHANCING PERFORMANCE OF MULTI-TEMPORAL DINSAR ANALYSES: THE WEIGHTED ADAPTIVE VARIABLE-LENGTH (WAVE) TECHNIQUE

<u>Falabella, Francesco</u>, University of Basilicata (UNIBAS), Italy <u>Serio, Carmine</u>, University of Basilicata (UNIBAS), Italy <u>Zeni, Giovanni</u>, Institute for the Electromagnetic Sensing of the Environment (IREA), National Research Council (CNR), Italy <u>Pepe, Antonio</u>, Institute for the Electromagnetic Sensing of the Environment (IREA), National Research Council (CNR), Italy

TU2.R3.5: POTENTIAL OF AN AUTOMATIC GROUNDING ZONE CHARACTERIZATION USING WRAPPED INSAR PHASE

Parizzi, Alessandro, German Aerospace Center (DLR), Germany

TU2.R3.6: PS-INSAR TARGET CLASSIFICATION USING DEEP LEARNING

<u>Aguiar, Pedro</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Cunha, António</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Bakon, Matus</u>, insar.sk Ltd, Slovakia <u>Ruiz-Armenteros, Antonio M.</u>, University of Jaén, Spain <u>Sousa, Joaquim J.</u>, University of Trás-os-Montes e Alto Douro, Portugal

TU2.R3.7: SUBSIDENCE MONITORING ALONG RAVENNA COASTAL AREA (NORTHERN ITALY) BY INSAR AND GPS DATA

Polcari, Marco, Istituto Nazionale di Geofisica e Vulcanologia, Italy Anderlini, Letizia, Istituto Nazionale di Geofisica e Vulcanologia, Italy Albano, Matteo, Istituto Nazionale di Geofisica e Vulcanologia, Italy Pezzo, Giuseppe, Istituto Nazionale di Geofisica e Vulcanologia, Italy Secreti, Valeria, Istituto Nazionale di Geofisica e Vulcanologia, Italy Serpelloni, Enrico, Istituto Nazionale di Geofisica e Vulcanologia, Italy Salvatore, Stramondo, Istituto Nazionale di Geofisica e Vulcanologia, Italy Elisa, Trasatti, Istituto Nazionale di Geofisica e Vulcanologia, Italy Elisa, Trasatti, Istituto Nazionale di Geofisica e Vulcanologia, Italy

TU2.R3.8: MONITORING COMPLEX SURFACE STRUCTURE BY SEVERAL INTERFEROMETRIC STACKING TEQUNIQUES WITH PALSAR-1 DATA

<u>Ogushi, Fumitaka</u>, Tokyo Institute of Technology, Japan <u>Matsuoka, Masashi</u>, Tokyo Institute of Technology, Japan <u>Defilippi, Marco</u>, sarmap S.A., Switzerland <u>Pasquali, Paolo</u>, sarmap S.A., Switzerland

TU2.R3.9: THE CORRECTION OF PHASE UNWRAPPING ERRORS IN SEQUENCES OF MULTI-TEMPORAL DIFFERENTIAL SAR INTERFEROGRAMS

Pepe, Antonio, IREA-CNR, Italy Pepe, Antonio, CNR-IREA, Italy

TU2.R3.10: MULTIPASS SAR PROCESSING FOR RADAR DEPTH SOUNDER CLUTTER SUPPRESSION, TOMOGRAPHIC PROCESSING, AND DISPLACEMENT MEASUREMENTS

<u>Miller, Bailey</u>, University of Kansas, United States <u>Ariho, Gordon</u>, University of Kansas, United States <u>Paden, John</u>, University of Kansas, United States <u>Arnold, Emily</u>, University of Kansas, United States

TU2.R3.11: THE STUDY OF PLATFORM FLUCTUATION EFFECT FOR HIGH SQUINT FMCW SAR AND ISAR

Chiang, Cheng-Yen, National Taipei University of Technology, Taiwan Takaoka, Shun-Ichi, National Taipei University of Technology, Taiwan Kobayashi, Hirokazu, Osaka Institute of Technology, Japan Chu, Chih-Yuan, National Taipei University of Technology, Taiwan Chen, Tsung-Hau, National Taipei University of Technology, Taiwan Chen, Ying-Yu, National Taipei University of Technology, Taiwan Chang, Yang-Lang, National Taipei University of Technology,

Taiwan

TU2.R4 - Optical Satellite Missions I

Tuesday, September 29, 07:30 - 09:30 • Room 4

TU2.R4.1: THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER

Carnicero Domínguez, Bernardo, European Space Agency, Netherlands Pachot, Charlotte, European Space Agency, Netherlands Oetjen, Hilke, European Space Agency, Netherlands Mariani, Flavio, European Space Agency, Netherlands Riel, Stefanie, European Space Agency, Netherlands Tromba, Andrea, European Space Agency, Netherlands Lajas, Dulce, European Space Agency, Netherlands Schuettemeyer, Dirk, European Space Agency, Netherlands Sierk, Bernd, European Space Agency, Netherlands Leveque, Nicolas, Airbus Defence and Space Ltd., United Kingdom Kolm, Manfred-Georg, Airbus Defence and Space Gmbh., Germany Korswagen, Hans, Thales Alenia Space UK Ltd., United Kingdom Posselt, Winfried, OHB System AG, United Kingdom

TU2.R4.2: TOTAL COLUMN RETRIEVAL OF SO2 AND HCHO FROM SENTINEL-4 MEASUREMENTS

van Gent, Jeroen, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium Theys, Nicolas, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium De Smedt, Isabelle, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium Lerot, Christophe, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium Van Roozendael, Michel, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium

TU2.R4.3: DERIVATION OF JPSS-2 CRIS PRE-LAUNCH SPECTRAL CALIBRATION PARAMETERS FROM THE THERMAL VACUUM TEST DATA

Chen, Yong, Global Science and Technology Inc., United States Iturbide-Sanchez, Flavio, National Oceanic and Atmospheric Administration, United States Strow, Larrabee, University of Maryland, Baltimore County, United States Motteler, Howard, University of Maryland, Baltimore County, United States Tobin, Dave, University of Wisconsin-Madison, United States Johnson, David, National Aeronautics and Space Administration, United States Suwinski. Lawrence, L3Harris Technologies Incorporation, United States Tremblay, Denis, Global Science and Technology Inc., United States

TU2.R4.4: NOAA-20 VISIBLE INFRARED IMAGING RADIOMETER SUITE (VIIRS) DAY-NIGHT BAND CALIBRATION USING THE SCHEDULED LUNAR COLLECTIONS

Choi, Taeyoung, NOAA/GST, United States Cao, Changyong, NOAA, United States Shao, Xi, University of Maryland College Park/NOAA, United States

TU2.R4.5: GOES-17 ABI L1B PRODUCT PERFORMANCE WITH PREDICTIVE CALIBRATION

Fulbright, Jon, ASRC Federal, United States Pogorzala, David, Centarui, United States Kline, Elizabeth, NOAA/NESDIS/GOES-R Program, United States Wang, Zhipeng (Ben), University of Maryland at College Park, United States Yu, Fangfang, University of Maryland at College Park, United States Yoo, Hyelim, University of Maryland at College Park, United States Wu, Xianggian, NOAA/NESDIS/STAR, United States

TU2.R4.6: SCIENTIFIC REQUIREMENTS FOR A NEW EO MISSION IN THE MWIR-LWIR SPECTRAL RANGE

<u>Buongiorno, Maria Fabrizia</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Romaniello, Vito</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Silvestri, Malvina</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Montuori, Antonio</u>, Agenzia Spaziale Italiana, Italy <u>Zoffoli, Simona</u>, Agenzia Spaziale Italiana, Italy

TU2.R4.7: ENHANCING LEGACY AND SMALL SATELLITE CALIBRATION/VALIDATION SYSTEMS WITH 3D GLOBE CONTEXTUAL VISUALIZATION

<u>Bai, Yan</u>, University of Maryland, United States <u>Zhang</u>, <u>Bin</u>, University of Maryland, United States <u>Wang</u>, <u>Wenhui</u>, University of Maryland, United States <u>Shao</u>, <u>Xi</u>, University of Maryland, United States

TU2.R4.8: GYROSCOPE DATA DE-NOISING BASED ON INHERENT FREQUENCY FOR EARTH OBSERVATION SATELLITE

Mo, Fan, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Xie, Junfeng, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Tang, Xinming, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Dou, Xianhui, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Chen, Jiyi, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China China, China

TU2.R4.9: CORRECTING IMAGE BLURRING INDUCED BY THE ADCS JITTER IN CUBESATS

<u>Llaveria, David</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Camps, Adriano</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Park, Hyuk</u>, Universitat Politècnica de Catalunya (UPC), Spain

TU2.R4.10: LAND COVER FEATURE EXTRACTION FROM CORONA SPY SATELLITE IMAGES DURING THE COLD WAR - 1968

Stratoulias, Dimitris, Koç University, Turkey Kabadayı, M. Erdem, Koç University, Turkey

TU2.R5 - Hyperspectral Image Tuesday, S Classification II

Tuesday, September 29, 07:30 - 09:30 • Room 5

TU2.R5.1: TWO-STEP ENSEMBLE BASED CLASS NOISE CLEANING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Feng, Wei, School of Electronic Engineering, Xidian University, China Quan, Yinghui, School of Electronic Engineering, Xidian University, China Dauphin, Gabriel, Institut Galilée, University Paris XIII, France Zhong, Xian, School of Electronic Engineering, Xidian University, China Li, Qiang, Northwestern Polytechnical University, China Xing, Mengdao, Xidian University, China Huang, Wenjiang, Chinese Academy of Sciences, China

TU2.R5.2: A SUPERPIXEL-BASED FRAMEWORK FOR NOISY HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Fu, Peng</u>, Nanjing University of Science and Technology, China <u>Sun, Quansen</u>, Nanjing University of Science and Technology, China <u>Ji, Zexuan</u>, Nanjing University of Science and Technology, China <u>Geng, Leilei</u>, Shandong University of Finance and Economics, China

TU2.R5.3: HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK

Tang, Xu, Xidian University, China Meng, Fanbo, Xidian University, China Ma, Jingjing, Xidian University, China Zhang, Xidian University, China Liu, Fang, Nanjing University of Science and Technology, China Peng, Qunnie, Science and Technology on Electro-optic Control Laboratory, China Jiao, Licheng, Xidian University, China

TU2.R5.4: IMPROVING HYPERSPECTRAL IMAGE CLASSIFICATION USING GRAPH WAVELETS

<u>Qian, Qipeng</u>, Shanghai Jiao Tong University, China <u>Fan, Xiaotian</u>, Zhejiang University, China <u>Ye, Minchao</u>, China Jiliang Universit, China

TU2.R5.5: JOINT GROUP SPARSE COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Tian, Qing</u>, Beijing Institute of Technology, China <u>Zhao, Juan</u>, Beijing Institute of Technology, China <u>Bai, Xia</u>, Beijing Institute of Technology, China

TU2.R5.6: PERONA-MALIK DIFFUSION DRIVEN CNN FOR SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES

<u>Wen, Ning</u>, Nanjing University of Science and Technology, China <u>Liu, Qichao</u>, Nanjing University of Science and Technology, China <u>Xiao</u>, <u>Liang</u>, Nanjing University of Science and Technology, China

TU2.R5.7: A DIRECTIONAL MESSAGE PROPAGATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGES CLASSIFICATION

<u>Yu, Jian</u>, Nanjing University of Science and Technology, China <u>Liu, Qichao</u>, Nanjing University of Science and Technology, China <u>Xiao</u>, <u>Liang</u>, Nanjing University of Science and Technology, China <u>Wei</u>, <u>Zhihui</u>, Nanjing University of Science and Technology, China

TU2.R5.8: HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON TENSOR-TRAIN CONVOLUTIONAL LONG SHORT-TERM MEMORY

<u>Hu, Wenshuai</u>, Southwest Jiaotong University, China <u>Li, Hengchao</u>, Southwest Jiaotong University, China <u>Ma, Tianyu</u>, Southwest Jiaotong University, China <u>Du, Qian</u>, Mississippi State University, United States <u>Plaza, Antonio</u>, University of Extremadura, Spain <u>Emery, William J.</u>, University of Colorado, United States

TU2.R5.9: ADAPTIVE NEIGHBORHOOD STRATEGY BASED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Liang, Hongbo</u>, School of Computer Science and Engineering, North Minzu University, China <u>Bao, Wenxing</u>, School of Computer Science and Engineering, North Minzu University, China <u>Lei, Bingbing</u>, School of Computer Science and Engineering, North Minzu University, China <u>Zhang, Jian</u>, School of Computer Science and Engineering, North Minzu University, China <u>Qu, Kewen</u>, School of Computer Science and Engineering, North Minzu University, China

TU2.R5.10: HYPERSPECTRAL IMAGE CLASSIFICATION USING SPECTRAL-SPATIAL CONVOLUTIONAL NEURAL NETWORKS

<u>Nalepa, Jakub</u>, KP Labs, Silesian University of Technology, Poland <u>Tulczyjew, Lukasz</u>, KP Labs, Silesian University of Technology, Poland <u>Myller, Michal</u>, KP Labs, Silesian University of Technology, Poland <u>Kawulok, Michal</u>, KP Labs, Silesian University of Technology, Poland

TU2.R5.11: SEGMENTING HYPERSPECTRAL IMAGES USING SPECTRAL CONVOLUTIONAL NEURAL NETWORKS IN THE PRESENCE OF NOISE

<u>Nalepa, Jakub</u>, Silesian University of Technology, KP Labs, Poland <u>Stanek, Marek</u>, Silesian University of Technology, Poland

TU2.R6 - IEEE GRSS Data Fusion Tuesday, September 29, 07:30 - 09:30 • Room 6 Contest

TU2.R6.1: IEEE DATA FUSION CONTEST OVERVIEW

Hänsch, Ronny, German Aerospace Center (DLR), Germany

TU2.R6.2: WEAKLY SUPERVISED SEMANTIC SEGMENTATION IN THE 2020 IEEE GRSS DATA FUSION CONTEST

Robinson, Caleb, Georgia Institute of Technology, United States Malkin, Nikolay, Yale University, United States Hu, Lucas, University of Southern California, United States Dilkina, Bistra, University of Southern California, United States Jojic, Nebojsa, Microsoft Research, United States

TU2.R6.3: LAND COVER MAPPING BASED ON MULTI-BRANCH FUSION OF OBJECT-BASED AND PIXEL-BASED SEGMENTATION WITH FILTERED LABELS

<u>Xia, Yu</u>, Wuhan University, China <u>Liao, Yue</u>, Wuhan University, China <u>Zhang, Hongyan</u>, Wuhan University, China <u>Yang, Guangyi</u>, Wuhan University, China

TU2.R6.4: STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1

Cerra, Daniele, German Aerospace Center (DLR), Germany Merkle, Nina, German Aerospace Center (DLR), Germany Henry, Corentin, German Aerospace Center (DLR), Germany Alonso, Kevin, German Aerospace Center (DLR), Germany Auer, Stefan, German Aerospace Center (DLR), Germany Bahmanyar, Reza, German Aerospace Center (DLR), Germany Yuan, Xiangtian, German Aerospace Center (DLR), Germany Bittner, Ksenia, German Aerospace Center (DLR), Germany Langheinrich, Maximilian, German Aerospace Center (DLR), Germany Zhang, Guichen, German Aerospace Center (DLR), Germany Pato, Miguel, German Aerospace Center (DLR), Germany Tian, Jiaojiao, German Aerospace Center (DLR), Germany Reinartz, Peter, German Aerospace Center (DLR), Germany

TU2.R6.5: LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS - IEEE DATA FUSION CONTEST 2020 TRACK 1

<u>Chen, Huijun</u>, The Ohio State University, United States <u>Liu, Wei</u>, The Ohio State University, United States <u>Xiao</u>, <u>Changlin</u>, The Ohio State University, United States <u>Qin, Rongjun</u>, The Ohio State University, United States

TU2.R6.6: LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS WITH MULTI-RESOLUTION LABEL - IEEE DATA

FUSION CONTEST 2020 TRACK 2

<u>Chen, Huijun</u>, The Ohio State University, United States <u>Xiao, Changlin</u>, The Ohio State University, United States <u>Liu, Wei</u>, The Ohio State University, United States <u>Qin, Rongjun</u>, The Ohio State University, United States

TU2.R6.7: STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2

Cerra, Daniele, German Aerospace Center (DLR), Germany Merkle, Nina, German Aerospace Center (DLR), Germany Henry, Corentin, German Aerospace Center (DLR), Germany Alonso, Kevin, German Aerospace Center (DLR), Germany Aerospace Center (DLR), Germany Aerospace Center (DLR), Germany Auer, Stefan, German Aerospace Center (DLR), Germany Bahmanyar, Reza, German Aerospace Center (DLR), Germany Yuan, Xiangtian, German Aerospace Center (DLR), Germany Bittner, Ksenia, German Aerospace Center (DLR), Germany Langheinrich.

Maximilian, German Aerospace Center (DLR), Germany Zhang, Guichen, German Aerospace Center (DLR), Germany Pato, Miguel, German Aerospace Center (DLR), Germany Tian, Jiaojiao, German Aerospace Center (DLR), Germany Reinartz, Peter, German Aerospace Center (DLR), Germany

TU2.R6.8: WEAKLY SUPERVISED LAND COVER CLASSIFICATION METHOD FOR LARGE-SCALE MULTI-RESOLUTION LABELED SATELLITE IMAGES DATA SETS

<u>Yin, Shuting</u>, Xidian University, China <u>Chen, Dafan</u>, Xidian University, China <u>Ma, Chengconghui</u>, Xidian University, China <u>Lian, Yanchao</u>, Xidian University, China <u>Jiao, Licheng</u>, Xidian University, China <u>Liu, Fang</u>, Xidian University, China

TU2.R7 - Spatial Analysis, Modeling and Computing for GIScience Tuesday, September 29, 07:30 - 09:30 • Room 7

TU2.R7.1: A GEOGRAPHICALLY WEIGHTED TOTAL COMPOSITE ERROR ANALYSIS FOR SOFT CLASSIFICATION

<u>Tsutsumida, Narumasa</u>, Kyoto University, Japan <u>Yoshida, Takahiro</u>, National Institute for Environmental Studies, Japan <u>Murakami, Daisuke</u>, Institute of Mathematical Statistics, Japan <u>Nakaya, Tomoki</u>, Tohoku University, Japan

TU2.R7.2: ESTIMATING MULTIPLE-SCALE GDP DISTRIBUTION USING NIGHTTIME LIGHT AND SPATIAL METHODS

<u>Cao, Jiping</u>, Wuhan University, China <u>Chen, Yumin</u>, Wuhan University, China <u>Tan, Huangyuan</u>, Wuhan University, China <u>Yang, Jiaxin</u>, Wuhan University, China <u>Luo, Fenglan</u>, Wuhan University, China

TU2.R7.3: QUANTITATIVE ANALYSIS OF WATERSHEDS PARTITIONED FROM CARTOSAT DEM OF LOWER INDUS SUB-BASIN VIA MULTIFRACTAL SPECTRA

<u>Nagajothi, K</u>, Indian Space Research Organisation, India <u>Rajashekara, H M</u>, Indian Statistical Institute, India <u>Daya Sagar, B S</u>, Indian Statistical Institute, India

TU2.R7.4: EVALUATION OF THE ENVIRONMENTAL QUALITY OF HUMAN SETTLEMENTS IN FUZHOU BASED ON MULTI-SOURCE DATA

<u>Yao, Xiaojing</u>, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China <u>Zhu, Yujiao</u>, College of Geoscience and Surveying Engineering, China <u>Wang, Dacheng</u>, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

TU2.R7.5: RESEARCH ON 3D REAL SCENE PLANNING METHOD FOR MINE REFORESTATION

<u>Tang, Feifei</u>, Chongqing Jiaotong University, China <u>Ruan, Zhimin</u>, China Merchants Roadway Information Technology (Chongqing) Co., Ltd., China <u>Chen, Maolin</u>, Chongqing Jiaotong University, China <u>Hu, Jingxiang</u>, Chongqing Jiaotong University, China <u>Tang, Tianjun</u>, Chongqing Jiaotong University, China

TU2.R7.6: EDGE ANALYTICS AND COMPLEX EVENT PROCESSING FOR REAL TIME AIR POLLUTION MONITORING AND CONTROL

<u>Kulshrestha, Utkarsh</u>, Indian Institute of Technology Bombay, India <u>Durbha, Surya</u>, Indian Institute of Technology Bombay, India

TU2.R7.7: FIRST TEST OF AGISOFT METASHAPE SATELLITE IMAGE PROCESSING FOR

DSM GENERATION: A CASE STUDY IN TRENTO WITH PLÉIADES IMAGERY

<u>Lastilla, Lorenzo</u>, Sapienza University of Rome, Italy <u>Ravanelli, Roberta</u>, Sapienza University of Rome, Italy <u>Crespi, Mattia</u>, Sapienza University of Rome, Italy

TU2.R7.8: STARE TOWARDS INTEGRATIVE ANALYSIS WITH MINIMIZED DATA WRANGLING HASSLE

<u>Rilee, Michael</u>, Rilee Systems Technologies LLC, United States <u>Kuo, Kwo-Sen</u>, Bayesics LLC, United States <u>Frew, James</u>, University of California, United States <u>Griessbaum, Niklas</u>, University of California, United States <u>Gallagher, James</u>, OPeNDAP, Inc., United States

TU2.R8 - Ocean Surface Winds Tuesday, September 29, 07:30 - 09:30 • Room 8 and Currents II

TU2.R8.1: A MLSD-SMCG METHOD FOR SCATTERING AND EMISSION FROM OCEAN-SURFACES WITH FULL OCEAN SPECTRUM AND LARGE RMS HEIGHTS

<u>Du, Yanlei</u>, Tsinghua University, China <u>Tsang, Leung</u>, University of Michigan, United States <u>Yang, Jian</u>, Tsinghua University, China <u>Yin, Junjun</u>, University of Science and Technology Beijing, China

TU2.R8.2: APPLICATION OF DOPPLER RADAR FOR MEASUREMENT OF CURRENT VELOCITY AT SMALL INCIDENCE ANGLES: THE FIRST EXPERIMENTS AT THE RIVER

Karaev, Vladimir, Institute of Applied Physics of the Russian Academy of Sciences, Russia Ryabkova, Mariya, Institute of Applied Physics of the Russian Academy of Sciences, Russia Panfilova, Mariya, Institute of Applied Physics of the Russian Academy of Sciences, Russia Titchenko, Yury, Institute of Applied Physics of the Russian Academy of Sciences, Russia Meshkov, Eugeny, Institute of Applied Physics of the Russian Academy of Sciences, Russia Zuikova, Emma, Institute of Applied Physics of the Russian Academy of Sciences, Russia

TU2.R8.3: OCEANIC SURFACE CURRENT APPROXIMATION FROM SPARSE DATA

<u>Barucq, Hélène</u>, INRIA Bordeaux Sud Ouest, France <u>Chyba, Monique</u>, University of Hawai'i at Manoa, United States <u>Gout, Christian</u>, INSA Rouen & University of Hawai'i at Manoa, France <u>Le Guyader, Carole</u>, INSA Rouen, France

TU2.R8.4: EFFECTS OF WIND ESTIMATION ERRORS ON OCEAN SURFACE CURRENT RETRIEVAL FOR A DOPPLER SCATTEROMETER

Miao, Yuanjing, National Space Science Center, Chinese Academy of Sciences, China Dong, Xiaolong, National Space Science Center, Chinese Academy of Sciences, China Xu, Xingou, National Space Science Center, Chinese Academy of Sciences, China Bao, Qingliu, Beijing Piesat Information Technology Co. Ltd, China Zhu, Di, National Space Science Center, Chinese Academy of Sciences, China

TU2.R8.5: EFFECTS OF DIFFERENT WAVE SPECTRA ON WIND-WAVE INDUCED DOPPLER SHIFT ESTIMATES

Miao, Yuanjing, National Space Science Center, Chinese Academy of Sciences, China Dong, Xiaolong, National Space Science Center, Chinese Academy of Sciences, China Bourassa, Mark A., Florida State University, United States Zhu, Di, National Space Science Center, Chinese Academy of Sciences, China

TU2.R8.6: RETRIEVAL OF MEAN SQUARE SLOPES OF SEA WAVES, SURFACE WIND SPEED, TOTAL WATER VAPOR CONTENT AND TOTAL CLOUD LIQUID WATER CONTENT IN HAGIBIS TYPHOON AREA FROM SATELLITE ACTIVE AND PASSIVE MICROWAVE DATA

Mitnik, Leonid, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Russia <u>Kuleshov, Vladimir</u>, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Russia <u>Mitnik, Maia</u>, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Russia <u>Panfilova, Maria</u>, Institute of Applied Physics of the Russian Academy of Sciences, Russia <u>Karaev, Vladimir</u>, Institute of Applied Physics of the Russian Academy of Sciences, Russia <u>Titchenko, Yury</u>, Institute of Applied Physics of the Russian Academy of Sciences, Russia

TU2.R8.7: BISTATIC DOPPLER SPECTRA OF THE SIGNAL REFLECTED BY ROUGH WATER SURFACE MEASURED BY MODIFIED MONOSTATIC RADAR

<u>Titchenko, Yuriy</u>, Institute of Applied Physics of the Russian Academy of Sciences, Russia

Zuykova, Emma, Institute of Applied Physics of the Russian Academy of Sciences, Russia Karaev, Vladimir, Institute of Applied Physics of the Russian Academy of Sciences, Russia Meshkov, Eugeniy, Institute of Applied Physics of the Russian Academy of Sciences, Russia Panfilova, Mariya, Institute of Applied Physics of the Russian Academy of Sciences, Russia Ryabkova, Maria, Institute of Applied Physics of the Russian Academy of Sciences, Russia

TU2.R8.8: AUTOMATIC EXTRACTION OF INTERNAL WAVE SIGNATURE FROM MULTIPLE SATELLITE SENSORS BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS

<u>Zhang, Shuangshang</u>, Hohai University, China <u>Liu, Bin</u>, Shanghai Ocean University, China <u>Li, Xiaofeng</u>, Institute of Oceanology, Chinese Academy of Sciences, China <u>Xu, Qing</u>, Hohai University, China

TU2.R8.9: ON THE ANALYSIS OF SAR DERIVED WIND AND SEA SURFACE CURRENTS

Zamparelli, Virginia, Institute for Electromagnetic Sensing of the Environment - National Research Council, Italy <u>De Santi, Francesca</u>, Institute for Electromagnetic Sensing of the Environment - National Research Council, Italy <u>De Carolis, Giacomo</u>, Institute for Electromagnetic Sensing of the Environment - National Research Council, Italy <u>Fornaro</u>, <u>Gianfranco</u>, Institute for Electromagnetic Sensing of the Environment - National Research Council, Italy

TU2.R8.10: A NUMERICAL STUDY OF SST EFFECTS ON OCEAN RADAR BACKSCATTERING

<u>Du, Yanlei</u>, Tsinghua University, China <u>Yang, Xiaofeng</u>, Aerospace Information Research Institute, China <u>Yang, Jian</u>, Tsinghua University, China <u>Li, Xiaofeng</u>, National Oceanic and Atmospheric Administration, United States

TU2.R9 - Sea Ice I

Tuesday, September 29, 07:30 - 09:30 • Room 9

TU2.R9.1: A MICROWAVE EMISSIVITY SEA ICE RETRIEVAL ALGORITHM

<u>Wentz, Katherine</u>, Remote Sensing Systems, United States <u>Mears, Carl</u>, Remote Sensing Systems, United States <u>Wentz, Frank</u>, Remote Sensing Systems, United States

TU2.R9.2: ULTRA WIDEBAND RADIOMETER SIGNATURES OF ARCTIC SEA ICE: PRELIMINARY RESULTS FROM THE MOSAIC CAMPAIGN

<u>Demir, Oguz</u>, The Ohio State University, United States <u>Andrews, Mark</u>, The Ohio State University, United States <u>Ayotte, Kenneth</u>, The Ohio State University, United States <u>Kaleschke, Lars</u>, Alfred Wegener Institute, Germany <u>Jezek, Kenneth</u>, The Ohio State University, United States <u>Johnson, Joel</u>, The Ohio State University, United States

TU2.R9.3: RETRIEVAL OF ARCTIC SEA ICE SURFACE MELT ONSET IN 2016 FROM FY-3B/MWRI DATA

<u>Su, Jie</u>, Ocean University of China, China <u>Hao, Hairui</u>, Ocean University of China, China <u>Liang, Hongjie</u>, Ocean University of China, China

TU2.R9.4: SEA ICE MELT AND FREEZE ONSET FROM SPACE-BASED LIDAR MEASUREMENTS

<u>Lu, Xiaomei</u>, SSAI/NASA LaRC, United States <u>Hu, Yongxiang</u>, NASA Langley Research Center, United States

TU2.R9.5: AIRBORNE ALTIMETRY MEASUREMENTS IN THE ARCTIC USING A COMPACT MULTI-BAND RADAR SYSTEM: INITIAL RESULTS

Rodriguez-Morales, Fernando, University of Kansas, United States Li, Jilu, University of Kansas, United States Leuschen, Carlton, University of Kansas, United States Hvidegaard, Sine, Technical University of Denmark, Denmark Forsberg, René, Technical University of Denmark, Denmark

TU2.R9.6: OBSERVATIONS OF ARCTIC SEA ICE LEADS AND OPEN WATER DURING THE MICROBIOLOGICAL-OCEAN-CLOUD COUPLING IN THE HIGH ARCTIC CAMPAIGN

Nghiem, Son, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Kirpes, Rachel</u>, University of Michigan, United States <u>Liu, Jun</u>, University of Michigan, United States <u>Pratt, Kerri</u>, University of Michigan, United States <u>Matrai, Patricia</u>, Bigelow Laboratory for Ocean Sciences, United States <u>Grannas, Amanda</u>, Villanova University, United

States Wernli, Heini, ETH Zürich, Switzerland

TU2.R9.7: ESTIMATION OF ICE CONCENTRATION FROM SAR USING MULTISCALE ICE AND WATER RETRIEVALS

Komarov, Alexander, Data Assimilation and Satellite Meteorology Research Section, Canada Buehner, Mark, Data Assimilation and Satellite Meteorology Research Section, Canada

TU2.R9.8: MODELING BACKSCATTER FROM OIL-CONTAMINATED SEA ICE USING A MULTI-LAYERED SCATTERING MODEL

<u>Isleifson, Dustin</u>, University of Manitoba, Canada <u>Komarov, Alexander</u>, Environment and Climate Change Canada, Canada <u>Desmond, Durell</u>, University of Manitoba, Canada <u>Stern</u>, <u>Gary</u>, University of Manitoba, Canada <u>Barber</u>, <u>David</u>, University of Manitoba, Canada

TU2.R9.9: A MULTI-SCALE TECHNIQUE TO DETECT MARGINAL ICE ZONES USING CONVOLUTIONAL NEURAL NETWORKS.

Nagi, Anmol Sharan, University of Waterloo, Canada Minhas, Manpreet Singh, University of Waterloo, Canada Xu, Linlin, University of Waterloo, Canada Scott, Andrea, University of Waterloo, Canada

TU2.R9.10: ASSESSMENT OF FOUR PASSIVE MICROWAVE SEA ICE CONCENTRATIONS BY USING AUTOMATIC MODIS SEA ICE CLASSIFICATION

Liang, Shuang, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zeng, Jiangyuan, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Zhen, Aerospace Information Research Institute, Chinese Academy of Sciences, China Chen, Kun-shan, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhang, Ping, Aerospace Information Research Institute, Chinese Academy of Sciences, China

TU2.R9.11: COMPARISON OF ASCAT ESTIMATED SNOW THICKNESS ON FIRST-YEAR SEA ICE IN THE CANADIAN ARCTIC WITH MODELED AND PASSIVE MICROWAVE DATA

<u>Yackel, John</u>, University of Calgary, Canada <u>Geldsetzer, Torsten</u>, University of Calgary, Canada <u>Mahmud, Mallik</u>, University of Calgary, Canada <u>Nandan, Vishnu</u>, University of Manitoba, Canada <u>Armstrong, Rory</u>, University of Calgary, Canada <u>Barber, David</u>, University of <u>Manitoba, Canada Fuller, Mark Christopher</u>, University of Calgary, Canada

TU2.R10 - Remote Sensing for Tuesday, September 29, 07:30 - 09:30 • Room 10 Forest and Vegetation Structure, Health and Growth I

TU2.R10.1: SPATIAL-TEMPORAL PREDICTION OF VEGETATION INDEX WITH A CONVOLUTIONAL GRU NETWORK

Yu, Wentao, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Jing, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liu, Qinhuo, Aerospace Information Research Institute, Chinese Academy of Sciences, China

TU2.R10.2: DEVELOPMENT OF GREENNESS ANALYSIS TOOL USING REMOTE SENSING SATELLITE IMAGES

Kalpoma, Kazi A, Ahsanullah University of Science and Technology, Bangladesh Leman, Mohammad, Ahsanullah University of Science and Technology, Bangladesh Islam, Md. Toufiqul, Ahsanullah University of Science and Technology, Bangladesh Poddar, Shaishab, Ahsanullah University of Science and Technology, Bangladesh Ahmed, Jebon, Ahsanullah University of Science and Technology, Bangladesh

TU2.R10.3: A METHOD FOR IMPROVING THE ACCURACY OF THE MODERATE RESOLUTION LAI PRODUCT BASED ON THE MIXED-PIXEL CLUMPING INDEX

Dong, Yadong, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Jing, Aerospace Information Research Institute, Chinese Academy of Sciences, China Jiao, Ziti, Beijing Normal University, China Liu, Qinhuo, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhao, Jing, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhang, Hu, Tianjin Normal University, China

TU2.R10.4: AN FPAR RETRIEVAL ALGORITHM BASED ON DEEP LEARNING FOR MODIS VISIBLE BAND SURFACE REFLECTANCE

Gao, Huijuan, Shandong University of Science and Technology, China <u>Liu, Xirong</u>, Shandong

University of Science and Technology, China <u>Wang, Weiyan</u>, Shandong University of Science and Technology, China

TU2.R10.5: THE RESEARCH OF LEAF AREA INDEX ANALYZER BASED ON EMBEDDED PLATFORM

Wang, Peicheng, School of Automation Engineering, University of Electronic Science and Technology of China, China Gao, Bo, School of Automation Engineering, University of Electronic Science and Technology of China, China Gong, Xun, School of Automation Engineering, University of Electronic Science and Technology of China, China Tong, Ling, School of Automation Engineering, University of Electronic Science and Technology of China, China Sun, Yuan, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Gu, Xingfa, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

TU2.R10.6: LAI INVERSION FROM MODIS DATA USING DEEP BELIEF NETWORK (DBN)

<u>Wang, Weiyan</u>, Shandong University of Science and Technology, China <u>Jia, Chen</u>, Shandong University of Science and Technology, China <u>Gao, Huijuan</u>, Shandong University of Science and Technology, China

TU2.R10.7: RESEARCH ON THE OPTICAL METHOD OF LEAF AREA INDEX MEASUREMENT BASE ON THE HEMISPHERICAL IMAGE

Zhou, Xing, School of Automation Engineering, University of Electronic Science and Technology of China, China Tong, Ling, School of Automation Engineering, University of Electronic Science and Technology of China, China Wang, Peicheng, School of Automation Engineering, University of Electronic Science and Technology of China, China Gong, Xun, School of Automation Engineering, University of Electronic Science and Technology of China, China Li, Yuxia, School of Automation Engineering, University of Electronic Science and Technology of China, China Gao, Bo, School of Automation Engineering, University of Electronic Science and Technology of China, China Sun, Yuan, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Gu, Xingfa, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

TU2.R10.8: ANNUAL GRASS BIOMASS MAPPING WITH LANDSAT-8 AND SENTINEL-2 DATA OVER KRUGER NATIONAL PARK, SOUTH AFRICA

Berger, Christian, University of Jena, Germany Lux, Harald, University of Jena, Germany Urban, Marcel, University of Jena, Germany Schmullius, Christiane, University of Jena, Germany Baade, Jussi, University of Jena, Germany Thiel, Christian, German Aerospace Center (DLR), Germany Wigley-Coetsee, Corli, South African National Parks (SANParks), South Africa Smit, Izak, South African National Parks (SANParks), South Africa

TU2.R10.9: GENERATION OF LIDAR-PREDICTED FOREST BIOMASS MAPS FROM RADAR BACKSCATTER WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

<u>Björk, Sara</u>, UiT The Arctic University of Norway, Norway <u>Anfinsen, Stian Normann</u>, UiT The Arctic University of Norway, Norway <u>Næsset, Erik</u>, Norwegian University of Life Sciences, Norway <u>Gobakken, Terje</u>, Norwegian University of Life Sciences, Norway <u>Zahabu, Eliakimu</u>, Sokoine University of Agriculture, Tanzania

TU2.R10.10: ESTIMATION OF GLOBAL NET PRIMARY PRODUCTIVITY FROM 1981 TO 2018 WITH REMOTE SENSING DATA

<u>Sun, Rui</u>, Beijing Normal University, China <u>Wang, Juanmin</u>, Beijing Normal University, China <u>Xiao, Zhiqiang</u>, Beijing Normal University, China <u>Zhu, Anran</u>, Beijing Normal University, China <u>Wang, Mengjia</u>, Beijing Normal University, China <u>Yu, Tao</u>, Beijing Normal University, China

TU2.R10.11: FOREST ABOVE GROUND BIOMASS ESTIMATION USING MULTI-SENSOR GEOSTATISTICAL APPROACH

<u>S. Mohamed Musthafa</u>, Indian Institute of Technology Bombay, India <u>Singh, Gulab</u>, Indian Institute of Technology Bombay, India <u>Patil, Akshay</u>, Indian Institute of Technology Bombay, India <u>Bala Raju, Nela</u>, Indian Institute of Technology Bombay, India <u>Mohanty, Shradha</u>, Indian Institute of Technology Bombay, India

TU2.R10.12: TREE SPECIES CLASSIFICATION USING LEAF AND TREE TRUNK IMAGES

<u>Itakura, Kenta</u>, University of Tokyo, Japan <u>Hata, Teruhito</u>, University of Tokyo, Japan <u>Hosoi</u>, <u>Fumiki</u>, University of Tokyo, Japan

TU2.R11 - Remote Sensing for Tuesday, September 29, 07:30 - 09:30 • Room 11 Crop Parameters I

TU2.R11.1: DISENTANGLING THE RESPONSE OF VAGETATION TO RAINFALL ANOMALIES FOR DROUGHT EVALUATION OVER THE INDUS BASIN

Zhou, Jie, Central China Normal University, China Liu, Xuan, Central China Normal University, China Lu, Jing, Aerospace Information Research Institute, Chinese Academy of Sciences, China Jia, Li, Aerospace Information Research Institute, Chinese Academy of Sciences, China Hu, Guangcheng, Aerospace Information Research Institute, Chinese Academy of Sciences, China Massimo, Menenti, Aerospace Information Research Institute, Chinese Academy of Sciences, China

TU2.R11.2: MEASUREMENT OF CROP WATER BY ON SITE RADIOMETRY

<u>Cirone, Richard</u>, Iowa State University, United States <u>Hornbuckle, Brian</u>, Iowa State University, United States <u>Kruger, Anton</u>, University Of Iowa, United States

TU2.R11.3: MONITORING VEGETATION CONDITIONS OVER AGRICULTURAL REGIONS USING ACTIVE OBSERVATIONS

<u>Monsivais-Huertero, Alejandro</u>, Instituto Politecnico Nacional, Mexico <u>Judge, Jasmeet</u>, University of Florida, United States <u>Liu, Pang-Wei</u>, NASA Goddard Space Flight Center, United States <u>Chakrabarti, Subit</u>, Indigo Ag, Inc., United States

TU2.R11.4: IMPACT OF UAV TIME-OF-FLIGHT ON RICE NITROGEN UPTAKE MODELS

<u>Brinkhoff, James</u>, University of New England, Australia <u>Dunn, Brian</u>, NSW Department of Primary Industries, Australia <u>Hart, Josh</u>, NSW Department of Primary Industries, Australia <u>Dunn, Tina</u>, NSW Department of Primary Industries, Australia

TU2.R11.5: OPEN-SOURCE SOFTWARE FOR CROP PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB IMAGES

<u>Kefauver, Shawn Carlisle</u>, University of Barcelona, Spain <u>Gracia Romero, Adrian</u>, University of Barcelona, Spain <u>Buchaillot, Ma. Luisa</u>, University of Barcelona, Spain <u>Vergara-Diaz, Omar</u>, University of Barcelona, Spain <u>Fernandez-Gallego, Jose A.</u>, Universidad de Ibagué, Colombia <u>El-Haddad, Georges</u>, Scientific Software Consultancy and Training, Lebanon <u>Akl, Alexi</u>, Postlight, Poland <u>Araus, Jose Luis</u>, University of Barcelona Agrotecnio, Spain

TU2.R11.6: STUDY ON SPATIOTEMPORAL VARIATIONS OF EVAPOTRANSPIRATION IN ETUOKEQIANQI BASED ON MOD16 PRODUCTS AND PENMAN-MONTEITH MODEL

<u>Wu, Jiabin</u>, China Institute of Water Resources and Hydropower Research, China <u>Xu, Lili</u>, Central China Normal University, China <u>Li, Heping</u>, China Institute of Water Resources and Hydropower Research, China <u>Cao, Xuesong</u>, China Institute of Water Resources and Hydropower Research, China <u>Lu, Haiyuan</u>, China Institute of Water Resources and Hydropower Research, China

TU2.R11.7: STUDY OF TEMPERATURE EMISSIVITY SEPARATION FROM HYPERSPECTRAL THERMAL INFRARED IMAGERY AND ITS APPLICATION IN DETECTING EARLY WATER STRESS IN VEGETATION

Huo, Hongyuan, Beijing University of Technology, China

TU2.R11.8: MONITORING OF VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT BY MULTIANGULAR CANOPY REFLECTANCE SPECTRA IN MAIZE

Ye, Huichun, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Huang, Wenjiang, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Huang, Shanyu, Chinese Academy of Agricultural Engineering Planning & Design, China Kong, Weiping, Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China Ren, Yu, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wu, Bin, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Dong, Yingying, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Dong, Yingying, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China

TU2.R11.9: REFLECTANCE PRI DOES NOT EQUAL TRANSMITTANCE PRI

<u>Vanderbilt, Vern</u>, NASA, United States <u>Daughtry, Craig</u>, USDA-ARS, United States <u>Dahlgren</u>, <u>Robert</u>, CSUMB/NASA, United States

TU2.R11.10: ON THE ESTIMATION OF THE LEAF ANGLE DISTRIBUTION FROM DRONE BASED PHOTOGRAMMETRY

Xu, Shan, Beijing Normal University, China A.Zaidan, Martha, University of Helsinki, Finland Honkavaara, Eija, National Land Survey of Finland, Finland Hakala, Teemu, National Land Survey of Finland, Finland Viljanen, Niko, National Land Survey of Finland, Finland Porcar-Castell, Albert, University of Helsinki, Finland Liu, Zhigang, Beijing Normal University, China Atherton, Jon, University of Helsinki, China

TU2.R11.11: WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL

Wu, Yantong, University of Electronic Science and Technology of China, China Xu, Wenbo, University of Electronic Science and Technology of China, China Huang, Hai, China Agricultural University, China Huang, Jianxi, China Agricultural University, China Yin, Feng, University College London, United Kingdom Ma, Hongyuan, University College London, United Kingdom Zhuo, Wen, China Agricultural University, China Gao, Xinran, China Agricultural University, China Shen, Qianrong, China Agricultural University, China Wang, Xinlei, China Agricultural University, China University, China

TU2.R12 - Multispectral Urban Tuesday, September 29, 07:30 - 09:30 • Room 12 Remote Sensing

TU2.R12.1: FORECASTING LAND SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORK

<u>G., Nimish</u>, Indian Institute of Technology Kharagpur, India <u>H.A., Bharath</u>, Indian Institute of Technology Kharagpur, India

TU2.R12.2: DECISION FUSION OF PIXEL-BASED AND REGION-BASED SEGMENTATION FOR BUILDING DETECTION

<u>He, Pei</u>, Xidian University, China <u>Cao, Siyu</u>, Xidian University, China <u>Wang, Shuang</u>, Xidian University, China <u>Thang, Chi</u>, Xidian University, China <u>Guo, Yanhe</u>, Xidian University, China <u>Wang, Yao</u>, Xidian University, China <u>Hou, Biao</u>, Xidian University, China

TU2.R12.3: AN ACCURATE EXTRACTION ALGORITHM OF THE INDOOR BOUNDARY FEATURES BASED ON POINT CLOUD DATA

Su, Zhonghua, University of Electronic Science and Technology of China, China Zhou, Guiyun, University of Electronic Science and Technology of China, China He, Ze, University of Electronic Science and Technology of China, China Shi, Xiaolei, University of Electronic Science and Technology of China, China Lu, Xukun, China Academy of Electronics and Information Technology, China Xu, Yifan, University of Electronic Science and Technology of China, China

TU2.R12.4: AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK

<u>Li, JuanJuan</u>, Chinese Academy of Sciences, China <u>Wang, Chao</u>, Chinese Academy of Sciences, China <u>Zhang, Hong</u>, Chinese Academy of Sciences, China <u>Wu, Fan</u>, Chinese Academy of Sciences, China <u>Li, Lu</u>, Chinese Academy of Sciences, China <u>Gong, Lixia</u>, China Earthquake Administration, China

TU2.R12.5: COMPARISON OF MODIS LAND SURFACE TEMPERATURE AND AIR TEMPERATURE OVER GLOBAL IN 2015

Zhang, Ping, NASA Goddard Space Flight Center, United States Wolfe, Robert, NASA Goddard Space Flight Center, United States Bounoua, Lahouari, NASA Goddard Space Flight Center, United States

TU2.R12.6: URBAN HEAT ISLANDS AND REMOTE SENSING: CHARACTERIZING LAND SURFACE TEMPERATURE AT THE NEIGHBORHOOD SCALE

<u>Liebowitz, Anna</u>, Columbia University, United States <u>Sebastian, Elizabeth</u>, Fusion Academy, United States <u>Yanos, Claudia</u>, University of Chicago, United States <u>Bilik, Matthew</u>, Brooklyn Technical High School, United States <u>Blake, Reginald</u>, New York City College of Technology, CUNY, United States <u>Norouzi, Hamidreza</u>, New York City College of Technology, CUNY, United

States

TU2.R12.7: INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK

Hou, Ankai, University of Electronic Science and Technology of China, China Zhu, Mingcang, Department of Natural Resources of Sichuan Province, China Li, Pengshan, Chengdu Land Planning and Cadastre Center, China He, Yong, Sichuan Research Institute for Eco-system Restoration & Geo-disaster Prevention, China Zhang, Xiaobo, Chengdu Institute of Survey & Investigation, China Shi, Jibao, Chengdu Institute of Survey & Investigation, China Chen, Kai, Chengdu Institute of Survey & Investigation, China Zheng, Zezhong, University of Electronic Science and Technology of China, China Zhou, Guoqing, Guilin University of Technology, China

TU2.R12.8: ONLINE POINT CLOUD SUPER RESOLUTION USING DICTIONARY LEARNING FOR 3D URBAN PERCEPTION

<u>Shinde, Rajat</u>, Indian Institute of Technology Bombay, India <u>Potnis, Abhishek</u>, Indian Institute of Technology Bombay, India <u>Durbha, Surya</u>, Indian Institute of Technology Bombay, India

TU2.R12.9: SPATIO-TEMPORAL DYNAMICS OF SURFACE URBAN HEAT ISLAND PHENOMENA AND URBAN DEVELOPMENT IN THREE CHINESE COASTAL METROPOLISES

Liu, Fei, University of Tsukuba, Japan

TU2.R12.10: A SHADOW FREE MULTISOURCE STACK SPARSE AUTOENCODER FRAMEWORK FOR URBAN IMPERVIOUS SURFACE MAPPING

<u>Lin, Yinyi</u>, Chinese University of Hong Kong, China <u>Zhang, Hongsheng</u>, University of Hong Kong, China <u>Ma, Peifeng</u>, Chinese University of Hong Kong, China <u>Lin, Hui</u>, Jiangxi Normal University, China

TU2.R12.11: RESEARCH ON THE DEVELOPMENT OF URBANIZATION IN YANGTZE RIVER ECONOMIC BELT BASED ON NIGHTTIME LIGHT REMOTE SENSING DATA

Zhang, Wei, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Qi, Jianwei, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Wang, Guanghui, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhang, Tao, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhai, Haoran, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China

TU2.R12.12: ALGORITHM FOR URBAN SPONTANEOUS GREEN SPACE DETECTION BASED ON OPTICAL SATELLITE REMOTE SENSING

<u>Ciężkowski, Wojciech</u>, Warsaw University of Life Sciences, Poland <u>Sikorski, Piotr</u>, Warsaw University of Life Sciences, Poland <u>Babańczyk, Piotr</u>, Warsaw University of Life Sciences, Poland <u>Sikorska, Daria</u>, Warsaw University of Life Sciences, Poland <u>Chormański, Jarosław</u>, Warsaw University of Life Sciences, Poland

TU2.R13 - Advances in Tuesday, September 29, 07:30 - 09:30

Reflectometry with GNSS and Signals of Opportunity (GNSS+R)

TU2.R13.1: FFSCAT MISSION: PRELIMINARY RESULTS AND ICE PRODUCTS VALIDATION WITH MOSAIC CAMPAIGN DATA

Camps, Adriano, Universitat Politècnica de Catalunya (UPC), Spain Munoz-Martin, Joan Francesc, Universitat Politècnica de Catalunya (UPC), Spain Perez, Adrian, Universitat Politècnica de Catalunya (UPC), Spain Cardellach, Estel, Institute of Space Sciences (ICE, CSIC), Spain Ribo, Serni, Institute of Space Sciences (ICE, CSIC), Spain Pastena, Massimiliano, European Space Agency (ESA-ESTEC), Netherlands

TU2.R13.2: STATUS OF THE ESA PRETTY MISSION

<u>Fragner, Heinrich</u>, RUAG Space GmbH, Austria <u>Dielacher, Andreas</u>, RUAG Space GmbH, Austria <u>Moritsch, Michael</u>, RUAG Space GmbH, Austria <u>Wickert, Jens</u>, German Research Centre for Geosciences, Germany <u>Semmling, Maximilian</u>, German Research Centre for Geosciences, Germany <u>Koudelka, Otto</u>, Graz University of Technology, Austria <u>Hoeg, Per</u>,

University of Oslo, Austria <u>Cardellach, Estel</u>, Institut d'Estudis Espacials de Catalunya, Spain <u>Martin Neira, Manuel</u>, European Space Agency (ESA-ESTEC), Netherlands <u>Walker, Roger</u>, European Space Agency (ESA-ESTEC), Netherlands <u>Lissi, Franco Perez</u>, European Space Agency (ESA-ESTEC), Netherlands

TU2.R13.3: ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION

Garrison, James, Purdue University, United States Shah, Rashmi, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Kim. Seho, Purdue University, United States Piepmeier, Jeffrey, NASA Goddard Space Flight Center, United States Vega, Manuel, NASA Goddard Space Flight Center, United States Spencer, David, Purdue University, United States Banting, Roger, NASA Goddard Space Flight Center, United States Raymond, Juan, NASA Goddard Space Flight Center, United States Benjamin, Nold, Purdue University, United States Larsen, Kameron, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Bindlish, Rajat, NASA Goddard Space Flight Center, United States

TU2.R13.4: NEXT GENERATION GNSS-R INSTRUMENT

Ruf, Christopher, University of Michigan, United States Backhus, Roger, University of Michigan, United States Butler, Timothy, University of Michigan, United States Chen, Chi-Chih, The Ohio State University, United States Gleason, Scott, University Corporation for Atmospheric Research, United States Loria, Eric, The Ohio State University, United States McKague, Darren, University of Michigan, United States Miller, Ryan, University of Michigan, United States O'Brien, Andrew, The Ohio State University, United States van Nieuwstadt, Line, University of Michigan, United States

TU2.R13.5: DIGITAL BACK END FOR P-BAND REFLECTIONS CONCEPTS

Shah, Rashmi, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Franklin, Garth, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Larsen, Kameron, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Cody, Devin, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Lee, Myron, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

TU2.R13.6: CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY?

Cardellach, Estel, Institut de Ciencies de l'Espai (ICE-CSIC) Institut d'Estudis Espacials de Catalunya (IEEC), Spain Li, Weigiang, Institut de Ciencies de l'Espai (ICE-CSIC) Institut d'Estudis Espacials de Catalunya (IEEC), Spain Ribó, Serni, Institut de Ciencies de l'Espai (ICE-CSIC) Institut d'Estudis Espacials de Catalunya (IEEC), Spain Rius, Antonio, Institut de Ciencies de l'Espai (ICE-CSIC) Institut d'Estudis Espacials de Catalunya (IEEC), Spain Martín-Neira, Manuel, European Space Agency (ESTEC/ESA), Netherlands Nguyen, Nguyen, Spire Global UK Ltd., United Kingdom Nogués-Correig, Oleguer, Spire Global UK Ltd., United Kingdom Masters, Dallas, Spire Global UK Ltd., United Kingdom

TU2.R13.7: COHERENT GNSS REFLECTION SIGNAL PROCESSING FOR PRECISION ALTIMETRY APPLICATIONS

<u>Morton, Y. Jade</u>, University of Colorado Boulder, United States <u>Wang, Yang</u>, University of Colorado Boulder, United States <u>Yang, Rong</u>, Shanghai Jiao Tong University, United States

TU2.R13.8: FIRST EXPERIMENTAL EVIDENCE OF WIND AND SWELL SIGNATURES IN L5 GPS AND E5A GALILEO GNSS-R WAVEFORMS

Munoz-Martin, Joan Francesc, Universitat Politècnica de Catalunya (UPC), Spain Onrubia, Raul, Universitat Politècnica de Catalunya (UPC), Spain Pascual, Daniel, Universitat Politècnica de Catalunya (UPC), Spain Park, Hyuk, Universitat Politècnica de Catalunya (UPC), Spain Camps, Adriano, Universitat Politècnica de Catalunya (UPC), Spain Rüdiger, Chris, Monash University, Australia Walker, Jeffrey, Monash University, Australia Monerris, Alessandra, University of Melbourne, Australia

TU2.R14 - Advancements in the Tuesday, September 29, 07:30 - 09:30 • Room 14 Open Data Cube and Analysis Ready Data

TU2.R14.1: ADVANCEMENTS IN THE OPEN DATA CUBE AND ANALYSIS READY DATA - PAST, PRESENT AND FUTURE

<u>Killough, Brian</u>, NASA, United States <u>Siqueira, Andreia</u>, Geoscience Australia, Australia <u>Dyke</u>, <u>George</u>, Symbios, Australia

TU2.R14.2: CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS

Siqueira, Andreia, Geoscience Australia, Australia Lewis, Adam, Geoscience Australia, Australia Thankappan, Medhavy, Geoscience Australia, Australia Szantoi, Zoltan, JRC, Italy Killough, Brian, NASA, United States Goryl, Philippe, European Space Agency, Italy Labahn, Steven, USGS, United States Ross, Jonathon, Geoscience Australia, Italy Tadono, Takeo, Japan Aerospace Exploration Agency, Japan Rosenqvist, Ake, solo Earth Observation, Japan Lacey, Jennifer, USGS, United States Steventon, Matthew, Symbios, Australia

TU2.R14.3: AFRICA REGIONAL DATA CUBE (ARDC) IS HELPING COUNTRIES IN AFRICA REPORT ON THE SUSTAINABLE DEVELOPMENT GOALS

<u>Mubea, Kenneth</u>, Global Partnership for Sustainable Development Data, Kenya <u>Killough</u>, <u>Brian</u>, NASA Langley Research Center, United States <u>Seidu</u>, <u>Omar</u>, Ghana Statistical Service, Ghana <u>Mugambi</u>, <u>Benjamin</u>, Tanzania National Bureau of Statistics, Tanzania <u>Kimani</u>, <u>John</u>, Kenya Space Agency, Kenya <u>Kamara</u>, <u>Samuel</u>, Environment Protection Agency, Sierra Leone

TU2.R14.4: ANALYSIS READY DATA FOR INSAR APPLICATIONS

<u>Thankappan, Medhavy</u>, Geoscience Australia, Australia <u>Garthwaite</u>, <u>Matthew</u>, Geoscience Australia, Australia <u>Fuhrmann, Thomas</u>, Geoscience Australia, Australia <u>Sixsmith</u>, <u>Joshua</u>, Geoscience Australia, Australia <u>Dorji</u>, <u>Passang</u>, Geoscience Australia, Australia <u>Wang</u>, <u>Lan-Wei</u>, Geoscience Australia, Australia <u>Rosenqvist</u>, <u>Ake</u>, soloEO, Japan <u>Siqueira</u>, <u>Andreia</u>, Geoscience Australia, Australia

TU2.R14.5: A NOVEL ARCHITECTURE OF JUPYTERHUB ON AMAZON ELASTIC KUBERNETES SERVICE FOR OPEN DATA CUBE SANDBOX

<u>Rizvi, Syed</u>, Analytical Mechanics Associates, United States <u>Lubawy</u>, <u>Andrew</u>, Analytical Mechanics Associates, United States <u>Rattz</u>, <u>John</u>, Analytical Mechanics Associates, United States <u>Cherry</u>, <u>Andrew</u>, Analytical Mechanics Associates, United States <u>Killough</u>, <u>Brian</u>, NASA, United States <u>Gowda</u>, <u>Sanjay</u>, Analytical Mechanics Associates, United States

TU2.R14.6: SAR ANALYSIS READY DATA AND TOOLS FOR THE OPEN DATA CUBE

Rosenqvist, Ake, solo Earth Observation (soloEO), Japan <u>Killough, Brian</u>, NASA Langley Research Center, United States <u>Lubawy, Andrew</u>, Analytical Mechanics Associates, United States <u>Rattz, John</u>, Analytical Mechanics Associates, United States

TU2.R14.7: OPEN DATA CUBE (ODC) VISUALIZATION: BRIDGING THE GAP BETWEEN DATA, DECISIONS, AND DEVELOPMENT GOALS

<u>Gowda, Sanjay</u>, Analytical Mechanics Associates, United States <u>Killough, Brian</u>, NASA Langley Research Center, United States

TU2.R14.8: DATA CUBE APPLICATION ALGORITHMS FOR THE UNITED NATION SUSTAINABLE DEVELOPMENT GOALS (UN-SDGS)

Rizvi, Syed, Analytical Mechanics Associates, United States <u>Killough</u>, <u>Brian</u>, NASA, United States <u>Cherry</u>, <u>Andrew</u>, Analytical Mechanics Associates, United States <u>Rattz</u>, <u>John</u>, Analytical Mechanics Associates, United States <u>Lubawy</u>, <u>Andrew</u>, Analytical Mechanics Associates, United States <u>Gowda</u>, <u>Sanjay</u>, Analytical Mechanics Associates, United States

TU2.R15 - TanDEM-X Mission Status and Science Activities

Tuesday, September 29, 07:30 - 09:30 • Room 15

TU2.R15.1: TANDEM-X: 10 YEARS OF OPERATION

Hajnsek, Irena, German Aerospace Center (DLR) / ETH, Germany Moreira, Alberto, German Aerospace Center (DLR), Germany Zink, Manfred, German Aerospace Center (DLR), Germany Buckreuss, Stefan, German Aerospace Center (DLR), Germany Kraus, Thomas, German Aerospace Center (DLR), Germany Bachmann, Markus, German Aerospace Center (DLR), Germany Busche, Thomas, German Aerospace Center (DLR), Germany

TU2.R15.2: GLOBAL MAPPING OF MANGROVE FORESTS WITH TANDEM-X

<u>Simard, Marc</u>, NASA Jet Propulsion Laboratory, United States <u>Denbina, Michael</u>, NASA Jet Propulsion Laboratory, United States <u>Fatoyinbo, Lola</u>, Goddard Space Flight Center, United States <u>Thomas, Nathan</u>, Goddard Space Flight Center, United States <u>Stovall, Atticus</u>, Goddard Space Flight Center, United States

TU2.R15.3: TOWARDS PANTROPICAL STRUCTURE AND BIOMASS MAPPING FROM FUSION OF GEDI AND TANDEM-X DATA

<u>Dubayah, Ralph</u>, University of Maryland, United States <u>Armston, John</u>, University of Maryland, United States <u>Qi, Wenlu</u>, University of Maryland, United States <u>Papathanassiou, Kostas</u>, German Aerospace Center (DLR), Germany <u>Pardini, Matteo</u>, German Aerospace Center (DLR), Germany <u>Fatoyinbo, Lola</u>, NASA Goddard Space Flight Center, United States

TU2.R15.4: FOREST HEIGHT ESTIMATION FROM TANDEM-X INSAR COHERENCE MAGNITUDE TOWARDS LARGE SCALE APPLICATIONS

Choi, Changhyun, German Aerospace Center (DLR), Germany <u>Guliaev, Roman</u>, German Aerospace Center (DLR), Germany <u>Cazcarra-Bes, Victor</u>, German Aerospace Center (DLR), Germany <u>Pardini, Matteo</u>, German Aerospace Center (DLR), Germany <u>Papathanassiou</u>, <u>Konstantinos</u>, German Aerospace Center (DLR), Germany

TU2.R15.5: AN ADAPTIVE FILTERING APPROACH FOR THE NEW TANDEM-X CHANGE DEM

Schweisshelm, Barbara, German Aerospace Center (DLR), Germany Lachaise, Marie, German Aerospace Center (DLR), Germany Fritz, Thomas, German Aerospace Center (DLR), Germany

TU2.R15.6: COMPARING INSAR METHODOLOGIES FOR THE RETRIEVAL OF PADDY RICE HEIGHT WITH TANDEM-X DATA

Romero-Puig, Noelia, University of Alicante, Spain Lopez-Sanchez, Juan M., University of Alicante, Spain

TU2.R15.7: THE 2015 SAGAVANIRKTOK RIVER FLOOD AND ASSOCIATED PERMAFROST DEGRADATION OBSERVED WITH TERRASAR-X/TANDEM-X AND OTHER SENSORS

McClernan, Mark, UAF, United States Meyer, Franz, UAF, United States Zwieback, Simon, UAF, United States

TU2.R15.8: POLARIMETRIC CHARACTERISTICS FOR SEA-ICE SURFACE TOPOGRAPHIC DERIVATION USING TANDEM-X INTERFEROMETRY DATA

<u>Huang, Lanqing</u>, ETH Zurich, Switzerland <u>Hajnsek, Irena</u>, ETH Zurich, DLR, United States <u>Nghiem, Son V</u>, NASA Jet Propulsion Laboratory, United States

TU2.R16 - Processing and Imaging Techniques I

Tuesday, September 29, 07:30 - 09:30 • Room 16

TU2.R16.1: SAR PARAMETRIC IMAGING FOR CIRCULAR-PLATE TARGET

Wen, Yuhan, Beijing Institute of Technology, China <u>Ding, Zegang</u>, Beijing Institute of Technology, China <u>Feng, Fan</u>, China Academy of Space Technology, China <u>Wang, Yan</u>, Beijing Institute of Technology, China <u>Xu, Pei</u>, Beijing Institute of Technology, China <u>Chen, Xinliang</u>, Beijing Institute of Technology, China <u>Zeng, Tao</u>, Beijing Institute of Technology, China

TU2.R16.2: ADAPTIVE SIDELOBE SUPPRESSION OF SAR IMAGES WITH ARBITRARY DOPPLER CENTROIDS AND BANDWIDTHS

<u>Zhang, Weili</u>, Shanghai Jiao Tong University, China <u>Wang, Junfeng</u>, Shanghai Jiao Tong University, China <u>Liu, Xingzhao</u>, Shanghai Jiao Tong University, China

TU2.R16.3: DIFFERENTIAL MODEL FOR SAR IMAGING

<u>Qiao, Zhijun</u>, University of Texas Rio Grande Valley, United States <u>Zhou, Bin</u>, Harbin Institute of Technology, China <u>Zhang, Lamei</u>, Harbin Institute of Technology, China

TU2.R16.4: IMPROVED OMEGA-K ALGORITHM FOR HIGHLY SQUINTED TOPSAR WITH CURVED TRAJECTORY

Zhang, Gang, Xidian University, China Chen, Feng, Shanghai Electro-Mechanical Engineering Institute, China Li, Guofei, Xidian University, China Liang, Yi, Xidian University, China

TU2.R16.5: GNSS-R MULTI-PERIOD SAR IMAGING EXPERIMENTAL STUDY

Wang, Shu, Beihang University, China Zhu, Yunlong, Beihang University, China Yang,

Dongkai, Beihang University, China Wu, Shiyu, Beihang University, China

TU2.R16.6: A PRECISE ONE-STEP MOTION COMPENSATION FOR SYNTHETIC APERTURE RADAR

<u>Lu, Qianrong</u>, Shanghai Radio Equipment Research Institute, China <u>Du, Ke</u>, Shanghai Radio Equipment Research Institute, China <u>Yu, Xiangzhen</u>, Shanghai Radio Equipment Research Institute, China <u>Li, Panhu</u>, Shanghai Radio Equipment Research Institute, China

TU2.R16.7: LONG SYNTHETIC APERTURE PASSIVE LOCALIZATION USING AZIMUTH CHIRP-RATE CONTOUR MAP

Wang, Yuqi, Xidian University, China Sun, Guang-cai, Xidian University, China Xing, Mengdao, Xidian University, China Xiang, Jixiang, Xidian University, China Zhang, Zijing, Xidian University, China Guo, Liang, Xidian University, China

TU2.R16.8: CIRCULAR EXPERIMENT WITH P-BAND ULTRA-WIDEBAND SYNTHETIC APERTURE RADAR SYSTEM

Xie, Hongtu, Sun Yat-sen University, China Hu, Jun, Sun Yat-sen University, China Duan, Keqing, Sun Yat-sen University, China Xie, Ni, Hunan University of Science and Technology, China Wang, Guogian, Sun Yat-sen University, China

TU2.R16.9: FEATURE CORRELATION ANALYSIS OF TWO-BRANCH CONVOLUTIONAL NETWORKS FOR MULTI-SOURCE IMAGE CLASSIFICATION

<u>Liu, Xu</u>, Xidian University, China <u>Jiao, Licheng</u>, Xidian University, China <u>Liu, Fang</u>, Xidian University, China <u>Hou, Xin</u>, WeBank, China <u>Zhang, Dan</u>, Xidian University, China

TU2.R16.10: DEEP LEARNING FOR VEGETATION IMAGE SEGMENTATION IN LAI MEASUREMENT

Ma, Cunshi, University of Electronic Science and Technology of China, China Chen, Yunping, University of Electronic Science and Technology of China, China Hou, Lei, University of Electronic Science and Technology of China, China Li, Baihui, University of Electronic Science and Technology of China, China Chen, Yan, University of Electronic Science and Technology of China, China Sun, Yuan, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Gu, Xingfa, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

TU2.R16.11: SEMANTIC SEGMENTATION KNOWLEDGE BASED MMRF OPTIMAL METHOD FOR FINE-GRAINED URBAN INFRASTRUCTURE CLASSIFICATION MAPPING FROM OPTICAL VHR AERIAL IMAGERY

Dong, Shan, Communication University of China, China Zhuang, Yin, Peking University, China Wang, Yupei, Beijing Institute of Technology, China Chen, He, Beijing Institute of Technology, China Pang, Long, Communication University of China, China Yang, Zhanxin, Communication University of China, China Long, Teng, Beijing Institute of Technology, China

TU2.R16.12: DESIGNING SYNTHETIC OVERHEAD IMAGERY TO MATCH A TARGET GEOGRAPHIC REGION: PRELIMINARY RESULTS TRAINING DEEP LEARNING MODELS

<u>Nair, Varun</u>, Duke University, United States <u>Rhee, Paul</u>, Duke University, United States <u>Yang, Jichen</u>, Duke University, United States <u>Huang, Bohao</u>, Duke University, United States <u>Bradbury, Kyle</u>, Duke University, United States <u>Malof, Jordan</u>, Duke University, United States

TU2.R17 - Physical Modeling in Tuesday, September 29, 07:30 - 09:30 • Room 17 Microwave and Optical Remote Sensing

TU2.R17.1: INVESTIGATION OF THE FMASK CLOUD MASKING ALGORITHM USING SIMULATED MULTISPECTRAL DATA

<u>Sundberg, Robert</u>, Spectral Sciences, Inc., United States

TU2.R17.2: MODELING MULTI-FREQUENCY TOMOGRAMS FOR SNOW STRATIGRAPHY

Xu, Xiaolan, NASA Jet Propulsion Laboratory, United States Shen, Haoran, University of Michigan, Ann Arbor, United States Xu, Haokui, University of Michigan, Ann Arbor, United States Tsang, Leung, University of Michigan, Ann Arbor, United States

$\underline{\text{TU2.R17.3: RECENT ADVANCES IN DEVELOPMENT OF POLARIMETRIC MODTRAN@6}}$

Hawes, Fred, Spectral Sciences, Inc., United States Berk, Alexander, Spectral Sciences, Inc.,

United States van den Bosch, Jeannette, Air Force Research Laboratory, United States

TU2.R17.4: CHARACTERIZING THE COHERENT REFLECTED POWER DEPENDENCE ON ROUGH SURFACE HEIGHT AT LOW SIGNAL LEVELS

Raines, Ethan, The Ohio State University, United States <u>Johnson</u>, <u>Joel</u>, The Ohio State University, United States <u>Burkholder</u>, <u>Robert</u>, The Ohio State University, United States

TU2.R17.5: ELECTROMAGNETIC MODELING OF SCATTERED GNSS SIGNALS

<u>Comite, Davide</u>, Sapienza University of Rome, Italy <u>Dente, Laura</u>, Tor Vergata University, Italy <u>Guerriero, Leila</u>, Tor Vergata University, Italy <u>Pierdicca, Nazzareno</u>, Sapienza University of Rome, Italy

TU2.R17.7: A FOUR-PARAMETER SPECTRALLY-UNIVERSAL LINE SHAPE FUNCTION

Berk, Alexander, Spectral Sciences, Inc., United States

TU2.R17.8: RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION

Gastellu-Etchegorry, Jean Philippe, Centre d'Etudes Spatiales de la Biosphère, France Wang, Yingjie, Centre d'Etudes Spatiales de la Biosphère, France Regaieg, Omar, Centre d'Etudes Spatiales de la Biosphère, France Yin, Tiangang, University of Maryland, United States Malenovsky, Zbynek, University of Tasmania, Australia Zhen, Zhijun, Centre d'Etudes Spatiales de la Biosphère, France Yang, Xuebo, Centre d'Etudes Spatiales de la Biosphère, France Tao, Zhu, Centre d'Etudes Spatiales de la Biosphère, France Landier, Lucas, CNES, France Al Bitar, Ahmad, Centre d'Etudes Spatiales de la Biosphère, France Deschamps, Adrien, CNES, France Lauret, Nicolas, Centre d'Etudes Spatiales de la Biosphère, France Jordan, Guilleux, Centre d'Etudes Spatiales de la Biosphère, France Chavanon, Eric, Centre d'Etudes Spatiales de la Biosphère, France Cao, Biao, Chinese Academy of Sciences, China Qi, Jianbo, Beijing Forestry University, China Kallel, Abdelaziz, Centre de Recherche en Numérique de SFAX, Tunisia Mitraka, Zina, Foundation for Research and Technology Hellas (FORTH), Greece Cook, Bruce, NASA Goddard Space Flight Center, United States Morton, Douglas, NASA Goddard Space Flight Center, United States

TU2.R18 - Detection and Segmentation using Very High Resolution Imaging

Tuesday, September 29, 07:30 - 09:30 • Room 18

TU2.R18.1: EVENT AND ACTIVITY RECOGNITION IN AERIAL VIDEOS USING DEEP NEURAL NETWORKS AND A NEW DATASET

Mou, Lichao, German Aerospace Center (DLR); Technical University of Munich (TUM), Germany Hua, Yuansheng, German Aerospace Center (DLR); Technical University of Munich (TUM), Germany Jin, Pu, Technical University of Munich (TUM), Germany Zhu, Xiao Xiang, German Aerospace Center (DLR); Technical University of Munich (TUM), Germany

TU2.R18.2: REMOTE SENSING TARGET TRACKING FOR UAV AERIAL VIDEOS BASED ON MULTI-FREQUENCY FEATURE ENHANCEMENT

<u>Bi, Fukun</u>, North China University of Technology, China <u>Sun, Jiayi</u>, North China University of Technology, China <u>Lei, Mingyang</u>, North China University of Technology, China <u>Wang</u>, <u>Yanping</u>, North China University of Technology, China <u>Sun, Xiaodi</u>, North China University of Technology, China

TU2.R18.3: AN END-TO-END SCALABLE OBJECT DETECTION NETWORK FOR REMOTE SENSING IMAGES

<u>Duan, Yani</u>, Beijing Jiaotong University, China <u>Teng, Zhu</u>, Beijing Jiaotong University, China <u>Thang, Baopeng</u>, Beijing Jiaotong University, China <u>Fan, Jianping</u>, Lenovo Research, China

TU2.R18.4: ARBITRARY-ORIENTED SHIP DETECTION METHOD BASED ON IMPROVED REGRESSION MODEL FOR TARGET DIRECTION DETECTION NETWORK

Ran, Bohao, Beijing University of Posts and Telecommunications, China You, Yanan, Beijing University of Posts and Telecommunications, China Li, Zezhong, Beijing University of Posts and Telecommunications, China Liu, Fang, Beijing University of Posts and Telecommunications, China

TU2.R18.5: SHIP DETECTION FOR KOMPSAT-3A OPTICAL IMAGES USING BINARY FEATURES AND ADABOOST CLASSIFICATION

<u>Chang, Jae Young</u>, Korea Aerospace Research Institute, Korea (South) <u>Oh, Han</u>, Korea Aerospace Research Institute, Korea (South) <u>Lee, Seung-Jae</u>, Korea Aerospace Research Institute, Korea (South) <u>Lee, Kwang Jae</u>, Korea Aerospace Research Institute, Korea (South)

TU2.R18.6: INSHORE SHIP DETECTION BASED ON MULTI-INFORMATION FUSION NETWORK AND INSTANCE SEGMENTATION

<u>Tian, Tian</u>, China University of Geosciences, China <u>Gao, Peng</u>, Huazhong University of Science and Technology, China <u>Pan, Zhihong</u>, Huazhong University of Science and Technology, China <u>Li, Hang</u>, Beijing Aerospace System Engineering Research Institute, China <u>Wang, Lizhe</u>, China University of Geosciences, China

TU2.R18.7: LEVEE-CRACK DETECTION FROM SATELLITE OR DRONE IMAGERY USING MACHINE LEARNING APPROACHES

Kuchi, Aditi, University of New Orleans, United States <u>Hoque</u>, <u>Md Tamjidul</u>, University of New Orleans, United States <u>Abdelguerfi</u>, <u>Mahdi</u>, University of New Orleans, United States <u>Flanagin</u>, <u>Maik</u>, US Army Corps of Engineers, United States

TU2.R18.8: INSTANCE-AWARE REMOTE SENSING IMAGE CAPTIONING WITH CROSS-HIERARCHY ATTENTION

Wang, Chengze, School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, China Jiang, Zhiyu, School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, China Yuan, Yuan, School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, China

TU2.R18.9: A FINE-GRAINED SHIP DETECTION FRAMEWORK BASED ON FIXED ROI MASKING AND FEATURE OPTIMIZATION IN OPTICAL REMOTE SENSING IMAGES

<u>Zhang, Xiaohan</u>, Naval Aviation University, China <u>Yao, Libo</u>, Naval Aviation University, China <u>Lv, Yafei</u>, Naval Aviation University, China <u>Li, Mengyang</u>, Naval Aviation University, China <u>Lin, Xun</u>, Naval Aviation University, China

TU2.R18.10: INSTANCE SEGMENTATION WITH ORIENTED PROPOSALS FOR AERIAL IMAGES

<u>Pan, Ting</u>, Wuhan University, China <u>Ding, Jian</u>, Wuhan University, China <u>Wang, Jinwang</u>, Wuhan University, China <u>Yang, Wen</u>, Wuhan University, China <u>Xia, Gui-Song</u>, Wuhan University, China

TU2.R18.11: SEMI-AUTOMATIC CLASSIFICATION OF BUILDING FROM LOW-DENSITY LIDAR DATA AND WORLDVIEW-2 IMAGES THROUGH OBIA TECHNIQUE

<u>Zarro, Chiara</u>, University of Sannio, Italy <u>Ullo, Silvia Liberata</u>, University of Sannio, Italy <u>Meoli, Giuseppe, Mapsat, Italy Focareta, Mariano, Mapsat, Italy</u>

TU2.R19 - Clouds and Precipitation I

Tuesday, September 29, 07:30 - 09:30 • Room 19

TU2.R19.1: RECONFIGURING COSSIR FOR THE NEXT GENERATION OF CLOUD AND PRECIPITATION SCIENCE

Munchak, Stephen Joseph, NASA Goddard Space Flight Center, United States Adams, Ian, NASA Goddard Space Flight Center, United States Kroodsma, Rachael, University of Maryland, United States Fritts, Matthew, NASA Goddard Space Flight Center, United States Milani, Lisa, University of Maryland, United States

TU2.R19.2: AN OPERATIONAL SATELLITE SNOWFALL RATE PRODUCT AT NOAA

Meng, Huan, National Oceanic and Atmospheric Administration, United States Dong, Jun, University of Maryland College Park, United States Kongoli, Cezar, University of Maryland College Park, United States Ferraro, Ralph, National Oceanic and Atmospheric Administration, United States Yan, Banghua, National Oceanic and Atmospheric Administration, United States Zhao, Limin, National Oceanic and Atmospheric Administration, United States

TU2.R19.3: SPATIAL DOWNSCALING FOR GLOBAL PRECIPITATION MEASUREMENT USING A GEOGRAPHICALLY AND TEMPORALLY WEIGHTED REGRESSION MODEL

Zeng, Zhaozhao, Sun Yat-sen University, China Shi, Qian, Sun Yat-sen University, China Plaza, Javier, University of Extremadura, Spain Plaza, Antonio, University of Extremadura, Spain Li, Jun, Sun Yat-sen University, China

TU2.R19.4: CROSS VALIDATION OF GOES-R AND NOAA MULTI-RADAR MULTI-SENSOR (MRMS) OPE OVER THE CONTINENTAL UNITED STATES

Sun, Luyao, Ocean University of China, China Chen, Haonan, NOAA Physical Sciences Laboratory, United States Han, Lei, Ocean University of China, China Chandrasekar, V., Colorado State University, United States He, Jieying, National Space Science Center, China Liu, Yang, Ocean University of China, China

TU2.R19.5: EVALUATION OF GPM IMERG PRODUCTS OVER SOUTH KOREA

Wang, Jianxin, Science Systems and Applications, Inc, United States <u>Petersen, Walter</u>, NASA Marshall Space Flight Center, United States <u>Wolff, David</u>, NASA Wallops Flight Facility, United States <u>Ryu, Geun-Hyeok</u>, Korea Meteorological Administration, Korea (South)

TU2.R19.6: SATELLITE PRECIPITATION ESTIMATES (SPES) AND THEIR VALIDATION USING GROUND-BASED MEASURMENTS: A CASE STUDY IN UTTARAKHAND STATE, INDIA

<u>Shukla, Anoop Kumar</u>, Indian Institute of Technology Roorkee, India <u>Shukla, Satyavati</u>, Guilin University of Technology, India

TU2.R19.7: ATTENUATION CORRECTION AT KU BAND FOR D3R RADAR

<u>Joshil, Shashank S</u>, Colorado State University, United States <u>Chandrasekar, V</u>, Colorado State University, United States

TU2.R19.8: UNIT AREA AVERAGE RAINFALL ESTIMATION USING AN ELECTROMAGNETIC WAVE RAIN GAUGE SYSTEM

<u>Lim, Sanghun</u>, Korea Institute of Civil Engineering and Building Technology, Korea (South) <u>Choi, Jeongho</u>, Chosun College of Science & Technology, Korea (South) <u>Kim, Won</u>, Korea Institute of Civil Engineering and Building Technology, Korea (South)

TU2.R19.9: UNDERSTANDING SEVERE WEATHER EVENTS AT AIRPORT SPATIAL SCALE

Solazzo, Enrico, Agenzia Regionale per la Protezione dell'Ambiente Ligure (ARPAL), Italy Tournigand, Pierre-Yves, Università degli Studi di Padova, Italy Barindelli, Stefano, Politecnico di Milano, Italy Guglieri, Valerio, Politecnico di Milano, Italy Realini, Eugenio, Geomatics Research & Development (GReD), Italy Nisi, Luca, MeteoSwiss, Switzerland Biondi, Riccardo, Università degli Studi di Padova, Italy

TU2.R19.10: A MACHINE LEARNING APPROACH TO DERIVE PRECIPITATION ESTIMATES AT GLOBAL SCALE USING SPACE RADAR AND GROUND-BASED OBSERVATIONS

<u>Chandrasekar, V.</u>, Colorado State University, United States <u>Chen, Haonan</u>, NOAA Earth System Research Laboratory and Colorado State University, United States

TU2.R19.11: COMBINATION OF GEOSTATIONARY AND POLAR SATELLITE SENSORS TO MONITOR CUMULONIMBUS AND THEIR WINDS AT THE OCEAN SURFACE

<u>La, Tran Vu</u>, Extreme Weather Expertises, France <u>Messager, Christophe</u>, Extreme Weather Expertises, France <u>Sahl, Rémi</u>, Extreme Weather Expertises, France <u>Dupont, Paco</u>, Extreme Weather Expertises, France <u>Prothon, Etienne</u>, Extreme Weather Expertises, France <u>Honnorat, Marc</u>, Extreme Weather Expertises, France

TU2.R19.12: BRIGHTNESS TEMPERATURE OBTAINED FROM GLOBAL PRECIPITATION MEASUREMENT MISSION'S DUAL-FREQUENCY PRECIPITATION RADAR

<u>Kanemaru, Kaya</u>, National Institute of Information and Communications Technology, Japan <u>Iguchi, Toshio</u>, ESSIC, University of Maryland / NASA Goddard Space Flight Center, United States <u>Hamada, Atsushi</u>, University of Toyama, Japan

TU2.R20 - Student Paper Contest Finalists II Tuesday, September 29, 07:30 - 09:30 • Room 20

TU2.R20.1: MODEL AND DATA UNCERTAINTY FOR SATELLITE TIME SERIES FORECASTING WITH DEEP RECURRENT MODELS

Rußwurm, Marc, Technical University of Munich, Germany Ali, Syed Mohsin, German Aerospace Center, Germany Zhu, Xiao Xiang, German Aerospace Center, Germany Gal, Yarin, University of Oxford, United Kingdom Körner, Marco, Technical University of Munich, Germany

TU2.R20.2: WIND VECTOR AND WAVE HEIGHT RETRIEVAL IN INLAND WATERS USING CYGNSS

<u>Loria, Eric</u>, The Ohio State University, United States <u>O'Brien, Andrew</u>, The Ohio State University, United States <u>Zavorotny</u>, <u>Valery</u>, CIRES, University of Colorado-Boulder, United States <u>Zuffada, Cinzia</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

TU2.R20.3: STRONG POTENTIAL FOR THE DETECTION OF REFROZEN ICE LAYERS IN GREENLAND'S FIRN BY AIRBORNE RADAR SOUNDING

<u>Culberg, Riley</u>, Stanford University, United States <u>Schroeder, Dustin M.</u>, Stanford University, United States

TU2.R20.4: ARBITRARY NONLINEAR FM WAVEFORM CONSTRUCTION AND ULTRA-WIDEBAND SYNTHESIS

<u>Prager, Samuel</u>, University of Southern California, United States <u>Hawkins, David</u>, NASA Jet Propulsion Laboratory, United States <u>Moghaddam, Mahta</u>, University of Southern California, United States

TU2.R20.5: META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION

<u>Wang, Sherrie</u>, Stanford University, United States <u>Rußwurm, Marc</u>, Technical University of Munich, Germany <u>Körner, Marco</u>, Technical University of Munich, Germany <u>Lobell, David</u>, <u>Stanford University</u>, <u>United States</u>

WE1.R1 - Soil Moisture I

Wednesday, September 30, 05:00 - 07:00

Room 1

WE1.R1.1: DEVELOPMENT AND VALIDATION OF THE SMOS-IC VERSION 2 (V2) SOIL MOISTURE PRODUCT

Li, Xiaojun, INRAE, France Wigneron, Jean-Pierre, INRAE, France Frappart, Frédéric, INRAE; Laboratoire d'Etudes en Géophysique et Océanographie Spatiales, France Fan, Lei, INRAE; School of Geographical Sciences, Nanjing University of Information Science and Technology, France Wang, Mengjia, INRAE; State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, France Liu, Xiangzhuo, INRAE, France Al-Yaari, Amen, INRAE; Sorbonne Université, UMR 7619 METIS, France Moisy, Christophe, INRAE; Sorbonne Université, UMR 7619 METIS, France

WE1.R1.2: SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND

Shen, Xiaoji, Monash University, Australia Walker, Jeffrey, Monash University, Australia Ye, Nan, Monash University, Australia Wu, Xiaoling, Monash University, Australia Boopathi, Nithyapriya, Monash University, Australia Zhang, Linlin, Monash University, Australia Zhu, Liujun, Monash University, Australia Yeo, In-Young, University of Newcastle, Australia Jackson, Thomas, United States Department of Agriculture, United States Kerr, Yann, Centre d'Etudes Spatiales de la Biosphère, France Kim, Edward, NASA Goddard Space Flight Center, United States McGrath, Andrew, Flinders University, Australia

WE1.R1.3: AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI-TEMPORAL STUDY

Ye, Nan, Monash University, Australia Wu, Xiaoling, Monash University, Australia Walker, Jeffrey, Monash University, Australia Zhu, Liujun, Monash University, Australia Shen, Xiaoji, Monash University, Australia Boopathi, Nithyapriya, Monash University, Australia Jackson, Thomas, USDA, United States Kerr, Yann, Centre d'Etudes Spatiales de la Biosphère, France Kim, Edward, NASA, United States McGrath, Andrew, Flinders University, Australia Yeo, In-Young, University of Newcastle, Australia PopStefanija, Ivan, ProSensing Inc., United States

WE1.R1.4: PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS

Boopathi, Nithyapriya, IITB-Monash Research Academy, India Ye, Nan, Monash University, Australia Wu, Xiaoling, Monash University, Australia Walker, Jeffrey, Monash University, Australia Shen, Xiaoji, Monash University, Australia Rao, Y.S., Indian Institute of Technology Bombay, India Jackson, Thomas, United States Department of Agriculture, United States Kerr,

Yann, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Kim, Edward, NASA Goddard Space Flight Center, United States McGrath, Andrew, Flinders University, Australia Yeo, In-Young, University of Newcastle, Australia

WE1.R1.5: EVALUATION OF SOIL MOISTURE RETRIEVALS FROM ALOS-2, SENTINEL-1 DATA IN GENHE, CHINA

<u>Cui, Huizhen</u>, Beijing Normal University, China <u>Jiang, Lingmei</u>, Beijing Normal University, China <u>Paloscia, Simonetta</u>, National Research Council, Italy <u>Santi, Emanuele</u>, National Research Council, Italy <u>Pettinato, Simone</u>, National Research Council, Italy <u>Wang, Jian</u>, Beijing Normal University, China <u>Wang, Gongxue</u>, Beijing Normal University, China

WE1.R1.6: SOIL MOISTURE ESTIMATION AT 500M USING SENTINEL-1: APPLICATION TO TUNISIAN SITES

<u>Foucras, Myriam</u>, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France <u>Zribi, Mehrez</u>, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France <u>Baghdadi, Nicolas</u>, INRAE, France

WE1.R1.7: DEVELOPMENT OF NISAR SOIL MOISTURE PRODUCT

<u>Bindlish, Rajat</u>, NASA Goddard Space Flight Center, United States <u>Kim, Seungbum</u>, NASA Jet Propulsion Laboratory, United States <u>Das, Narendra</u>, NASA Jet Propulsion Laboratory, United States <u>Lohman, Rowena</u>, Cornell University, United States <u>Rosen, Paul</u>, NASA Jet Propulsion Laboratory, United States <u>Bawden, Gerald</u>, NASA Headquarters, United States

WE1.R1.8: ROBUST RETRIEVAL OF SURFACE SOIL MOISTURE ACROSS WIDE-RANGING INCIDENCE ANGLES OVER SHORT CROPS: FOR APPLICATION TO NI-SAR

<u>Kim, Seung-Bum</u>, NASA Jet Propulsion Laboratory, United States <u>Liao, Tien-Hao</u>, NASA Jet Propulsion Laboratory, United States

WE1.R1.9: AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA

Jiang, Linghai, University of Electronic Science and Technology of China, China Chen, Yan, University of Electronic Science and Technology of China, China Chen, Yunping, University of Electronic Science and Technology of China, China Lu, Youchun, China Center for Resources Satellite Data and Application, China Du, Min, University of Electronic Science and Technology of China, China Li, Baihui, University of Electronic Science and Technology of China, China Huang, Xuan, University of Electronic Science and Technology of China, China

WE1.R1.10: MACHINE-LEARNING BASED RETRIEVAL OF SOIL MOISTURE AT HIGH SPATIO-TEMPORAL SCALES USING CYGNSS AND SMAP OBSERVATIONS

<u>Lei, Fangni</u>, Mississippi State University, United States <u>Senyurek, Volkan</u>, Mississippi State University, United States <u>Kurum, Mehmet</u>, Mississippi State University, United States <u>Gurbuz</u>, <u>Ali</u>, Mississippi State University, United States <u>Moorhead, Robert</u>, Mississippi State University, United States <u>Boyd</u>, <u>Dylan</u>, Mississippi State University, United States

WE1.R1.11: L-BAND HIGH SPATIAL RESOLUTION SOIL MOISTURE MAPPING USING A SMALL UNMANNED AERIAL SYSTEM

<u>Dai, Eryan</u>, University of Colorado Boulder, United States <u>Venkitasubramony</u>, <u>Aravind</u>, University of Colorado Boulder, United States <u>Gasiewski</u>, <u>Albin</u>, University of Colorado Boulder, United States <u>Stachura</u>, <u>Maciej</u>, Black Swift Technologies LLC, United States <u>Elston</u>, <u>Jack</u>, Black Swift Technologies LLC, United States

WE1.R2 - Monitoring and Damage Assessment of Natural Disasters III Wednesday, September 30, 05:00 - 07:00

Room 2

WE1.R2.1: DETERMINING THE SOURCE LOCATION AND EVOLUTION OF THE MAY 2015 SUMMIT INFLATION EVENT AT KILAUEA VOLCANO HAWAI'I.

<u>Bemelmans, Mark</u>, Delft University of Technology, Netherlands <u>de Zeeuw - van Dalfsen,</u>
<u>Elske</u>, Royal Dutch Meteorological Insitute (KNMI), Netherlands <u>Poland, Micheal</u>, United States
Geological Survey, United States

WE1.R2.2: LOCAL SUBSIDENCE OF ACTIVE VOLCANOES MEASURED BY SYNTHETIC APERTURE RADAR

Aoki, Yosuke, University of Tokyo, Japan Wang, Xiaowen, Southwest Jiaotong University, China

WE1.R2.3: RAPID STRUCTURE DETECTION IN SUPPORT OF DISASTER RESPONSE : A CASE STUDY OF THE 2018 KILAUEA VOLCANO ERUPTION

<u>Laverdiere, Melanie</u>, Oak Ridge National Laboratory, United States <u>Yang, H. Lexie</u>, Oak Ridge National Laboratory, United States <u>Tuttle, Mark</u>, Oak Ridge National Laboratory, United States <u>Vaughan, Chris</u>, FEMA, United States

WE1.R2.4: CO- AND POST-ERUPTIVE SURFACE DEFORMATION FOLLOWING THE 2018 ERUPTION OF KILAUEA VOLCANO REVEALED BY ALOS-2 MULTI-MODE IMAGES

<u>Abe, Takahiro</u>, Japan Aerospace Exploration Agency, Japan <u>Ohki, Masato</u>, Japan Aerospace Exploration Agency, Japan <u>Tadono, Takeo</u>, Japan Aerospace Exploration Agency, Japan

WE1.R2.5: THE 2015 CALBUCO VOLCANIC CLOUD DETECTION USING GNSS RADIO OCCULTATION AND SATELLITE LIDAR

Tournigand, Pierre-Yves, Università degli Studi di Padova, Italy Cigala, Valeria, Università degli Studi di Padova, Italy Prata, Alfredo J., AIRES Pty Ltd., Australia Steiner, Andrea K., Wegener Center for Climate and Global Change (WEGC), Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Austria Kirchengast, Gottfried, Wegener Center for Climate and Global Change (WEGC), Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Austria Brenot, Hugues, Royal Belgium Institute for Space Aeronomy, Belgium Clarisse, Lieven, Université libre de Bruxelles (ULB), Belgium Biondi, Riccardo, Università degli Studi di Padova, Italy

WE1.R2.6: INTEGRATION OF INSAR AND GNSS DATA TO MONITOR VOLCANIC ACTIVITY OF SAKURAJIMA CALDERAS, JAPAN: FROM SMALL DISPLACEMENT MEASUREMENTS TO GEOPHYSICAL MODELING

<u>Tessari, Giulia</u>, sarmap SA, Switzerland <u>Puliero, Silvia</u>, sarmap SA, Switzerland <u>Atzori, Simone</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Ogushi, Fumitaka</u>, L3 Harris Geospatial, Japan <u>Pasquali, Paolo</u>, sarmap SA, Switzerland

WE1.R2.7: MULTI-ANGLE OBSERVATION OF THE GEOTHERMAL AREA IN THE HAKONE VOLCANO (OWAKUDANI) USING AN AIRBORNE SENSOR (STIC: ARTS-SE'S CAMERA SYSTEMS)

<u>Jitsufuchi, Tetsuya</u>, National Research Institute for Earth Science and Disaster Resilience, Japan

WE1.R2.8: TIDS DETECTION FROM SHIP-BASED GNSS RECEIVER: FIRST TEST ON 2010 MAULE TSUNAMI

<u>Ravanelli, Michela</u>, Sapienza University of Rome, Italy <u>Crespi, Mattia</u>, Sapienza University of Rome, Italy <u>Foster, James</u>, University of Hawai'i at Manoa, United States

WE1.R2.9: DEFORMATION MONITORING AND SOURCE MODELLING BY INSAR OF THE WOLF VOLCANO (GALAPAGOS, ECUADOR)

<u>Aguaiza, Santiago</u>, Instituto Geofísico de la Escuela Politécnica Nacional, Ecuador <u>Mothes, Patricia</u>, Instituto Geofísico de la Escuela Politécnica Nacional, Ecuador <u>Tolomei, Cristiano</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Trasatti, Elisa</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy

WE1.R2.10: INSAR DEFORMATION ANALYSIS AND SOURCE MODELLING OF THE GUAGUA PICHINCHA VOLCANO (ECUADOR)

<u>Yépez, Marco</u>, Escuela Politécnica Nacional, Ecuador <u>Trasatti, Elisa</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Tolomei, Cristiano</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Atzori, Simone</u>, Istituto Nazionale di Geofisica e Vulcanologia, Italy <u>Mothes</u>, <u>Patricia</u>, Escuela Politécnica Nacional, Ecuador <u>Ruiz, Marco</u>, Escuela Politécnica Nacional, Ecuador <u>Samaniego</u>, <u>Pablo</u>, Université Clermont Auvergne, France

WE1.R2.11: EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING

Hooper, Andrew, University of Leeds, United Kingdom Wright, Tim, University of Leeds, United Kingdom Weiss, Jonathan, University of Potsdam, Germany Rollins, Chris, University of Leeds, United Kingdom Gaddes, Matthew, University of Leeds, United Kingdom Lazecky.

Milan, University of Leeds, United Kingdom Morishita, Yu, Geospatial Information Authority of Japan, Japan Walters, Richard, Durham University, United Kingdom Wang, Hua, Guangdong University of Technology, China Hussain, Ekbal, British Geological Survey, United Kingdom

WE1.R2.12: PROTOTYPING OF A MULTI-HAZARD EARLY WARNING SYSTEM FOR AVIATION AND DEVELOPMENT OF NRT ALERT PRODUCTS WITHIN THE EUNADICS-AV AND OPAS PROJECTS

van Gent, Jeroen, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium Brenot, Hugues, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium Theys, Nicolas, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium Clarisse, Lieven, Université Libre de Bruxelles (ULB), Belgium Wilson, Scott, EUROCONTROL, Belgium Clarkson, Rory, Rolls Royce, United Kingdom Van Roozendael, Michel, Royal Belgian Institute for Space

WE1.R3 - Differential SAR Interferometry II

Wednesday, September 30, 05:00 - 07:00

Room 3

WE1.R3.1: APPLICATION OF L-BAND SCANSAR MODE IN MONITORING LAND SUBSIDENCE

<u>Bin, Liu</u>, China Aero Geophysical Survey and Remote Sensing Center For Natural Resources, China <u>Daqing</u>, <u>Ge</u>, China Aero Geophysical Survey and Remote Sensing Center For Natural Resources, China <u>Man</u>, <u>Li</u>, China Aero Geophysical Survey and Remote Sensing Center For Natural Resources, China <u>Ling</u>, <u>Zhang</u>, China Aero Geophysical Survey and Remote Sensing Center For Natural Resources, China

WE1.R3.2: MAPPING THE RATE OF CARBON MINERALIZATION IN OMAN OPHIOLITES USING SENTINEL-1 INSAR TIME SERIES

<u>Zebker, Molly</u>, University of Texas at Austin, United States <u>Chen, Jingyi</u>, University of Texas at Austin, United States <u>Hesse, Marc</u>, University of Texas at Austin, United States

WE1.R3.3: POST-FLOOD SURFACE DEFORMATION ANALYSIS USING P-SBAS-DINSAR SENTINEL-1 PROCESSING IN THE NORTH OF TUNISIA

<u>Chaabani, Chayma</u>, University of Carthage, Higher School of Communications of Tunis SUPCOM, COSIM Lab, Tunisia <u>Barbouchi, Meriem</u>, University of Carthage, National Agronomic Institute of Tunisia (INAT), Tunisia <u>Abdelfattah, Riadh</u>, University of Carthage, Higher School of Communications of Tunis SUPCOM, COSIM Lab, Tunisia

WE1.R3.4: ATMOSPHERIC CORRECTION OF SAR IMAGES BASED ON PS-INSAR

Zhang, Mingyu, University of Electronic Science and Technology of China, China Chen, Yan, University of Electronic Science and Technology of China, China Chen, Yunping, University of Electronic Science and Technology of China, China Lu, Youchun, China Centre for Resources Satellite Data and Application, China Li, Baihui, University of Electronic Science and Technology of China, China

WE1.R3.5: LANDSLIDE DISPLACEMENT MONITORING BY TIME SERIES INSAR COMBINING PS AND DS TARGETS

<u>Jiang, Yanan</u>, Chengdu University of Technology, China <u>Xu, Qiang</u>, Chengdu University of Technology, China <u>Lu, Zhong</u>, South Methodist University, United States

WE1.R3.6: PERMOFROST OBERVATION USING ALOS-2 PALSAR-2 DATA IN THE NORTHREN QINGHAI-TIBET PLATEAU

Wang, Chao, Chinese Academy of Sciences, China Dong, Longkai, Chinese Academy of Sciences, China Zhang, Hong, Chinese Academy of Sciences, China Tang, Yixian, Chinese Academy of Sciences, China Zhang, Bo, Chinese Academy of Sciences, China Wu, Fan, Chinese Academy of Sciences, China

WE1.R3.7: MONITORING DAM STABILITY USING NEW SAR INTERFEROMETRY TIME SERIES

<u>Du, Zheyuan</u>, University of New South Wales, Australia <u>Ge, Linlin</u>, University of New South Wales, Australia <u>Ng, Alex Hay-man</u>, University of New South Wales, Australia <u>Zhang, Qi</u>, University of New South Wales, Australia

WE1.R3.8: SURFACE DEFORMATION OF HIGH-SPEED RAILWAY BETWEEN CHANGCHUN AND HARBIN BASED ON TIME-SERIES INSAR TECHNIQUE

Meng, Zhiguo, Jilin University, China Shu, Chuanzeng, Jilin University, China Wu, Qiong, Jilin University, China Wang, Yongzhi, Jilin University, China Yang, Ying, Tianjin Research Institute for Water Transport Engineering M.O.T., China Fu, Zhe, Information Project Evaluation Centre of Beijing, China

WE1.R3.9: MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)

Ruiz-Armenteros, Antonio M., University of Jaén, Spain Delgado, J. Manuel, University of Jaén, Spain Bakon, Matus, insar.sk, Slovakia Lamas-Fernández, Francisco, Universidad de Granada, Spain Gil, Antonio J., Universidad de Jaén, Spain Marchamalo-Sacristán, Miguel, Politechnical University of Madrid, Spain Sánchez-Ballesteros, Vanesa, Universidad de Jaén, Spain Papco, Juraj, Slovak University of Technology in Bratislava, Slovakia González-Rodrigo, Beatriz, Politechnical University of Madrid, Spain Lazecky, Milan, UNIVERSITY OF LEEDS, United Kingdom Perissin13, Daniele, University Degli Studi de Padova, Italy Sousa, Joaquim J., University of Trás-os-Montes e Alto Douro, Portugal

WE1.R3.10: HIGH-PASS FILTERS TO REDUCE THE EFFECTS OF BROAD ATMOSPHERIC CONTRIBUTIONS IN SBAS INVERSIONS: A CASE STUDY IN THE DELAWARE BASIN

<u>Pepin, Karissa</u>, Stanford University, United States <u>Zebker, Howard</u>, Stanford University, United States <u>Ellsworth, William</u>, Stanford University, United States

WE1.R3.11: INSAR INVESTIGATION ON DRAA-DOUAMIS SINKHOLES IN CHERIA NORTHEASTERN OF ALGERIA

Hamdi, Loubna, Research laboratory of Sedimentary Environment, Mineral and Water resources of Eastern Algeria, Algeria Defaflia, Nabil, Research laboratory of Sedimentary Environment, Mineral and Water resources of Eastern Algeria, Algeria Fehdi, Chemssedine, Water and Environment Laboratory, Department of Earth Science, Faculty of Exact Science, Science of Nature Science, Algeria Merghadi, Abdelaziz, Research laboratory of Sedimentary Environment, Mineral and Water resources of Eastern Algeria, Algeria

WE1.R4 - Lidar Science and Technology

Wednesday, September 30, 05:00 - 07:00 • Room 4

WE1.R4.1: THE PERFORMANCE OF ICESAT-2'S STRONG AND WEAK BEAMS IN ESTIMATING GROUND ELEVATION AND FOREST HEIGHT

Zhu, Xiaoxiao, Aerospace Information Research Institute, China Nie, Sheng, Aerospace Information Research Institute, China Wang, Cheng, Aerospace Information Research Institute, China Xi, Xiaohuan, Aerospace Information Research Institute, China

WE1.R4.2: FLOATING DOPPLER WIND LIDAR MEASUREMENT OF WIND TURBULENCE: A CLUSTER ANALYSIS

<u>Salcedo-Bosch, Andreu</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Gutierrez-Antunano, Miguel Angel</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Tiana-Alsina, Jordi</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Rocadenbosch, Francesc</u>, Universitat Politècnica de Catalunya (UPC), Spain

WE1.R4.3: OFFSHORE DOPPLER WIND LIDAR ASSESSMENT OF ATMOSPHERIC STABILITY

<u>Araujo da Silva, Marcos Paulo</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Salcedo-Bosch</u>, <u>Andreu</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Gutierrez-Antunano</u>, <u>Miguel Angel</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Rocadenbosch</u>, <u>Francesc</u>, Universitat Politècnica de Catalunya (UPC), Spain

WE1.R4.4: LOW-SWAP ELASTIC BACKSCATTER LIDAR FOR CLOSE-RANGE AEROSOL DETECTION

Sox, Leda, Georgia Tech Research Institute, United States Meraz, Nathan, Georgia Tech Research Institute, United States Valenta, Christopher, Georgia Tech Research Institute, United States

WE1.R4.5: TIME-FREQUENCY DOMAIN NONLINEAR PHASE COMPENSATION FOR FMCW LADAR SIGNALS

<u>Wang, Rongrong</u>, Chinese Academy of Sciences, China <u>Xiang, Maosheng</u>, Chinese Academy of Sciences, China <u>Wang, Bingnan</u>, Chinese Academy of Sciences, China <u>Li, Chuang</u>, Xi'an Jiaotong University, China

WE1.R4.6: EVALUATION OF SMALL-FOOTPRINT FULL-WAVEFORM AIRBORNE LIDAR INSTRUMENT REQUIREMENTS USING DIRSIG SIMULATIONS OF FORESTS

Krause, Keith, Battelle, United States

WE1.R4.7: COMPARISON OF TLS AND ULS DATA FOR WILDLIFE HABITAT

ASSESSMENTS IN TEMPERATE WOODLANDS

Shokirov, Shukhrat, Australian National University, Australia Levick, Shaun, Commonwealth Scientific and Industrial Research Organisation, Australia Jucker, Tommaso, University of Bristol, United Kingdom Youngentob, Kara, Australian National University, Australia Yeoh, Paul, Commonwealth Scientific and Industrial Research Organisation, Australia

WE1.R5 - Advanced Clustering Wednesday, September 30, 05:00 - 07:00 • Room 5 Methods for Remote Sensing Data I

WE1.R5.1: L0-MOTIVATED LOW RANK SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGERY

<u>Tian, Long</u>, Mississippi State University, United States <u>Du, Qian</u>, Mississippi State University, United States <u>Kopriva</u>, <u>Ivica</u>, <u>Ruđer Bošković Institute</u>, <u>Croatia</u> (Hrvatska)

WE1.R5.2: LOCALLY CONSTRAINED COLLABORATIVE REPRESENTATION BASED FISHER'S LDA FOR CLUSTERING OF HYPERSPECTRAL IMAGES

<u>Liu, Siyu</u>, Nanjing University of Science and Technology, China <u>Huang, Nan</u>, Nanjing University of Science and Technology, China <u>Xiao, Liang</u>, Nanjing University of Science and Technology, China

WE1.R5.3: PATCH-BASED DIFFUSION LEARNING FOR HYPERSPECTRAL IMAGE CLUSTERING

Murphy, James, Tufts University, United States

WE1.R5.4: SATELLITE AGRICULTURAL MONITORING IN UKRAINE AT COUNTRY LEVEL: WORLD BANK PROJECT

Kussul, Nataliia, Space Research Institute National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Ukraine Shelestov, Andrii, Space Research Institute National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Ukraine Yailymova, Hanna, Earth Observing System Data Analytics, Ukraine Yailymov, Bohdan, Space Research Institute National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Ukraine Lavreniuk, Mykola, Space Research Institute National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Ukraine Ilyashenko, Matviy, Earth Observing System Data Analytics, Ukraine

WE1.R5.5: CLASSIFICATION OF MARTIAN TERRAINS VIA DEEP CLUSTERING OF MASTCAM IMAGES

<u>Parente, Mario</u>, University of Massachussets Amherst, United States <u>Panambur, Tejas</u>, University of Massachussets Amherst, United States

WE1.R5.6: SCALING UP A MULTISPECTRAL RESNET-50 TO 128 GPUS

<u>Sedona, Rocco</u>, Forschungszentrum Jülich, Germany <u>Cavallaro, Gabriele</u>, Forschungszentrum Jülich, Germany <u>Jitsev, Jenia</u>, Forschungszentrum Jülich, Germany <u>Strube, Alexandre</u>, Forschungszentrum Jülich, Germany <u>Riedel, Morris</u>, Forschungszentrum Jülich, Germany <u>Book, Matthias</u>, University of Iceland, Iceland

WE1.R5.7: SPATIAL-SPECTRAL SMOOTH GRAPH CONVOLUTIONAL NETWORK FOR MULTISPECTRAL POINT CLOUD CLASSIFICATION

Wang, Qingwang, Harbin Institute of Technology, China Zhang, Xiangrong, Heilongjiang Institute Technology, China Gu, Yanfeng, Harbin Institute of Technology, China

WE1.R5.8: INFLUENCE OF ALEATORIC UNCERTAINTY ON SEMANTIC CLASSIFICATION OF AIRBORNE LIDAR POINT CLOUDS: A CASE STUDY WITH RANDOM FOREST CLASSIFIER USING MULTISCALE FEATURES

<u>Sreevalsan-Nair, Jaya</u>, International Institute of Information Technology, Bangalore, India <u>Mohapatra, Pragyan</u>, International Institute of Information Technology, Bangalore, India

WE1.R5.9: GLOBAL SEMANTIC LAND USE/LAND COVER BASED ON HIGH RESOLUTION SATELLITE IMAGERY USING ENSEMBLE NETWORKS

<u>Tapper, Gustav</u>, Vricon, Sweden <u>Sundelius, Carl</u>, Vricon, Sweden <u>Haglund, Leif</u>, Vricon, Sweden

WE1.R5.10: UNSUPERVISED DOMAIN ADAPTATION TECHNIQUES FOR

CLASSIFICATION OF SATELLITE IMAGE TIME SERIES

<u>Lucas, Benjamin</u>, Monash University, Australia <u>Pelletier, Charlotte</u>, Bretagne-Sud University, France <u>Schmidt</u>, <u>Daniel</u>, Monash University, Australia <u>Webb</u>, <u>Geoffrey</u>, Monash University, Australia <u>Petitjean</u>, <u>Francois</u>, Monash University, Australia

WE1.R5.11: APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO

Bendini, Hugo, INPE, Brazil Fonseca, Leila, INPE, Brazil Soares, Anderson, INPE, Brazil Rufin, Philippe, Humboldt-Universität zu Berlin, Germany Schwieder, Marcel, Humboldt-Universität zu Berlin, Germany Rodrigues, Marcos, INPE, Brazil Maretto, Raian, INPE, Brazil Korting, Thales, INPE, Brazil Leitao, Pedro, Humboldt-Universität zu Berlin, Portugal Sanches, Ieda, INPE, Brazil Hostert, Patrick, Humboldt-Universität zu Berlin, Germany

WE1.R6 - Model Inversion and Wednesday, September 30, 05:00 - 07:00 • Room 6 Parameter Estimation

WE1.R6.1: INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS

Wang, Fenjuan, NIES, Japan Maksyutov, Shamil, NIES, Japan Janardanan, Rajesh, NIES, Japan Tsuruta, Aki, Finnish Meteorological Institute, Finland Ito, Akihiko, NIES, Japan Morino, Isamu, NIES, Japan Yoshida, Yukio, NIES, Japan Kaiser, Johannes W., Deutscher Wetterdienst, Germany Maenhout, Greet Janssens, European Commission Joint Research Centre, Italy Dlugokencky, Ed, NOAA, United States Mammarella, Ivan, University of Helsinki, Finland Lavric, Jost V., Max Planck Institute for Biogeochemistry, Germany Matsunaga, Tsuneo, NIES, Japan

WE1.R6.2: MAPPING ANTIMONY CONCENTRATION OVER GEOTHERMAL AREAS USING HYPERSPECTRAL AND THERMAL REMOTE SENSING

Rodriguez-Gomez, Cecilia, Massey University, New Zealand Kereszturi, Gabor, Massey University, New Zealand Reeves, Robert, GNS Science, New Zealand Mead, Stuart, Massey University, New Zealand Pullanagari, Reddy, Massey University, New Zealand Rae, Andrew, GNS Science, New Zealand Jeyakumar, Paramsothy, Massey University, New Zealand

WE1.R6.3: A REGULARIZED TENSOR NETWORK FOR CYCLONE WIND SPEED ESTIMATION

<u>Chen, Zhao</u>, Donghua University, China <u>Yu, Xingxing</u>, Donghua University, China <u>Zhou, Feng</u>, Donghua University, China <u>Yang, Bin</u>, Donghua University, China

WE1.R6.4: JOINT RANGE-ANGLE-DOPPLER RESOLUTION CAPABILITY ANALYSIS FOR FDA RADAR SIGNAL VIA GENERALIZED AMBIGUITY FUNCTION

<u>Gui, Ronghua</u>, University of Electronic Science and Technology of China, China <u>Huang, Bang</u>, University of Electronic Science and Technology of China, China <u>Wang, Wen-Qin</u>, University of Electronic Science and Technology of China, China

WE1.R6.5: PARKING OCCUPANCY ESTIMATION ON PLANETSCOPE SATELLITE IMAGES Drouyer, Sebastien, ENS Paris Saclay, France

WE1.R6.6: HIGH RESOLUTION SPATIAL MAPPING OF SOIL NUTRIENTS USING K - NEAREST NEIGHBOR BASED CNN APPROACH

<u>Das, Kamal</u>, IBM Research India, India <u>Mandal, Subhojit</u>, Indian Institute of Information Technology (IIIT), Sri City, India <u>Thakur, Mainak</u>, Indian Institute of Information Technology (IIIT), Sri City, India

WE1.R6.7: ESTIMATING LEAF AREA INDEX AT 250M SPATIAL RESOLUTION FROM MODIS DATA USING GENERAL REGRESSION NEURAL NETWORKS

Zhang, Yunteng, Beijing Normal University, China Xiao, Zhiqiang, Beijing Normal University, China

WE1.R6.8: SURFACE MODELING FOR AIRBORNE LIDAR

<u>Blanton, Hunter</u>, University of Kentucky, United States <u>Grate, Sean</u>, University of Kentucky, United States <u>Jacobs, Nathan</u>, University of Kentucky, United States

WE1.R6.9: BUSHFIRE SEVERITY MAPPING USING SENTINEL-1 AND -2 IMAGERY

Rahman, Shahriar, Macquarie University, Australia Chang, Hsing-Chung, Macquarie University, Australia Tomkins, Kerrie, Macquarie University, Australia Kehir, Warwick, Rural Fire Service, NSW, Australia

WE1.R6.10: MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)

Maimaitiyiming, Matthew, University of Missouri-Columbia, United States Maimaitijiang, Maitiniyazi, Saint Louis University, United States Sidike, Paheding, Purdue University Northwest, United States Sagan, Vasit, Saint Louis University, United States Migicovsky, Zoë, Dalhousie University, Canada Chitwood, Daniel, Michigan State University, United States Cousins, Peter, E. & J. Gallo Winery, United States Dokoozlian, Nick, E. & J. Gallo Winery, United States Miller, Allison, Saint Louis University, United States Kwasniewski, Misha, University of Missouri-Columbia, United States

WE1.R6.11: ESTIMATING DISPLACED POPULATIONS FROM OVERHEAD

Hadzic, Armin, University of Kentucky, United States Christie, Gordon, Johns Hopkins University Applied Physics Laboratory, United States Freeman, Jeffrey, Johns Hopkins University Applied Physics Laboratory, United States Dismer, Amber, Centers for Disease Control and Prevention, United States Bullard, Stevan, Agency for Toxic Substances and Disease Registry (ATSDR), United States Greiner, Ashley, Centers for Disease Control and Prevention, United States Jacobs, Nathan, University of Kentucky, United States Mukherjee, Ryan, Johns Hopkins University Applied Physics Laboratory, United States

WE1.R7 - Optical Satellite Missions II

Wednesday, September 30, 05:00 - 07:00 \circ Room 7

WE1.R7.1: ESTABLISHING LAUNCH READINESS OF NASA ISS INSTRUMENT OCO-3

<u>Srivastava, Priyanka</u>, NASA Jet Propulsion Laboratory, United States <u>Bennett, Matthew</u>, NASA Jet Propulsion Laboratory, United States <u>Bedrosian, Gasia</u>, NASA Jet Propulsion Laboratory, United States <u>Rosenberg, Robert</u>, NASA Jet Propulsion Laboratory, United States <u>Solish</u>, <u>Benjamin</u>, NASA Jet Propulsion Laboratory, United States <u>Basilio</u>, <u>Ralph</u>, NASA Jet Propulsion Laboratory, United States

WE1.R7.2: CAPABILITIES OF THE NEW MOROCCAN SATELLITE MOHAMMED-VI FOR PLANIMETRIC AND ALTIMETRIC MAPPING

El-Harti, Abderrazak, University Sultan Moulay Slimane, Morocco Bannari, Abderrazak,
Arabian Gulf University, Bahrain Manyari, Yassin, University Sultan Moulay Slimane, Morocco Nabil, Abdelghani, University Sultan Moulay Slimane, Morocco Lahboub, Youness, University Sultan Moulay Slimane, Morocco El-Ghmari, Abderrahman, University Sultan Moulay Slimane, Morocco Bachaoui, El-Mostapha, University Sultan Moulay Slimane, Morocco

WE1.R7.3: RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA

Lin, Yan, Sun Yat-Sen University, China Hu, Yonghong, Chinese Academy of Sciences, China Li, Xiaoming, Chinese Academy of Sciences, China Li, Jun, Sun Yat-Sen University, China Zhang, Yong, National Satellite Meteorological Center, China Dou, Changyong, Chinese Academy of Sciences, China Plaza, Javier, University of Extremadura, Spain Plaza, Antonio, University of Extremadura, Spain

WE1.R7.4: MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES

Raynaud, Jean-Louis, Centre National d'Etudes Spatiales (CNES), France <u>Dedieu, Gérard</u>, Centre d'Etudes Spatiales de la Biosphère, France <u>Binet</u>, <u>Renaud</u>, Centre National d'Etudes Spatiales (CNES), France <u>Rolland</u>, <u>Amandine</u>, Thalès Services, France <u>Gascoin</u>, <u>Simon</u>, Centre d'Etudes Spatiales de la Biosphère, France <u>Pelou</u>, <u>Sophie</u>, Centre National d'Etudes Spatiales (CNES), France <u>Dick</u>, <u>Arthur</u>, Centre National d'Etudes Spatiales (CNES), France <u>Dejus</u>, <u>Michel</u>, Centre National d'Etudes Spatiales (CNES), France <u>Hagolle</u>, <u>Olivier</u>, Centre d'Etudes Spatiales de la Biosphère, France <u>Specht</u>, <u>Bernard</u>, Centre National d'Etudes Spatiales (CNES), France

WE1.R7.5: NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS

Xiong, Xiaoxiong, NASA, United States <u>Cao, Changyong</u>, NOAA, United States <u>Angal, Amit</u>, SSAI, United States <u>Blonski, Slawomir</u>, Global Science and Technology Inc., United States <u>Chiang, Kwofu</u>, SSAI, United States <u>Choi, Taeyoung</u>, Global Science and Technology Inc.,

United States <u>Gu, Yalong</u>, Global Science and Technology Inc., United States <u>Lei, Ning</u>, SSAI, United States <u>Li, Yonghong</u>, SSAI, United States <u>Shao, Xi</u>, Univ. of Maryland, United States <u>Twedt, Kevin</u>, SSAI, United States <u>Uprety, Sirish</u>, Univ. of Maryland, United States <u>Wang, Wenhui</u>, Univ. of Maryland, United States

WE1.R7.6: THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS

Wiese, David, California Institute of Technology, Jet Propulsion Laboratory, United States Boening, Carmen, California Institute of Technology, Jet Propulsion Laboratory, United States Zlotnicki, Victor, California Institute of Technology, Jet Propulsion Laboratory, United States Luthcke, Scott, NASA Goddard Space Flight Center, United States Loomis, Bryant, NASA Goddard Space Flight Center, United States Sauber, Jeanne, NASA Goddard Space Flight Center, United States Bearden, David, California Institute of Technology, Jet Propulsion Laboratory, United States Chrone, Jonathan, NASA Langley Research Center, United States Horner, Scott, NASA Ames Research Center, United States Webb, Frank, California Institute of Technology, Jet Propulsion Laboratory, United States Bienstock, Bernard, California Institute of Technology, Jet Propulsion Laboratory, United States Tsaoussi, Lucia, NASA Headquarters, United States

WE1.R7.7: GEOMAGNETIC ANOMALIES IN O+ CONCENTRATION CONSIDERING THE SUN SEASONAL POSITION ACCORDING TO THE DATA FROM THE COMPLEX "RIMS"

<u>Shirokov, Igor</u>, Sevastopol State University, Russia <u>Ivanov, Mikhail</u>, Institute of Applied Geophysics, Russia <u>Lapshin, Vladimir</u>, Institute of Applied Geophysics, Russia <u>Kiryushov</u>, <u>Boris</u>, Institute of Applied Geophysics, Russia <u>Minligareev, Vladimir</u>, Institute of Applied Geophysics, Russia

WE1.R7.8: NOAA20 AND S-NPP VIIRS LAND SURFACE TEMPERATURE PRODUCT VALIDATION AND INTER-COMPARISON

<u>Liu, Yuling</u>, Earth System Science Interdisciplinary Center at University of Maryland, College Park, United States <u>Yu, Yunyue</u>, Center for Satellite Applications and Research, NOAA/NESDIS, United States <u>Yu, Peng</u>, Earth System Science Interdisciplinary Center at University of Maryland, College Park, United States <u>Wang, Heshun</u>, Earth System Science Interdisciplinary Center at University of Maryland, College Park, United States

WE1.R7.9: LANDSAT SURFACE REFLECTANCE VALIDATION SITE SELECTION

<u>Maddox, Emily</u>, KBR, United States <u>Zavesky</u>, <u>Landon</u>, United Support Services (USS), United States

WE1.R7.10: THE NEW LANDSAT GLOBAL LAND SURVEY (GLS) DEM

<u>Franks, Shannon</u>, KBR, United States <u>Storey, James</u>, KBR, United States <u>Rengarajan</u>, <u>Rajagopalan</u>, KBR, United States

WE1.R7.11: A STUDY OF SPECTRA BANDWIDTH INDEX SETTING OF INFRARED IMAGER BASED ON SPECTRUM SIMULATION

<u>Wei, Dandan</u>, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China <u>Liu, Yao</u>, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China

WE1.R7.12: NASA INCUBATION STUDY ON PLANETARY BOUNDARY LAYER

<u>Teixeira, Joao</u>, NASA Jet Propulsion Laboratory, United States <u>Piepmeier, Jeffrey</u>, NASA Goddard Space Flight Center, United States <u>Nehrir, Amin</u>, NASA Langley Research Center, United States

WE1.R8 - Coastal Zone

Wednesday, September 30, 05:00 - 07:00

Room 8

WE1.R8.1: PRELIMINARY RESULTS ON BLUE CARBON CONTENT MAPPING IN COASTAL WATERS OF THE ARABIAN GULF USING SATELLITE-BASED MODELING APPROACH

Alkhatlan, Alanoud, Arabian Gulf University, Bahrain Bannari, Abderrazak, Arabian Gulf University, Bahrain Ali, Thamer-Salim, Arabian Gulf University, Bahrain Abahussain, Asma, Arabian Gulf University, Bahrain

WE1.R8.2: POTENTIAL OF SENTINEL 1 SATELLITES FOR MAPPING TIDAL FLATS.

CASE STUDY OF THE BAIE DES VEYS (NORMANDY, FRANCE)

Deroin, Jean-Paul, Université de Reims Champagne-Ardenne, France

WE1.R8.3: INSAR FOR TIDAL ESTIMATION IN SUPPORT OF CVD, VIRTUAL GAUGES AND DYNAMIC PRODUCTS

<u>Chénier, René</u>, Government of Canada, Canada <u>Blondel, Enrique</u>, Government of Canada, Canada <u>Omari, Khalid</u>, Government of Canada, Canada

WE1.R8.4: INVESTIGATION OF SUBMESOSCALE EDDIES FROM MODIS COLOR INDEX PRODUCTS IN COASTAL REGIONS: A CASE STUDY IN SUBEI SHOAL

<u>Li, Gang</u>, Nanjing University of Information Science and Technology, China <u>He, Yijun</u>, Nanjing University of Information Science and Technology, China <u>Liu, Guoqiang</u>, Nanjing University of Information Science and Technology, China <u>Hu, Chuanmin</u>, University of South Florida, United States <u>Zhang, Yingjun</u>, University of South Florida, United States

WE1.R8.5: STORM SURGE INUNDATION MODELING OF FIVE WINTER STORMS IN SACO-CASCO BAYS: A FVCOM BASED NUMERICAL STUDY

<u>Deb, Saswati</u>, Fisheries and Oceans Canada, Gulf Fisheries Centre, Canada <u>Xue, Huijie</u>, University of Maine, United States <u>Rao, Shivanesh</u>, University of New South Wales, Australia

WE1.R8.6: STATISTICAL ANALYSES OF MARINE OIL POLLUTION IN A SEA REGION OF HIGH ECONOMIC USE: THE WESTERN JAVA SEA

Gade, Martin, Universität Hamburg, Germany Mohr, Veronika, Universität Hamburg, Germany

WE1.R8.7: HIGH-RESOLUTION REMOTE SENSING, IN-SITU OBSERVATIONS, AND MODELING OF LOW-SALINITY LENSES IN THE PRESENCE OF OIL SLICK

Soloviev, Alexander, Nova Southeastern University, United States Vanderplow, Breanna, Nova Southeastern University, United States Dean, Cayla, Nova Southeastern University, United States Schwarz, Egbert, German Aerospace Center, Germany Lehner, Susanne, German Aerospace Center, Germany Hui, Shen, Bedford Institute of Oceanography, Canada Perrie, William, Bedford Institute of Oceanography, Canada Schuler, Paul, Oil Spill Response Limited, United States

WE1.R8.8: AUTOMATED COASTLINE DETECTION FROM LANDSAT 8 OLI/TIRS IMAGES WITH THE PRESENCE OF INLAND WATER BODIES IN ANDAMAN

<u>Mondal, Rajdeep</u>, Indian Institute of Technology Kharagpur, India <u>Mukherjee, Jit</u>, Indian Institute of Technology Kharagpur, India <u>Mukhopadhyay, Jayanta</u>, Indian Institute of Technology Kharagpur, India

WE1.R8.9: SURFZONE BATHYMETRY ESTIMATION USING WAVE CHARACTERISTICS OBSERVED BY UNMANNED AERIAL SYSTEMS

<u>McDonald, Jesse</u>, Lewis-Clark State College, United States <u>Pollard, Jason</u>, Texas A&M University-Corpus Christi, United States <u>Starek, Michael J.</u>, Texas A&M University-Corpus Christi, United States <u>Kar, Dulal</u>, Texas A&M University-Corpus Christi, United States

WE1.R8.10: AUTOMATIC MAPPING OF TROPICAL CYCLONE-INDUCED COASTAL INUNDATION IN SAR IMAGERY BASED ON CLUSTERING OF DEEP FEATURES

<u>Liu, Bin</u>, Shanghai Ocean University, China <u>Li, Xiaofeng</u>, Institute of Oceanology, Chinese Academy of Sciences, China <u>Zheng, Gang</u>, Second Institute of Oceanography, Ministry of Natural Resources, China

WE1.R8.11: INTRA-ANNUAL COASTAL DYNAMICS THROUGH REMOTE SENSORS AND MORPHOSEDIMENTARY PATTERNS, REÑACA BEACH AND CONCON BAY, CENTRAL CHILE.

Briceno-de-Urbaneja, Idania, Universidad Mayor, Chile <u>Ugalde-Peralta, Raul</u>, Universidad Mayor, Chile <u>Sanchez-García, Elena</u>, Universitat Politècnica de València, Spain <u>Pardo-Pascual</u>, <u>Josep</u>, Universitat Politècnica de València, Spain <u>Palomar-Vazquez</u>, <u>Jesus</u>, Universitat Politècnica de València, Spain <u>Perez-Martinez</u>, <u>Waldo</u>, Universidad Mayor, Chile <u>Vidal-Paez</u>, <u>Paulina</u>, Universidad Mayor, Chile <u>Parrao-Barrera</u>, <u>Maximiliano</u>, Universidad Mayor, Chile

WE1.R8.12: SPATIAL-TEMPORAL PATTERNS OF TOTAL SUSPENDED MATTERS (TSM) IN THE YELLOW RIVER ESTUARY

<u>Huang, Pu</u>, Texas A&M University-Corpus Christi, United States <u>Huang, Yuxia</u>, Texas A&M University-Corpus Christi, United States

WE1.R9 - Sea Ice II and Permafrost

Wednesday, September 30, 05:00 - 07:00 o Room 9

WE1.R9.1: MONITORING ICE COVERING LAKE SAROMA BY USING SENTINEL-1 C-BAND SAR DATA

Wakabayashi, Hiroyuki, Nihon University, Japan Tonooka, Hideyuki, Ibaraki University, Japan

WE1.R9.2: SEA ICE AND OPEN WATER CLASSIFICATION OF SAR IMAGES USING A DEEP LEARNING MODE

Ren, Yibin, Institute of Oceanology, China Xu, Huan, Institute of Oceanology, China Liu, Bin, Shanghai Ocean University, China Li, Xiaofeng, Institute of Oceanology, Chinese Academy of Sciences and Center for Ocean Mega-Science, China

WE1.R9.3: SEA-ICE CLASSIFICATION BASED ON OPTICAL IMAGE USING MORPHOLOGICAL PROFILE FEATURES

<u>Zhou, Yuchan</u>, Beijing Institute of Technology, China <u>Li, Wei</u>, Beijing Institute of Technology, China <u>Ren, Peng</u>, China University of Petroleum (East China), China <u>Li, Zhongwei</u>, China University of Petroleum (East China), China <u>Tao, Ran</u>, Beijing Institute of Technology, China

WE1.R9.4: UNSUPERVISED CLUSTERING OF C-BAND POLSAR DATA OVER SEA ICE

<u>Hänsch, Ronny</u>, German Aerospace Center (DLR), Germany <u>Amao, Joel</u>, German Aerospace Center (DLR), Germany <u>Horn, Ralf</u>, German Aerospace Center (DLR), Germany <u>Jäger, Marc</u>, German Aerospace Center (DLR), Germany <u>Scheiber, Rolf</u>, German Aerospace Center (DLR), Germany

WE1.R9.5: A DISTRIBUTION CONTROLLABLE SIMULATION METHOD OF REMOTE SENSING SEA-ICE IMAGES

<u>Zhao, Chunhui</u>, Harbin Engineering University, China <u>Dong, Xiaoyu</u>, Harbin Engineering University, China <u>Yan, Yiming</u>, Harbin Engineering University, China <u>Su, Nan</u>, Harbin Engineering University, China <u>Huang</u>, <u>Bowen</u>, Jushri Technologies, INC, China

WE1.R9.6: SHIP NAVIGATION ROUTE PLANNING USING TOPOLOGY OF SEA ICE CHANNELS EXTRACTED FROM HIGH RESOLUTION SATELLITE IMAGES

<u>Chen, Xi</u>, Peking University, China <u>Shen, Wei</u>, Shanghai Ocean University, China <u>Li, Huan</u>, Peking University, China <u>Cui, Yaokui</u>, Peking University, China <u>Luo, Zengliang</u>, Peking University, China <u>Li, Jing</u>, Beijing Normal University, China

WE1.R9.7: MAPPING VEGETATION AND SEASONAL THAW DEPTH IN CENTRAL ALASKA USING AIRBORNE HYPERSPECTRAL AND LIDAR DATA

<u>Zhang, Caiyun</u>, Florida Atlantic University, United States <u>Douglas, Thomas</u>, U.S. Army Cold Regions Research & Engineering Laboratory, United States <u>Anderson, John</u>, U.S. Army Geospatial Research Laboratory, United States

WE1.R9.8: RETRIEVING SURFACE DEFORMATION OF THE QINGHAI-TIBET RAILWAY ACROSS PERMAFROST AREAS FROM INSAR

<u>Han, Jiangping</u>, Tongji University, China <u>Lu, Ping</u>, Tongji University, China

WE1.R9.9: DEVELOPMENT OF MICROWAVE EMISSION MODEL FOR FROZEN SOIL WITH CONSIDERING THE VOLUME SCATTERING EFFECT

<u>Wang, Jian</u>, Beijing Normal University, China <u>Jiang, Lingmei</u>, Beijing Normal University, China <u>Liu, Xiaojing</u>, Beijing Normal University, China <u>Yang, Jianwei</u>, Beijing Normal University, China

WE1.R9.10: REMOTE SENSING OF MOUNTAIN PERMAFROST LANDSCAPE BY MULTI-FUSION DATA MODELING. EXAMPLE OF VERKHOYANSK RIDGE (RUSSIA)

<u>Gadal, Sebastien</u>, Aix-Marseille University, France <u>Zakharov, Moisei</u>, Aix-Marseille University, France <u>Danilov, Yuri</u>, North Eastern Federal University, Russia <u>Kamicaityte, Jurate</u>, Kaunas University of Technology, Lithuania

WE1.R9.11: COMPREHENSIVE VERIFICATION AND ANALYSIS OF MULTI-SCALE REMOTE SENSING PRODUCTS FOR SURFACE FREEZING-THAWING STATUS ON THE QINGHAI-TIBET PLATEAU

<u>Kou, Xiaokang</u>, Shijiazhuang Tiedao University, China <u>Jia, Zhaoyang</u>, Shijiazhuang Tiedao University, China <u>Yan, Shuang</u>, Hebei Academy of Sciences, China <u>Jin, Mengjie</u>, Shijiazhuang Tiedao University, China <u>Zhang, Yuzhi</u>, Shijiazhuang Tiedao University, China <u>Wang</u>,

Tianliang, Shijiazhuang Tiedao University, China

WE1.R9.12: DETECTING CHANGES OF RETROGRESSIVE THAW SLUMPS FROM SATELLITE IMAGES USING SIAMESE NEURAL NETWORK

<u>Huang, Lingcao</u>, Chinese University of Hong Kong, China <u>Liu, Lin</u>, Chinese University of Hong Kong, China

WE1.R10 - Remote Sensing Wednesday, September 30, 05:00 - 07:00 • Room 10 for Forest and Vegetation Classification, Growth, and Dynamics

WE1.R10.1: COMBINING TANDEM-X, SENTINEL-2 AND FIELD DATA FOR PREDICTION OF SPECIES-WISE STEM VOLUMES

Persson, Henrik, Swedish University of Agricultural Sciences, Sweden Fransson, Johan, Swedish University of Agricultural Sciences, Sweden Jonzén, Jonas, Swedish University of Agricultural Sciences, Sweden Nilsson, Mats, Swedish University of Agricultural Sciences, Sweden

WE1.R10.2: A MULTI-SENSOR APPROACH TO SEPARATE PALM OIL PLANTATIONS FROM FOREST COVER USING NDFI AND A MODIFIED PAULI DECOMPOSITION TECHNIQUE

<u>Muñoz, Erith</u>, FAO, Ecuador <u>Zozaya, Alfonso</u>, Universidad Tecnológica Metropolitana, Chile <u>Lindquist, Erik</u>, FAO, Italy

WE1.R10.3: INVESTIGATING THE LAGGED RELATIONSHIP BETWEEN SMAP SOIL MOISTURE AND LIVE FUEL MOISTURE IN CALIFORNIA, USA

<u>Jia, Shenyue</u>, Chapman University, United States <u>Kim, Seung Hee</u>, Chapman University, United States <u>Nghiem, Son</u>, NASA Jet Propulsion Laboratory, United States <u>Yang, Keun Hang</u>, Chapman University, United States <u>Kafatos, Menas</u>, Chapman University, United States

WE1.R10.4: APPLICATION OF RANDOM FOREST CLASSIFICATION TO DETECT THE PINE WILT DISEASE FROM HIGH RESOLUTION SPECTRAL IMAGES

<u>lordache, Marian-Daniel</u>, Flemish Institute for Technological Research, Belgium <u>Mantas</u>, <u>Vasco</u>, University of Coimbra, Portugal <u>Baltazar</u>, <u>Elsa</u>, University of Coimbra, Portugal <u>Lewyckyj</u>, <u>Nicolas</u>, Flemish Institute for Technological Research, Belgium <u>Souverijns</u>, <u>Niels</u>, Flemish Institute for Technological Research, Belgium

WE1.R10.5: TESTING AND COMPARING THE APPLICABILITY OF SENTINEL-2 AND LANDSAT 8 REFLECTANCE DATA IN ESTIMATING MOUNTAINOUS HERBACEOUS BIOMASS BEFORE AND AFTER FIRE USING RANDOM FOREST MODELLING

<u>Semela, Mmathapelo</u>, University of Free State, South Africa <u>Ramoelo, Abel</u>, South African National Parks, South Africa <u>Adelabu, Samuel</u>, University of Free State, South Africa

WE1.R10.6: EXTRACTION OF DEGRADED STREET TREES BY BLOCKED VEGETATION INDEX

Tokunaga, Mitsuharu, Kanazawa Institute of Technology, Japan

WE1.R10.7: A MULTI-SCALE REMOTE SENSING APPROACH TO UNDERSTANDING VEGETATION DYNAMICS IN THE NAMA KAROO-GRASSLAND ECOTONE OF SOUTH AFRICA

Ndyamboti, Kuhle, University of Jena, Germany du Toit, Justin, Grootfontein Agricultural Development Institute (GADI), South Africa Baade, Jussi, University of Jena, Germany Kaiser, Andreas, University of Jena, Germany Urban, Marcel, University of Jena, Germany Schmullius, Christiane, University of Jena, Germany Thiel, Christian, DLR Institute for Data Science, Germany Berger, Christian, University of Jena, Germany

WE1.R10.8: GENERATING SPATIAL-TEMPORAL CONTINUOUS LAI TIME-SERIES FROM LANDSAT USING NEURAL NETWORK AND METEOROLOGICAL DATA

Zhu, Xinran, State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Jing, State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liu, Qinhuo, State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE1.R10.9: PREDICTING GROWING STOCK VOLUME OF BOREAL FORESTS USING

VERY LONG TIME SERIES OF SENTINEL-1 DATA

Ge, Shaojia, Nanjing University of Science and Technology, China Tomppo, Erkki, Aalto University, Finland Rauste, Yrjö, VTT Technical Research Centre of Finland, Finland Su, Weimin, Nanjing University of Science and Technology, China Gu, Hong, Nanjing University of Science and Technology, China Praks, Jaan, Aalto University, Finland Antropov, Oleg, VTT Technical Research Centre of Finland, Finland

WE1.R10.10: HOURLY GPP ESTIMATION IN AUSTRALIA USING HIMAWARI-8 AHI PRODUCTS

Hashimoto, Hirofumi, ARC-CREST/NASA Ames Research Center, United States Wang, Weile, ARC-CREST/NASA Ames Research Center, United States Michaelis, Andrew, ARC-CREST/NASA Ames Research Center, United States Takenaka, Hideaki, Japan Aerospace Exploration Agency, United States Atsushi, Higuchi, Chiba University, Japan Nemani, Ramakrishna, NASA Ames Research Center, United States

WE1.R10.11: EFFECTS OF TROPICAL FOREST DEGRADATION ON AMAZON FOREST PHENOLOGY

Rangel Pinagé, Ekena, University of Technology Sydney, Australia M. Bell, David, USDA Forest Service, United States Gregory, Matthew, Oregon State University, United States Nguyen Tran, Ngoc, Hanoi University of Science and Technology, Viet Nam Zhang, Wenjie, Chinese Academy of Sciences, China Huete, Alfredo, University of Technology Sydney, Australia

WE1.R11 - Remote Sensing Wednesday, September 30, $05:00 - 07:00 \circ Room 11$ for Crop Monitoring, Mapping and Classification II

WE1.R11.1: VEGETABLE PRODUCTION POTENTIAL IN OAHU, HAWAII WITH AN INTEGRATED USE OF SENTINEL-2 TIME SERIES AND GIS MODELING

<u>Miura, Tomoaki</u>, University of Hawaii at Manoa, United States <u>Loke, Matthew</u>, Hawaii Department of Agriculture, United States

WE1.R11.2: RICE MONITORING WITH TIME SERIES SAR BASED ON DEEP LEARNING MODEL

Zhang, Hong, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, CAS, China Wei, Sisi, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, CAS, China Wang, Chao, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, CAS, China Sun, Chunling, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, CAS, China Xu, Lu, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, CAS, China CAS, China

WE1.R11.3: UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS

Constantino Recillas, Daniel Enrique, ESIME Zacatenco, Instituto Politécnico Nacional, Mexico Arizmendi Vasconcelos, Eduardo, ESIME Ticomán, Instituto Politécnico Nacional,, Mexico Monsiváis Huertero, Alejandro, ESIME Ticomán, Instituto Politécnico Nacional,, Mexico Jiménez Escalona, José Carlos, ESIME Ticomán, Instituto Politécnico Nacional,, Mexico Torres Gómez, Aura Citlalli, Instituto de geografía y geomática Ing. Jorge L. Tamayo, Mexico De La Rosa Montero, Iván Edmundo, ESIME Ticomán, Instituto Politécnico Nacional,, Mexico Hernández Sánchez, Juan Carlos, ESIME Ticomán, Instituto Politécnico Nacional,, Mexico Villalobos Martínez, Roberto Ivan, ESIME Ticomán, Instituto Politécnico Nacional, Mexico Zempoaltecatl-Ramírez, Enrique, ESIME Ticomán, Instituto Politécnico Nacional, Mexico Aparicio García, Ramón Sidonio, ESIME Ticomán, Instituto Politécnico Nacional, Mexico Huerta Batiz, Héctor Ernesto, ESIME Ticomán, Instituto Politécnico Nacional, Mexico Zambrano Gallardo, Cira Francisca, ESIME Ticomán, Instituto Politécnico Nacional, Mexico Sánchez Villanueva, Carlos Rodolfo, ESIME Ticomán, Instituto Politécnico Nacional, Mexico Arizmendi Vasconcelos, Leonardo, ESIME Ticomán, Instituto Politécnico Nacional, Mexico Saúce Rangel, Víctor Manuel, ESIME Ticomán, Instituto Politécnico Nacional, Mexico Judge, Jasmeet, University of Florida, United States

WE1.R11.4: ANALYSIS OF THE RELATION BETWEEN S-BAND BACKSCATTER AND RANKS DISTRIBUTION OF WHEAT

He, Lei, Chengdu University of Information Technology, China Zhang, Cunjie, Operational System Development and Maintenance Division, China Li, Yuzhen, Chengdu Software Development Center, China Li, Yuxia, University of Electronic Science and Technology of China, China

WE1.R11.5: A EUROPEAN TEST SITE FOR GROUND DATA MEASUREMENT AND EARTH OBSERVATION SERVICES VALIDATION

Rinaldi, Michele, Consiglio per la Ricerca in Agricoltura e l'Analisi Economica, Italy Colecchia, Salvatore Antonio, Consiglio per la Ricerca in Agricoltura e l'Analisi Economica, Italy Ruggieri, Sergio, Consiglio per la Ricerca in Agricoltura e l'Analisi Economica, Italy Balenzano, Anna, Consiglio Nazionale delle Ricerche, Italy Mattia, Francesco, Consiglio Nazionale delle Ricerche, Italy Satalino, Giuseppe, Consiglio Nazionale delle Ricerche, Italy

WE1.R11.6: MONITORING AND ANALYSIS OF VIIRS FIRE EVENTS DATA OVER INDIAN STATES OF PUNJAB AND HARYANA

<u>Singh, Dineshkumar</u>, Tata Consultancy Services, India <u>Mohite, Jayantrao</u>, Tata Consultancy Services, India <u>Sawant, Suryakant</u>, Tata Consultancy Services, India <u>Pappula, Srinivasu</u>, Tata Consultancy Services, India

WE1.R11.7: COMBINED USE OF SENTINEL-1, SENTINEL-2 AND LANDSAT 7 & 8 DATA FOR ESTIMATING HEADING DATE OF RICE WITH DIFFERENT CULM LENGTHS

<u>Wakamori, Koji</u>, VisionTech Inc., Japan <u>Ichikawa, Dorj</u>, Yamaguchi University Graduate School of Frontier Sciences, Japan

WE1.R11.8: OBSERVATION OF CROP GROWTH CONDITION IN DIFFERENT REGIONS OF UZBEKISTAN

Ichikawa, Dorj, Yamaguchi University, Japan Nagai, Masahiko, Yamaguchi University, Japan Imaki, Kazuya, Japan Manned Space Systems Corporation, Japan Saytov, Kadambay, Tashkent State Technical University, Uzbekistan Abdujabarov, Nuriddin, Tashkent State Technical University, Uzbekistan Ikeda, Takashi, Cabinet Office, The Government of Japan, Japan

WE1.R11.9: MONITORING OF OLIVE TREES TEMPERATURES UNDER DIFFERENT IRRIGATION STRATEGIES BY UAV THERMAL INFRARED IMAGERY

Marques, Pedro, University of Trás-os-Montes e Alto Douro, Portugal <u>Pádua, Luís</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Brito, Thyago</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Sousa, Joaquim J.</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Fernandes-Silva, Anabela</u>, University of Trás-os-Montes e Alto Douro, Portugal

WE1.R11.10: AGRICULTURAL FIELDS MONITORING WITH MULTI-TEMPORAL POLARIMETRIC SAR (MT-POLSAR) CHANGE DETECTION

<u>Silva-Perez, Cristian</u>, University of Stirling, United Kingdom <u>Marino, Armando</u>, University of Stirling, United Kingdom <u>Lopez-Sanchez, Juan M</u>, University of Alicante, Spain <u>Cameron, Iain</u>, Environment systems LTD, United Kingdom

WE1.R11.11: ASSESSING THE DIRECTIONAL EFFECTS OF REMOTELY SENSED LAND SURFACE TEMPERATURE ON EVAPOTRANSPIRATION ESTIMATION

<u>Jiang, Yazhen</u>, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China <u>Tang, Ronglin</u>, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China <u>Jiang, Xiaoguang</u>, University of <u>Chinese Academy of Sciences</u>, China

WE1.R12 - SAR Instruments Wednesday, September 30, 05:00 - 07:00

Room 12 and Calibration

WE1.R12.1: A KA-BAND ALONG TRACK INTERFEROMETRY AND GROUND MOVING TARGET IDENTIFICATION ARCHITECTURE BASED ON REFLECTARRAY ANTENNAS

Schobert, Dennis, European Space Agency (ESA-ESTEC), Netherlands <u>Ludwig, Michael</u>, European Space Agency (ESA-ESTEC), Netherlands <u>Marote, David</u>, Airbus Defence and Space SAU, Spain <u>Zhou, Min</u>, TICRA, Denmark <u>Notter, Michael</u>, Airbus Defence and Space Ltd, United Kingdom

WE1.R12.2: PERFORMANCE OF SWESARR'S MULTI-FREQUENCY DUAL-POLARIMETRY SYNTHETIC APERTURE RADAR DURING NASA'S SNOWEX AIRBORNE CAMPAIGN

Rincon, Rafael, NASA, United States Osmanoglu, Batuhan, NASA, United States Racette, Paul, NASA, United States Perrine, Martin, NASA, United States Brucker, Ludovic, NASA, United States Seufert, Steve, NASA, United States Kielbasa, Chase, NASA, United States Warren, Adam, NASA, United States

WE1.R12.3: INITIAL NOVASAR-1 DATA PROCESSING AND IMAGERY EVALUATION

Zhou, Zheng-Shu, Commonwealth Scientific and Industrial Research Organisation, Australia Parker, Amy, Commonwealth Scientific and Industrial Research Organisation, Australia Brindle, Laura, Commonwealth Scientific and Industrial Research Organisation, Australia Rosenqvist, Ake, solo Earth Observation (soloEO), Japan Caccetta, Peter, Commonwealth Scientific and Industrial Research Organisation, Australia Held, Alex, Commonwealth Scientific and Industrial Research Organisation, Australia

WE1.R12.4: RECALIBRATING SENTINEL-1 ADDITIVE NOISE-GAIN WITH LINEAR PROGRAMMING

<u>Lee, Peter</u>, University of Waterloo, Canada <u>Xu, Linlin</u>, University of Waterloo, Canada <u>Clausi, David</u>, University of Waterloo, Canada

WE1.R12.5: RESIDUAL MOTION ESTIMATION FOR MULTI-SQUINT AIRBORNE SAR

<u>Hawkins, Brian</u>, NASA Jet Propulsion Laboratory, United States <u>Michel, Thierry</u>, NASA Jet Propulsion Laboratory, United States <u>Hensley, Scott</u>, NASA Jet Propulsion Laboratory, United States

WE1.R12.6: MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS

Henke, Daniel, University of Zurich, Switzerland Mendez Dominguez, Elias, University of Zurich, Switzerland Fagir, Julian, University of Zurich, Switzerland Fritsche, Liv, University of Zurich, Switzerland Horn, Ralf, German Aerospace Center (DLR), Germany Scheiber, Rolf, German Aerospace Center (DLR), Germany Reigber, Andreas, German Aerospace Center (DLR), Germany Sieger, Stefan, Fraunhofer Institute, Germany Janssen, Daniel, Fraunhofer Institute, Germany Klöppel, Frank, Fraunhofer Institute, Germany Caris, Michael, Fraunhofer Institute, Germany Stanko, Stephan, Fraunhofer Institute, Germany Renker, Matthias, armasuisse, Switzerland Wellig, Peter, armasuisse, Switzerland

WE1.R12.7: DEVELOPMENT AND RESULTS FOR A NEW SOFTWARE DEFINED RADAR: THE SLIMSDR

Zaugg, Evan, ARTEMIS, Inc., United States Margulis, Alexander, ARTEMIS, Inc., United States Margulis, Maximillian, ARTEMIS, Inc., United States Bradley, Joshua, ARTEMIS, Inc., United States Kozak, Alexander, ARTEMIS, Inc., United States Budge, Jeffrey, ARTEMIS, Inc., United States

WE1.R12.8: AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS

<u>O'Neill, Charles</u>, University of Alabama, United States <u>Gogineni, Prasad</u>, University of Alabama, United States <u>Yan, Jie-Bang</u>, University of Alabama, United States <u>Taylor, Drew</u>, University of Alabama, United States <u>Hong, Yang-Ki</u>, University of Alabama, United States

WE1.R12.9: PASSIVE RADAR INVESTIGATIONS OF EUROPA'S IONOSPHERE: A LOW-RESOURCE APPROACH FOR VHF DISPERSION CORRECTIONS AND IONOSPHERIC TOMOGRAPHY

<u>Peters, Sean</u>, Stanford University, United States <u>Schroeder, Dustin</u>, Stanford University, United States <u>Romero-Wolf, Andrew</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

WE1.R13 - Recent Advances Wednesday, September 30, 05:00 - 07:00 Room 13 in GNSS-Reflectometry:

Calibration, Coherent/Incoherent Scattering, and Land Applications

WE1.R13.1: GLOBAL SOIL MOISTURE ESTIMATION USING CYGNSS DATA

<u>Yan, Qingyun</u>, Nanjing University of Information Science and Technology, China <u>Jin</u>, <u>Shuanggen</u>, Nanjing University of Information Science and Technology, China <u>Huang, Weimin</u>, Memorial University of Newfoundland, Canada <u>Jia</u>, <u>Yan</u>, Nanjing University of Posts and Telecommunications, Canada

WE1.R13.2: ASSESSMENT OF CYGNSS CHARACTERIZATION OF TROPICAL CYCLONES USING MATCHED FILTER BASED RETRIEVALS

<u>Al-Khaldi, Mohammad</u>, The Ohio State University, United States <u>Johnson, Joel</u>, The Ohio State University, United States <u>Katzberg, Steven</u>, NASA Langley Research Center; South Carolina State University, United States <u>Kang, Younghun</u>, The Ohio State University, United States <u>Kubatko, Ethan</u>, The Ohio State University, United States

WE1.R13.3: CHARACTERIZATION AND IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE FOR GNSS REFLECTOMETRY

<u>Wang, Pai</u>, University of Colorado Boulder, United States <u>Wang, Yang</u>, University of Colorado Boulder, United States <u>Morton, Y. Jade</u>, University of Colorado Boulder, United States

WE1.R13.4: A TOPOGRAPHICALLY-ACCURATE GNSS-R REFLECTION POINT PREDICTOR FOR ON-BOARD OPERATIONAL PROCESSING

<u>King, Lucinda</u>, University of Surrey, United Kingdom <u>Unwin, Martin</u>, Surrey Satellite Technology Ltd., United Kingdom <u>Rawlinson, Jonathan</u>, Surrey Satellite Technology Ltd., United Kingdom <u>Guida, Raffaella</u>, University of Surrey, United Kingdom <u>Underwood, Craig</u>, University of Surrey, United Kingdom

WE1.R13.5: LAND AND OCEAN COHERENCE DETECTION USING THE CYCLONE GLOBAL NAVIGATION SATELLITE SYSTEM (CYGNSS) MISSION LEVEL-1 DELAY-DOPPLER MAPS

<u>Al-Khaldi, Mohammad</u>, The Ohio State University, United States <u>Johnson, Joel</u>, The Ohio State University, United States <u>Gleason, Scott</u>, University Corporation for Atmospheric Research, United States <u>Loria, Eric</u>, The Ohio State University, United States <u>O'Brien, Andrew</u>, The Ohio State University, United States <u>Yi, Yuchan</u>, School of Earth Sciences, United States

WE1.R13.6: INVESTIGATING THE IMPACT OF COHERENT AND INCOHERENT SCATTERING TERMS IN GNSS-R DELAY DOPPLER MAPS

<u>Carreno-Luengo, Hugo</u>, University of Michigan (UM), United States <u>Ruf, Chris</u>, University of Michigan (UM), United States <u>Warnock, April</u>, SRI International, United States <u>Brunner</u>, <u>Kelsey</u>, SRI International, United States

WE1.R13.7: GPS SIGNAL LAND REFLECTION COHERENCE DEPENDENCE ON WATER EXTENT AND SURFACE TOPOGRAPHY USING CYGNSS MEASUREMENTS

<u>Collett, Ian</u>, University of Colorado Boulder, United States <u>Wang, Yang</u>, University of Colorado Boulder, United States <u>Shah, Rashmi</u>, NASA Jet Propulsion Laboratory, United States <u>Roesler</u>, <u>Carolyn</u>, University of Colorado Boulder, United States <u>Morton, Y. Jade</u>, University of Colorado Boulder, United States

WE1.R13.8: DETECTION OF COHERENT GNSS-R MEASUREMENTS USING A SUPPORT VECTOR MACHINE

<u>Wang, Yang</u>, University of Colorado Boulder, United States <u>Liu, Yunxiang</u>, University of Colorado Boulder, United States <u>Roesler, Carolyn</u>, University of Colorado Boulder, United States <u>Morton, Jade</u>, University of Colorado Boulder, United States

WE1.R13.9: WAVE COHERENCE IN GNSS REFLECTOMETRY: A SIGNAL PROCESSING POINT OF VIEW

Russo, Ilaria Mara, Università degli Studi del Sannio, Italy di Bisceglie, Maurizio, Università degli Studi del Sannio, Italy Galdi, Carmela, Università degli Studi del Sannio, Italy Lavalle, Marco, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Zuffada, Cinzia, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

WE1.R13.10: COHERENT GPS REFLECTIONS OVER OCEAN SURFACE

Roesler, Carolyn, University of Colorado Boulder, United States Wang, Yang, University of Colorado Boulder, United States Morton, Jade, University of Colorado Boulder, United States Nerem, Steve, University of Colorado Boulder, United States

WE1.R14 - Data Management Wednesday, September 30, 05:00 - 07:00 \circ Room 14 and Systems I

WE1.R14.1: BIG DATA STANDARDS AND ANALYSIS-READINESS: STATUS AND

EVOLUTION

Baumann, Peter, Jacobs University | rasdaman GmbH, Germany

WE1.R14.2: ADVANCING OPEN SCIENCE THROUGH INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM (MAAP)'S DATA ECOSYSTEM

Bugbee, Kaylin, University of Alabama in Huntsville, United States Ramachandran, Rahul, NASA Marshall Space Flight Center, United States Maskey, Manil, NASA Marshall Space Flight Center, United States Barciauskas, Aimee, Development Seed, United States Kaulfus, Aaron, University of Alabama in Huntsville, United States Ton That, Dai-Hai, University of Alabama in Huntsville, United States Wirts, Katrina, University of Alabama in Huntsville, United States Markert, Kel, University of Alabama in Huntsville, United States Lynnes, Chris, NASA Goddard Space Flight Center, United States

WE1.R14.3: A MACHINE LEARNING APPROACH FOR DATA QUALITY CONTROL OF EARTH OBSERVATION DATA MANAGEMENT SYSTEM

<u>Han, Weiguo</u>, University Corporation for Atmospheric Research, United States <u>Jochum</u>, <u>Matthew</u>, National Oceanic and Atmospheric Administration, United States

WE1.R14.4: CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS

Rolland, Jean-François, ATOS, France Castel, Fabien, ATOS, France Haugommard, Anne, ATOS, France Aubrun, Michelle, Thales Alenia Space, France Yao, Wei, German Aerospace Center DLR, Germany Dumitru, Corneliu Octavian, German Aerospace Center DLR, Germany Datcu, Mihai, German Aerospace Center DLR, Germany Bylicki, Michal, CloudFerro, Poland Tran, Ba-Huy, IRIT, France Aussenac-Gillles, Nathalie, IRIT, France Comparot, Catherine, IRIT, France Trojahn, Cassia, IRIT, France

WE1.R14.5: SAR METADATA STANDARDS: SINGLE-LOOK COMPLEX DATA

Pierce, Leland, University of Michigan, United States

WE1.R14.6: A MANAGEMENT SYSTEM FOR FORESTRY REMOTE SENSING IMAGES BASED ON THE GLOBAL SUBDIVISION MODEL

<u>Zhai, Weixin</u>, Peking University, China <u>Yu, Jiajie</u>, China Academy of Railway Sciences, China <u>Zhu, Daoye</u>, Peking University, China <u>Han, Bing</u>, Peking University, China <u>Miao, Shuangxi</u>, Peking University, China <u>Cheng, Chengqi</u>, Peking University, China <u>Xie, Peng</u>, Xi'an Research Institute of Surveying and Mapping, China

WE1.R14.7: AN APPROACH FOR INTEGRATING EARTH OBSERVATION, CHANGE DETECTION AND CONTEXTUAL DATA FOR SEMANTIC SEARCH

<u>Tran, Ba-Huy, IRIT, France Aussenac-Gilles, Nathalie, IRIT, France Comparot, Catherine, IRIT, France Trojahn, Cassia, IRIT, France</u>

WE1.R14.8: DEEP NEURAL NETWORK-BASED DATA RECONSTRUCTION FOR LANDSLIDE DETECTION

<u>Utomo, Darmawan</u>, Satya Wacana Christian University, Indonesia <u>Hu, Liang-Cheng</u>, National Chung Cheng University, Taiwan <u>Hsiung, Pao-Ann</u>, National Chung Cheng University, Taiwan

WE1.R14.9: DEVELOPMENT OF GEOSPATIAL PROCESSING FRAMEWORKS FOR SENTINEL-1, -2 SATELLITE DATA

<u>Pandit, Ankur</u>, TCS Innovation Labs, India <u>Sawant, Suryakant</u>, TCS Innovation Labs, India <u>Mohite, Jayantrao</u>, TCS Innovation Labs, India <u>Pappula, Srinivasu</u>, TCS Innovation Labs, India

WE1.R14.10: GEOCUBE: TOWARDS THE MULTI-SOURCE GEOSPATIAL DATA CUBE IN BIG DATA ERA

Yue, Peng, Wuhan University, China Shangguan, Boyi, Wuhan University, China Zhang, Mingda, Wuhan University, China Gao, Fan, Wuhan University, China Cao, Zhipeng, Wuhan University, China Jiang, Liangcun, Wuhan University, China Fang, Zhe, Wuhan University, China

WE1.R14.11: STANDARDIZED ALGORITHM DOCUMENTATION FOR IMPROVED SCIENTIFIC DATA UNDERSTANDING: THE ALGORITHM PUBLICATION TOOL PROTOTYPE

<u>Bugbee, Kaylin</u>, University of Alabama in Huntsville, United States <u>Kaulfus</u>, <u>Aaron</u>, University of Alabama in Huntsville, United States <u>Harris</u>, <u>Alyssa</u>, Development Seed, United States

<u>Bailey, Sean</u>, NASA Goddard Space Flight Center, United States <u>Ramachandran, Rahul</u>, NASA Marshall Space Flight Center, United States <u>Harkins, Sean</u>, Development Seed, United States <u>Barciauskas, Aimee</u>, Development Seed, United States <u>Smith, Deborah</u>, University of

WE1.R15 - Passive Optical, Hyperspectral Sensors and Calibration II Wednesday, September 30, 05:00 - 07:00 \circ Room 15

WE1.R15.1: INFLIGHT RADIOMETRIC CALIBRATION FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON

Imai, Masataka, National Institute of Advanced Industrial Science and Technology (AIST), Japan Kouyama, Toru, National Institute of Advanced Industrial Science and Technology (AIST), Japan Kurihara, Junichi, Hokkaido University, Japan Kuwahara, Toshinori, Tohoku University, Japan Fujita, Shinya, Tohoku University, Japan Sakamoto, Yuji, Tohoku University, Japan Saitoh, Sei-Ichi, Hokkaido University, Japan Hirata, Takafumi, Hokkaido University, Japan Takahashi, Yukihiro, Hokkaido University, Japan

WE1.R15.2: RECONSTRUCTING MODIS LST PRODUCTS OVER TIBETAN PLATEAU BASED ON RANDOM FOREST

Cheng, Yuan, University of Electronic Science and Technology of China, China Li, Yuxia, University of Electronic Science and Technology of China, China Wu, Huanping, China Meteorological Administration, China Li, Fan, University of Electronic Science and Technology of China, China He, Lei, Chengdu University of Information Technology, China Li, Yuzhen, ChengDu Software Industry Development Center, China

WE1.R15.3: ONBOARD DATA REDUCTION FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGES VIA CLOUD SCREENING

<u>Cilia, Martina</u>, Politecnico di Torino, Italy <u>Prette, Nicola</u>, Politecnico di Torino, Italy <u>Magli. Enrico</u>, Politecnico di Torino, Italy <u>Sang, Bernhard</u>, OHB System AG, Germany <u>Pieraccini. Stefano</u>, OHB System AG, Germany

WE1.R15.4: A CALIBRATION AND VALIDATION TOOL FOR DATA QUALITY ANALYSIS OF AIRBORNE IMAGING SPECTROSCOPY DATA

<u>Meiller, Carmen</u>, University of Zurich, Switzerland <u>Kuehnle, Helena</u>, University of Zurich, Switzerland <u>Werfeli, Mike</u>, University of Zurich, Switzerland <u>Hueni, Andreas</u>, University of Zurich, Switzerland

WE1.R15.5: CORRECTION OF CAMERA INTERIOR ORIENTATION ELEMENTS BASED ON MULTI-FRAME STAR MAP

<u>Guan, Zhichao</u>, Wuhan University, China <u>Zhang, Guo</u>, Wuhan University, China <u>Ge, Linlin</u>, University of New South Wales, Australia

WE1.R15.6: CROSSTALK EFFECT IN NOAA 20 VIIRS THERMAL EMISSIVE BANDS

Sun. Junqiang, Science and System Applications, Inc., United States Xiong, Xiaoxiong, NASA, United States

WE1.R15.7: PRELIMINARY JPSS-3 VIIRS POLARIZATION SENSITIVITY AND COMPARISON WITH S-NPP, JPSS-1 AND -2

<u>Moyer, David</u>, The Aerospace Corporation, United States <u>McIntire, Jeff</u>, Science Systems and Applications, Inc., United States <u>Xiong, Xiaoxiong</u>, NASA, United States <u>Thome, Kurtis</u>, NASA, United States

WE1.R15.8: BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION

Zhao, Yongguang, Academy of Opto-Electronics, Chinese Academy of Sciences, China Ma, Lingling, Academy of Opto-Electronics, Chinese Academy of Sciences, China Liu, Yaokai, Academy of Opto-Electronics, Chinese Academy of Sciences, China Qian, Yonggang, Academy of Opto-Electronics, Chinese Academy of Sciences, China Li, Kun, Academy of Opto-Electronics, Chinese Academy of Sciences, China Wang, Ning, Academy of Opto-Electronics, Chinese Academy of Sciences, China Gao, Caixia, Academy of Opto-Electronics, Chinese Academy of Sciences, China Zhu, Xiaohua, Academy of Opto-Electronics, Chinese Academy of Sciences, China Li, Wan, Academy of Opto-Electronics, Chinese Academy of Sciences, China Li, Wan, Academy of Opto-Electronics, Chinese Academy of Sciences,

China

WE1.R15.9: ANALYSIS OF RADIANCE ERROR CAUSED BY THE CHANNEL CENTER WAVELENGTH SHIFT OF IMAGING SPECTROMETER

Zhang, Yaqiong, Center for Satellite Application on Ecology and Environment, Ministry of Ecology and Environment, China Zhang, Wenjuan, Aerospace Information Research Institute, Chinese Academy of Sciences, China Chen, Zhengchao, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhang, Hao, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE1.R15.10: LIFETIME PERFORMANCE ASSESSMENT OF SNPP OMPS NADIR MAPPER SDR DATA USING SIMULTANEOUS NADIR OVERPASS COLLOCATED OBSERVATIONS WITH GOME-2

<u>Liang, Ding</u>, Global Science and Technology, United States <u>Yan, Banghua</u>, NOAA/STAR/SMCD, United States <u>Sun, Ninghai</u>, Global Science and Technology, United States <u>Flynn, Lawrence</u>, NOAA/STAR, United States <u>Pan, Chunhui</u>, UMD, United States <u>Beck, Trevor</u>, NOAA/STAR, United States

WE1.R15.11: AN EARTH SCIENCE IMAGING SPECTROSCOPY MISSION: THE EARTH SURFACE MINERAL DUST SOURCE INVESTIGATION (EMIT)

<u>Green, Robert</u>, NASA Jet Propulsion Laboratory, United States <u>Thompson, David</u>, NASA Jet Propulsion Laboratory, United States

WE1.R16 - Processing and Imaging Techniques II

Wednesday, September 30, 05:00 - 07:00 \circ Room 16

WE1.R16.1: A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR

<u>Li, Kun</u>, Beijing Institute of Spacecraft System Engineering, China <u>Wang, Jie</u>, Nanjing University of Information Science and Technology, China <u>Chen, Longyong</u>, Institute of Electronics, Chinese Academy of Sciences, China <u>Ni, Wenjian</u>, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China <u>Lv, Zheng</u>, Beijing Institute of Spacecraft System Engineering, China <u>Liu, Lei</u>, Beijing Institute of Spacecraft System Engineering, China <u>Xu, Mingming</u>, Beijing Institute of Spacecraft System Engineering, China <u>Du, Jianbo</u>, Beijing Institute of Spacecraft System Engineering, China <u>Liu, Jie</u>, Beijing Institute of Spacecraft System Engineering, China <u>Chang, Qingjun</u>, Beijing Institute of Spacecraft System Engineering, China <u>Chang, Qingjun</u>, Beijing Institute of Spacecraft System Engineering, China <u>Chang, Qingjun</u>, Beijing Institute of Spacecraft System Engineering, China <u>Chang, Qingjun</u>, Beijing Institute of Spacecraft System Engineering, China

WE1.R16.2: AN EFFICIENT WATER SEGMENTATION METHOD FOR SAR IMAGES

<u>Dai, Muchen</u>, National University of Defense Technology, China <u>Leng, Xiangguang</u>, National University of Defense Technology, China <u>Xiong, Boli</u>, National University of Defense Technology, China <u>Ji, Kefeng</u>, National University of Defense Technology, China

WE1.R16.3: CURRENT DIRECTION RETRIEVAL ON THE GULF STREAM SURFACE LAYER

<u>Yang, Xiaobo</u>, Nanjing University of Information Science and Technology, China <u>He, Yijun</u>, Nanjing University of Information Science and Technology, China

WE1.R16.4: A NOVEL ISAR IMAGING ALGORITHM FOR NONUNIFORMLY ROTATING TARGET

<u>Bai, Xia</u>, Beijing Institute of Technology, China <u>Feng, Yi</u>, Beijing Institute of Technology, China <u>Zhao, Juan</u>, Beijing Institute of Technology, China

WE1.R16.5: CHALLENGES AND OPPORTUNITIES FOR STAGGERED SAR WITH LOW OVERSAMPLING FACTORS

Zhou, Zi-Xuan, Aerospace Information Research Institute, Chinese Academy of Sciences, China Deng, Yunkai, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wang, Wei, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wang, Robert, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zou, Hang, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liang, Da, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE1.R16.6: EXPEDITING PHASE GRADIENT AUTOFOCUS ALGORITHM FOR SAR IMAGING

Zhang, Tinghao, Xidian University, China Li, Yachao, Xidian University, China Zhang, Tao, Xidian University, China Gu, Tong, Xidian University, China

WE1.R16.7: A SAR IMAGING METHOD BASED ON LP AND TV COMPOSITE NORM REGULARIZATION

<u>Wang, Shuang</u>, Beihang University, China <u>Xu, Huaping</u>, Beihang University, China <u>Zhang</u>, <u>Jiawei</u>, Beihang University, China

WE1.R16.8: SAR IMAGE REGISTRATION BASED ON OPTIMIZED RANSAC ALGORITHM WITH MIXED FEATURE EXTRACTION

Liao, Furong, School of Automation Engineering, University of Electronic Science and Technology of China, China Chen, Yan, School of Automation Engineering, University of Electronic Science and Technology of China, China Chen, Yunping, School of Automation Engineering, University of Electronic Science and Technology of China, China Lu, Youchun, China Center for Resources Satellite Data and Application, China

WE1.R16.9: SUPPRESSION OF ADDITIONAL AZIMUTH AMBIGUITIES UNDER MULTI-CHANNEL AND MULTI-WAVEFORM SAR

<u>Natsuaki, Ryo</u>, University of Tokyo, Japan <u>Prats-Iraola, Pau</u>, German Aerospace Center, Germany

WE1.R16.10: ISAR IMAGING OF SPACE STATION BASED ON EPHEMERIS DATA ERROR COMPENSATION

<u>Gao, Anqi</u>, Beihang University, China <u>Li. Jingwen</u>, Beihang University, China <u>Sun, Bing</u>, Beihang University, China <u>Guo, Yukun</u>, Beihang University, China

WE1.R16.11: FIRST EXPERIENCES WITH ACTIVE C-BAND RADAR REFLECTORS AND SENTINEL-1

Gisinger, Christoph, German Aerospace Center (DLR), Germany Eineder, Michael, German Aerospace Center (DLR), Germany Brcic, Ramon, German Aerospace Center (DLR), Germany Balss, Ulrich, German Aerospace Center (DLR), Germany Gruber, Thomas, Technical University of Munich (TUM), Germany Oikonomidou, Xanthi, Technical University of Munich (TUM), Germany Heinze, Markus, Technical University of Munich (TUM), Germany

WE1.R16.12: THE EFFECTS OF NOISE, SPARSITY AND PHASE ON PSEUDO-RANDOM TIME-SPACE MODULATION SAR PERFORMANCE

<u>Liu, Ying</u>, Beihang University, China <u>Yu, Ze</u>, Beihang University, China <u>Chen, Wenjiao</u>, Beihang University, China <u>Yu, Jindong</u>, Beihang University, China <u>Geng, Jiwen</u>, Beihang University, China

WE1.R17 - Detection and Classification in Urban Environment

Wednesday, September 30, 05:00 - 07:00 • Room 17

WE1.R17.1: VEHICLE DETECTION WITH BOTTOM ENHANCED RETINANET IN AERIAL IMAGES

Gao, Peng, Huazhong University of Science and Technology, China Tian, Jinwen, Huazhong University of Science and Technology, China Tai, Yuan, Huazhong University of Science and Technology, China Zhao, Tianming, Huazhong University of Science and Technology, China Gao, Qian, Huazhong University of Science and Technology, China

WE1.R17.2: RESEARCH ON VEHICLE DETECTION BASED ON FASTER R-CNN FOR UAV IMAGES

Wang, Meng, School of ResoUniversity of Electronic Science and Technology of China, China Luo, Xin, School of ResoUniversity of Electronic Science and Technology of China, China Wang, Xiao, School of ResoUniversity of Electronic Science and Technology of China, China Tian, Xiaoyue, School of ResoUniversity of Electronic Science and Technology of China, China

WE1.R17.3: DETECTION UNDERGROUND STRUCTURES IN CYPRUS USING LANDSAT-8 BANDS

Melillos, George, Cyprus University of Technology, Cyprus G. Hadjimitsis, Diofantos, Cyprus

University of Technology, Cyprus

WE1.R17.4: BUILDING RECOGNITION OF UAV REMOTE SENSING IMAGES BY DEEP LEARNING

Zheng, Lijuan, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Ai, Ping, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Wu, Yu, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE1.R17.5: BUILDING DETECTION VIA A TWO-STREAM FPN NETWORK FROM PANCHROMATIC AND MULTI-SPECTRAL IMAGES

Zhou, Feipeng, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China Liu, Qingjie, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China Wang, Yunhong, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China Xu, Tao, Jinan University, China Wen, Qi, National Disaster Reduction Center of China, China

WE1.R17.6: CLASSIFICATION OF BUILDING STRUCTURE TYPES USING UAV OPTICAL IMAGES

<u>Wu, Haolin</u>, Institute of Geology, China Earthquake Administration, China <u>Nie, Gaozhong</u>, Institute of Geology, China Earthquake Administration, China <u>Fan, Xiwei</u>, Institute of Geology, China Earthquake Administration, China

WE1.R17.7: URBAN SCENES CHANGE DETECTION BASED ON MULTI-SCALE IRREGULAR BAG OF VISUAL FEATURES FOR HIGH SPATIAL RESOLUTION IMAGERY

<u>Chen, Jiale</u>, China University of Geosciences, China <u>Zhu, Qiqi</u>, China University of Geosciences, China <u>Zhong, Yanfei</u>, Wuhan University, China <u>Guan, Qingfeng</u>, China University of Geosciences, China <u>Zhang, Liangpei</u>, Wuhan University, China <u>Li, Deren</u>, Wuhan University, China

WE1.R17.8: INCORPORATING MULTI-SOURCE REMOTE SENSING IN THE DETECTION OF EARTHQUAKE-DAMAGED BUILDINGS BASED ON LOGISTIC REGRESSION MODELLING

<u>Li, Qiang</u>, Institute of Crustal Dynamics, China Earthquake Administration, China <u>Gong, Lixia</u>, Institute of Crustal Dynamics, China Earthquake Administration, China <u>Jiang, Hongbo</u>, Institute of Crustal Dynamics, China Earthquake Administration, China <u>Jiao</u>, <u>Qisong</u>, Institute of Crustal Dynamics, China Earthquake Administration, China

WE1.R17.9: STREET VIEW IMAGE RETRIEVAL WITH AVERAGE POOLING FEATURES

<u>Chu, Tianyou</u>, Wuhan University, China <u>Chen, Yumin</u>, Wuhan University, China <u>Huang, Liheng,</u> Wuhan University, China <u>Tan, Huangyuan</u>, Wuhan University, China <u>Cao, Jiping</u>, Wuhan University, China <u>Xu, Zhiqiang</u>, Wuhan University, China

WE1.R17.10: AN APPROACH FOR FAULT DETECTION IN METALLIC STRUCTURES USING MILLIMETER WAVE IMAGING

<u>Bivalkar, Mandar</u>, Indian Institute of Technology Roorkee, India <u>Singh, Dharmendra</u>, Indian Institute of Technology Roorkee, India

WE1.R17.11: AIRPORT DETECTION BASED ON SALIENCY ANALYSIS AND GEOMETRIC FEATURE DETECTION FOR REMOTE SENSING IMAGES

<u>Zhu, Wanning</u>, Beijing Normal University, China <u>Zhang, Qijian</u>, Beijing Normal University, China <u>Zhang, Libao</u>, Beijing Normal University, China

WE1.R17.12: IDENTIFYING SETTLEMENTS USING SVM AND U-NET

<u>Mutreja, Guneet</u>, ESRI, India <u>Kumar, Sandeep</u>, ESRI, India <u>Jha, Divyansh</u>, ESRI, India <u>Singh, Abhra</u>, Jamia Millia Islamia, India <u>Singh, Rohit</u>, ESRI, India

WE1.R18 - Vessels Detection Wednesday, September 30, 05:00 - 07:00 \circ Room 18 using Remote Sensing Data

WE1.R18.1: SHIPDENET-18: AN ONLY 1 MB WITH ONLY 18 CONVOLUTION LAYERS LIGHT-WEIGHT DEEP LEARNING NETWORK FOR SAR SHIP DETECTION

<u>Zhang, Tianwen</u>, University of Electronic Science and Technology of China, China <u>Zhang</u>, <u>Xiaoling</u>, University of Electronic Science and Technology of China, China <u>Shi, Jun</u>, University of Electronic Science and Technology of China, China <u>Wei, Shunjun</u>, University of Electronic

Science and Technology of China, China

WE1.R18.2: AN INTEGRATED METHOD OF SHIP DETECTION AND RECOGNITION IN SAR IMAGES BASED ON DEEP LEARNING

Hou, Zesheng, University of Electronic Science and Technology of China, China Cui, Zongyong, University of Electronic Science and Technology of China, China Cao, Zongjie, University of Electronic Science and Technology of China, China Liu, Nengyuan, University of Electronic Science and Technology of China, China

WE1.R18.3: SHIP DETECTION IN RADAR IMAGE SERIES BASED ON THE LONG SHORT-TERM MEMORY NETWORK

Xu, Yi, Beihang University, China Sun, Bing, Beihang University, China Li, Chunsheng, Beihang University, China Chen, Jie, Beihang University, China

WE1.R18.4: SHIP WAKE COMPONENT DETECTABILITY ON SYNTHETIC APERTURE RADAR (SAR)

<u>Tings, Björn</u>, German Aerospace Center, Germany <u>Wiehle, Stefan</u>, German Aerospace Center, Germany <u>Jacobsen, Sven</u>, German Aerospace Center, Germany

WE1.R18.5: FAST SINGLE-SHOT SHIP INSTANCE SEGMENTATION BASED ON POLAR TEMPLATE MASK IN REMOTE SENSING IMAGES

<u>Huang, Zhenhang</u>, Beijing University of Chemical Technology, China <u>Sun, Shihao</u>, Beijing University of Chemical Technology, China <u>Li, Ruirui</u>, Beijing University of Chemical Technology, China

WE1.R18.6: RECOGNITION OF SHIP BY ISAR WITH IMPROVED PARTIAL-MODAL GENERATIVE ADVERSARIAL NETWORKS

<u>Li, Gaopeng</u>, Harbin Institute of Technology, China <u>Wang, Jie</u>, Harbin Institute of Technology, China <u>Zhang, Yun</u>, Harbin Institute of Technology, China

WE1.R18.7: DENSE DOCKED SHIP DETECTION VIA SPATIAL GROUP-WISE ENHANCE ATTENTION IN SAR IMAGES

Wang, Xiaoya, University of Electronic Science and Technology of China, China Cui, Zongyong, University of Electronic Science and Technology of China, China Cao, Zongjie, University of Electronic Science and Technology of China, China Dang, Sihang, University of Electronic Science and Technology of China, China

WE1.R18.8: SHIP TARGET SIGNATURE INDICATION BASED ON COMPLEX SIGNAL KURTOSIS IN SAR IMAGES

<u>Leng, Xiangguang</u>, National University of Defense Technology, China <u>Ji, Kefeng</u>, National University of Defense Technology, China <u>Xiong, Boli</u>, National University of Defense Technology, China <u>Kuang, Gangyao</u>, National University of Defense Technology, China

WE1.R18.9: A SVA BASED SIDELOBE SUPPRESSION METHOD FOR SEA-LAND SEGMENTATION AND SHIP DETECTION IN SAR IMAGES

<u>Huang, Yinli</u>, Xidian University, China <u>Sun, Lu</u>, 93128 Troops of the Chinese peoples's liberation army, China <u>Guo, Liang</u>, Xidian University, China <u>Sun, Guangcai</u>, Xidian University, China <u>Xing, Mengdao</u>, Xidian University, China <u>Yang, Jun</u>, Xi'an University of Science and Technology, China <u>Hu, Yihua</u>, National University of Defense Technology, China

WE1.R18.10: SHIP DETECTION FROM POLSAR IMAGERY BASED ON THE SCATTERING DIFFERENCE PARAMETER

Zhang, Tao, Tsinghua University, China Yang, Zhen, Jiangxi Science and Technology Normal University, China Xing, Cheng, Tsinghua University, China Zeng, Liang, Tsinghua University, China Yin, Junjun, University of Science and Technology Beijing, China Yang, Jian, Tsinghua University, China

WE1.R18.11: A NEW AUTOMATIC SHIP WAKE DETECTION FOR SENTINEL-1 IMAGERY

<u>Grosso, Elena</u>, Surrey Space Centre, United Kingdom <u>Guida, Raffaella</u>, Surrey Space Centre, United Kingdom

WE1.R18.12: SHIP DETECTION IN LARGE SCALE SAR IMAGES BASED ON BIAS CLASSIFICATION

<u>Wang, Xiaoya</u>, University of Electronic Science and Technology of China, China <u>Cui</u>, <u>Zongyong</u>, University of Electronic Science and Technology of China, China <u>Cao</u>, <u>Zongjie</u>, University of Electronic Science and Technology of China, China <u>Tian</u>, <u>Yu</u>, University of

Electronic Science and Technology of China, China

WE1.R19 - Clouds and Precipitation II

Wednesday, September 30, 05:00 - 07:00 • Room 19

WE1.R19.1: FIRST YEAR OF COSMIR OBSERVATIONS OF EAST COAST WINTER STORMS FROM THE IMPACTS CAMPAIGN

<u>Kroodsma, Rachael</u>, University of Maryland, United States <u>Adams, Ian</u>, NASA Goddard Space Flight Center, United States <u>Fritts, Matthew</u>, NASA Goddard Space Flight Center, United States <u>Munchak, S. Joseph</u>, NASA Goddard Space Flight Center, United States

WE1.R19.2: STUDY OF ICE HYDROMETEORS USING D3R RADAR AND GROUND OBSERVATIONS DURING ICE-POP CAMPAIGN

<u>Chandrasekar, V</u>, Colorado State University, United States <u>Joshil, Shashank S</u>, Colorado State University, United States

WE1.R19.3: TROPICAL CYCLONE CONVECTION STRUCTURE EVOLUTION DURING RAPID INTENSIFICATION USING HIMAWARI-8 SATELLITE

<u>Zhang</u>, <u>Da</u>, Aerospace Information Research Institute, China <u>Zhang</u>, <u>Jiahua</u>, Aerospace Information Research Institute, China

WE1.R19.4: RESEARCH OF CLOUD DETECTION BASED ON MULTI-TEMPORAL THERMAL INFRARED DATA

Wang, Jie, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Qi, Jianwei, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Liu, Yu, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Wang, Guanghui, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhang, Tao, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China

WE1.R19.5: CLOUD OBSERVATIONS FROM THE DEEP SPACE CLIMATE OBSERVATORY (DSCOVR) AT THE EARTH LAGRANGE 1 POINT

Yang, Yuekui, NASA, United States Meyer, Kerry, NASA, United States Wind, Galina, NASA, United States Zhou, Yaping, NASA, United States Marshak, Alexander, NASA, United States Platnick, Steven, NASA, United States

WE1.R19.6: EXTENDING NASA'S MODIS/VIIRS CLOUD CLIMATE DATA RECORD TO THE ADVANCED GEOSTATIONARY IMAGERS

Meyer, Kerry, NASA Goddard Space Flight Center, United States Platnick, Steven, NASA Goddard Space Flight Center, United States Holz, Robert, SSEC/U. Wisconsin, United States Heidinger, Andrew, NOAA NESDIS-STAR, United States Ackerman, Steve, U. Wisconsin, United States Wind, Gala, SSAI/NASA GSFC, United States Dutcher, Steve, SSEC/U. Wisconsin, United States

WE1.R19.7: IMPROVING QUANTITATIVE PRECIPITATION ESTIMATION BY X-BAND DUAL-POLARIZATION RADARS IN COMPLEX TERRAIN OVER THE BAY AREA IN CALIFORNIA, USA

<u>Biswas, Sounak</u>, Colorado State University, United States <u>Cifelli, Robert</u>, NOAA/ESRL, United States <u>Chandrasekar</u>, <u>V</u>, Colorado State University, United States

WE1.R19.8: RESOLVING THE PRECIPITATION MICROPHYSICAL VARIABILITY INDUCED BY OROGRAPHIC ENHANCEMENT IN COMPLEX TERRAIN OVER THE SAN FRANCISCO BAY AREA

<u>Chen, Haonan</u>, NOAA Earth System Research Laboratory and Colorado State University, United States <u>Cifelli, Rob</u>, NOAA Earth System Research Laboratory, United States <u>Chandrasekar, V.</u>, Colorado State University, United States

WE1.R19.9: STUDY ON THE K-BAND EWRG SIGNAL PROCESSING FOR HIGH-RESOLUTION RAINFALL OBSERVATION

<u>Choi, Jeongho</u>, Chosun College of Science & Technology, Korea (South) <u>Lim. Sanghun</u>, Korea Institute of Civil Engineering and Building Technology, Korea (South) <u>Han. Myeongsun</u>, Korea Institute of Civil Engineering and Building Technology, Korea (South)

WE1.R19.10: SUPPORTING LIGHTNING SAFETY AND DECISION SUPPORT AT THE

NASA GLOBAL HYDROLOGY RESOURCE CENTER DISTRIBUTED ACTIVE ARCHIVE CENTER

Stano, Geoffrey, University of Alabama in Huntsville, United States Sinclair, Leigh, University of Alabama in Huntsville, United States Raphael, Essence, University of Alabama in Huntsville, United States Harrison, Sherry, University of Alabama in Huntsville, United States Peterson, Michael, Los Alamos National Laboratory, United States Goodman, Steven, Thunderbolt Global Analytics, United States

WE1.R19.11: CHARACTERISTIC ANALYSIS OF TYPHOON MUFIA FROM FY-3B MWRI OBSERVATIONS

Zhang, Ruanyu, Shanghai Spaceflight Institute of TT&C and Telecommunication, China He, Qiurui, Luoyang Normal University, China Zhang, Lanjie, Beijing Information Science and Technology University, China Meng, Wanting, Shanghai Spaceflight Institute of TT&C and Telecommunication, China Dong, Kesong, Shanghai Spaceflight Institute of TT&C and Telecommunication, China Xie, Xinxin, Shanghai Spaceflight Institute of TT&C and Telecommunication, China

WE1.R19.12: EFFECTS OF CLOUD ON LAND SURFACE TEMPERATURE (LST) CHANGE IN THERMAL INFRARED REMOTE SENSING IMAGES: A CASE STUDY OF LANDSAT 8 DATA

<u>Abbasi, Bilawal</u>, Chinese Academy of Agricultural Sciences, China <u>Qin, Zhihao</u>, Chinese Academy of Agricultural Sciences, China <u>Du, Wenhui</u>, Chinese Academy of Agricultural Sciences, China <u>Li, Shifeng</u>, Chinese Academy of Agricultural Sciences, China <u>Fan, Jinlong</u>, National Satellite Meteorological Center, China <u>Zhao, Shuhe</u>, Nanjing University, China

WE1.R20 - Processing Schemes for Hyperspectral Imaging Wednesday, September 30, 05:00 - 07:00 \circ Room 20

WE1.R20.1: HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON SEMI-SUPERVISED DUAL-BRANCH CONVOLUTIONAL AUTOENCODER WITH SELF-ATTENTION

<u>Feng, Jie</u>, Xidian University, China <u>Ye, Zhanwei</u>, Xidian University, China <u>Li, Di</u>, Xidian University, China <u>Liang, Yuping</u>, Xidian University, China <u>Tang, Xu</u>, Xidian University, China <u>Zhang, Xiangrong</u>, Xidian University, China

WE1.R20.2: HYPERSPECTRAL BAND SELECTION USING MOTH-FLAME METAHEURISTIC OPTIMIZATION

<u>Worch, Ethan</u>, Mississippi State University, United States <u>Samiappan, Sathishkumar</u>, Mississippi State University, United States <u>Zhou, Meilun</u>, Mississippi State University, United States <u>Ball, John E.</u>, Mississippi State University, United States

WE1.R20.3: MULTI-DIMENSION CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Cai, Haojie</u>, China University of Geosciences, China <u>Chen, Tao</u>, China University of Geosciences, China

WE1.R20.4: LOCAL CORRELATION BASED DATA GRAVITATION CLASSIFICATION FOR HYPERSPECTRAL IMAGE

<u>Zhang, Chenglong</u>, China University of Petroleum (East China), China <u>Zhang, Aizhu</u>, China University of Petroleum (East China), China <u>Sun, Genyun</u>, China University of Petroleum (East China), China <u>Yao, Yanjuan</u>, Satellite Environment Center, Ministry of Environmental Protection of China, China

WE1.R20.5: HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER NETWORK

<u>Ma, Jingjing</u>, Xidian University, China <u>Wu, Linlin</u>, Xidian University, China <u>Tang</u>, Xu, Xidian University, China <u>Zhang</u>, Xidian University, China <u>Zhu</u>, <u>Cheng</u>, Xidian University, China <u>Ma</u>, <u>Junyong</u>, Science and Technology on Electro-optic Control Laboratory, China <u>Jiao</u>, <u>Licheng</u>, Xidian University, China

WE1.R20.6: SPECTRAL PROPERTIES ANALYSIS OF WASTEWATER IN OIL FIELD AND ITS REMOTE SENSING DETECTION WITH GF-2

<u>Liu, Yang</u>, PetroChina, China <u>Zhang, Nannan</u>, PetroChina, China <u>Guo, Hongyan</u>, PetroChina, China <u>Huang, Shanhong</u>, PetroChina, China <u>Huang, Miaofen</u>, Guangdong Ocean University,

China Liu, Song, PetroChina, China

WE1.R20.7: UNSUPERVISED FEATURE EXTRACTION IN HYPERSPECTRAL IMAGE BASED ON IMPROVED NEIGHBORHOOD PRESERVING EMBEDDING

<u>Feng, Jia</u>, Harbin Institute of Technology, China <u>Zhang, Junping</u>, Harbin Institute of Technology, China

WE1.R20.8: MULTI-CLASSIFIERS CONSISTENCY BASED UNSUPERVISED MANIFOLD ALIGNMENT FOR CLASSIFICATION OF REMOTE SENSING IMAGES

<u>Wei, Hongkang</u>, China University of Geosciences, China <u>Ma, Li</u>, China University of Geosciences, China <u>Liu, Xiaobo</u>, China University of Geosciences, China

WE1.R20.9: ACTIVE DEEP FEATURES EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON DICTIONARY LEARNING

Wang, Xue, East China Normal University, China <u>Tan, Kun</u>, East China Normal University, China <u>Jia, Xiuping</u>, University of New South Wales, Australia <u>Liu, Zhaoxian</u>, Second Surveying and Mapping Institute of Hebei, China

WE1.R20.10: FEATURE CONCATENATION OF HYPERSPECTRAL AND DEM DATA FOR LAND COVER CLASSIFICATION

<u>Gross, Wolfgang</u>, Fraunhofer IOSB, Germany <u>Bulatov, Dimitri</u>, Fraunhofer IOSB, Germany <u>Schreiner, Simon</u>, Fraunhofer IOSB, Germany <u>Middelmann, Wolfgang</u>, Fraunhofer IOSB, Germany

WE1.R20.11: IMPROVED VEGETATION AND WILDFIRE FUEL TYPE MAPPING USING NASA AVIRIS-NG HYPERSPECTRAL DATA, INTERIOR AK

Smith, Christopher, University of Alaska Fairbanks, United States Panda, Santosh, University of Alaska Fairbanks, United States Bhatt, Uma, University of Alaska Fairbanks, United States Meyer, Franz, University of Alaska Fairbanks, United States Haan, Robert, University of Alaska Anchorage, United States

WE2.R1 - Soil Moisture Related Wednesday, September 30, 07:30 - 09:30 • Room 1 Applications

WE2.R1.1: SENSITIVITY OF CYGNSS-DERIVED SOIL MOISTURE TO GLOBAL PRECIPITATION

Yan, Qingyun, Nanjing University of Information Science and Technology, China Jin, Shuanggen, Nanjing University of Information Science and Technology, China Huang, Weimin, Memorial University of Newfoundland, Canada Jia, Yan, Nanjing University of Posts and Telecommunications, Canada

WE2.R1.2: SOIL MOISTURE MAPPING WITH POLARIMETRIC SAR IN HUANGHE DELTA OF CHINA

Lan, Lihua, Key Laboratory of Target Microwave Properties and Remote Sensing of Zhejiang Province, China Zhang, Tingting, Aerospace Information Research Institute, Chinese Academy of Sciences, China Shao, Yun, Aerospace Information Research Institute, Chinese Academy of Sciences, China Ju, Zhengshan, Ministry of Natural Resources, China Chai, Xun, Urban-Rural Planning Administration Center of Ministry of Natural Resources, China

WE2.R1.3: IDENTIFYING TERRESTRIAL VEGETATION-SOIL MOISTURE OSCILLATION FROM SATELLITE OBSERVATIONS

<u>He, Qing</u>, Tsinghua University, China <u>Yue, Siyu</u>, Tsinghua University, China <u>Lu, Hui</u>, Tsinghua University, China <u>Liu, Zhuang</u>, Tsinghua University, China <u>Huang, Xiaomeng</u>, Tsinghua University, China <u>Entekhabi, Dara</u>, Massachusetts Institute of Technology, United States

WE2.R1.4: IMPROVING SOIL MOISTURE SPATIO-TEMPORAL RESOLUTION USING MACHINE LEARNING METHOD

Cui, Yaokui, Institute of RS and GIS, School of Earth and Space Sciences, Peking University, China Chen, Xi, Institute of RS and GIS, School of Earth and Space Sciences, Peking University, China Luo, Zengliang, Institute of RS and GIS, School of Earth and Space Sciences, Peking University, China

WE2.R1.5: OPTIMIZATION OF MODEL PARAMETERS FOR SM ESTIMATION USING SENTINEL-1 DATA WITH EFFICIENT ANALYSIS OF WHEAT GROWTH CYCLE

<u>Maurya, Ajay Kumar</u>, Indian Institute of Technology Roorkee, India <u>Singh, Dharmendra</u>, Indian Institute of Technology Roorkee, India

WE2.R1.6: OBSERVATION OF SOIL MOISTURE VERTICAL PROFILES FROM GNSS SIGNAL MULTI-PATH INTERFERENCES

<u>Ma, Xiaoyu</u>, Zhejiang University, China <u>Tang, Zhizhan</u>, Zhejiang University, China <u>Tan, Shurun</u>, Zhejiang University, China

WE2.R1.7: SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS

Yao, Panpan, Tsinghua University, China Lu, Hui, Tsinghua University, China Wang, Wenli, Tsinghua University, China Shao, Changkun, Tsinghua University, China Yang, Kun, Tsinghua University, China Gianotti, Daniel, Massachusetts Institute of Technology, United States Liu, Zhuang, Tsinghua University, China Huang, Xiaomeng, Tsinghua University, China Entekhabi, Dara, Massachusetts Institute of Technology, United States

WE2.R1.8: ASSESSMENT OF SMAP AND ESA CCI SOIL MOISTURE OVER THE GREAT LAKES BASIN

<u>Xu, Xiaoyong</u>, University of Toronto Mississauga, Canada <u>Shew, Brandon</u>, University of Toronto Mississauga, Canada <u>Zaman, Shadia</u>, University of Toronto Mississauga, Canada <u>Lee, Joseph</u>, University of Toronto Mississauga, Canada <u>Zhi, Yun</u>, University of Toronto Mississauga, Canada

WE2.R1.9: COMPARISON OF SMAP AND NLDAS-2 SOIL MOISTURE DATA SETS OVER THE SOUTHERN GREAT PLAINS

Jiang, Bo, Institute of Geographical Sciences and Natural Resources Research, China Su, Hongbo, Florida Atlantic University, United States

WE2.R1.10: MACHINE LEARNING BASED SOIL MOISTURE RETRIEVAL FROM UNMANNED AIRCRAFT SYSTEM MULTISPECTRAL REMOTE SENSING

<u>Araya, Samuel</u>, Stanford University, United States <u>Fryjoff-Hung, Anna</u>, University of California, Merced, United States <u>Anderson, Andreas</u>, University of California, Merced, United States <u>Viers, Joshua</u>, University of California, Merced, United States <u>Ghezzehei, Teamrat</u>, University of California, Merced, United States

WE2.R1.11: MULTI-TEMPORAL CONVOLUTIONAL NEURAL NETWORKS FOR SATELLITE-DERIVED SOIL MOISTURE OBSERVATION ENHANCEMENT

<u>Tsagkatakis, Grigorios</u>, Foundation for Research and Technology Hellas (FORTH), Greece <u>Moghaddam, Mahta</u>, University of Southern California, United States <u>Tsakalides, Panagiotis</u>, Foundation for Research and Technology Hellas (FORTH), Greece

WE2.R1.12: JOINT RETRIEVAL OF SOIL MOISTURE AND PERMAFROST ACTIVE LAYER THICKNESS USING L-BAND INSAR AND P-BAND POLSAR

<u>Chen, Richard</u>, NASA Jet Propulsion Laboratory, United States <u>Michaelides, Roger</u>, Stanford University, United States <u>Sullivan, Taylor</u>, University of Wyoming, United States <u>Parsekian</u>, <u>Andrew</u>, University of Wyoming, United States <u>Zebker, Howard</u>, Stanford University, United States <u>Moghaddam, Mahta</u>, University of Southern California, United States <u>Schaefer, Kevin</u>,

National Snow and Ice Data Center, United States

WE2.R2 - Monitoring and Damage Assessment of Natural Disasters IV Wednesday, September 30, 07:30 - 09:30

Room 2

WE2.R2.1: DETECTION OF FLOODING AGRICULTURAL FIELD BY TYPHOON HAGIBIS ON 2019 USING SAR IMAGERY

<u>Yonezawa, Chinatsu</u>, Tohoku University, Japan <u>Watanabe, Manabu</u>, Tokyo Denki University, Japan

WE2.R2.2: SUPPORTING RECOVERY AFTER 2016 HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM (GEP)

<u>Cigna, Francesca</u>, Italian Space Agency (ASI), Italy <u>Tapete, Deodato</u>, Italian Space Agency (ASI), Italy <u>Danzeglocke, Jens</u>, German Aerospace Center (DLR), Germany <u>Bally, Philippe</u>, European Space Agency, Italy <u>Cuccu, Roberto</u>, RSS, Italy <u>Papadopoulou, Theodora</u>, ARGANS,

France <u>Caumont, Hervé</u>, Terradue, Italy <u>Collet, Agwilh</u>, CNES, France <u>de Boissezon, Helene</u>, CNES, France <u>Eddy, Andrew</u>, Athena Global, France <u>Piard, Boby E.</u>, CNIGS, Haiti

WE2.R2.3: THE APPLICATION OF REMOTE SENSING PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA

Li, Rui, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Shi, Jiancheng, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Ji, Dabin, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Zhao, Tianjie, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Moukomla, Sitthisak, Geo-Informatics and Space Technology Development Agency, Thailand Plermkamon, Vichian, Khon Kaen University, Thailand Lei, Yonghui, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Pan, Jinmei, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Jia, Huicong, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Yang, Aqiang, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Yang, Aqiang, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

WE2.R2.4: EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA

<u>Jung, Jungkyo</u>, NASA Jet Propulsion Laboratory, United States <u>Yun, Sang-Ho</u>, NASA Jet Propulsion Laboratory, United States <u>Xu, Jeri</u>, Swiss Re America Holding Corporation, United States <u>Xie, Boyi</u>, Swiss Re America Holding Corporation, United States

WE2.R2.5: WARNING OF RAINFALL-INDUCED LANDSLIDE IN BAZHOU DISTRICT

<u>Li, Mujie</u>, University of Electronic Science and Technology of China, China <u>Zhu, Mingcang</u>, Department of Natural Resources of Sichuan Province, China <u>He, Yong</u>, Sichuan Research Institute for Eco-system Restoration & Geo-disaster Prevention, China <u>He, Zhanyong</u>, Sichuan Research Institute for Eco-system Restoration & Geo-disaster Prevention, China <u>Wang, Na</u>, University of Electronic Science and Technology of China, China <u>Zhou, Guoqing</u>, Guilin University of Technology, China

WE2.R2.6: RAPID FLOOD MAPPING USING SENTINEL-1A IMAGES: A CASE STUDY OF FLOOD IN PANAMARAM, KERALA

<u>Devara, Meghanadh</u>, MNNIT ALLAHABAD, India <u>Jaiswal, Akshay Kumar</u>, MNNIT ALLAHABAD, India <u>Maurya, Vipin Kumar</u>, MNNIT ALLAHABAD, India <u>Dwivedi, Ramji</u>, MNNIT ALLAHABAD, India

WE2.R2.7: INTRODUCTION OF SPATIAL AND TEMPORAL DISTRIBUTION OF TYPHOONS FROM 1989 TO 2018 AND TYPICAL CASES OF DISASTER IMPACT ANALYSIS

<u>Chen, Yi-ting</u>, Beijing Normal University, China <u>Tian, Feng</u>, Beijing Normal University, China <u>Yang, Hua</u>, Beijing Normal University, China <u>Wu, Jian-jun</u>, Beijing Normal University, China <u>Zhou, Hong-min</u>, Beijing Normal University, China

WE2.R2.8: MULTI-AGENT DEEP REINFORCEMENT LEARNING BASED INTERDEPENDENT CRITICAL INFRASTRUCTURE SIMULATION MODEL FOR SITUATIONAL AWARENESS DURING A FLOOD EVENT

Rajulapati, Parashuram Shourya, Indian Institute of Technology Bombay, India Nukavarapu, Nivedita, Indian Institute of Technology Bombay, India Durbha, Surya, Indian Institute of Technology Bombay, India

WE2.R2.9: ASSESSMENT OF GRACE DATA RESPONSE TO GLOBAL DROUGHT EVENTS FROM 2003 TO 2016

<u>Lu, Jing</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Jia</u>, <u>Li</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Zhou</u>, <u>Jie</u>, Central China Normal University, China <u>Jiang</u>, <u>Min</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE2.R2.10: STUDY ON REGIONAL DROUGHT MONITORING BASED ON MULTI-SOURCES DATA IN CHINA

Xin. Jingfeng, China Institute of Water Resources and Hydropower Research, China Yang, Yongmin, China Institute of Water Resources and Hydropower Research, China Huang,

Shifeng, China Institute of Water Resources and Hydropower Research, China

WE2.R2.11: DROUGHT MONITORING IN SUB-SAHARA AFRICA

Mou, Fan, University of Electronic Science and Technology of China, China Akwasi, Twum-Antwi, University of Electronic Science and Technology of China, China Li, Mujie, University of Electronic Science and Technology of China, China Mingcang, Zhu, Department of Natural Resources of Sichuan Province, China He, Yong, Sichuan Research Institute for Eco-system Restoration & Geo-disaster Prevention, China He, Zhanyong, Sichuan Research Institute for Eco-system Restoration & Geo-disaster Prevention, China Xiao, Yang, Sichuan Research Institute for Eco-system Restoration & Geo-disaster Prevention, China Ren, Juan, Sichuan Research Institute for Eco-system Restoration & Geo-disaster Prevention, China Xia, Jun, University of Electronic Science and Technology of China, China Zhang, Xiang, Wuhan University, China Zheng, Zezhong, University of Electronic Science and Technology of China, China Zhou, Guoqing, Guilin University of Technology, China

WE2.R2.12: A FULLY AUTOMATIC METHOD FOR RAPIDLY MAPPING IMPACTED AREA BY NATURAL DISASTER

<u>Liu, Tao</u>, Oak Ridge National Laboratory, United States <u>Yang, Lexie</u>, Oak Ridge National <u>Laboratory, United States</u>

WE2.R3 - Spatial and Temporal Wednesday, September 30, 07:30 - 09:30 • Room 3 Interpolation Approaches and Applications

WE2.R3.1: A SPATIALIZATION METHOD OF POPULATION DATA CONSIDERING SPATIAL HETEROGENEITY

<u>Zhao, Zhen</u>, Earthquake Administration of Sichuan Province, China <u>Guo, HongMei</u>, Earthquake Administration of Sichuan Province, China <u>Zhang, Ying</u>, Earthquake Administration of Sichuan Province, China <u>Shen, Yuan</u>, Earthquake Administration of Sichuan Province, China

WE2.R3.2: RAPID ESTIMATION OF ORTHOGONAL MATCHING PURSUIT REPRESENTATION

<u>Chatterjee, Ayan</u>, Cranfield University, United Kingdom <u>Yuen, Peter</u>, Cranfield University, United Kingdom

WE2.R3.3: PRODUCING A GAP-FREE LANDSAT TIME SERIES FOR THE TAITA HILLS, SOUTHEASTERN KENYA

<u>Tang, Zhipeng</u>, University of Helsinki, Finland <u>Adhikari, Hari</u>, University of Helsinki, Finland <u>Pellikka, Petri</u>, University of Helsinki, Finland <u>Heiskanen, Janne</u>, University of Helsinki, Finland

WE2.R3.4: A NOVEL GENERAL SEMISUPERVISED DEEP LEARNING FRAMEWORK FOR CLASSIFICATION AND REGRESSION WITH REMOTE SENSING IMAGES

<u>Chen, Zhao</u>, Donghua University, China <u>Chen, Guangchen</u>, Donghua University, China <u>Zhou</u>, <u>Feng</u>, Donghua University, China <u>Yang</u>, <u>Bin</u>, Donghua University, China <u>Wang</u>, <u>Lili</u>, Donghua University, China <u>Liu</u>, <u>Qiong</u>, Donghua University, China <u>Chen</u>, <u>Yonghang</u>, Donghua University, China

WE2.R3.5: INFINITE NUMBER OF LOOKS PREDICTION IN POLSAR FILTERING BY LINEAR REGRESSION

<u>Yahia, Mohamed</u>, GIS and Mapping Laboratory, American University of Sharjah UAE, United Arab Emirates <u>Ali, Tarig</u>, GIS and Mapping Laboratory, American University of Sharjah UAE, United Arab Emirates <u>Mortula, Maruf</u>, American University of Sharjah UAE, Tunisia <u>Abdelfattah, Riadh</u>, Université of Carthage: COSIM Lab, Higher School of Communications of Tunis, Tunisia <u>Elmahdy, Samy</u>, GIS and Mapping Laboratory, American University of Sharjah UAE. United Arab Emirates

WE2.R3.6: A DEEP GAUSSIAN PROCESS FOR FORECASTING CROP YIELD AND TIME SERIES ANALYSIS OF PRECIPITATION BASED IN MUNSHIGANJ, BANGLADESH

Mahdi, Mostafa Didar, North South University, Bangladesh Mrittika, Nusrat Jahan, North South University, Bangladesh Shams, Maleeha, North South University, Bangladesh Chowdhury, Labib, North South University, Bangladesh Siddique, Shahnewaz, North South University, Bangladesh

WE2.R3.7: AZIMUTH VELOCITY ESTIMATION IN MULTI-CHANNEL SAR BASED ON VARIABLE-BORESIGHT MODE

Ren, Yahua, Shanghai Jiao Tong University, China Wang, Junfeng, Shanghai Jiao Tong University, China Liu, Xingzhao, Shanghai Jiao Tong University, China Gao, Yesheng, Shanghai Jiao Tong University, China University, China

WE2.R3.8: WATER BODY DETECTION AND WATER QUALITY MONITORING IN THE DAM BASED ON THE X-BAND SAR AND OPTICAL DATA

<u>Lee, Boram</u>, Sejong University, Korea (South) <u>Lee, Yoon-Kyung</u>, Sejong University, Korea (South) <u>Kim, Sang-Wan</u>, Sejong University, Korea (South)

WE2.R3.9: REMOTE SENSING IMAGES INPAINTING BASED ON STRUCTURED LOW-RANK MATRIX APPROXIMATION

<u>Hu, Yue</u>, Harbin Institute of Technology, China <u>Wei, Zidi</u>, Harbin Institute of Technology, China <u>Zhao, Kuangshi</u>, No.703 Research Institute of CSIC, China

WE2.R3.10: LAND COVER CLASSIFICATION OF AN AREA SUSCEPTIBLE TO LANDSLIDES USING RANDOM FOREST AND NDVI TIME SERIES DATA

<u>Uehara, Tatiana Dias Tardelli</u>, Brazil's National Institute for Space Research, Brazil <u>Soares</u>, <u>Anderson Reis</u>, Brazil's National Institute for Space Research, Brazil <u>Quevedo, Renata Pacheco</u>, Brazil's National Institute for Space Research, Brazil <u>Körting, Thales Sehn</u>, Brazil's National Institute for Space Research, Brazil <u>Fonseca, Leila Maria Garcia</u>, Brazil's National Institute for Space Research, Brazil <u>Adami, Marcos</u>, Brazil's National Institute for Space Research, Brazil

WE2.R4 - Space Lidar: Missions, Technologies and Observations

Wednesday, September 30, 07:30 - 09:30 • Room 4

WE2.R4.2: STATUS OF ESA'S EARTHCARE MISSION PREPARATION

Wallace, Kotska, European Space Agency, Netherlands Lefebvre, Alain, European Space Agency, Netherlands Pereira do Carmo, João, European Space Agency, Netherlands Gollor, Matthias, European Space Agency, Netherlands Eisinger, Michael, European Space Agency, United Kingdom Nakatsuka, Hirotaka, Japan Aerospace Exploration Agency, Japan Tomita, Eiichi, Japan Aerospace Exploration Agency, Japan

WE2.R4.3: AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS

Kanitz, Thomas, European Space Agency (ESA-ESTEC), Netherlands Wernham, Denny, European Space Agency (ESA-ESTEC), Netherlands Alvarez, Emilio, European Space Agency (ESA-ESTEC), Netherlands Tzeremes, Georgios, European Space Agency (ESA-ESTEC), Netherlands Parrinello, Tommaso, European Space Agency (ESA-ESRIN), Italy Marshall, Jon, Airbus Stevenage, United Kingdom Brewster, John, Airbus Stevenage, United Kingdom Lecrenier, Olivier, Airbus Toulouse, France Schillinger, Marc, Airbus Toulouse, France De Sanctis, Valeria, Leonardo Pomezia, Italy D'Ottavi, Alessandro, Leonardo Pomezia, Italy Reitebuch, Oliver, German Aerospace Center (DLR) Oberpfaffenhofen, Germany Weiler, Fabian, German Aerospace Center (DLR) Oberpfaffenhofen, Germany Lux, Oliver, German Aerospace Center (DLR) Oberpfaffenhofen, Germany Rennie, Michael, European Centre for Medium-Range Weather Forecast, United Kingdom Isaksen, Lars, European Centre for Medium-Range Weather Forecast, United Kingdom

WE2.R4.4: PROGRESS OF THE ISS BASED VEGETATION LIDAR MISSION, MOLI-JAPAN'S FIRST SPACE-BASED LIDAR

Sakaizawa, Daisuke, Japan Aerospace Exploration Agency, Japan Nguyen, Tat Trung, Japan Aerospace Exploration Agency, Japan Mitsuhashi, Rei, Japan Aerospace Exploration Agency, Japan Sawada, Yoshito, Japan Aerospace Exploration Agency, Japan Imai, Tadashi, Japan Aerospace Exploration Agency, Japan Kimura, Toshiyoshi, Japan Aerospace Exploration Agency, Japan

WE2.R4.5: INTEGRATED PHOTONICS TECHNOLOGY FOR SPACE-BASED REMOTE-SENSING

<u>Klamkin, Jonathan</u>, University of California, Santa Barbara, United States <u>Stephen, Mark</u>, NASA Goddard Space Flight Center, United States

WE2.R4.6: FLIGHT LIDAR DEVELOPMENT AND QUALIFICATION FOR THE ESA EARTH CLOUD AEROSOL AND RADIATION EXPLORER (EARTHCARE) MISSION

<u>Pereira do Carmo, João</u>, European Space Agency, Netherlands <u>Wallace, Kotska</u>, European Space Agency, Netherlands <u>Lefebvre, Alain</u>, European Space Agency, Netherlands

WE2.R4.7: ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS

Yu, Anthony, NASA Goddard Space Flight Center, United States Troupaki, Elisavet, NASA Goddard Space Flight Center, United States Li, Steven, NASA Goddard Space Flight Center, United States Coyle, Barry, NASA Goddard Space Flight Center, United States Stysley, Paul, NASA Goddard Space Flight Center, United States Fahey, Molly, NASA Goddard Space Flight Center, United States Fahey, Molly, NASA Goddard Space Flight Center, United States Stephen, Mark, NASA Goddard Space Flight Center, United States Yang, Guangning, NASA Goddard Space Flight Center, United States Micalizzi, Frankie, NASA Goddard Space Flight Center, United States Merritt, Scott, NASA Goddard Space Flight Center, United States Merritt, Scott, NASA Goddard Space Flight Center, United States Yevick, Aaron, NASA Goddard Space Flight Center, United States Jiao, Hua, NASA Goddard Space Flight Center, United States Jiao, Hua, NASA Goddard Space Flight Center, United States Konopley, Oleg, NASA Goddard Space Flight Center, United States Wasilyey, Aleksey, NASA Goddard Space Flight Center, United States Mullin, Matthew, NASA Goddard Space Flight Center, United States Mullin, Matthew, NASA Goddard Space Flight Center, United States Mullin, Matthew, NASA Goddard Space Flight Center, United States

WE2.R4.8: DEVELOPMENT OF A FLASH-LIDAR ELEGANT BREADBOARD MODEL FOR RENDEZVOUS APPLICATIONS

<u>Haugholt, Karl Henrik</u>, SINTEF, Norway <u>Hansen, Anders H</u>, SINTEF, Norway <u>Risholm, Petter</u>, SINTEF, Norway <u>Thielemann, Jens T.</u>, SINTEF, Norway <u>Tzeremes, Georgios</u>, European Space <u>Agency</u>, <u>Belgium</u>

WE2.R5 - Advanced Clustering Wednesday, September 30, 07:30 - 09:30 • Room 5 Methods for Remote Sensing Data II

WE2.R5.1: A COMPARATIVE STUDY OF DEEP LEARNING LOSS FUNCTIONS FOR MULTI-LABEL REMOTE SENSING IMAGE CLASSIFICATION

<u>Yessou, Hichame</u>, Technische Universität Berlin, Germany <u>Sumbul, Gencer</u>, Technische Universität Berlin, Germany <u>Demir, Begüm</u>, Technische Universität Berlin, Germany

WE2.R5.2: A CNN-GCN FRAMEWORK FOR MULTI-LABEL AERIAL IMAGE SCENE CLASSIFICATION

<u>Li, Yansheng</u>, Wuhan University, China <u>Chen, Ruixian</u>, Wuhan University, China <u>Zhang</u>, <u>Yongjun</u>, Wuhan University, China <u>Li, Hang</u>, Beijing Aerospace System Engineering Research Institute, China

WE2.R5.3: CLASS-WISE ADVERSARIAL TRANSFER NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION

<u>Liu, Zixu</u>, China University of Geosciences, China <u>Ma, Li,</u> China University of Geosciences, China

WE2.R5.4: RELATIONSHIPS EXCAVATING OF AUGMENTED FEATURE FOR REMOTE SENSING SCENE CLASSIFICATION

<u>Dan, Lei</u>, Northwestern Polytechnical University, China <u>Li, Xuelong</u>, Northwestern Polytechnical University, China

WE2.R5.5: AN OPEN SET DOMAIN ADAPTATION NETWORK BASED ON ADVERSARIAL LEARNING FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION

<u>Zhang, Jun</u>, Hebei University of Technology, China <u>Liu, Jiao</u>, Hebei University of Technology, China <u>Shi, Lukui</u>, Hebei University of Technology, China <u>Pan, Bin</u>, Nankai University, China <u>Xu, Xia</u>, NanKai University, China

WE2.R5.6: RSSM-NET: REMOTE SENSING IMAGE SCENE CLASSIFICATION BASED ON MULTI-OBJECTIVE NEURAL ARCHITECTURE SEARCH

Wan, Yuting, Wuhan University, China Zhong, Yanfei, Wuhan University, China Ma, Ailong,

Wuhan University, China Wang, Junjue, Wuhan University, China Feng, Ruyi, China University of Geosciences (Wuhan), China

WE2.R5.7: TOPIC MODEL FOR REMOTE SENSING DATA: A COMPREHENSIVE REVIEW

Zhu, Qiqi, China University of Geosciences, China Wan, Jiangqin, China University of Geosciences, China Zhong, Yanfei, Wuhan University, China Guan, Qingfeng, China University of Geosciences, China Zhang, Liangpei, Wuhan University, China Li, Deren, Wuhan University, China

WE2.R5.8: MAPPING LOCAL CLIMATE ZONES WITH CIRCLED SIMILARITY PROPAGATION BASED DOMAIN ADAPTATION

<u>Zhao, Nan</u>, Wuhan University, China <u>Zhong, Yanfei</u>, Wuhan University, China <u>Ma, Ailong,</u> Wuhan University, China

WE2.R5.9: UNSUPERVISED MIXED MULTI-TARGET DOMAIN ADAPTATION FOR REMOTE SENSING IMAGES CLASSIFICATION

Zheng, Juepeng, Tsinghua University, China <u>Wu, Wenzhao</u>, Tsinghua University, China <u>Fu, Haohuan</u>, Tsinghua University, China <u>Li, Weijia</u>, Chinese University of Hong Kong, China <u>Dong, Runmin</u>, Tsinghua University, China <u>Zhang, Lixian</u>, Tsinghua University, China <u>Yuan, Shuai</u>, Tsinghua University, China

WE2.R5.10: UNSUPERVISED STYLE TRANSFER VIA DUALGAN FOR CROSS-DOMAIN AERIAL IMAGE CLASSIFICATION

<u>Li, Yansheng</u>, Wuhan University, China <u>Shi, Te</u>, Wuhan University, China <u>Chen, Wei</u>, Wuhan University, China <u>Zhang, Yongjun</u>, Wuhan University, China <u>Wang, Zhibin</u>, Alibaba Group, China <u>Li, Hao</u>, Alibaba Group, China

WE2.R5.11: MAPPING DEFORESTED AREAS IN THE CERRADO BIOME THROUGH RECURRENT NEURAL NETWORKS

Matosak, Bruno Menini, National Institute for Space Research (INPE), Brazil Maretto, Raian Vargas, National Institute for Space Research (INPE), Brazil Körting, Thales Sehn, National Institute for Space Research (INPE), Brazil Adami, Marcos, National Institute for Space Research (INPE), Brazil Fonseca, Leila Maria Garcia, National Institute for Space Research (INPE), Brazil

WE2.R6 - Ground Penetrating Wednesday, September 30, 07:30 - 09:30 • Room 6 Radar

WE2.R6.1: SEMI-SUPERVISED DEEP LEARNING SEISMIC IMPEDANCE INVERSION USING GENERATIVE ADVERSARIAL NETWORK

Meng, Delin, School of Mathematics and Statistics, Xi'an Jiaotong University, China Wu, Bangyu, School of Mathematics and Statistics, Xi'an Jiaotong University, China Liu, Naihao, School of Information and Communications Engineering, Xi'an Jiaotong University, China Chen, Wenchao, School of Information and Communications Engineering, Xi'an Jiaotong University, China

WE2.R6.2: NONDESTRUCTIVE MICROWAVE SPECTROSCOPY IN CALCITE-RICH SHALE CORE SLABS

<u>Alvarez, Jose Oliverio</u>, Aramco Americas: Aramco Research Center - Houston, United States <u>Jacobi, David</u>, Aramco Americas: Aramco Research Center - Houston, United States

WE2.R6.3: DIFFERENTIAL ELECTROMAGNETIC INDUCTION SENSOR USING A SPINNING MAGNET EXCITATION

Scott, Waymond, Georgia Institute of Technology, United States

WE2.R6.4: AN UNBALANCED SINUOUS ANTENNA FOR ULTRA-WIDEBAND POLARIMETRIC GROUND-PENETRATING RADAR

<u>Crocker, Dylan</u>, Sandia National Laboratories, United States <u>Scott, Waymond</u>, Georgia Institute of Technology, United States

WE2.R6.5: STOLT MIGRATION IMAGING FOR SHORT-PULSE GROUND-PENETRATING RADAR BASED ON COMPRESSIVE SENSING

<u>Qu, Lele</u>, Shenyang Aerospace University, China <u>Li, Zhen</u>, Shenyang Aerospace University, China <u>Fathy, Aly E.</u>, University of Tennessee at Knoxville, United States

WE2.R6.6: INVERSION OF UNDERGROUND STRUCTURE BASED ON GA_RLPSO TIME-DOMAIN FULL WAVEFORM CONJUGATE GRADIENT METHOD

<u>Shi, Mengyang</u>, Shanghai Jiao Tong University, China <u>Shi, Wenxuan</u>, Shanghai Jiao Tong University, China <u>Gao, Yesheng</u>, Shanghai Jiao Tong University, China <u>Liu, Xingzhao</u>, Shanghai Jiao Tong University, China <u>Yuan, Bin</u>, Shanghai Jiao Tong University, China

WE2.R6.7: GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS

Li, Linfeng, University of Alabama, United States Yan, Jie-Bang, University of Alabama, United States Gogineni, Siva, University of Alabama, United States O'Neill, Charles, University of Alabama, United States Dahl-Jensen, Dorthe, University of Manitoba, Canada Simpson, Christopher, University of Alabama, United States Taylor, Ryan, University of Alabama, United States Elluru, Deepak, University of Alabama, United States Wattal, Shashank, University of Alabama, United States Nunn, Joshua, University of Alabama, United States Campbell, Reed, University of Alabama, United States Steinhage, Daniel, Alfred Wegener Institute, Germany Miller, Heinrich, Alfred Wegener Institute, Germany Eisen, Olaf, Alfred Wegener Institute, Germany

WE2.R6.8: PROCESSING-BASED SYNCHRONIZATION APPROACH FOR BISTATIC RADAR GLACIAL TOMOGRAPHY

<u>Bienert, Nicole</u>, Stanford University, United States <u>Schroeder, Dustin</u>, Stanford University, United States <u>Peters, Sean</u>, Stanford University, United States <u>Siegfried, Matthew</u>, Colorado School of Mines, United States

WE2.R6.9: A PSEUDOSPECTRAL TIME-DOMAIN SIMULATOR FOR LARGE-SCALE HALF-SPACE ELECTROMAGNETIC SCATTERING AND RADAR SOUNDING APPLICATIONS

<u>Lei, Yang</u>, California Institute of Technology, United States <u>Haynes, Mark</u>, NASA Jet Propulsion Laboratory, United States <u>Arumugam, Darmindra</u>, NASA Jet Propulsion Laboratory, United States <u>Elachi, Charles</u>, California Institute of Technology, United States

WE2.R6.10: A NARROWBAND MULTI-FREQUENCY RADAR SOUNDING ARCHITECTURE TO CORRECT SUBSURFACE INTERFACE ROUGHNESS EFFECTS

Broome, Anna, Stanford University, United States Schroeder, Dustin, Stanford University, United States

WE2.R6.11: AN ACCURATE LOW-COST METHOD FOR Q-FACTOR AND RESONANCE FREQUENCY MEASUREMENTS OF RF AND MICROWAVE RESONATORS

<u>Akbar, Fatemeh</u>, California Institute of Technology, United States <u>Yektakhah, Behzad</u>, University of Michigan, United States <u>Xu, Haokui</u>, University of Michigan, United States <u>Sarabandi, Kamal, University of Michigan, United States</u>

WE2.R7 - Incorporating Physics into Deep Learning

Wednesday, September 30, 07:30 - 09:30

Room 7

WE2.R7.1: PHYSICS-GUIDED MACHINE LEARNING: ADVANCES IN AN EMERGING PARADIGM COMBINING SCIENTIFIC KNOWLEDGE WITH MACHINE LEARNING

Karpatne, Anuj, Virginia Tech, United States

WE2.R7.2: PHYSICALLY INFORMED NEURAL NETWORKS FOR THE SIMULATION AND DATA-ASSIMILATION OF GEOPHYSICAL DYNAMICS

<u>Ouala, Said</u>, IMT-Atlantique, France <u>Fablet, Ronan</u>, IMT-Atlantique, France <u>Drumetz, Lucas</u>, IMT-Atlantique, France <u>Chapron, Bertrand</u>, Ifremer, France <u>Pascual, Ananda</u>, IMEDEA, Spain <u>Collard, Fabrice</u>, ODL, France <u>Gaultier, Lucile</u>, ODL, France

WE2.R7.3: PROCESS GUIDED DEEP LEARNING FOR MODELING PHYSICAL SYSTEMS: AN APPLICATION IN LAKE TEMPERATURE MODELING

<u>Jia, Xiaowei</u>, University of Minnesota, United States <u>Willard</u>, <u>Jared</u>, University of Minnesota, United States <u>Karpatne</u>, <u>Anuj</u>, Virginia Tech, United States <u>Read</u>, <u>Jordan</u>, USGS, United States <u>Zwart</u>, <u>Jacob</u>, USGS, United States <u>Steinbach</u>, <u>Michael</u>, University of Minnesota, United States <u>Kumar</u>, <u>Vipin</u>, University of Minnesota, United States

WE2.R7.4: VISUALIZATION OF DEEP TRANSFER LEARNING IN SAR IMAGERY

Taufique, Abu Md Niamul, Rochester Institute of Technology, United States Nagananda,

Navya, Rochester Institute of Technology, United States Savakis, Andreas, Rochester Institute of Technology, United States

WE2.R7.5: EXPLORING THE RELATIONSHIPS BETWEEN SCATTERING PHYSICS AND AUTO-ENCODER LATENT-SPACE EMBEDDING

<u>De, Shaunak</u>, Orbital Insight Inc., United States <u>Clanton, Christian</u>, Orbital Insight Inc., United States <u>Bickerton, Steven</u>, Orbital Insight Inc., United States <u>Baney, Oliwia</u>, Orbital Insight Inc., United States <u>Patnaik, Kaushik</u>, Orbital Insight Inc., United States

WE2.R7.6: ON THE OPTIMAL DESIGN OF CONVOLUTIONAL NEURAL NETWORKS FOR EARTH OBSERVATION DATA ANALYSIS BY MAXIMIZATION OF INFORMATION EXTRACTION

Marinoni, Andrea, UiT The Arctic University of Norway, Norway <u>Iannelli, Gianni Christian</u>, Ticinum Aerospace, Italy <u>Khaleghian, Salman</u>, UiT The Arctic University of Norway, Norway <u>Gamba, Paolo</u>, University of Pavia, Italy

WE2.R7.7: BUILDING EXTRACTION BY GATED GRAPH CONVOLUTIONAL NEURAL NETWORK WITH DEEP STRUCTURED FEATURE EMBEDDING

Shi, Yilei, Technical University of Munich, Germany Li, Qinyu, Technical University of Munich, Germany Zhu, Xiao Xiang, Technical University of Munich, Germany

WE2.R7.8: MULTI-SPECTRAL IMAGE CLASSIFICATION WITH QUANTUM NEURAL NETWORK

<u>Gawron, Piotr</u>, Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Poland <u>Lewiński, Stanisław</u>, Space Research Centre, Polish Academy of Sciences, Poland

WE2.R7.9: AN ENSEMBLE APPROACH FOR COMPRESSIVE SENSING WITH QUANTUM ANNEALERS

<u>Ayanzadeh, Ramin</u>, University of Maryland, Baltimore County, United States <u>Halem, Milton</u>, University of Maryland, Baltimore County, United States <u>Finin, Tim</u>, University of Maryland, Baltimore County, United States

WE2.R8 - Remote Sensing Wednesday, September 30, 07:30 - 09:30 • Room 8 Measurements of Small Scale and Submesoscale Processes in the Ocean

WE2.R8.1: DETECTION OF INTERNAL SOLITARY WAVES WITH CONVENTIONAL AND ADVANCED SAR ALTIMETRY PROCESSING METHODS: PRELIMINARY RESULTS

<u>da Silva, José C. B.</u>, CIIMAR - Interdisciplinary Centre of Marine and Environmental Research; University of Porto, Portugal <u>Santos-Ferreira</u>, <u>Adriana M.</u>, CIIMAR - Interdisciplinary Centre of Marine and Environmental Research; University of Porto, Portugal <u>Rieu</u>, <u>Pierre</u>, Collecte et Localisation Satellites, France <u>Moreau</u>, <u>Thomas</u>, Collecte et Localisation Satellites, France <u>Borde</u>, <u>Frank</u>, European Space Agency, Netherlands <u>Boy</u>, <u>Francois</u>, Centre National d'Etudes Spatiales (CNES), France <u>Maraldi</u>, <u>Claire</u>, Centre National d'Etudes Spatiales (CNES), France <u>Picot</u>, <u>Nicolas</u>, Centre National d'Etudes Spatiales (CNES), France <u>Ponlon</u>, <u>Craig</u>, European Space Agency, Netherlands

WE2.R8.2: CAN WE RETRIEVE INTERNAL SOLITON AMPLITUDES IN THE OCEAN WITH SAR ALTIMETRY? WHAT WOULD THIS BE GOOD FOR?

Santos-Ferreira, Adriana M., Faculty of Sciences, University of Porto; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Portugal da Silva, José C. B., Faculty of Sciences, University of Porto; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Portugal

WE2.R8.3: PRELIMINARY ANALYSIS OF TROPICAL CYCLONE OCEAN WAVES USING SENTINEL-1 SAR DATA.

<u>Hu, Denghui</u>, Institut français de recherche pour l'exploitation de la mer (IFREMER) , France <u>Mouche, Alexis</u>, Institut français de recherche pour l'exploitation de la mer (IFREMER) , France <u>Chapron, Bertrand</u>, Institut français de recherche pour l'exploitation de la mer (IFREMER) , France <u>Xu, Yongsheng</u>, Institute of Oceanology, Chinese Academy of Sciences, China

WE2.R8.4: S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT

Farrar, J. Thomas, Woods Hole Oceanographic Institution, United States D'Asaro, Eric, University of Washington, United States Rodriguez, Ernesto, California Institute of Technology, United States Shcherbing, Andrey, University of Washington, United States Czech, Erin, National Aeronautics and Space Administration, United States Matthias, Paul, Woods Hole Oceanographic Institution, United States Nicholas, Sommer, National Aeronautics and Space Administration, United States Bingham, Frederick, University of North Carolina Wilmington, United States Mahedevan, Amala, Woods Hole Oceanographic Institution, United States Omand, Melissa, University of Rhode Island, United States Rainville, Luc, University of Washington, United States Lee, Craig, University of Washington, United States Chelton, Dudley, Oregon State University, United States Samelson, Roger, Oregon State University, United States O'Neill, Larry, Oregon State University, United States Lenain, Luc, Scripps Institution of Oceanography, United States Menemenlis, Dimitris, California Institute of Technology, United States Perkovic-Martin, Dragana, California Institute of Technology, United States Mouroulis, Pantazis, California Institute of Technology, United States Gierach, Michelle, California Institute of Technology, United States Thompson, David, California Institute of Technology, United States Wineteer, Alexander, California Institute of Technology, United States Thompson, Andrew, California Institute of Technology, United States McWilliams, James C., University of California, Los Angeles, United States Molemaker, Jeroen, University of California, Los Angeles, United States Barkan, Roy, University of California, Los Angeles, United States Wenegrat, Jacob, University of Maryland, United States Rocha, Cesar, Woods Hole Oceanographic Institution, United States Jacobs, Gregg, Naval Research Laboratory, United States D'Addezio, Joseph, Naval Research Laboratory, United States de Halleux, Sebastien, Saildrone, Inc., United States Jenkins, Richard, Saildrone, Inc., **United States**

WE2.R8.5: SMALL-SCALE AND SUB-MESOSCALE PHENOMENA ASSOCIATED WITH UPWELLING STUDIED BY SAR

<u>Alpers, Werner</u>, University of Hamburg, Germany <u>Bignami, Francesco</u>, ISMAR-CNR Sede Secondaria di Roma, Italy

WE2.R8.6: ALTIMETER AS AN IMAGER OF THE SEA SURFACE ROUGHNESS: COMPARISON OF SAR AND LRM MODES

Tournadre, Jean, IFREMER, France Chapron, Bertrand, IFREMER, France

WE2.R8.7: FILM SLICKS ON THE SEA SURFACE: THEIR DYNAMICS AND REMOTE SENSING

Ermakov, Stanislav, Institute of Applied Physics of the Russian Academy of Sciences, Russia Danilicheva, Olga, Institute of Applied Physics of the Russian Academy of Sciences, Russia Kapustin, Ivan, Institute of Applied Physics of the Russian Academy of Sciences, Russia Shomina, Olga, Institute of Applied Physics of the Russian Academy of Sciences, Russia Sergievskazya, Irina, Institute of Applied Physics of the Russian Academy of Sciences, Russia Kupaev, Aleksandr, Institute of Applied Physics of the Russian Academy of Sciences, Russia Molkov, Aleksandr, Institute of Applied Physics of the Russian Academy of Sciences, Russia

WE2.R8.8: STUDIES OF INTERNAL WAVES IN THE STRAIT OF GEORGIA BASED ON REMOTE SENSING IMAGES

Wang, Caixia, Ocean University of China, China Wang, Xin, Ocean University of China, China da Silva, Jose, University of Porto, Portugal

WE2.R9 - Adaptive Segmentation and Optimization Wednesday, September 30, 07:30 - 09:30 • Room 9

WE2.R9.1: ADAPTIVE SUPERPIXEL SEGMENTATION WITH FISHER VECTORS FOR SHIP DETECTION IN SAR IMAGES

<u>Wang, Xueqian</u>, Tsinghua University, China <u>Li, Gang</u>, Tsinghua University, China <u>Plaza, Antonio</u>, University of Extremadura, Spain

WE2.R9.2: MAPPING OF URBAN AREAS FROM SAR IMAGES VIA SEMANTIC SEGMENTATION

<u>He, Wenjing</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Song, Hongjun</u>, Aerospace Information Research Institute, Chinese Academy of Sciences,

China <u>Yao, Yuanyuan</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Jia, Hongying</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE2.R9.3: SEGMENTATION OF SAR IMAGES BASED ON THE OPTIMAL LEVEL SETS USING CWOA

<u>Luo, Shiyu</u>, University of Electronic Science and Technology of China, China <u>Tong, Ling</u>, University of Electronic Science and Technology of China, China

WE2.R9.4: DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION OF AERIAL IMAGERY USING CYCLE-CONSISTENT ADVERSARIAL NETWORKS

<u>Schenkel, Fabian</u>, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Germany <u>Middelmann</u>, <u>Wolfgang</u>, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Germany

WE2.R9.5: INSTANCE SEGMENTATION OF BUILDINGS USING KEYPOINTS

<u>Li, Qingyu</u>, Technical University of Munich, Germany <u>Mou, Lichao</u>, German Aerospace Center, Germany <u>Hua, Yuansheng</u>, German Aerospace Center, Germany <u>Sun, Yao</u>, German Aerospace Center, Germany <u>Jin, Pu</u>, Technical University of Munich, Germany <u>Shi, Yilei</u>, Technical University of Munich, Germany <u>Zhu, Xiaoxiang</u>, German Aerospace Center, Germany

WE2.R9.6: UNSUPERVISED SEGMENTATION OF MULTILOOK COMPACT POLARIMETRIC SAR DATA BASED ON COMPLEX WISHART DISTRIBUTION

<u>Ghanbari, Mohsen</u>, University of Waterloo, Canada <u>Clausi, David A.</u>, University of Waterloo, Canada <u>Xu, Linlin</u>, University of Waterloo, Canada <u>Jiang, Mingzhe</u>, University of Waterloo, Canada

WE2.R9.7: HIGH-ORDER TRIPLET CRF-PCANET FOR UNSUPERVISED SEGMENTATION OF SAR IMAGE

Zhang, Peng, National Laboratory of Radar Signal Processing, Xidian University, China Boudaren, Mohamed El Yazid, School of Electronic Engineering, Ecole Militaire Polytechnique, Algeria Jiang, Yinyin, National Laboratory of Radar Signal Processing, Xidian University, China Song, Wanying, School of Electronic Engineering, Xidian University, China Li, Beibei, National Laboratory of Radar Signal Processing, Xidian University, China Li, Ming, National Laboratory of Radar Signal Processing, Xidian University, China Wu, Yan, School of Electronic Engineering, Xidian University, China

WE2.R9.8: DBC: DEEP BOUNDARIES COMBINATION FOR FARMLAND BOUNDARY DETECTION BASED ON UAV IMAGERY

<u>Li, Xirong</u>, Wuhan University, China <u>Xu, Xin</u>, Wuhan University, China <u>Yang, Rui</u>, Wuhan University, China <u>Pu, Fangling</u>, Wuhan University, China

WE2.R9.9: SINGLE IMAGE CLOUD DETECTION VIA MULTI-IMAGE FUSION

<u>Workman, Scott</u>, DZYNE Technologies, United States <u>Rafique</u>, <u>M. Usman</u>, University of Kentucky, United States <u>Blanton</u>, <u>Hunter</u>, University of Kentucky, United States <u>Greenwell</u>, <u>Connor</u>, University of Kentucky, United States <u>Jacobs</u>, <u>Nathan</u>, University of Kentucky, United States

WE2.R9.10: PANCHROMATIC IMAGE LAND COVER CLASSIFICATION VIA DCNN WITH UPDATING ITERATION STRATEGY

<u>Hou, Biao</u>, Xidian University, China <u>Liu, Yangfei</u>, Xidian University, China <u>Rong, Tuotuo</u>, Xidian University, China <u>Ren, Bo</u>, Xidian University, China <u>Xiang, Zijuan</u>, Xidian University, China <u>Zhang, Xiangrong</u>, Xidian University, China <u>Wang, Shuang</u>, Xidian University, China

WE2.R9.11: DO DEEP LEARNING MODELS GENERALIZE TO OVERHEAD IMAGERY FROM NOVEL GEOGRAPHIC LOCATIONS? THE XGD BENCHMARK PROBLEM

<u>Huang, Bohao</u>, Duke University, United States <u>Bradbury, Kyle</u>, Duke University, United States <u>Collins, Leslie</u>, Duke University, United States <u>Malof, Jordan</u>, Duke University, United States

WE2.R10 - Remote Sensing Wednesday, September 30, 07:30 - 09:30 • Room 10 for Forest and Vegetation Structure, Health and Growth II

WE2.R10.1: ESTIMATION OF NITROGEN IN THE SOIL OF BALSA TREES IN ECUADOR USING UNMANNED AERIAL VEHICLES

<u>Alvarez, Cesar</u>, Universidad Politecnica Salesiana, Ecuador <u>Quintana, Joselin</u>, Universidad Politecnica Salesiana, Ecuador <u>Tituana, Karen</u>, Universidad Politecnica Salesiana, Ecuador <u>Teodoro, Ana</u>, University of Porto, Portugal

WE2.R10.2: EXTENDING STOCHASTIC RADIATIVE TRANSFER THEORY TO SIMULATE BRF OVER FORESTS CONTAINING TREES WITH HETEROGENEOUS DAMAGED FOLIAGE

<u>Li, Xiaoyao</u>, Beijing Forestry University, China <u>Huang, Huaguo</u>, Beijing Forestry University, China <u>Shabanov, Nikolay</u>, Russian Academy of Sciences, Russia <u>Yan, Kai</u>, China University of Geosciences, China

WE2.R10.3: NORMALIZED PROJECTED RED & SWIR (NPRS): A NEW VEGETATION INDEX FOR FOREST HEALTH ESTIMATION AND ITS APPLICATION ON SPRUCE BARK BEETLE ATTACK DETECTION

<u>Huo, Langning</u>, Swedish University of Agricultural Sciences, Sweden <u>Lindberg, Eva</u>, Swedish University of Agricultural Sciences, Sweden <u>Persson, Henrik</u>, Swedish University of Agricultural Sciences, Sweden

WE2.R10.4: ANALYZING LEAF CLUMPING EFFECT OF INDIVIDUAL TREES BASED ON MODELED REALISTIC STRUCTURE

<u>Li, Weihua</u>, Beijing Normal University, China <u>Mu, Xihan</u>, Beijing Normal University, China <u>Li, Linyuan</u>, Beijing Normal University, China

WE2.R10.5: FOREST FLOWS - REAL TIME MONITORING OF WATER QUANTITY AND QUALITY SPATIO-TEMPORAL DYNAMICS IN PLANTED FORESTS

Meason, Dean, Scion (NZ Forest Research Institute), New Zealand Matson, Amanda, Thünen-Institut, Germany Baillie, Brenda, Scion (NZ Forest Research Institute), New Zealand Moller, Delwyn, University of Auckland, New Zealand Dudley, Bruce, National Institute of Water and Atmospheric Research, New Zealand Srinivasan, MS, National Institute of Water and Atmospheric Research, New Zealand Rajanayaka, Channa, National Institute of Water and Atmospheric Research, New Zealand Zammit, Christian, National Institute of Water and Atmospheric Research, New Zealand White, Donald, Whitegum Forest and Natural Resources, Australia

WE2.R10.6: ARE HIGH SEVERITY FIRES INCREASING IN SOUTHERN AUSTRALIA?

<u>Tran, Bang Nguyen</u>, University of Melbourne, Australia <u>Tanase, Mihai</u>, National Institute for Research and Development in Forestry "Marin Dracea", Romania <u>Bennett, Lauren T.</u>, University of Melbourne, Australia <u>Aponte, Cristina</u>, University of Melbourne, Australia

WE2.R10.7: A FUEL MOISTURE CONTENT MONITORING METHODOLOGY BASED ON OPTICAL REMOTE SENSING

<u>Li, Fan</u>, University of Electronic Science and Technology of China, China <u>Li, Yuxia</u>, University of Electronic Science and Technology of China, China <u>Zhang, Cunjie</u>,

China Meteorological Administration, China <u>Cheng, Yuan</u>, University of Electronic Science and Technology of China, China <u>Li, Yuzhen</u>, ChengDu Software Industry Development Center, China <u>He, Lei</u>, Chengdu University of Information Technology, China

WE2.R10.8: MAPPING SURFACE FUEL LOADINGS OF FORESTS USING STRATIFIED RANDOM SAMPLING AND GEOSTATISTICAL ANALYSIS DERIVED DATA

<u>Lin, Chinsu</u>, National Chiayi University, Taiwan <u>Ma, Siao-En</u>, National Chiayi University, Taiwan

WE2.R10.9: FORECASTING VEGETATION HEALTH IN THE MENA REGION BY PREDICTING VEGETATION INDICATORS WITH MACHINE LEARNING MODELS

Perera, Sachi, Computational and Data Sciences Graduate Program, United States Li, Wenzhao, Computational and Data Sciences Graduate Program, United States Linstead, Erik, Chapman University, United States El-Askary, Hesham Elaskary, Center of Excellence of Earth Observations and Modeling, United States

WE2.R10.10: SIMULATING AIRBORNE FULL-WAVEFORM LIDAR DATA IN VARYING MUTILAYERD FOREST THROUGH THE DART MODEL

Zhu, Xiao, Beijing Normal University, China Song, Jinling, Beijing Normal University, China Yang, Lei, Beijing Normal University, China Wang, Xin, Beijing Normal University, China

WE2.R10.11: DOMINANT TREES ANALYSIS USING UAV LIDAR AND PHOTOGRAMMETRY

<u>Liu, Qingwang</u>, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, China <u>Li, Shiming</u>, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, China <u>Tian</u>, <u>Xin</u>, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, China <u>Fu, Liyong</u>, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, China

WE2.R11 - Remote Sensing Wednesday, September 30, 07:30 - 09:30 • Room 11 for Crop Monitoring, Mapping and Classification III

WE2.R11.1: MAPPING RICE PLANTING AREA USING MULTI-TEMPORAL QUAD-POL RADARSAT-2 DATASETS AND RANDOM FOREST ALGORITHM

He, Ze, University of Electronic Science and Technology of China, China Li, Shihua, University of Electronic Science and Technology of China, China Zhai, Pengfei, University of Electronic Science and Technology of China, China Deng, Yuchuan, University of Electronic Science and Technology of China, China

WE2.R11.2: SCOPE, EXTENT, AND CHALLENGES OF AN AUTOMATED GLOBAL CROP CLASSIFICATION MODEL

Randhawa, Sukanya, IBM Research India, India Padmanaban, Manikandan, IBM Research India, India Devi, UmaMaheswari, IBM Research India, India

WE2.R11.3: ASSESSMENT OF CLOUD COVER IN SENTINEL-2 DATA USING RANDOM FOREST CLASSIFIER

<u>Nevavuori, Petteri</u>, Mtech Digital Solutions Oy, Finland <u>Lipping, Tarmo</u>, Tampere University, Finland <u>Narra, Nathaniel</u>, Tampere University, Finland <u>Linna, Petri</u>, Tampere University, Finland

WE2.R11.4: USE OF REMOTE SENSING SATELLITE IMAGES IN RICE AREA MONITORING SYSTEM OF BANGLADESH

Kalpoma, Kazi A, Ahsanullah University of Science and Technology, Bangladesh Ali, Rumman, Ahsanullah University of Science and Technology, Bangladesh Rahman, Ashiqur, Ahsanullah University of Science and Technology, Bangladesh Islam, Ashraful, Ahsanullah University of Science and Technology, Bangladesh

WE2.R11.5: AUTUMN CROP MAPPING BASED ON DEEP LEARNING METHOD DRIVEN BY HISTORICAL LABELLED DATASET

<u>Zhu, Shuang</u>, Beijing Polytechnic College, China <u>Zhang, Jinshui</u>, Beijing Normal University, China <u>Shuai, Guanyuan</u>, Michigan State University, United States <u>Liu, Hongli</u>, Beijing Normal University, China <u>Zhang, Feng</u>, Beijing Normal University, China <u>Dong, Zheng</u>, Beijing Vocational Transportation College, China

WE2.R11.6: DEVELOP LARGE-AREA AUTUMN CROP TYPE PRODUCT USING A DEEP LEARNING STRATEGY

Xu. Qing, Beijing Normal University, China Zhang, Jinshui, Beijing Normal University, China Zhang, Feng, Beijing Normal University, China Zhu, Shuang, Beijing Polytechnic College, China

WE2.R11.7: SOIL NUTRIENTS PREDICTION USING REMOTE SENSING DATA IN WESTERN INDIA: AN EVALUATION OF MACHINE LEARNING MODELS

<u>Kaur, Gunkirat</u>, Indian Institute of Information Technology Delhi, India <u>Das, Kamal</u>, IBM Research India, India <u>Hazra, Jagabondhu</u>, IBM Research India, India

WE2.R11.8: USE NIGHT TIME LIGHT REMOTE SENSING TO DISCOVER DRAGON FRUIT PLANTATIONS IN VIETNAM

<u>Wang, Ruirui</u>, Beijing Forestry University, China <u>Shi, Wei</u>, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China <u>Jiang, Huiping</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE2.R11.9: YIELD AND COMMERCIAL CANE SUGAR ESTIMATION FOR SUGARCANE IN THAILAND - A CASE STUDY

<u>Guruprasad, Ranjini B</u>, IBM Research India, India <u>Dasgupta, Kalyan</u>, IBM Research India, India <u>Sriroth, Klanarong</u>, Mitr Phol, Thailand <u>Chattanrassamee, Panyawat</u>, Mitr Phol, Thailand <u>Khiripet, Noppadon</u>, National Science and Technology Development Agency (NSTDA),

Thailand

WE2.R11.10: JOINT ESTIMATION OF GRASSLAND LEAF AREA INDEX AND LEAF CHLOROPHYLL CONTENT FROM UNMANNED AERIAL VEHICLE HYPERSPECTRAL DATA

Zhu, Xiaohua, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Chuanrong, Aerospace Information Research Institute, Chinese Academy of Sciences, China Tang, Lingli, Aerospace Information Research Institute, Chinese Academy of Sciences, China Yang, Qian, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhao, Yongguang, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE2.R12 - Advances in Regression, Super-resolution and Denoising Wednesday, September 30, 07:30 - 09:30 • Room 12

WE2.R12.1: REMOTE SENSING IMAGE SUPER-RESOLUTION VIA ENHANCED BACK-PROJECTION NETWORKS

Dong, Xiaoyu, College of Information and Communication Engineering, Harbin Engineering University, China Xi, Zhihong, College of Information and Communication Engineering, Harbin Engineering University, China Sun, Xu, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Yang, Lina, Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE2.R12.2: SURE BASED CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL IMAGE DENOISING

<u>Nguyen, Han Van</u>, University of Iceland, Iceland <u>Úlfarsson, Magnús Örn</u>, University of Iceland, Iceland <u>Sveinsson, Jóhannes Rúnar</u>, University of Iceland, Iceland

WE2.R12.3: LOCAL SPATIAL-SPECTRAL CORRELATION BASED MIXTURES OF FACTOR ANALYZERS FOR HYPERSPECTRAL DENOISING

<u>Zhao, Bin</u>, University of Iceland, Iceland <u>Sveinsson, Johannes R.</u>, University of Iceland, Iceland <u>Ulfarsson, Magnus O.</u>, University of Iceland, Iceland <u>Chanussot, Jocelyn</u>, Univ. Grenoble Alpes; University of Iceland, France

WE2.R12.4: JOINT MIXED-NOISE REMOVAL AND COMPRESSED SENSING RECONSTRUCTION OF HYPERSPECTRAL IMAGES VIA CONVEX OPTIMIZATION

<u>Takeyama, Saori</u>, Tokyo Institute of Technology, Japan <u>Ono, Shunsuke</u>, Tokyo Institute of Technology, Japan

WE2.R12.5: ONLINE PREDICTION OF DERIVED REMOTE SENSING IMAGE TIME SERIES: AN AUTONOMOUS MACHINE LEARNING APPROACH

Das, Monidipa, Nanyang Technological University, Singapore

WE2.R12.6: URBAN SURFACE SIMULATION THROUGH IMAGE-TO-IMAGE TRANSLATION DEEP LEARNING ALGORITHM USING OPTICAL AERIAL IMAGERY

<u>Das, Soumya K</u>, Central University of Jharkhand, India <u>P.S., Prakash</u>, Indian Institute of Technology Kharagpur, India <u>Pandey, A.C.</u>, Central University of Jharkhand, India <u>H.A., Bharath</u>, Indian Institute of Technology Kharagpur, India

WE2.R12.7: INTER-SENSOR REMOTE SENSING IMAGE ENHANCEMENT FOR OPERATIONAL SENTINEL-2 AND SENTINEL-3 DATA PRODUCTS

<u>Fernandez, Rafael</u>, University Jaume I, Spain <u>Fernandez-Beltran, Ruben</u>, University Jaume I, Spain <u>Pla, Filiberto</u>, University Jaume I, Spain

WE2.R12.8: CORRECTION OF SEASONAL EFFECTS ON VIIRS DNB MONTHLY COMPOSITES BY USING STABLE LIT DATA AND REGRESSION CONVOLUTIONAL NEURAL NETWORK

<u>Man Duc, Chuc</u>, Chubu University, Japan <u>Hirakawa, Tsubasa</u>, Chubu University, Japan <u>Fukui, Hiromichi</u>, Chubu University, Japan

WE2.R12.9: A NOVEL APPROACH FOR HYPERSPECTRAL IMAGE SUPERRESOLUTION USING SPECTRAL UNMIXING AND TRANSFER LEARNING

<u>Patel, Jignesh</u>, Dhirubhai Ambani Institute of Information and Communication Technology, India <u>Joshi, Manjunath</u>, Dhirubhai Ambani Institute of Information and Communication Technology, India <u>Bhatt, Jignesh</u>, Indian Institute of Information Technology Vadodara, India

WE2.R12.10: HYPERSPECTRAL IMAGES DENOISING BASED ON MIXTURES OF FACTOR ANALYZERS

<u>Zhao, Bin</u>, University of Iceland, Iceland <u>Sveinsson, Johannes R.</u>, University of Iceland, Iceland <u>Ulfarsson, Magnus O.</u>, University of Iceland, Iceland <u>Chanussot, Jocelyn</u>, Univ. Grenoble Alpes; University of Iceland, France

WE2.R12.11: TWO STAGE ESTIMATION PROCEDURE OF NON-LINEAR REGRESSION FUNCTIONS FOR SPATIALLY-DEPENDENT DATA

<u>Nishii, Ryuei</u>, Nagasaki University, Japan <u>Tanaka, Shojiro</u>, Hiroshima University of Economics, Japan

WE2.R13 - Recent Advances Wednesday, September 30, 07:30 - 09:30 • Room 13 in GNSS-Reflectometry:

Cryospheric Applications and Novel Techniques

WE2.R13.1: POTENTIAL OF GNSS REFLECTOMETRY FOR FREEZE-THAW MONITORING: A STUDY OF TECHDEMOSAT-1 DATA

<u>Comite, Davide</u>, Sapienza University, Italy <u>Dente, Laura</u>, Tor Vergata University, Italy <u>Cenci, Luca</u>, Sapienza University, Italy <u>Guerriero, Leila</u>, Tor Vergata University, Italy <u>Colliander, AndreaS</u>, NASA Jet Propulsion Laboratory, United States <u>Pierdicca, Nazzareno</u>, Sapienza University of Rome, Italy

WE2.R13.2: ANALYSIS OF GNSS-R COVERAGE BY A REGIONAL AIRCRAFT FLEET

<u>Linnabary, Ryan</u>, The Ohio State University, United States <u>O'Brien, Andrew</u>, The Ohio State University, United States <u>Ruf, Chris</u>, University of Michigan, United States <u>Musko, Stephen</u>, University of Michigan, United States <u>Moller, Delwyn</u>, University of Auckland, United States

WE2.R13.3: ANALYSIS ON THE FEASABILITY OF AIRBORNE GNSS-R RECEIVERS FOR WEATHER NOWCASTING AND TARGET DETECTION

<u>Perez, Adrian</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Munoz-Martin, Joan Francesc</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Camps, Adriano</u>, Universitat Politècnica de Catalunya (UPC), Spain

WE2.R13.4: GNSS REFLECTOMETRY FROM SMARTPHONES: TESTING PERFORMANCE OF IN-BUILT ANTENNAS AND GNSS CHIPS

<u>Kurum, Mehmet</u>, Mississippi State University, United States <u>Gurbuz</u>, <u>Ali</u>, Mississippi State University, United States <u>Farhad</u>, <u>Md. Mehedi</u>, Mississippi State University, United States

WE2.R13.5: A NOVEL BISTATIC SAR IMAGING ALGORITHM BASED ON GNSS TRANSMITTERS AND LOW-ORBIT RECEIVERS

Qi, Xin, Harbin Institute of Technology, China Zhang, Yun, Harbin Institute of Technology, China Jiang, Yicheng, Harbin Institute of Technology, China Zhang, Leiyu, Harbin Institute of Technology, China

WE2.R13.6: OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION

<u>Unwin, Martin</u>, Surrey Satellite Technology Ltd., United Kingdom <u>Pierdicca, Nazzareno</u>, Electronics and Telecommunications, Sapienza University of Rome (SAP-DIET), Italy <u>Rautiainen, Kimmo</u>, Finnish Meteorological Institute, Finland <u>Cardellach, Estel</u>, Institut de Ciencies de l'Espai (ICE-CSIC) Institut d'Estudis Espacials de Catalunya (IEEC), Spain <u>Foti, Giuseppe</u>, National Oceanography Centre, United Kingdom <u>Blunt, Paul</u>, University of Nottingham, United Kingdom <u>Guerriero, Leila</u>, DICII, Tor Vergata University, Italy <u>Santi, Emanuele</u>, Nello Carrara Institute of Applied Physics, Italy <u>Tossaint, Michel</u>, European Space Agency (ESA-ESTEC) / EOP-ΦMP, Netherlands <u>Worsley, Elliott</u>, Surrey Satellite Technology Ltd., United Kingdom

WE2.R13.7: THE GRSS STANDARD FOR GNSS-REFLECTOMETRY

<u>Carreno-Luengo, Hugo</u>, University of Michigan (UM), United States <u>Camps, Adriano</u>, Universitat Politècnica de Catalunya, Spain <u>Flouri, Nicolas</u>, European Space Agency (ESA), Netherlands <u>Martin-Neira, Manuel</u>, European Space Agency (ESA), Netherlands <u>Ruf, Chris</u>,

University of Michigan (UM), United States Wang, Tianlin, University of Michigan (UM), United States Khalsa, SiriJodha, University of Colorado (UC), United States Clarizia, Maria Paola, Deimos Space UK Ltd., United Kingdom Reynolds, Jennifer, Deimos Space UK Ltd., United Kingdom Johnson, Joel, The Ohio State University, United States O'Brien, Andrew, The Ohio State University, United States Galdi, Carmela, Universita degli Studi del Sannio, Italy di Biscegli, Maurizio, Universita degli Studi del Sannio, Italy Dielacher, Andreas, RUAG Space GmbH, Austria Jales, Philip, Spire Global, United States Unwin, Martin, Surrey Satellite Technology Ltd. (SSTL), United Kingdom King, Lucinda, University of Surrey, United Kingdom Foti, Giuseppe, National Oceanography Center (NOC), United Kingdom Shah, Rashmi, California Institute of Technology, United States Pascual, Daniel, Deimos Space UK Ltd., United Kingdom Schreiner, Bill, University Corporation for Atmospheric Research (UCAR), United States Asgarimehr, Milad, German Research Centre for Geosciences (GFZ), Germany Wickert, Jens, German Research Centre for Geosciences (GFZ), Germany Ribo, Serni, Institute of Space Sciences (ICE-CSIC/IEEC), Spain Cardellach, Estel, Institute of Space Sciences (ICE-CSIC/IEEC), Spain

WE2.R13.8: MONITORING GPS EIRP FOR CYGNSS LEVEL 1 CALIBRATION

Wang, Tianlin, University of Michigan, United States Ruf, Christopher, University of Michigan, United States Gleason, Scott, University Corporation for Atmospheric Research, United States McKague, Darren, University of Michigan, United States O'Brien, Andrew, The Ohio State University, United States Block, Bruce, University of Michigan, United States

WE2.R14 - Data Management Wednesday, September 30, 07:30 - 09:30 • Room 14 and Education I

WE2.R14.1: AN INSTITUTIONAL PARTNERSHIP MODEL TO PROVIDE UNDERGRADUATE STUDENTS REMOTE SENSING EDUCATION/RESEARCH EXPERIENCES USING NOVEL INEXPENSIVE LIDAR INSTRUMENTATION

<u>Sharma, Nimmi</u>, Central Connecticut State University, United States <u>Kabir, Amin</u>, University of the Bahamas, Bahamas, The <u>Barnes, John</u>, NOAA, United States

WE2.R14.2: SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS

Rosen, Paul, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Meyer, Franz, University of Alaska Fairbanks, United States Hensley, Scott, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Donnellan, Andrea, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Agram, Piyush, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Davis, Hilarie, Technology for Learning Consortium, United States Bekaert, David, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Fattahi, Heresh, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Funning, Gareth, UC Riverside, United States

WE2.R14.3: SERVICE-LEARNING: AN ENTRÉE TO INTRODUCE MINORITY STUDENTS TO REMOTE SENSING RESEARCH

<u>Blake, Reginald</u>, New York City College of Technology, United States <u>Liou-Mark, Janet</u>, New York City College of Technology, United States <u>Norouzi, Hamidreza</u>, New York City College of Technology, United States <u>Rivera, Julia</u>, New York City College of Technology, United States <u>Rice, Marlon</u>, Magnolia Tree Earth Center, United States

WE2.R14.4: UNDERGRADUATE RESEARCH: INTERWEAVING EDUCATION AND RESEARCH THROUGH EXPLORATION ROBOTICS FOR CLOSE RANGE REMOTE SENSING

Beaudoin, Laurent, EPITA, France Avanthey, Loica, EPITA, France

WE2.R14.5: HOW DATABASES NOSQL HELPS TEACHING DATABASES, GEOMETRY, AND REMOTE SENSING SIMULTANEOUSLY

Baumann, Peter, Jacobs University | rasdaman GmbH, Germany

WE2.R14.6: THE FRENCH LAND DATA AND SERVICES CENTER: THEIA

<u>Baghdadi, Nicolas</u>, INRAE, France <u>Sellé, Arnaud</u>, CNES, France <u>Bazzi, Hassan</u>, INRAE, France <u>Zribi, Mehrez</u>, CNRS, France <u>Biagiotti, Isabelle</u>, INRAE, France <u>Huynh, Frédéric</u>, IRD, France

WE2.R14.7: ERROR AND UNCERTAINTY IN EARTH OBSERVATION VALUE CHAINS

<u>Siddiqi, Afreen</u>, Massachusetts Institute of Technology, United States <u>Baber, Sheila</u>, Massachusetts Institute of Technology, United States <u>de Weck, Olivier</u>, Massachusetts Institute of Technology, United States <u>Durell, Chris</u>, Labsphere Inc., United States

WE2.R14.8: DEVELOPMENT OF OPEN DATA CUBE TO FACILITATE DISASTER RISK REDUCTION

Cheng, Ming-Chih, National Applied Research Laboratories, Taiwan Chang, Li-Yu, National Applied Research Laboratories, Taiwan Shih, I-Liang, National Applied Research Laboratories, Taiwan Kawakita, Shirou, Japan Aerospace Exploration Agency, Japan Chen, Bo, National Applied Research Laboratories, Taiwan Liu, Cynthia, National Applied Research Laboratories, Taiwan Lin, Hsi-Ching, National Applied Research Laboratories, Taiwan Applied Research Laboratories, Taiwan Lin, Li-Ching, National Applied Research Laboratories, Taiwan

WE2.R15 - KOMPSAT and New Wednesday, September 30, 07:30 - 09:30 • Room 15 Space SAR Instruments and Constellations

WE2.R15.1: STATUS OF THE KOMPSAT-5 SAR MISSION, UTILIZATION AND FUTURE PLANS

<u>Lee, Sun-Gu</u>, Korea Aerospace Research Institute, Korea (South) <u>Lee, Seung-Jae</u>, Korea Aerospace Research Institute, Korea (South) <u>Kim, Heeseob</u>, Korea Aerospace Research Institute, Korea (South) <u>Chea, Tea-Byeong</u>, Korea Aerospace Research Institute, Korea (South) <u>Ryu, Dongryeol</u>, University of Melbourne, Australia

WE2.R15.2: MULTI-TEMPORAL ASSESSMENT OF X-BAND SAR SOIL MOISTURE RETRIEVALS ACROSS GROWTH STAGES OF A DRYLAND WHEAT FIELD

Ryu, <u>Dongryeol</u>, University of Melbourne, Australia <u>Tao, Liangliang</u>, University of Melbourne, Australia <u>Western, Andrew</u>, University of Melbourne, Australia <u>Lee, Sun-Gu</u>, Korea Aerospace Research Institute, Australia

WE2.R15.3: INTERCOMPARISON OF X- AND C-BANDS ACTIVE MICROWAVE SOIL MOISTURE RETRIEVALS OVER DRYLAND WHEAT FIELDS

<u>Tao, Liangliang</u>, University of Melbourne, Australia <u>Ryu, Dongryeol</u>, University of Melbourne, Australia <u>Western, Andrew</u>, University of Melbourne, Australia <u>Lee, Sun-Gu</u>, Korea Aerospace Research Institute, Korea (South)

WE2.R15.4: IMPROVEMENT OF KOMPSAT-5 SEA SURFACE WIND WITH CORRECTION EQUATION RRETRIEVAL AND APPLICATION

<u>Jang, Jae-Cheol</u>, Seoul National University, Korea (South) <u>Park, Kyung-Ae</u>, Seoul National University, Korea (South) <u>Yang, Dochul</u>, Korea Aerospace Research Institute, Korea (South) <u>Lee, Sun-Gu</u>, Korea Aerospace Research Institute, Korea (South)

WE2.R15.5: CHANGE DETECTION OF URBAN AREAS AFFECTED BY EARTHQUAKE USING KOMPSAT-5 DATA

<u>Park, Sang-Eun</u>, Sejong University, Korea (South) <u>Lee, Sun-Gu</u>, Korea Aerospace Research Institute, Korea (South)

WE2.R15.6: OPERATIONAL READINESS OF THE CAPELLA SPACE SAR SYSTEM

<u>Castelletti, Davide</u>, Capella Space, United States <u>Farquharson, Gordon</u>, Capella Space, United States <u>Stringham, Craig</u>, Capella Space, United States <u>Eddy, Duncan</u>, Capella Space, United States

WE2.R15.7: DEMONSTRATION OF THE FEDERATED SATELLITE SYSTEMS CONCEPT FOR FUTURE EARTH OBSERVATION SATELLITE MISSIONS

Ruiz-de-Azua, Joan A., Universitat Politècnica de Catalunya (UPC), Spain Fernandez, Lara, Universitat Politècnica de Catalunya (UPC), Spain Badia, Marc, Universitat Politècnica de Catalunya (UPC), Spain Marton, Albert, Universitat Politècnica de Catalunya (UPC), Spain Garzaniti, Nicola, Skolkovo Institute of Science and Technology (Skoltech), Russia Calveras, Anna, Universitat Politècnica de Catalunya (UPC), Spain Golkar, Alessandro, Skolkovo Institute of Science and Technology (Skoltech), Russia Camps, Adriano, Universitat Politècnica de Catalunya (UPC), Spain

WE2.R15.8: THE LATEST STATUS OF OUR COMMERCIAL SMALL SYNTHETIC APERTURE RADAR SATELLITE CONSTELLATION

<u>Obata, Toshihiro</u>, Synspective, Japan <u>Arai, Motoyuki</u>, Synspective, Japan <u>Asada, Shoichiro</u>, Synspective, Japan <u>Imaizumi, Tomoyuki</u>, Synspective, Japan <u>Saito, Hirobumi</u>, Synspective, Japan <u>Shirasaka, Seiko</u>, Keio University, Japan

WE2.R15.9: ICEYE MICROSATELLITE SAR CONSTELLATION STATUS UPDATE: EVALUATION OF FIRST COMMERCIAL IMAGING MODES

<u>Ignatenko, Vladimir</u>, ICEYE Oy, Finland <u>Laurila, Pekka</u>, ICEYE Oy, Finland <u>Radius, Andrea</u>, ICEYE Oy, Finland <u>Lamentowski, Leszek</u>, ICEYE Oy, Finland <u>Antropov, Oleg</u>, ICEYE Oy, Finland <u>Muff, Darren</u>, ICEYE Oy, Finland

WE2.R15.10: THE SAR-XL MULTI-APERTURE X AND L BAND SAR SYSTEM WITH DIGITAL BEAMFORMING AND ITS CORRESPONDING DUAL-BAND APPLICATIONS

Tyc. George, UrtheCast Corporation, Canada Grigorian, Michael, UrtheCast Corporation, Canada Korus, Roger, UrtheCast Corporation, Canada Al Sedairy, Talal, King Abdulaziz City for Science and Technology, Saudi Arabia Alrashed, Abdullah, King Abdulaziz City for Science and Technology, Saudi Arabia Alharbi, Mohammad, King Abulaziz City for Science and

Technology Saudi Arahia

WE2.R16 - Processing and Imaging Techniques III

Wednesday, September 30, 07:30 - 09:30 • Room 16

WE2.R16.1: DE-SPECKLING OF SYNTHETIC APERTURE RADAR USING DISCRETE FOURIER TRANSFORM

Shitole, Sanjay, Usha Mittal Institute of Technolgy SNDT Women's University, India Jain, Vijal, Usha Mittal Institute of Technolgy SNDT Women's University, India Vanama, Venkata Sai Krishna, Centre for Urban Science and Engineering, Indian Institute of Technology Bombay, India

WE2.R16.2: COMPARATIVE ANALYSIS BETWEEN OPTICAL AND FUSED IMAGE WITH SAR

<u>Aslam, Khusharah</u>, Institute of Space Technology, Pakistan <u>Khalil, Rao Zahid</u>, Institute of Space Technology, Pakistan <u>Haq, Saad</u>, Institute of Space Technology, Pakistan <u>Ahmed</u>, <u>Salman</u>, University of Karachi, Pakistan

WE2.R16.3: REMOVEMENT OF STAGGERED SAR AMBIGUITY IN LOW-OVERSAMPLING BY DEEP LEARNING

<u>Wu, Ning</u>, University of Electronic Science and Technology of China, China <u>Xu, Mingming</u>, Beijing Institute of Spacecraft System Engineering, China <u>Li, Kun</u>, Beijing Institute of Spacecraft System Engineering, China <u>Liu, Zhe</u>, University of Electronic Science and Technology of China, China

WE2.R16.4: ASSESSING PERFORMANCE OF MULTITEMPORAL SAR IMAGE DESPECKLING FILTERS VIA A BENCHMARKING TOOL

<u>Di Martino, Gerardo</u>, University of Napoli, Italy <u>Di Simone, Alessio</u>, University of Napoli, Italy <u>Iodice, Antonio</u>, University of Napoli, Italy <u>Riccio, Daniele</u>, University of Napoli, Italy <u>Ruello</u>, <u>Giuseppe</u>, University of Napoli, Italy

WE2.R16.5: METHODOLOGY FOR LAND MAPPING OF AMAPA STATE - A SPECIAL CASE OF AMAZON RADIOGRAPHY PROJECT

<u>Filho, Antonio</u>, São Paulo State University - UNESP, Brazil <u>Borba, Philipe</u>, University of Brasilia - UnB, Brazil

WE2.R16.6: A MODIFIED EXTENDED WAVENUMBER-DOMAIN ALGORITHM FOR ULTRA-HIGH RESOLUTION SPACEBORNE SPOTLIGHT SAR DATA PROCESSING

Gao, Yao, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liang, Da, Aerospace Information Research Institute, Chinese Academy of Sciences, China Fang, Tingzhu, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhou, Zi-Xuan, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhang, Heng, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wang, Robert, Aerospace Information Research Institute, Chinese Academy of Sciences, China

WE2.R16.7: RECURRENT DEEP LEARNING FOR RICE FIELDS DETECTION FROM SAR IMAGES

Wu, Meng-Che, National Space Organization, Taiwan Alkhaleefah, Mohammad, National Taipei University of Technology, Taiwan Chang, Lena, National Taiwan Ocean University, Taiwan Chang, Yang-Lang, National Taipei University of Technology, Taiwan Shie, Ming-Hwang, National Space Organization, Taiwan Liu, Shian-Jing, National Space Organization, Taiwan Chang, Wen-Yen, National Dong Hwa University, Taiwan

WE2.R16.8: RADIOMETRIC CORRECTION OF DUAL-POLARIZATION SAR DATA OVER STEEP TERRAIN

<u>Luo, Shiyu</u>, University of Electronic Science and Technology of China, China <u>Tong, Ling</u>, University of Electronic Science and Technology of China, China

WE2.R16.9: AN IMAGING COMPENSATION SCHEME FOR CORRECTING IONOSPHERIC EFFECT ON HIGH-RESOLUTION SPACEBORNE P-BAND SAR

<u>Liu, Yuqing</u>, Beihang University, China <u>Chen, Jie</u>, Beihang University, China <u>Wang, Pengbo</u>, Beihang University, China <u>Zeng, Hongcheng</u>, Beihang University, China <u>Yang, Wei</u>, Beihang University, China

WE2.R16.10: AMPLITUDE AND PHASE ERROR CORRECTION METHOD FOR ARRAY SAR PROCESSED IN TIME DOMAIN

Dong, Yifan, Inner Mongolia University of Technology, China Li, Guowei, Inner Mongolia University of Technology, China Tan, Weixian, Inner Mongolia University of Technology, China Huang, Pingping, Inner Mongolia University of Technology, China Xu, Wei, Inner Mongolia University of Technology, China

WE2.R16.11: INTERRUPTED FMCW SAR IMAGING VIA SPARSE RECONSTRUCTION

Liu, Kang, Institute of Electronics, Chinese Academy of Sciences, China Yu, Weidong, Institute of Electronics, Chinese Academy of Sciences, China

WE2.R16.12: A SIMULATION STUDY TO EVALUATE THE PERFORMANCE OF THE CAUCHY PROXIMAL OPERATOR IN DESPECKLING SAR IMAGES OF THE SEA SURFACE

<u>Karakus, Oktay</u>, Visual Information Lab, University of Bristol, United Kingdom <u>Rizaev, Igor</u>, Visual Information Lab, University of Bristol, United Kingdom <u>Achim, Alin</u>, Visual Information <u>Lab, University of Bristol, United Kingdom</u>

WE2.R17 - UAV and Airborne Wednesday, September 30, 07:30 - 09:30 • Room 17 Platforms Applications I

WE2.R17.1: USE OF DRONES AND SATELLITE IMAGES TO ASSESS THE HEALTH OF DATE PALM TREES

<u>Al-Mulla, Yaseen, Sultan Qaboos University, Oman Al-Mulla, Yaseen, Sultan Qaboos University, Oman</u>

WE2.R17.2: VOLUNTEERED REMOTE SENSING USING HANDHELD CAMERAS IN A PASSENGER AIRCRAFT

<u>Wang, Chisheng</u>, Shenzhen University, China <u>Wang, Yongquan</u>, Shenzhen University, China <u>Hu, Zhongwen</u>, Shenzhen University, China <u>Liu, Peng</u>, Southern University of Science and Technology, China

WE2.R17.3: RESEARCH ON MECHANISM AND PROCESS OF THE SHUICHENG LANDSLIDE IN GUIZHOU BASED ON UAV IMAGES

Jiao, Qisong, Institute of Crustal Dynamics, China Earthquake Administration, China Jiang, Wenliang, Institute of Crustal Dynamics, China Earthquake Administration, China Li, Qiang, Institute of Crustal Dynamics, China Earthquake Administration, China

WE2.R17.4: VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY

<u>Pádua, Luís</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Adão, Telmo</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Hruska, Jonas</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Guimarães, Nathalie</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Marques, Pedro</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Peres, Emanuel</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Sousa, Joaquim J.</u>, University of Trás-os-Montes e Alto Douro, Portugal

WE2.R17.5: IMAGE ANALYSIS OF A SEA TURTLE NESTING BEACH USING UNMANNED AERIAL VEHICLES (UAVS)

<u>Escobar-Flores, Jonathan G.</u>, IPN, Mexico <u>Sandoval, Sarahi</u>, IPN CONACYT, Mexico <u>Sosa-Cornejo, Ingmar</u>, Universidad Autonoma de Sinaloa, Mexico

WE2.R17.6: HIGH-RESOLUTION UAV MAPPING FOR INVESTIGATING EELGRASS BEDS ALONG THE WEST COAST OF NORTH AMERICA

<u>Yang, Bo</u>, Univerisity of Central Florida, United States <u>Hawthorne, Timothy</u>, Univerisity of Central Florida, United States <u>Searson</u>, <u>Hunter</u>, Univerisity of Central Florida, United States <u>Duffy</u>, <u>Emmett</u>, Smithsonian Institution, United States

WE2.R17.7: DUCK NEST DETECTION THROUGH REMOTE SENSING

<u>Helvey, Matthew</u>, Rochester Institute of Technology, United States <u>Ryckman, Mason</u>, University of North Dakota, United States <u>Ellis-Felege, Susan</u>, University of North Dakota, United States <u>Van Aardt, Jan</u>, Rochester Institute of Technology, United States <u>Salvagio, Carl</u>, Rochester Institute of Technology, United States

WE2.R17.8: DETECTION OF SUB-PIXEL PLASTIC ABUNDANCE ON WATER SURFACES USING AIRBORNE IMAGING SPECTROSCOPY

<u>Hueni, Andreas</u>, University of Zurich, Switzerland <u>Bertschi, Sonja</u>, University of Zurich, Switzerland

WE2.R17.9: PLASTIC LITTER PROJECT 2019: EXPLORING THE DETECTION OF FLOATING PLASTIC LITTER USING DRONES AND SENTINEL 2 SATELLITE IMAGES

<u>Topouzelis</u>, <u>Konstantinos</u>, Department of Marine Sciences, University of the Aegean, Greece <u>Papageorgiou</u>, <u>Dimitris</u>, Department of Marine Sciences, University of the Aegean, Greece <u>Karagaitanakis</u>, <u>Alexandros</u>, Department of Marine Sciences, University of the Aegean, Greece <u>Papakonstantinou</u>, <u>Apostolos</u>, Department of Marine Sciences, University of the Aegean, Greece <u>Arias Ballesteros</u>, <u>Manuel</u>, ARGANS, France

WE2.R17.10: CO-OBSERVATION AND ANALYSIS OF UAV AND MULTISPECTRAL REMOTE SENSING

Sun, Yishan, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China Li, Lei, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China Li, Xiaojie, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China

WE2.R17.11: IMPLEMENTING DRONE MAPPING ALONG THE US WEST COAST FOR EELGRASS MEADOW EXTENT AND DYNAMICS

<u>Searson, Hunter</u>, University of Central Florida, United States <u>Yang, Bo</u>, University of Central Florida, United States <u>Hawthorne, Timothy</u>, University of Central Florida, United States

WE2.R17.12: CURRENT STATUS OF NEON'S AOP

Goulden, Tristan, National Ecological Observatory Network, Battelle, United States Hass, Bridget, National Ecological Observatory Network, Battelle, United States Musinsky, John, National Ecological Observatory Network, Battelle, United States Shrestha, Alok, National Ecological Observatory Network, Battelle, United States

WE2.R18 - Deep and Wednesday, September 30, 07:30 - 09:30 • Room 18 Semantic Learning for Object Detection

WE2.R18.1: UNDERWATER FIELD EQUIPMENT OF A NETWORK OF LANDMARKS OPTIMIZED FOR AUTOMATIC DETECTION BY AI

Beaudoin, Laurent, EPITA, France Avanthey, Loica, EPITA, France

WE2.R18.2: UNDERWATER CALIBRATION IN NEAR REAL TIME: FOCUS ON DETECTION OPTIMIZED BY AI AND SELECTION OF CALIBRATION PATTERNS

Avanthey, Loica, EPITA, France Beaudoin, Laurent, EPITA, France

WE2.R18.3: AUTOMATED DETECTION OF MANHOLE COVERS IN MLS POINT CLOUDS USING A DEEP LEARNING APPROACH

<u>Qing, Liyuan</u>, University of Waterloo, Canada <u>Yang, Ke</u>, University of Waterloo, Canada <u>Tan, Weikai</u>, University of Waterloo, Canada <u>Li. Jonathan</u>, University of Waterloo, Canada

WE2.R18.4: A WEAKLY SUPERVISED DEEP LEARNING APPROACH FOR PLANT CENTER DETECTION AND COUNTING

Karami, Azam, Purdue University, United States M. Crawford, Melba, Purdue University, United States J. Delp, Edward, Purdue University, United States

WE2.R18.5: UAV BASED REMOTE SENSING FOR TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF MAIZE CROP USING MULTISPECTRAL IMAGES

Kumar, Ajay, Indian Institute of Technology Hyderabad Telangana India, India Taparia.

Mahesh, Indian Institute of Technology Hyderabad Telangana India, India Rajalakshmi, P.,
Indian Institute of Technology Hyderabad Telangana India, India Guo, Wei, International Field Phenomics Research Laboratory, Institute for Sustainable Agro-ecosystem Services,
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,
Japan Naik, Balaji, Professor Jayashankar Telangana State Agricultural University (PJTSAU),
India Marathi, Balram, Professor Jayashankar Telangana State Agricultural University
(PJTSAU), India Desai, Uday, Indian Institute of Technology Hyderabad Telangana India, India

WE2.R18.6: ACCURATE DETECTION OF HISTORICAL BUILDINGS USING AERIAL PHOTOGRAPHS AND DEEP TRANSFER LEARNING

<u>Xiong, Yongzhu</u>, Jiaying University, China <u>Chen, Qi</u>, University of Hawaii at Manoa, United States <u>Zhu, Mingyong</u>, Jiaying University, China <u>Zhang, Yu</u>, Jiaying University, China <u>Huang</u>, <u>Kekun</u>, Jiaying University, China

WE2.R18.7: CENTER PIVOT CLASSIFICATION WITH DEEP RESIDUAL U-NET

de Albuquerque, Anesmar Olino, Universidade de Brasília, Brazil de Bem, Pablo Pozzobon, Universidade de Brasília, Brazil de Moura, Rebeca dos Santos, Universidade de Brasília, Brazil Ferreira de Carvalho, Osmar Luiz, Universidade de Brasília, Brazil Guimarães Ferreira, Pedro Henrique, Universidade de Brasília, Brazil Silva, Cristiano Rosa, Universidade de Brasília, Brazil Gomes, Roberto Arnaldo Trancoso, Universidade de Brasília, Brazil Guimarães, Renato Fontes, Universidade de Brasília, Brazil Carvalho Júnior, Osmar Abilio, Universidade de Brasília, Brazil

WE2.R18.8: CONVOLUTIONAL NEURAL NETWORK FOR DETECTION OF RESIDENTIAL PHOTOVOLTAIC SYSTEMS IN SATELLITE IMAGERY

Moraguez, Matthew, Massachusetts Institute of Technology, United States <u>Trujillo, Alejandro</u>, Massachusetts Institute of Technology, United States <u>de Weck, Olivier</u>, Massachusetts Institute of Technology, United States <u>Siddiqi, Afreen</u>, Massachusetts Institute of Technology, United States

WE2.R18.9: SAR EDDY DETECTION USING MASK-RCNN AND EDGE ENHANCEMENT

Zhang, Di, University of Hamburg, Germany Gade, Martin, University of Hamburg, Germany Zhang, Jianwei, University of Hamburg, Germany

WE2.R18.10: IMPROVING THE PERFORMANCE OF SEABIRDS DETECTION COMBINING MULTIPLE SEMANTIC SEGMENTATION MODELS

<u>Liu, Chunxiu</u>, Shandong University of Science and Technology, China <u>Ming, Yanfang</u>, Shandong University of Science and Technology, China <u>Zhu, Jinshan</u>, Shandong University of Science and Technology, China

WE2.R18.11: DEEP NETWORKS UNDER BLOCK-LEVEL SUPERVISION FOR PIXEL-LEVEL CLOUD DETECTION IN MULTI-SPECTRAL SATELLITE IMAGERY

Chen, Wei, School of Remote Sensing and Information Engineering, Wuhan University, China Li, Yansheng, School of Remote Sensing and Information Engineering, Wuhan University, China Zhang, Yongjun, School of Remote Sensing and Information Engineering, Wuhan University, China Hao, Xiaolong, Beijing Tracking and Communication Technology Research Institute, China

WE2.R19 - Global Wednesday, September 30, 07:30 - 09:30 • Room 19 Precipitation Measurement Mission with Emphasis on Coastal Observations

WE2.R19.1: THE GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION

Skofronick-Jackson, Gail, NASA Headquarters, United States

WE2.R19.2: PRELIMINARY ANALYSIS OF EXPERIMENTAL PRODUCT FOR THE NEW SCAN PATTERN OF GPM/DPR

<u>Seto, Shinta</u>, Nagasaki University, Japan <u>Kubota, Takuji</u>, Japan Aerospace Exploration Agency, Japan <u>Masaki, Takeshi</u>, Remote Sensing Technology Center of Japan, Japan <u>Takahashi</u>, <u>Nobuhiro</u>, Nagoya University, Japan <u>Iguchi, Toshio</u>, Unversity of Maryland, United States

WE2.R19.3: ON THE OPTIMIZATION OF PARAMETERS IN THE GSMAP_GAUGE ALGORITHM

Mega, Tomoaki, Osaka University, Japan <u>Ushio, Tomoo</u>, Osaka University, Japan

WE2.R19.4: EVALUATION OF CLOUD LIQUID WATER DATABASE USING GLOBAL CLOUD-SYSTEM RESOLVING MODEL FOR GPM/DPR ALGORITHMS

Kubota, Takuji, Japan Aerospace Exploration Agency, Japan Satoh, Masaki, University of Tokyo, Japan Masaki, Takeshi, Remote Sensing Technology Center of Japan, Japan Iguchi, Toshio, University of Maryland, United States Seto, Shinta, Nagasaki University, Japan Nasuno, Tomoe, Japan Agency for Marine-Earth Science and Technology, Japan Oki, Riko, Japan Aerospace Exploration Agency, Japan

WE2.R19.5: EVALUATION OF GPM-DPR GRAUPEL AND HAIL IDENTIFICATION ALGORITHM ON A GLOBAL SCALE

<u>Chandrasekar, V.</u>, Colorado State University, United States <u>Le, Minda</u>, Colorado State University, United States

WE2.R19.6: RECENT ADVANCES TO THE OPENSSP PARTICLE AND SCATTERING DATABASE

Adams, Ian, NASA Goddard Space Flight Center, United States <u>Kuo, Kwo-Sen</u>, University of Maryland, United States <u>Olson, William</u>, University of Maryland - Baltimore College, United States <u>Clune, Thomas</u>, NASA Goddard Space Flight Center, United States <u>Pelissier, Craig</u>, Science Systems and Applications, Inc, United States <u>Loftus, Adrian</u>, University of Maryland, United States <u>Schrom, Robert</u>, Universities Space Research Association, United States

WE2.R19.8: DEVELOPMENT OF RAINFALL NORMALIZATION MODULE FOR GSMAP MICROWAVE IMAGERS AND SOUNDERS

<u>Yamamoto, Munehisa</u>, Remote Sensing Technology Center of Japan, Japan <u>Kubota, Takuji</u>,

Japan Aerospace Exploration Agency, Japan

TH1.R1 - Soil Moisture II

Thursday, October 1, 05:00 - 07:00 • Room 1

TH1.R1.1: PREDICTING SOIL MOISTURE RETRIEVAL PERFORMANCE FOR THE NISAR MISSION

<u>Bringer, Alexandra</u>, The Ohio State University, United States <u>Johnson, Joel</u>, The Ohio State University, United States <u>Bindlish, Rajat</u>, NASA Goddard Space Flight Center, United States

TH1.R1.2: SOIL MOISTURE RETRIEVAL USING SAR DERIVED VEGETATION DESCRIPTORS IN WATER CLOUD MODEL

Bhogapurapu, Narayanarao, Microwave Remote Sensing Lab, Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India, India Mandal, Dipankar, Microwave Remote Sensing Lab, Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India, India Y.S., Rao, Microwave Remote Sensing Lab, Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India, India Bhattacharya, Avik, Microwave Remote Sensing Lab, Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India, India

TH1.R1.3: PRELIMINARY STUDY OF CRAMER-RAO LOWER BOUND FOR SUBSURFACE SOIL MOISTURE ESTIMATION USING SOOP REFLECTOMETRY

<u>Boyd, Dylan</u>, Mississippi State University, United States <u>Kurum, Mehmet</u>, Mississippi State University, United States <u>Gurbuz, Ali</u>, Mississippi State University, United States

TH1.R1.4: FULL-WAVE SIMULATIONS OF SCATTERING IN VEGETATION FOR MICROWAVE REMOTE SENSING OF SOIL MOISTURE

<u>Gu, Weihui</u>, University of Michigan, United States <u>Tsang, Leung</u>, University of Michigan, United States <u>Colliander, Andreas</u>, California Institute of Technology, United States <u>Yueh</u>, <u>Simon</u>, California Institute of Technology, United States

TH1.R1.5: ESTIMATING GLOBAL EVAPOTRANSPIRATION USING SMAP SURFACE AND ROOT-ZONE MOISTURE CONTENT

<u>Kim, Youngwook</u>, United Arab Emirate University, United Arab Emirates <u>Park, Hotaek</u>, JAMSTEC, Japan <u>Kimball, John</u>, Numerical Terradynamic Simulation Group, United States <u>Colliander, Andreas</u>, NASA Jet Propulsion Laboratory, United States <u>Johnson, Jesse</u>, University of Montana, United States

TH1.R1.6: IRRIGATION MAPPING USING SENTINEL-1 TIME SERIES

<u>Bazzi, Hassan</u>, INRAE, France <u>Baghdadi, Nicolas</u>, INRAE, France <u>Ienco, Dino</u>, INRAE, France <u>Zribi, Mehrez</u>, CNRS, France <u>Belhouchette, Hatem</u>, CIHEAM-IAMM, France

TH1.R1.7: ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV

Krapez, J.-C., ONERA, France Sanchis Muñoz, J., Galileo Geosystems, Spain Chatelard, C., ONERA, France Mazel, C., Air Marine, France Olichon, V., Air Marine, France Barba Polo, J., Galileo Geosystems, Spain Frederic, Y.M., ONERA, France Coiro, E., ONERA, France Carreira, D., EDIA, Portugal Carvalho, A., EDIA, Portugal

TH1.R1.8: SMAP SOIL MOISTURE PRODUCT VALIDITY IN HETEROGENEOUS IRRIGATED REGIONS

<u>Worrall, George</u>, University of Florida, United States <u>Judge</u>, <u>Jasmeet</u>, University of Florida, United States <u>Barrett</u>, <u>Charles</u>, University of Florida, United States

TH1.R1.9: SOIL MOISTURE ESTIMATION BASED ON THE AIEM FOR BARE AGRICULTURAL AREA

Zhang, Xiang, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Tang, Xinming, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Gao, Xiaoming, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhao, Hui, National Geomatics Center of China, China Li, Tao, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Chen, Qianfu, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China

TH1.R1.10: COMPARISON OF SMAP RETRIEVAL SOIL MOISTURE LEVEL 2 PRODUCT WITH IN SITU MEASUREMENTS OVER CORN FIELDS IN CENTRAL MEXICO.

<u>Hernandez-Sanchez, Juan Carlos</u>, Instituto Politécnico Nacional, Mexico <u>Monsiváis-Huertero</u>, <u>Alejandro</u>, Instituto Politécnico Nacional, Mexico <u>Judge, Jasmeet</u>, University of Florida, Mexico <u>Jiménez-Escalona</u>, <u>José Carlos</u>, Instituto Politécnico Nacional, Mexico

TH1.R1.11: EVALUATION OF SMAP AND SMOS SOIL MOISTURE PRODUCTS USING DISTRIBUTED GROUND OBSERVATION NETWORK IN COLD AND ARID REGIONS IN THE NORTHWEST OF CHINA

<u>Wang, Zengyan</u>, College of Environment and Planning, Henan University, China <u>Che, Tao</u>, Northwest Institute of Eco-Environment and Resources, CAS, China <u>Dai, Liyun</u>, Northwest Institute of Eco-Environment and Resources, CAS, China

TH1.R2 - Adaptive and Neural Methods for Object Recognition

Thursday, October 1, 05:00 - 07:00 • Room 2

TH1.R2.1: FUSION-ORIENTED AIRCRAFT DETECTION IN LARGE SCENE IMAGE BASED ON TINY DARKNET

<u>Wang, Jianing</u>, Harbin Institute of Technology, China <u>Zhang, Ye</u>, Harbin Institute of Technology, China

TH1.R2.2: COMPUTER VISION AIDED OPTICAL CORRELATOR FOR SAR TARGET RECOGNITION

Meng, Xintao, Shanghai Jiao Tong University, China Gao, Yesheng, Shanghai Jiao Tong University, China Liu, Xingzhao, Shanghai Jiao Tong University, China

TH1.R2.3: FINE ACQUISITION OF VESSEL TRAINING DATA FOR MACHINE LEARNING FROM SENTINEL-1 SAR IMAGES ACCOMPANIED BY AIS IMFORMATION

<u>Song, Juyoung</u>, Seoul National University, Korea (South) <u>Kim, Duk-jin</u>, Seoul National University, Korea (South)

TH1.R2.4: A TARGET DETECTION ALGORITHM OF NEURAL NETWORK BASED ON HISTOGRAM STATISTICS

Jiang, Shuai, Beijing Institute of Spacecraft System Engineering, China Pang, Yalong, Beijing Institute of Spacecraft System Engineering, China Wang, Luyuan, Beijing Institute of Spacecraft System Engineering, China Yu, Jiyang, Beijing Institute of Spacecraft System Engineering, China Cheng, Bowen, Beijing Institute of Spacecraft System Engineering, China Li, Zongling, Beijing Institute of Spacecraft System Engineering, China

TH1.R2.5: USING POLAR GRID FOR BUILDING EXTRACTION IN TERRESTRIAL LASER SCANNING DATA

<u>Chen, Maolin</u>, Chongqing Jiaotong University, China <u>Tang, Feifei</u>, Chongqing Jiaotong University, China <u>Pan, Jianping</u>, Chongqing Jiaotong University, China

TH1.R2.6: ADAPTIVE FEATURE AGGREGATION NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES

Sun, Wenliang, Xidian University, China Zhang, Xiangrong, Xidian University, China Zhang, Tianyang, Xidian University, China Zhu, Peng, Xidian University, China Gao, Li, State Key Laboratory of Geo-information Engineering, China Tang, Xu, Xidian University, China Liu, Bo, Xidian University, China

TH1.R2.7: FEATURE ENHANCED CENTERNET FOR OBJECT DETECTION IN REMOTE SENSING IMAGES

Zhang, Tong, Beijing Institute of Technology, China Wang, Guanqun, Beijing Institute of Technology, China Zhuang, Yin, Peking University, China Chen, He, Beijing Institute of Technology, China Shi, Hao, Beijing Institute of Technology, China Chen, Liang, Beijing Institute of Technology, China

TH1.R2.8: BUILDING DETECTION BASED ON RECTANGLE APPROXIMATION AND REGION GROWING

<u>Yin, Xueqi</u>, Harbin Institute of Technology, China <u>Hao, XiaoLong</u>, Beijing Tracking and Communication Technology Research Institute, China <u>Gao, Tong</u>, Harbin Institute of Technology, China <u>Chen, Hao</u>, Harbin Institute of Technology, China <u>Chen, Wen</u>, Harbin Institute of Technology, China

TH1.R2.9: SHIP DETECTION WITH SAR BASED ON YOLO

Jiang, Shaobin, University of Electronic Science and Technology of China, China Zhu, Mingcang, Department of Natural Resources of Sichuan Province, China He, Yong, Sichuan Research Institute for Eco-system Restoration & Geo-disaster Prevention, China Zheng, Zezhong, University of Electronic Science and Technology of China, China Zhou, Fangrong, Yunnan Power Grid Co., Ltd, China Zhou, Guoqing, Guilin University of Technology, China

TH1.R2.10: MULTI-ASPECT SAR TARGET RECOGNITION BASED ON EFFICIENTNET AND GRU

Zhao, Pengfei, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Huang, Lijia</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China

TH1.R2.11: HYPERSPECTRAL TARGET DETECTION BY FRACTIONAL FOURIER TRANSFORM

<u>Zhao, Xiaobin</u>, Beijing Institute of Technology, China <u>Li, Wei</u>, Beijing Institute of Technology, China <u>Shan, Tao</u>, Beijing Institute of Technology, China <u>Li, Lu</u>, Beijing Information Science and Technology University, China <u>Tao, Ran</u>, Beijing Institute of Technology, China

TH1.R2.12: TOPOGRAPHICAL FEATURE EXTRACTION USING MACHINE LEARNING TECHNIQUES FROM SENTINEL-2A IMAGERY

<u>Chaurasia, Kuldeep</u>, Bennett University, India <u>Baipureddy, Neeraj</u>, Bennett University, India <u>Burle, Dattu</u>, Bennett University, India <u>Mishra, Vipul Kumar</u>, Bennett University, India

TH1.R3 - Feature Reduction by Neural and/or Spatial Characterization I Thursday, October 1, 05:00 - 07:00 \circ Room 3

TH1.R3.1: EDGE-DRIVEN OBJECT MATCHING FOR UAV IMAGES AND SATELLITE SAR

IMAGES

<u>Zhang, Ruixiang</u>, Wuhan University, China <u>Xu, Fang</u>, Wuhan University, China <u>Yu, Huai</u>, Wuhan University, China <u>Yang, Wen</u>, Wuhan University, China <u>Li, Heng-Chao</u>, Southwest Jiaotong University, China

TH1.R3.2: GRAPH-BASED MICRO-SEISMIC SIGNAL CLASSIFICATION WITH AN OPTIMISED FEATURE SPACE

<u>Li, Jiangfeng</u>, University of Strathclyde, United Kingdom <u>Yang, Cheng</u>, York University, Canada <u>Stankovic, Vladimir</u>, University of Strathclyde, United Kingdom <u>Stankovic, Lina</u>, University of Strathclyde, United Kingdom <u>Pytharouli, Stella</u>, University of Strathclyde, United Kingdom

TH1.R3.3: FEEDBACK NEURAL NETWORK BASED SUPER-RESOLUTION OF DEM FOR GENERATING HIGH FIDELITY FEATURES

<u>Kubade, Ashish</u>, International Institute of Information Technology Hyderabad, India <u>Sharma</u>, <u>Avinash</u>, International Institute of Information Technology Hyderabad, India <u>Rajan</u>, <u>K. S.</u>, International Institute of Information Technology Hyderabad, India

TH1.R3.4: MANIFOLD LEARNING WITH HIGH DIMENSIONAL MODEL REPRESENTATIONS

<u>Taşkın, Gülşen,</u> İstanbul Technical University, Turkey <u>Camps-Valls, Gustau</u>, Universitat de Vale İncia, Spain

TH1.R3.5: A TENSOR DECOMPOSITION METHOD FOR UNSUPERVISED FEATURE LEARNING ON SATELLITE IMAGERY

<u>Dehghanpoor, Golnoosh</u>, Washington University in St. Louis, United States <u>Frachetti, Michael</u>, Washington University in St. Louis, United States <u>Juba, Brendan</u>, Washington University in St. Louis, United States

TH1.R3.6: SELF-SUPERVISED REMOTE SENSING IMAGE RETRIEVAL

<u>Walter, Kane</u>, University of New South Wales, Australia <u>Gibson, Matthew</u>, University of New South Wales, Australia <u>Sowmya, Arcot</u>, University of New South Wales, Australia

TH1.R3.7: BAND-WISE MULTI-SCALE CNN ARCHITECTURE FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION

<u>Kang, Jian</u>, Technische Universität Berlin, Germany <u>Demir, Begüm</u>, Technische Universität Berlin, Germany

TH1.R3.8: MULTIFRACTAL FEATURES FOR LAND USE CLASSIFICATION

Wawrzaszek, Anna, Centrum Badań Kosmicznych Polskiej Akademii Nauk, Poland <u>Drzewiecki, Wojciech</u>, AGH University of Science and Technology, Poland <u>Krupiński, Michał</u>, Centrum Badań Kosmicznych Polskiej Akademii Nauk, Poland <u>Jenerowicz, Małgorzata</u>, Centrum Badań Kosmicznych Polskiej Akademii Nauk, Poland <u>Aleksandrowicz, Sebastian</u>, Centrum Badań Kosmicznych Polskiej Akademii Nauk, Poland

TH1.R3.9: EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION

<u>Liu, Di</u>, Xiamen University, China <u>Luo, Zhipeng</u>, Xiamen University, China <u>Xiao, Zhenlong</u>, Xiamen University, China <u>Li, Jonathan</u>, Xiamen University; University of Waterloo, China

TH1.R3.10: A HYBRID MODEL BASED ON FUSED FEATURES FOR DETECTION OF NATURAL DISASTERS FROM SATELLITE IMAGES

<u>Gupta, Tanu</u>, Indian Institute of Technology Roorkee, India <u>Roy, Sudip</u>, Indian Institute of Technology Roorkee, India

TH1.R3.11: SYMMETRIC SCATTERING MODEL BASED FEATURE EXTRACTION FROM GENERAL COMPACT POLARIMETRIC SAR IMAGERY

<u>Yin, Junjun</u>, University of Science and Technology Beijing, China <u>Yang, Jian</u>, Tsinghua University, China

TH1.R3.12: CNN-BASED BUILDING FOOTPRINT DETECTION FROM SENTINEL-1 SAR IMAGERY

Rapuzzi, Andrea, A-SIGN, Italy Nattero, Cristiano, FadeOut Software srl, Italy Pelich, Ramona, Luxembourg Institute of Science and Technology (LIST), Luxembourg Chini, Marco, Luxembourg Institute of Science and Technology (LIST), Luxembourg Campanella, Paolo,

FadeOut Software srl, Italy

TH1.R4 - Wetlands and Inland Waters I

Thursday, October 1, 05:00 - 07:00 • Room 4

TH1.R4.1: MAPPING OF SHALLOW-WATER SITES TO AID NAVIGATION ON THE COLVILLE RIVER, NORTH SLOPE OF ALASKA

<u>Panda, Santosh</u>, University of Alaska Fairbanks, United States <u>Payne, Cole</u>, University of Alabama at Huntsville, United States <u>Smith, Christopher</u>, University of Alaska Fairbanks, United States <u>Prakash, Anupma</u>, University of Alaska Fairbanks, United States <u>Brinkman</u>, <u>Todd</u>, University of Alaska Fairbanks, United States

TH1.R4.2: INSAR COHERENCE FOR MONITORING GROUNDWATER TABLE FLUCTUATIONS IN NORTHERN PEATLANDS

<u>Tampuu, Tauri</u>, University of Tartu, Estonia <u>Praks, Jaan</u>, Aalto University, Finland <u>Kull, Ain</u>, University of Tartu, Estonia

TH1.R4.3: SPLIT-WINDOW BASED FLOOD MAPPING WITH L-BAND ALOS-2 SAR IMAGES: A CASE OF KERALA FLOOD EVENT IN 2018

<u>Vanama, Venkata Sai Krishna</u>, Indian Institute of Technology Bombay, India <u>Shitole, Sanjay</u>, Usha Mittal Institute of Technology, SNDT Women's University, India <u>Khati, Unmesh</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Rao, Y. S.</u>, Indian Institute of Technology Bombay, India

TH1.R4.4: AUTOMATIC EXTRACTION OF FLOOD COVERAGE BASED ON DYNAMIC SURFACE WATER EXTENT AND SAR DATA

<u>Chen, Shujie</u>, Wuhan University, China <u>Huang, Wenli</u>, Wuhan University, China <u>Chen, Yumin</u>, Wuhan University, China

TH1.R4.5: METHODOLOGY FOR MAPPING FLOOD EXTENT ON ESTONIAN FLOODPLAINS

<u>Sipelgas, Liis</u>, Tallinn University of Technology, Estonia <u>Aavaste, Age</u>, Tallinn University of Technology, Estonia <u>Uiboupin, Rivo</u>, Tallinn University of Technology, Estonia <u>Rikka, Sander</u>, Tallinn University of Technology, Estonia

TH1.R4.6: RELIABILITY EVALUATION OF WETLAND SAMPLES BASED ON HISTORICAL THEMATIC MAPS

Yan, Xin, University of Chinese Academy of Sciences, China Niu, Zhenguo, Chinese Academy of Sciences, China Li, Yang, University of Chinese Academy of Sciences, China Han, Qianqian, University of Chinese Academy of Sciences, China Zhang, Haiying, Chinese Academy of Sciences, China

TH1.R4.7: MULTI-PREDICTOR ENSEMBLE MODEL FOR RIVER TURBIDITY ASSESSMENT USING LANDSAT 8 IMAGERY AT A REGIONAL SCALE

Xu, Min, University of Alabama, United States <u>Liu, Hongxing</u>, University of Alabama, United States <u>Liu, Yang</u>, University of Alabama, United States

TH1.R4.8: WATER BODY EXTRACTION USING GF-3 POLSAR DATA -- A CASE STUDY IN POYANG LAKE

Shen, Guozhuang, RADI, CAS, China Fu, Wenxue, RADI, CAS, China

TH1.R4.9: MANGROVE MAPPING WITH THE FREEMAN-DURDEN POLARIMETRIC DECOMPOSITION AND INSAR COHERENCE FROM ALOS-2

<u>Liao, Tien-Hao</u>, California Institute of Technology, United States <u>Simard, Marc</u>, NASA Jet Propulsion Laboratory, United States <u>Marshak, Charlie</u>, NASA Jet Propulsion Laboratory, United States <u>Denbina, Michael</u>, NASA Jet Propulsion Laboratory, United States <u>Thomas, Nathan</u>, Earth System Science Interdisciplinary Center, UMD/NASA GSFC, United States

TH1.R4.10: WATER BALANCE STUDY OF MANCHAR LAKE (SINDH, PAKISTAN) USING LANDSAT AND SENTINEL 3A

<u>Muzaffer, Ramsha</u>, Institute of Space Technology, Pakistan <u>Zaidi, Arjumand</u>, Mehran University of Engineering and Technology, Pakistan <u>Haque, Saad ul</u>, Institute of Space Technology, Pakistan

TH1.R4.11: VALIDATION OF SENTINEL 3A ALTIMETRY DATA FOR RIVER LEVEL MONITORING AT TWO LOCATIONS ALONG THE LOWER INDUS RIVER

Zaidi, Arjumand, Mehran University of Engineering and Technology, Pakistan, Pakistan Vignudelli, Stefano, CNR – Consiglio Nazionale delle Ricerche, Italy Muzzafer, Ramsha, Institute of Space Technology, Pakistan Panhwar, Vengus, Mehran University of Engineering and Technology, Pakistan Zafar, Sumaira, Institute of Space Technology, Pakistan Haque, Saad, Institute of Space Technology, Pakistan

TH1.R4.12: DRAINAGE CANAL DETECTION USING MACHINE LEARNING ALGORITHM IN TROPICAL PEATLANDS

<u>Park, Haemi</u>, Japan Aerospace Exploration Agency, Japan <u>Shimizu, Daiki</u>, University of Tokyo, Japan <u>Takeuchi, Wataru</u>, University of Tokyo, Japan

TH1.R5 - Classification Methods for Thursday, October 1, 05:00 - 07:00 • Room 5 SAR Data

TH1.R5.1: LAND COVER CLASSIFICATION FOR POLSAR IMAGES BASED ON MIXTURE MODELS AND MRF

<u>Liu, Xiyun</u>, University of Science and Technology Beijing, China <u>Yin, Junjun</u>, University of Science and Technology Beijing, China <u>Zhang, Jihua</u>, Shanghai Electro Mechanical Engineering Institute, China <u>Yang, Jian</u>, Tsinghua University, China

TH1.R5.2: SEMI-SUPERVISED CLASSIFICATION OF POLSAR DATA WITH MULTI-SCALE WEIGHTED GRAPH CONVOLUTIONAL NETWORK

Ren, Shijie, Xidian University, China Zhou, Feng, Xidian University, China

TH1.R5.3: UNSUPERVISED LAND COVER CLASSIFICATION OF HYBRID POLSAR IMAGES USING DEEP NETWORK

<u>Chatterjee, Ankita</u>, Indian Institute of Technology Kharagpur, India <u>Saha, Jayasree</u>, Indian Institute of Technology Kharagpur, India <u>Mukhopadhyay, Jayanta</u>, Indian Institute of Technology Kharagpur, India <u>Aikat, Subhas</u>, Indian Institute of Technology Kharagpur, India <u>Misra, Arundhati</u>, Indian Institute of Technology Kharagpur, India

TH1.R5.4: COMPLEX-VALUED SPATIAL-SCATTERING SEPARATED ATTENTION NETWORK FOR POLSAR IMAGE CLASSIFICATION

Fan, Zhaohao, Nanjing University of Science and Technology, China Ji, Zexuan, Nanjing University of Science and Technology, China Fu, Peng, Nanjing University of Science and Technology, China Wang, Tao, Nanjing University of Science and Technology, China Shen, Xiaobo, Nanjing University of Science and Technology, China Sun, Quansen, Nanjing University of Science and Technology, China

TH1.R5.5: A HYBRID AND EXPLAINABLE DEEP LEARNING FRAMEWORK FOR SAR IMAGES

<u>Huang, Zhongling</u>, Chinese Academy of Sciences, China <u>Datcu, Mihai</u>, German Aerospace Center, Germany <u>Pan, Zongxu</u>, Chinese Academy of Sciences, China <u>Lei, Bin</u>, Chinese Academy of Sciences, China

TH1.R5.6: POLSAR SCENE CLASSIFICATION VIA LOW-RANK TENSOR-BASED MULTI-VIEW SUBSPACE REPRESENTATION

<u>Chen, Menggian</u>, Xidian University, China <u>Ren, Bo</u>, Xidian University, China <u>Hou, Biao</u>, Xidian University, China <u>Chanussot, Jocelyn</u>, University Grenoble Alpes, France <u>Wang, Shuang</u>, Xidian University, China <u>Zhang, Xiangrong</u>, Xidian University, China <u>Xie, Wen</u>, Xi'an University of Posts and Telecommunications, China

TH1.R5.7: POLSAR IMAGE CLASSIFICATION BASED ON OPTIMAL FEATURE AND CONVOLUTION NEURAL NETWORK

Han, Ping, Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, China Chen, Zetao, Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, China Wan, Yishuang, Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, China Cheng, Zheng, Civil Aviation University of China, China

TH1.R5.8: ASSESSING FOREST/NON-FOREST SEPARABILITY USING SENTINEL-1

<u>Hansen, Johannes N.</u>, University of Edinburgh, United Kingdom <u>Mitchard, Edward T. A.</u>, University of Edinburgh, United Kingdom <u>King, Stuart</u>, University of Edinburgh, United Kingdom

TH1.R5.9: LEARNING RELATION BY GRAPH NEURAL NETWORK FOR SAR IMAGE FEW-SHOT LEARNING

Yang, Rui, Wuhan University, China Xu, Xin, Wuhan University, China Li, Xirong, Wuhan University, China Wang, Lei, Wuhan University, China Pu, Fangling, Wuhan University, China

TH1.R5.10: A NEURAL NETWORK APPROACH TO CLASSIFY MIXED CLASSES USING MULTI FREQUENCY SAR DATA

<u>Kukunuri, Anjana</u>, Indian Institute of Technology Roorkee, India <u>Murugan, Deepak</u>, Indian Institute of Technology Roorkee, India <u>Singh, Dharmendra</u>, Indian Institute of Technology Roorkee. India

TH1.R5.11: STACKED RANDOM FORESTS: MORE ACCURATE AND BETTER CALIBRATED

Hänsch, Ronny, German Aerospace Center (DLR), Germany

TH1.R5.12: MULTI-VIEW CNN-LSTM NEURAL NETWORK FOR SAR AUTOMATIC TARGET RECOGNITION

Wang, Chenwei, UESTC, China Pei, Jifang, UESTC, China Wang, Zhiyong, UESTC, China Huang, Yuling, UESTC, China Yang, Jianyu, UESTC, China

TH1.R6 - Land Cover Dynamics I

Thursday, October 1, 05:00 - 07:00 • Room 6

TH1.R6.1: LAND COVER AND SOIL CONSUMPTION MONITORING WITH A FOS GEOPORTAL IN FIVE ITALIAN BIG URBAN AREAS

<u>Brovelli, Maria Antonia</u>, Politecnico di Milano, Italy <u>Crespi, Mattia</u>, Sapienza University of Rome, Italy <u>Kilsedar, Candan Eylul</u>, Politecnico di Milano, Italy <u>Munafò, Michele</u>, ISPRA - National Institute for Environmental Protection and Research, Italy <u>Ravanelli, Roberta</u>, Sapienza University of Rome, Italy <u>Strollo, Andrea</u>, ISPRA - National Institute for Environmental Protection and Research, Italy

TH1.R6.2: EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1

Schmullius, Christiane, University Jena, Dept. for Earth Observation, Germany Urban, Marcel, University Jena, Dept. for Earth Observation, Germany Hirner, Andreas, DLR Earth Observation Center, Germany Berger, Christian, University Jena, Dept. for Earth Observation, Germany Schellenberg, Konstantin, University Jena, Dept. for Earth Observation, Germany Ramoelo, Abel, South African National Parks, South Africa Smit, Izak, South African National Parks, South Africa Strydom, Tercia, South African National Parks, South Africa Chirima, George, Agricultural Research Center, South Africa Morgenthal, Theunis, Department for Agriculture, Forestry and Fisheries, South Africa Melly, Brigitte, South African Environmental Observation Network, South Africa Gessner, Ursula, DLR Earth Observation Center, Germany Mashiyi, Nosiseko, SANSA, South Africa Milisa, Andiswa, SANSA, South Africa Kganyago, Mahlatse, SANSA, South Africa Baade, Jussi, University Jena, Dept. for Physical Geography, Germany

TH1.R6.3: DETECTION OF CHANGES IN IMPERVIOUS SURFACE USING SENTINEL-2 IMAGERY

<u>Zhang, Yiming</u>, University of Maryland, United States <u>Skakun, Sergii</u>, University of Maryland; NASA Goddard Space Flight Center Code 619, United States <u>Prudente, Victor</u>, University of Maryland; National Institute for Space Research, United States

TH1.R6.4: GLOBAL VEGETATION MAPPING FOR ESA CLIMATE CHANGE INITIATIVE PROJECT LEVERAGING MULTITEMPORAL HIGH RESOLUTION SENTINEL-1 SAR DATA

Marzi, David, University of Pavia, Italy Gamba, Paolo, University of Pavia, Italy

TH1.R6.5: DEVELOPMENT OF GLOBAL LAND SURFACE PHENOLOGY PRODUCT FROM TIME SERIES OF VIIRS OBSERVATIONS

<u>Zhang, Xiaoyang</u>, South Dakota State University, United States <u>Wang, Jianmin</u>, South Dakota State University, United States <u>Ye, Yongchang</u>, South Dakota State University, United States

TH1.R6.6: STABILITY CHARACTERIZATION OF THE RESPONSE OF WHITE STORKS'
FORAGING BEHAVIOR TO VEGETATION DYNAMICS RETRIEVED FROM LANDSAT TIME

SERIES

<u>Standfuß, Ines</u>, German Aerospace Center, Germany <u>Geiß, Christian</u>, German Aerospace Center, Germany <u>Nathan, Ran</u>, Hebrew University of Jerusalem, Israel <u>Rotics, Shay</u>, Hebrew University of Jerusalem, Israel <u>Dech, Stefan</u>, German Aerospace Center, Germany <u>Taubenböck, Hannes</u>, German Aerospace Center, Germany

TH1.R6.7: IMPACT OF MEGADROUGHT ON VEGETATION PRODUCTIVITY IN CHILE: FOREST LESSER RESISTANT THAN CROPS AND GRASSLAND

Zambrano, Francisco, Universidad Mayor, Chile Molina, Mauricio, Universidad Mayor, Chile Venegas, Alejandro, Universidad Mayor, Chile Molina, Julio, Universidad Mayor, Chile Vidal-Páez, Paulina, Universidad Mayor, Chile

TH1.R6.8: DEVELOPMENT OF A HARMONIZED MULTI-SENSOR GLOBAL ACTIVE FIRE DATA SET: CURRENT STATUS AND MULTI-PRODUCT VALIDATION RESULTS

<u>Hall, Joanne</u>, University of Maryland, United States <u>Rishmawi</u>, <u>Khaldoun</u>, University of Maryland, United States <u>Schroeder</u>, <u>Wilfrid</u>, National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (NESDIS), United States <u>Huang</u>, <u>Chengquan</u>, University of Maryland, United States <u>Giglio</u>, <u>Louis</u>, University of Maryland, United States

TH1.R6.9: AN INTRODUCTION TO THE GEONEX LEVEL-1G PRODUCTS: TOP-OF-ATMOSPHERE REFLECTANCE AND BRIGHTNESS TEMPERATURE

Wang, Weile, NASA Ames Research Center/ARC-CREST, United States Hashimoto, Hirofumi, NASA Ames Research Center/ARC-CREST, United States Michaelis, Andrew, NASA Ames Research Center/ARC-CREST, United States Li, Shuang, Guiyang Education University, China Takenaka, Hideaki, Japan Aerospace Exploration Agency, Japan Higuchi, Atsushi, Chiba University, Japan Kalluri, Satya, NOAA, United States Nemani, Ramakrishna, NASA Ames Research Center, United States

TH1.R6.10: ASSESSMENT OF IMAGERY FOR LAND MAPPING WITH CONSTELLATION AND CONVENTIONAL SATELLITE

<u>Yamada, Tatsuya</u>, University of Tokyo, Japan <u>Inoue, Yoshio</u>, University of Tokyo, Japan <u>Iwasaki, Akira</u>, University of Tokyo, Japan

TH1.R6.11: UNSUPERVISED METRIC FOR LARGE-SCALE CLOUD MASK EVALUATION

<u>Maguire, Conor</u>, Descartes Labs, United States <u>Zinzow, Clark</u>, Descartes Labs, United States <u>Longbotham, Nathan</u>, <u>Descartes Labs</u>, <u>United States</u>

TH1.R7 - Target Detection II

Thursday, October 1, 05:00 - 07:00 • Room 7

TH1.R7.1: DEEP LEARNING-BASED HYPERSPECTRAL TARGET DETECTION WITHOUT EXTRA LABELED DATA

<u>Dou, Zeyang</u>, Beijing Institute of Technology, China <u>Gao, Kun</u>, Beijing Institute of Technology, China <u>Zhang, Xiaodian</u>, Beijing Institute of Technology, China <u>Wang, Junwei</u>, Beijing Institute of Technology, China <u>Wang, Hong</u>, Beijing Institute of Technology, China

TH1.R7.2: DICTIONARY LEARNING HYPERSPECTRAL TARGET DETECTION ALGORITHM BASED ON TUCKER TENSOR DECOMPOSITION

<u>Zhao, Chunhui</u>, Harbin Engineering University, China <u>Wang, Mingxing</u>, Harbin Engineering University, China <u>Su, Nan</u>, Harbin Engineering University, China <u>Feng, Shou</u>, Harbin Engineering University, China

TH1.R7.3: INTEREST OF TEMPORAL METHODS OVER SPATIAL METHODS IN ORDER TO DETECT SMALL TARGETS

<u>Paillou, Nathan</u>, SONDRA / CentraleSupélec, France <u>Thirion-Lefèvre</u>, <u>Laetitia</u>, SONDRA / CentraleSupélec, France <u>Guinvarc'h</u>, <u>Régis</u>, SONDRA / CentraleSupélec, France

TH1.R7.4: SPECTRAL-SPATIAL JOINT TARGET DETECTION OF HYPERSPECTRAL IMAGE BASED ON TRANSFER LEARNING

<u>Feng, Zhenyuan</u>, Harbin Institute of Technology, China <u>Zhang, Junping</u>, Harbin Institute of Technology, China <u>Feng, Jia</u>, Harbin Institute of Technology, China

TH1.R7.5: A HIGH RESOLUTION SAR SHIP SAMPLE DATABASE AND SHIP TYPE CLASSIFICATION

Bao, Meng, First Institute of Oceanography, Ministry of Natural Resources, China Meng, Junmin, First Institute of Oceanography, Ministry of Natural Resources, China Zhang, Xi, First Institute of Oceanography, Ministry of Natural Resources, China Liu, Genwang, First Institute of Oceanography, Ministry of Natural Resources, China

TH1.R7.6: VISUAL CONTEXT AWARE SHIP DETECTOR FOR HIGH-RESOLUTION SAR IMAGERY

Wang, Shigang, Northwestern Polytechnical University, China Li, Dongsheng, Northwestern Polytechnical University, China Liu, Shuwen, Northwestern Polytechnical University, China Li, Bin, Northwestern Polytechnical University, China

TH1.R7.7: A NOVEL GOSD-CFAR FOR MILLIMETER WAVE RADAR DETECTION

Qin, Fei, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liu, Yunlong, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liang, Xingdong, Aerospace Information Research Institute, Chinese Academy of Sciences, China

TH1.R7.8: SOME CLOSED-FORM EXPRESSIONS FOR ABSORPTIVE PLUME DETECTION

<u>Theiler, James</u>, Los Alamos National Laboratory, United States <u>Schaum, Alan</u>, U. S. Naval Research Laboratory, United States

TH1.R7.9: SPECTRAL INFORMATION CONTENT ALGORITHM FOR AUTOMATED SIGNATURE ASSESSMENT

Rankin, Blake, Johns Hopkins University Applied Physics Laboratory, United States Lippa, Timothy, Johns Hopkins University Applied Physics Laboratory, United States Broadwater, Johns Hopkins University Applied Physics Laboratory, United States

TH1.R7.10: AN IMPROVED TARGET EXTRACTION SCHEME FOR FORWARD-LOOKING SCANNING RADAR

<u>Li, Wenchao</u>, University of Electronic Science and Technology of China, China <u>Yang, Shirui</u>, University of Electronic Science and Technology of China, China <u>Zhang, Wentao</u>, University of Electronic Science and Technology of China, China <u>Huang, Yulin</u>, University of Electronic Science and Technology of China, China <u>Yang, Jianyu</u>, University of Electronic Science and Technology of China, China

TH1.R7.11: CHARACTERIZATION OF THE WALKING ACTIVITY WITHIN THE FOREST BY USING A DOPPLER ANALYSIS IN THE UHF-BAND

Manfredi, Giovanni, CentraleSupélec, Université Paris-Saclay, France Hinostroza, Israel, CentraleSupélec, Université Paris-Saclay, France Menelle, Michel, ONERA, Université Paris-Saclay, France Saillant, Stephane, ONERA, Université Paris-Saclay, France Ovarlez, Jean Philippe, ONERA, Université Paris-Saclay - CentraleSupélec, France Thirion-Lefevre, Laetitia, CentraleSupélec, Université Paris-Saclay, France

TH1.R8 - Ocean Surface Winds and Thursday, October 1, 05:00 - 07:00 • Room 8 Currents III

TH1.R8.1: COMPARISON OF SPATIAL DISTRIBUTION OF HIGH WIND SPEED AROUND TYPHOONS DERIVED FROM AMSR2 ALL-WEATHER SEA SURFACE WIND SPEED PRODUCT WITH JMA BEST-TRACK DATA

Ebuchi, Naoto, Hokkaido University, Japan

TH1.R8.2: MLE ANALYSIS FROM THE COMBINED SCATTEROMETER AND ALTIMETER MEASUREMENTS OF THE HY-2B SATELLITE

<u>Li, Xiuzhong</u>, Nanjing University of Information Science and Technology, China <u>Lin, Wenming</u>, Nanjing University of Information Science and Technology, China <u>He, Yijun</u>, Nanjing University of Information Science and Technology,

TH1.R8.3: A STUDY ON MICROWAVE EMISSIVITY FROM WIND-INDUCED SEA FOAM

<u>Huang, Xiaoqi</u>, National Ocean Technology Center, China <u>Tjuatja, Saibun</u>, University of Texas at Arlington, United States <u>Wang, Zhenzhan</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Zhu, Jianhua</u>, National Ocean Technology Center, China

TH1.R8.4: GENERALIZATION OF KU-BAND FALSE-ALARM REDUCTION METHOD AND APPLICATION TO CSCAT

Xu, Xingou, National Space Science Center, Chinese Academy of Sciences, China Stoffelen,

Ad, Royal Netherlands Meteorological Institute (KNMI), Netherlands Lin, Wenming, Nanjing University of Information Science and Technology, China Dong, Xiaolong, National Space Science Center, Chinese Academy of Sciences, China

TH1.R8.5: EXTREME HIGH WIND SPEED MONITORING WITH SPATIAL RESOLUTION ENHANCEMENT OF HY-2B SMR BRIGHTNESS TEMPERATURE

Li, Yan, Shenzhen PIESAT Information Technology Co., Ltd., China Yin, Xiaobin, Shenzhen PIESAT Information Technology Co., Ltd., China Wang, Shishuai, Shenzhen PIESAT Information Technology Co., Ltd., China Zhou, Wu, National Satellite Ocean Application Service, China Lin, Mingsen, National Satellite Ocean Application Service, China Ma, Chaofei, National Satellite Ocean Application Service, China Ma, Chaofei, National Satellite Ocean Application Service, China

TH1.R8.6: SCATSAT-1 HIGH WINDS GEOPHYSICAL MODEL FUNCTION AND ITS WINDS APPLICATION IN OPERATIONAL MARINE FORECASTING AND WARNING

Soisuvarn, Seubson, NOAA, United States Jelenak, Zorana, NOAA, United States Chang, Paul, NOAA, United States Park, Jeonghwan, NOAA, United States Zhu, Qi, NOAA, United States Sapp, Joe, NOAA, United States Said, Faozi, NOAA, United States

TH1.R8.7: A STUDY ON COMBINED C- AND KU-BAND RAIN EFFECTS FOR WIND SCATTEROMETRY QUALITY CONTROL

Xu, Xingou, National Space Science Center, Chinese Academy of Sciences, China <u>Tjuatja</u>, <u>Saibun</u>, University of Texas at Arlington, United States <u>Stoffelen</u>, <u>Ad</u>, Royal Netherlands Meteorological Institute (KNMI), Netherlands <u>Dong</u>, <u>Xiaolong</u>, National Space Science Center, Chinese Academy of Sciences, China

TH1.R8.8: EXAMINING SCATTEROMETER CALIBRATION IN HIGH SEAS

Wright, Ethan, Florida State University, United States Bourassa, Mark, Florida State University, United States

TH1.R8.9: PERFORMANCE ASSESSMENT OF CYGNSS HIGH WIND RETRIEVAL FOR THE IMPROVED EIRP CALIBRATION

<u>Balasubramaniam, Rajeswari</u>, University of Michigan, Ann Arbor, United States <u>Ruf, Chris</u>, University of Michigan, Ann Arbor, United States

TH1.R8.10: CYGNSS-BASED TROPICAL CYCLONE GALE WIND RADII ESTIMATES: A RETROSPECTIVE EVALUATION

Morris, Mary, NASA Jet Propulsion Laboratory, United States Sampson, Charles, Naval Research Laboratory, United States

TH1.R8.11: CNN-BASED TROPICAL CYCLONE TRACK FORECASTING FROM SATELLITE INFRARED IMAGES

Wang, Chong, Hohai University, China Xu, Qing, Hohai University, China Li, Xiaofeng, Chinese Academy of Sciences, China Cheng, Yongcun, Beijing Piesat Information Technology Co. Ltd, China

TH1.R9 - Semantic Learning for Image Analysis

Thursday, October 1, 05:00 - 07:00 • Room 9

TH1.R9.1: SELF-CONSTRUCTING GRAPH CONVOLUTIONAL NETWORKS FOR SEMANTIC LABELING

<u>Liu, Qinghui</u>, Norwegian Computing Center, Norway <u>Kampffmeyer, Michael</u>, UiT The Arctic University of Norway, Norway <u>Jenssen, Robert</u>, UiT The Arctic University of Norway, Norway <u>Salberg, Arnt-Børre</u>, Norwegian Computing Center, Norway

TH1.R9.2: REGULARIZED BUILDING SEGMENTATION BY FRAME FIELD LEARNING

<u>Girard, Nicolas</u>, Inria, France <u>Smirnov, Dmitriy</u>, Massachusetts Institute of Technology, United States <u>Solomon, Justin</u>, Massachusetts Institute of Technology, United States <u>Tarabalka</u>, <u>Yuliya</u>, LuxCarta Technology, France

TH1.R9.3: LOOK AT THE BIG PICTURE: BUILDING AREA EXTRACTION WITH GLOBAL DENSITY MAP

<u>Guo, Haowen</u>, Wuhan University, China <u>Zou, Tongyuan</u>, Space Star Technology Co., Ltd. (SST), China <u>Cheng, Wensheng</u>, Wuhan University, China <u>Yang, Wen</u>, Wuhan University, China <u>Xia, Guisong</u>, Wuhan University, China

TH1.R9.4: SEMANTIC SEGMENTATION REFINEMENT WITH DEEP EDGE SUPERPIXELS TO ENHANCE HISTORICAL LAND COVER

Ratajczak, Rémi, Laboratoire d'InfoRmatique en Image et Systèmes d'information, France Crispim-Junior, Carlos, Laboratoire d'InfoRmatique en Image et Systèmes d'information, France Fervers, Béatrice, Centre Léon Bérard, France Faure, Elodie, Gustave Roussy, France Tougne, Laure, Laboratoire d'InfoRmatique en Image et Systèmes d'information, France

TH1.R9.5: A MODIFIED D-LINKNET WITH TRANSFER LEARNING FOR ROAD EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING

Zhang, Yanan, China University of Geosciences, China Zhu, Qiqi, China University of Geosciences, China Zhong, Yanfei, Wuhan University, China Guan, Qingfeng, China University of Geosciences, China Zhang, Liangpei, Wuhan University, China Li, Deren, Wuhan University, China

TH1.R9.6: LEARNING DISCRIMINATIVE GLOBAL AND LOCAL FEATURES FOR BUILDING EXTRACTION FROM AERIAL IMAGES

<u>Liao, Yue</u>, Wuhan University, China <u>Zhang, Hongyan</u>, Wuhan University, China <u>Yang, Guangyi</u>, Wuhan University, China <u>Zhang, Liangpei</u>, Wuhan University, China

TH1.R9.7: DILATED RESIDUAL NETWORK BASED ON DUAL EXPECTATION MAXIMIZATION ATTENTION FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES

<u>Liu, Jiachao</u>, Xidian University, China <u>Xiong, Xinyue</u>, Xidian University, China <u>Li, Jiaojiao</u>, Xidian University, China <u>Wu, Chaoxiong</u>, Xidian University, China <u>Song, Rui</u>, Xidian University, China

TH1.R9.8: MAP-REPAIR: DEEP CADASTRE MAPS ALIGNMENT AND TEMPORAL INCONSISTENCIES FIX IN SATELLITE IMAGES

Zorzi, Stefano, TUGraz, Austria Bittner, Ksenia, German Aerospace Center (DLR), Germany Fraundorfer, Friedrich, TUGraz, Austria

TH1.R9.9: SEMANTIC SEGMENTATION OF URBAN BUILDINGS FROM VHR REMOTELY SENSED IMAGERY USING ATTENTION-BASED CNN

Zhang, Zhijje, University of Connecticut, United States Zhang, Chuanrong, University of Connecticut, United States Li, Weidong, University of Connecticut, United States

TH1.R9.10: SEMI2I: SEMANTICALLY CONSISTENT IMAGE-TO-IMAGE TRANSLATION FOR DOMAIN ADAPTATION OF REMOTE SENSING DATA

<u>Tasar, Onur, INRIA, France Happy, S L</u>, INRIA, France <u>Tarabalka, Yuliya</u>, INRIA, France <u>Alliez, Pierre</u>, INRIA, France

TH1.R9.11: SPATIAL ATTENTION NETWORK FOR ROAD EXTRACTION

Chen, Ruonan, Aerospace Information Research Institute, Chinese Academy of Sciences, China Hu, Yuan, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wu, Tong, Aerospace Information Research Institute, Chinese Academy of Sciences, China Peng, Ling, Aerospace Information Research Institute, Chinese Academy of Sciences, China

TH1.R10 - Remote Sensing for Thursday, October 1, 05:00 - 07:00 Room 10 Forest and Vegetation Growth and Dynamics

TH1.R10.1: NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING

Wallerman, Jörgen, Swedish University of Agricultural Sciences, Sweden Nyström, Kenneth, Swedish University of Agricultural Sciences, Sweden Nilsson, Mats, Swedish University of Agricultural Sciences, Sweden Axensten, Peder, Swedish University of Agricultural Sciences, Sweden Egberth, Mikael, Swedish University of Agricultural Sciences, Sweden Jonzén, Jonas, Swedish University of Agricultural Sciences, Sweden Sandström, Emma, Swedish University of Agricultural Sciences, Sweden Fransson, Johan, Swedish University of Agricultural Sciences, Sweden Olsson, Håkan, Swedish University of Agricultural Sciences, Sweden

TH1.R10.2: LEAF AGING AFFECTS THE VARIABILITY OF CANOPY REFLECTANCE WITH STAND DEVELOPMENT IN EVERGREEN CHINESE FIR PLANTATION

<u>Wu, Qiaoli</u>, Beijing Normal University, China <u>Song, Jinling</u>, Beijing Normal University, China <u>Wang, Jindi</u>, Beijing Normal University, China <u>Song, Conghe</u>, University of North Carolina at Chapel Hill, United States <u>Chen, Shaoyuan</u>, Beijing Normal University, China <u>Yang, Lei</u>, Beijing Normal University, China

TH1.R10.3: MONITORING THE GLOBAL BIOMASS THANKS TO 10 YEARS OF SMOS VEGETATION OPTICAL DEPTH

<u>Bousquet, Emma</u>, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France <u>Mialon, Arnaud</u>, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France <u>Rodriguez-Fernandez, Nemesio</u>, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France <u>Kerr, Yann</u>, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France

TH1.R10.4: MONITORING DYNAMIC CHANGES OF VEGETATION COVER IN THE TARIM RIVER BASIN BASED WITH LANDSAT IMAGERY AND GOOGLE EARTH ENGINE

<u>Zhao, Tian</u>, Beijing Normal University, China <u>Yang, Yang</u>, Beijing Normal University, China <u>Mu, Xihan</u>, Beijing Normal University, China

TH1.R10.5: PRELIMINARY STUDY OF WAVELENGTH POSITIONS OF LEAF FLUORESCENCE PEAKS WITH EXPERIMENTAL DATA

<u>Zhao, Feng</u>, Beihang University, China <u>Yuan, Jiahao</u>, Beihang University, China <u>Huang, Yanbo</u>, United States Department of Agriculture-Agricultural Research Service, United States <u>Magney, Troy</u>, University of California, United States <u>Porcar-Castell, Albert</u>, University of Helsinki, Finland

TH1.R10.6: GENETICALLY CONSTRAINED TEMPORAL TRAJECTORIES OF TEMPERATE FOREST AIRBORNE REFLECTANCE SPECTRA

Czyż, Ewa A., University of Zurich, Switzerland Carla Guillén Escribà, Carla, University of Zurich, Switzerland Eppinga, Maarten B., University of Zurich, Switzerland Hueni, Andreas, University of Zurich, Switzerland Schmid, Bernhard, University of Zurich, Switzerland Schaepman, Michael E., University of Zurich, Switzerland

TH1.R10.7: SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL

Regaieg, Omar, Centre d'Etudes Spatiales de la Biosphère, France Wang, Yingjie, Centre d'Etudes Spatiales de la Biosphère, France Malenovsky, Zbynek, University of Tasmania, Australia Yin, Tiangang, University of Maryland, United States Kallel, Abdelaziz, Centre de Recherche en Numérique de SFAX, China Duran Gomes, Nuria, Magellium, France Delavois, Antony, Centre d'Etudes Spatiales de la Biosphère, France Qi, Jianbo, Beijing Forestry University, China Chavanon, Eric, Centre d'Etudes Spatiales de la Biosphère, France Lauret. Nicolas, Centre d'Etudes Spatiales de la Biosphère, France Guilleux, Jordan, Centre d'Etudes Spatiales de la Biosphère, France Cook, Bruce, NASA Goddard Space Flight Center, United States Morton, Douglas, NASA Goddard Space Flight Center, United States Gastellu-Etchegorry, Jean Philippe, Centre d'Etudes Spatiales de la Biosphère, France

TH1.R10.8: THE AOD SENSITIVITY COMPARISON BETWEEN MODIS MULTI-ANGLE IMPLEMENTATION OF ATMOSPHERIC CORRECTION (MAIAC) AND STANDARD MODIS SURFACE REFLECTANCE

<u>Wang, Yujie</u>, University of Maryland, Baltomore County, United States <u>Zhao</u>, <u>Feng</u>, Science Systems and Applications, Inc, United States <u>Lyapustin</u>, <u>Alexei</u>, NASA, United States

TH1.R10.9: EVALUATION OF FOUR THERMAL INFRARED KERNEL-DRIVEN MODELS USING LIMITED OBSERVATIONS

Ran, Xueting, School of Resources and Environment, University of Electronic Science and Technology of China, China Cao, Biao, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Qin, Boxiong, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Bian, Zunjian, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Du, Yongming, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Li, Hua, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Xiao, Qing, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Liu, Qinhuo, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Liu, Qinhuo, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

TH1.R10.10: OPTIMUM SENTINEL-1 PIXEL SPACING FOR BURNED AREA MAPPING Belenguer-Plomer, Miguel A., Universidad de Alcalá, Spain Chuvieco, Emilio, Universidad de

Alcalá, Spain Tanase, Mihai A., Universidad de Alcalá, Spain

TH1.R10.11: A NEW PHENOLOGY METHOD FOR MODELLING DYNAMICS OF GLOBAL LEAF AREA INDEX

Zhou, Xuewen, Sun Yat-sen University, China Xin, Qinchuan, Sun Yat-sen University, China

TH1.R11 - Remote Sensing for Crop Monitoring, Mapping and Classification IV

Thursday, October 1, 05:00 - 07:00 \circ Room 11

TH1.R11.1: A NOVEL FEATURE FOR DETECTION OF RICE FIELD DISTRIBUTION USING TIME SERIES SAR DATA

<u>Chang, Lena</u>, National Taiwan Ocean University, Taiwan <u>Chen, Yi-Ting</u>, National Taiwan Ocean University, Taiwan <u>Chang, Yang-Lang</u>, National Taipei University of Technology, Taiwan <u>Wu, Meng-Che</u>, National Space Organization, Taiwan

TH1.R11.2: VEGETATION MONITORING USING A NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND DATA

Mandal, Dipankar, Indian Institute of Technology Bombay, India Bhogapurapu, NarayanaRao, Indian Institute of Technology Bombay, India Kumar, Vineet, Delft University of Technology, Netherlands Dey, Subhadip, Indian Institute of Technology Bombay, India Ratha, Debanshu, Indian Institute of Technology Bombay, India Bhattacharya, Avik, Indian Institute of Technology Bombay, India Lopez-Sanchez, Juan M., University of Alicante, Spain McNairn, Heather, Agriculture and Agri-Food Canada, Canada Rao, Y.S., Indian Institute of Technology Bombay, India

TH1.R11.3: RADAR-CROP-MONITOR - MAPPING AGRICULTURAL CONDITIONS WITH SENTINEL-1 TIME SERIES

Schmullius, Christiane, University Jena, Dept. for Earth Observation, Germany Salepci, Nesrin, University Jena, Dept. for Earth Observation, Germany Arslanova, Linara, University Jena, Dept. for Earth Observation, Germany Pathe, Carsten, University Jena, Dept. for Earth Observation, Germany Urban, Marcel, University Jena, Dept. for Earth Observation, Germany Foelsch, Marcel, CLAAS E-Systems GmbH, Germany Scheibler, Friedemann, CLAAS E-Systems GmbH, Germany

TH1.R11.4: ON THE ASYMMETRY OF THE RED TO FAR-RED RATIOS OF LIGHT PROPAGATED BY THE ADAXIAL AND ABAXIAL SURFACES OF BIFACIAL LEAVES

Baranoski, Gladimir, University of Waterloo, Canada

TH1.R11.5: ESTIMATION OF VISUAL RATING OF TAR SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS (UAS) DATA AND MACHINE LEARNING TECHNIQUES

Oh, Sungchan, Purdue Univeristy, United States Lee, Da-Young, Purdue Univeristy, United States Gongora-Canul, Carlos, Purdue Univeristy, United States Cruz-Sancan, Andres, Purdue Univeristy, United States Ashapure, Akash, Purdue Univeristy, United States Fernandez, Mariela, Purdue Univeristy, United States Telenko, Darcy, Purdue University, United States Jung, Jinha, Purdue Univeristy, United States Cruz, Christian, Purdue University, United States

TH1.R11.6: MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS

Buchaillot, Ma. Luisa, University of Barcelona, Spain Cairns, Jill, International Maize and Wheat Improvement Center, CIMMYT, Zimbabwe Hamadziripi, Esnath, International Maize and Wheat Improvement Center, CIMMYT, Zimbabwe Wilson, Kenneth, Lancaster University, United Kingdom Hughes, David, Pennsylvania State University, United States Chelal, John, Moi University, Kenya McCloskey, Peter, Pennsylvania State University, United States Kehs, Annalyse, Pennsylvania State University, United States Clinton, Nicholas, Google, United States Cressman, Keith, United Nations Food and Agriculture Organization, Italy Araus, José Luis, University of Barcelona, Spain Kefauver, Shawn C., University of Barcelona, Spain

TH1.R11.7: MACHINE LEARNING APPROACHES FOR CROP GROWTH MONITORING USING MULTI-TEMPORAL AND MULTI-VARIETY REMOTELY SENSED DATA

Zhao, Yu, HITACHI, Ltd., Japan Justina, Diego Della, University of Campinas, Brazil

TH1.R11.8: USING C-BAND SAR AND TEMPERATURE TO MONITOR TROPICAL AGRICULTURAL FIELDS

<u>Silva-Perez, Cristian</u>, University of Stirling, United Kingdom <u>Marino, Armando</u>, University of Stirling, United Kingdom <u>Cameron, Iain</u>, Environment systems LTD, United Kingdom

TH1.R11.9: IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY

Wyniawskyj, Nina Sofia, Deimos Space UK Ltd., United Kingdom Contenta, Filippo, eOsphere Ltd., United Kingdom Flach, Dominic, eOsphere Ltd., United Kingdom Hadland, Anneley, ESRI UK, United Kingdom Hopkin, Alison, Deimos Space UK Ltd., United Kingdom Lidgley, Jack, eOsphere Ltd., United Kingdom Petit, David, Deimos Space UK Ltd., United Kingdom Podder, Pritimoy, Deimos Space UK Ltd., United Kingdom Osadolor, Fortune, Deimos Space UK Ltd., United Kingdom Walker, Nick, eOsphere Ltd., United Kingdom

TH1.R11.10: A SUPERVOXEL-BASED APPROACH FOR LEAVES SEGMENTATION OF POTATO PLANTS FROM POINT CLOUDS

Angulo, Victor, Universidad Distrital Francisco Jose de Caldas, Colombia Rodriguez, Jorge, Universidad Nacional de Colombia, Colombia Gaona, Elvis, Universidad Distrital Francisco Jose de Caldas, Colombia Prieto, Flavio, Universidad Nacional de Colombia, Colombia

Lizarazo, Ivan, Universidad Nacional de Colombia, Colombia

TH1.R12 - Regression and Estimation Methods and Applications

Thursday, October 1, 05:00 - 07:00 • Room 12

TH1.R12.1: UAV IMAGE MOSAICING BASED MULTI-REGION LOCAL PROJECTION DEFORMATION

Xu, Quan, China University of Geosciences, China <u>Luo, Linbo</u>, China University of Geosciences, China <u>Chen, Jun</u>, China University of Geosciences, China <u>Gong, Wenping</u>, China University of Geosciences, China <u>Guo, Donghai</u>, China University of Geosciences, China

TH1.R12.2: DRONE IMAGE STITCHING USING LOCAL LEAST SQUARE ALIGNMENT

<u>Wan, Qi</u>, China University of Geosciences, China <u>Luo, Linbo</u>, China University of Geosciences, China <u>Chen, Jun</u>, China University of Geosciences, China <u>Wang, Yong</u>, China University of Geosciences, China <u>Guo, Donghai</u>, China University of Geosciences, China

TH1.R12.3: FLIGHT DATA OF AIRPLANE FOR WIND FORECASTING

<u>Sharma, Astha</u>, University of New Orleans, United States <u>Hoque, Md Tamjidul</u>, University of New Orleans, United States <u>loup</u>, <u>Elias</u>, Naval Research Laboratory, United States <u>Abdelguerfi</u>, <u>Mahdi</u>, University of New Orleans, United States

TH1.R12.4: SPECTRAL SUPER-RESOLUTION USING HYBRID 2D-3D STRUCTURE TENSOR ATTENTION NETWORKS WITH CAMERA SPECTRAL SENSITIVITY PRIOR

<u>Wu, Chaoxiong</u>, Xidian University, China <u>Li, Jiaojiao</u>, Xidian University, China <u>Song, Rui</u>, Xidian University, China <u>Li, Yunsong</u>, Xidian University, China

TH1.R12.5: PLSR METHOD FOR CONTAMINATING MINERAL CONTENT PREDICTION FROM FIELD HYPERSPECTRAL REFLECTANCE: A CASE STUDY OF HAMMAM ZRIBA MINING AREA

<u>Dkhala, Belgacem</u>, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia <u>Mezned</u>, <u>Nouha</u>, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia <u>Gomez</u>, <u>Cécile</u>, Institut de Recherche pour le Développement, France <u>Abdeljaouad</u>, <u>Sâadi</u>, Faculty of Science of Tunis, University of Tunis El Manar, Tunisia

TH1.R12.6: IMPROVEMENTS TO AN END-MEMBER-BASED TWO-SOURCE APPROACH FOR ESTIMATING GLOBAL EVAPOTRANSPIRATION

Wang, Shengli, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Tang, Ronglin, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Jiang, Yazhen, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Liu, Meng, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China

TH1.R12.7: ROBUST ESTIMATION APPROACH FOR PLANE FITTING IN 3D LASER

SCANNING DATA

Zhang, Lishuo, Guangzhou Urban Planning & Design Survey Institute, China Lin, Hong, Guangzhou Urban Planning & Design Survey Institute, China Li, Changhui, Guangzhou Urban Planning & Design Survey Institute, China Song, Yang, Guangzhou Urban Planning & Design Survey Institute, China Wang, Feng, Guangzhou Urban Planning & Design Survey Institute, China

TH1.R12.8: EXTRACTING CAMERA POSE USING SINGLE IMAGE SUPER RESOLUTION NETWORKS

<u>Koskowich, Bradley</u>, Texas A&M University Corpus Christi, United States <u>Starek, Michael</u>, Texas A&M University Corpus Christi, United States

TH1.R12.9: LARGE-SCALE VEGETATION HEIGHT MAPPING FROM SENTINEL DATA USING DEEP LEARNING

<u>Waldeland, Anders Ueland</u>, Norwegian Computing Center, Norway <u>Salberg, Arnt B.</u>, Norwegian Computing Center, Norway <u>Trier, Øivind Due</u>, Norwegian Computing Center, Norway <u>Vollrath, Andreas</u>, European Space Agency, Italy

TH1.R12.10: GRAPH-BASED ARRAY SIGNAL DENOISING FOR PERTURBED SYNTHETIC APERTURE RADAR

<u>Liu, Dehong</u>, Mitsubishi Electric Research Laboratories, United States <u>Chen, Siheng</u>, Mitsubishi Electric Research Laboratories, United States <u>Boufounos, Petros</u>, Mitsubishi Electric Research Laboratories, United States

TH1.R12.11: SOIL MOISTURE RETRIEVAL USING STACKED GENERALIZATION: AN ENSEMBLE MACHINE LEARNING METHOD

Cheng, Yuan, University of Electronic Science and Technology of China, China Li, Yuxia, University of Electronic Science and Technology of China, China Wu, Huanping, China Meteorological Administration, China Li, Fan, University of Electronic Science and Technology of China, China Li, Yuzhen, ChengDu Software Industry Development Center, China He, Lei, Chengdu University of Information Technology, China

TH1.R13 - Microwave Radiometer Thursday, October 1, 05:00 - 07:00 Room 13 Calibration and RFI I

TH1.R13.1: ANALYSIS OF FIVE-YEAR AMSR2 BRIGHTNESS TEMPERATURE USING THE HISTOGRAMS OF COLD MEASUREMENTS

<u>Huang, Xiaoqi</u>, National Ocean Technology Center, China <u>Zhu, Jianhua</u>, National Ocean Technology Center, China <u>Wang, He</u>, National Ocean Technology Center, China <u>Zhai, Wanlin</u>, National Ocean Technology Center, China

TH1.R13.2: ESTIMATING NEDT OF ON-ORBIT ATMS

<u>Yang, John Xun</u>, University of Maryland, United States <u>Yang, Hu</u>, University of Maryland, United States

TH1.R13.3: PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2)

Kim, Edward, NASA, United States Leslie, Vincent, MIT Lincoln Laboratory, United States Lyu, Joseph, IMSG NASA/GESTAR, United States Smith, Craig, KBR Wyle, United States Osaretin, Idahosa, MIT Lincoln Laboratory, United States Abraham, Saji, KBR Wyle, United States Sammons, Matt, Fibertek, United States Anderson, Kent, Northrop Grumman, United States Amato, Joel, Northrop Grumman, United States Fuentes, James, Northrop Grumman, United States Hernquist, Mark, Northrop Grumman, United States Landrum, Mike, Northrop Grumman, United States Rodriguez-Gutierrez, Fabian, Northrop Grumman, United States Kam, James, Northrop Grumman, United States Cho, Peter, Northrop Grumman, United States Yang, Hu, NOAA, United States Liu, Quanhua (Mark), NOAA, United States Sun, Ninghai, NOAA, United States

TH1.R13.4: ACCURACY: ADAPTIVE CALIBRATION OF CUBESAT RADIOMETER CONSTELLATIONS

<u>Aksoy, Mustafa</u>, University at Albany, State University of New York, United States <u>Bradburn</u>, <u>John</u>, University at Albany, State University of New York, United States

TH1.R13.5: ANALYSIS OF SYSTEM LINEARITY CAUSED BY GAIN VARIATION FOR MICROSATBASED MICROWAVE RADIOMETER

He, Jieying, National Space Science Center, Chinese Academy of Sciences, China Zhang, Shengwei, National Space Science Center, Chinese Academy of Sciences, China

TH1.R13.6: EVALUATION OF DIRECT RF SAMPLING HYPERSPECTRAL MICROWAVE RADIOMETER (DSMRAD)

<u>Maeda, Takashi</u>, Japan Aerospace Exploration Agency, Japan <u>Kawaguchi, Noriyuki</u>, National Astronomical Observatory of Japan, Japan

TH1.R13.7: RFI MITIGATION USING A NEW COMB FILTER FOR WIDEBAND AUTOCORRELATION RADIOMETRY

<u>Salim, Maryam</u>, University of Michigan, United States <u>Mousavi, Seyedmohammad</u>, University of Michigan, United States <u>De Roo, Roger</u>, University of Michigan, United States <u>Sarabandi</u>, <u>Kamal</u>, University of Michigan, United States

TH1.R13.8: INTERCALIBRATION OF FY-3C MWRI OVER FOREST WARM-SCENES USING MICROWAVE RADIATIVE TRANSFER MODEL

Zhang, Wen-Liang, Fudan University, China Jiang, Geng-Ming, Fudan University, China

TH1.R13.9: EVALUATION AND ASSIMILATION OF FY-3C MWHTS FOR RAMMASUN

<u>He, Jieying</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Guo, Yang</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Zhang, Shengwei</u>, National Space Science Center, Chinese Academy of Sciences, China

TH1.R14 - Data Management and Thursday, October 1, 05:00 - 07:00 • Room 14 Education II

TH1.R14.1: THE CORDINET PROJECT: ANALYSIS OF THE BARRIERS LIMITING A MORE DIFFUSE AND SYSTEMATIC USE OF EARTH OBSERVATION COPERNICUS-BASED SOLUTIONS

Lacava, Teodosio, Institute of Methodologies for Environmental Monitoring (IMAA-CNR), Italy Bernardini Papalia, Lucio, Technologies for Earth Observation and Natural Risks Consortium (TeRN), Italy Paradiso, Iole Federica, Technologies for Earth Observation and Natural Risks Consortium (TeRN), Italy Proto, Monica, Institute of Methodologies for Environmental Monitoring (IMAA-CNR), Italy Pergola, Nicola, Institute of Methodologies for Environmental Monitoring (IMAA-CNR), Italy

TH1.R14.2: CONTINUING EDUCATION UNITS (CEUS) FOR NASA'S GLOBAL LEARNING AND OBSERVATIONS TO BENEFIT THE ENVIRONMENT (GLOBE) WORLD WIDE PROGRAM

<u>Hayden, Linda</u>, Elizabeth City State University, United States <u>Walthall, Steffi</u>, Elizabeth City State University, United States <u>Harris, Garry</u>, GLOBE PROGRAM, United States <u>Hathaway</u>, <u>Wanda</u>, Elizabeth City State University, United States <u>Wood</u>, <u>Jeffrey</u>, Elizabeth City State University, United States <u>Hathaway</u>, <u>Jessica</u>, Elizabeth City State University, United States

TH1.R14.3: INTRODUCTION TO POSTGRADUATE EDUCATION OF REMOTE SENSING IN CHINA

<u>Li, Yalan</u>, Jiangsu Normal University, China <u>Zhang, Chenze</u>, Jiangsu Normal University, China <u>Ma, Qingmiao</u>, Jiangsu Normal University, China <u>Li, Yingjie</u>, Jiangsu Normal University, China <u>Xue, Yong</u>, China University of Mining and Technology, China <u>Li, Jinzhi</u>, Jiangsu Normal University, China <u>Li, Ming</u>, Jiangsu Normal University, China <u>Huang, Jing</u>, Jiangsu Normal University, China

TH1.R14.4: QUALITY ANALYSIS OF THE VIIRS LAI/FPAR TIME-SERIES

<u>Pu, Jiabin</u>, School of Land Science and Technology, China University of Geosciences, China <u>Yan, Kai</u>, School of Land Science and Technology, China University of Geosciences, China <u>Zhang, Yiman</u>, School of Land Science and Technology, China University of Geosciences, China <u>Xu, Linlin</u>, School of Land Science and Technology, China University of Geosciences, China

TH1.R14.5: IMPROVING STUDENT LEARNING OF SENSOR RELATED COURSES USING INNOVATIVE PROJECTS

Fan, Hua, University of Electronic Science and Technology of China, China Wang, Jiangming, University of Electronic Science and Technology of China, China Xing, Dezhi, Chongqing United Microelectronics Center, China Zhang, Ke, Chengdu HiWafer Semiconductor Co., Ltd., China Zhang, Jia, Shanghai Anlogic Info Technology Co., Ltd, China Feng, Quanyuan, School of Information Science and Technology, Southwest Jiaotong University, China

TH1.R14.6: FINE-SCALE POPULATION DISTRIBUTIONS MAPPING BASED ON REMOTE SENSING AND SOCIAL SENSING DATA

<u>Wang, Jinyun</u>, Beijing Normal University, China <u>Pan, Yaozhong</u>, Beijing Normal University, China <u>Ji, Zhonglin</u>, Beijing Normal University, China <u>Zhang, Dujuan</u>, Beijing Normal University, China

TH1.R14.7: MAJORIZE-MINIMIZATION BASED SUPER-RESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING

Zhang, Qiping, University of Electronic Science and Technology of China, China Zhang, Yin, University of Electronic Science and Technology of China, China Zhang, Yongchao, University of Electronic Science and Technology of China, China Huang, Yulin, University of Electronic Science and Technology of China, China Li, Wenchao, University of Electronic Science and Technology of China, China Yang, Jianyu, University of Electronic Science and Technology of China, China

TH1.R15 - Passive Optical, Hyperspectral Sensors and Calibration III Thursday, October 1, 05:00 - 07:00 • Room 15

TH1.R15.1: OCO-2 CALIBRATION REFINEMENT ACROSS VERSIONS AND PLANS FOR OCO-3

Rosenberg, Robert, NASA Jet Propulsion Laboratory, United States Chapsky, Lars, NASA Jet Propulsion Laboratory, United States Crisp, David, NASA Jet Propulsion Laboratory, United States Keller, Graziela, NASA Jet Propulsion Laboratory, United States Lee, Richard, NASA Jet Propulsion Laboratory, United States Marchetti, Yuliya, NASA Jet Propulsion Laboratory, United States Yu, Shanshan, NASA Jet Propulsion Laboratory, United States Eldering, Annmarie, NASA Jet Propulsion Laboratory, United States

TH1.R15.2: DEVELOPMENT OF A HIGH-FIDELITY CLARREO PATHFINDER SIMULATOR

Wu, Wan, SSAI, United States Liu, Xu, NASA Langley Research Center, United States Yang, Qiguang, SSAI, United States Goldin, Daniel, SSAI, United States Shea, Yolanda, NASA Langley Research Center, United States Currey, Jon, NASA Langley Research Center, United States Bartle, Aron, SSAI, United States Lukashin, Constantine, NASA Langley Research Center, United States

TH1.R15.3: NOAA-20/S-NPP VIIRS SENSOR DATA RECORD ON-ORBIT PERFORMANCE UPDATES AND RECENT IMPROVEMENTS

Wang, Wenhui, University of Maryland - College Park, United States Cao, Changyong,
National Oceanic and Atmospheric Administration, United States Blonski, Slawomir, Global
Science and Technology Inc., United States Gu, Yalong, Global Science and Technology Inc.,
United States Zhang, Bin, University of Maryland - College Park, United States Uprety, Sirish,
University of Maryland - College Park, United States Choi, Taeyoung, Global Science and
Technology Inc., United States Xi, Shao, University of Maryland - College Park, United States

TH1.R15.4: MONITORING OF THE CROSS-CALIBRATION BIASES BETWEEN THE S-NPP AND NOAA-20 VIIRS SENSOR DATA RECORDS USING GOES ADVANCED BASELINE IMAGER AS A TRANSFER

<u>Huang, Jingfeng</u>, NOAA, United States <u>Yan, Banghua</u>, NOAA, United States <u>Sun, Ninghai</u>, NOAA, United States

TH1.R15.5: NOAA-20 VIIRS REFLECTIVE SOLAR BANDS ON-ORBIT CALIBRATION USING A HYBRID APPROACH

Sun, Junqiang, Science and System Applications, Inc, United States Xiong, Xiaoxiong, NASA, United States

TH1.R15.6: LAPAN'S MID WAVELENGTH INFRARED CAMERA MODULE

<u>Arifin, Bustanul</u>, Indonesia National Institute of Aeronautics and Space (LAPAN), Indonesia

Tahir, Andi Mukhtar, Indonesia National Institute of Aeronautics and Space (LAPAN), Indonesia Priyanto, Irwan, Indonesia National Institute of Aeronautics and Space (LAPAN), Indonesia

TH1.R15.7: SEASONAL VARIATION IN THE MEASUREMENT OF GOES-16 ABI CHANNEL-TO-CHANNEL REGISTRATION

<u>Tan, Bin</u>, Science Systems and Applications, Inc, United States <u>Wolfe, Robert</u>, NASA Goddard Space Flight Center, United States <u>Reth, Alan</u>, Chesapeake Aerospace, LLC, United States <u>Dellomo, John</u>, Global Science and Technology Inc., United States

TH1.R15.8: SNPP AND NOAA-20 GLOBAL INTER-SENSOR BIAS ASSESSMENTS WITHIN ICVS FRAMEWORK USING 32-DAY AVERAGED DIFFERENCE METHOD

Yan, Banghua, NOAA STAR, United States Goldberg, Mitch, NOAA JPSS, United States Jin, Xin, Global Science and Technology Inc., United States Huang, Jingfeng, Global Science and Technology Inc., United States Sun, Ninghai, Global Science and Technology Inc., United States Liang, Ding, Global Science and Technology Inc., United States Porter, Warren, Global Science and Technology Inc., United States Zhou, Lihang, NOAA JPSS, United States

TH1.R15.9: RAILROAD VALLEY RADIOMETRIC CALIBRATION TEST SITE (RADCATS) AS PART OF A GLOBAL RADIOMETRIC CALIBRATION NETWORK (RADCALNET)

Czapla-Myers, Jeffrey, University of Arizona, United States Thome, Kurtis, NASA, United States Wenny, Brian, SSAI, United States Anderson, Nikolaus, University of Arizona, United States

TH1.R15.10: AUSTRALIA, A HUB FOR SPACEBORNE IMAGING SPECTROSCOPY CALIBRATION AND VALIDATION

Ong, Cindy, CSIRO, Australia Lau, Ian, CSIRO, Australia Malthus, Tim, CSIRO, Australia Fearns, Peter, Curtin University, Australia

TH1.R16 - Spaceborne Imaging Thursday, October 1, $05:00 - 07:00 \circ Room 16$ Techniques

TH1.R16.1: GAP-FILLING BASED ON EOF ANALYSIS OF SPATIO-TEMPORAL COVARIANCE OF SATELLITE IMAGE DERIVED DISPLACEMENT TIME SERIES

<u>Hippert-Ferrer, Alexandre</u>, LISTIC, Université Savoie Mont-Blanc, France <u>Yan, Yajing</u>, LISTIC, Université Savoie Mont-Blanc, France <u>Bolon, Philippe</u>, LISTIC, Université Savoie Mont-Blanc, France

TH1.R16.2: VARIABLE RESOLUTION SYNTHETIC APERTURE RADAR IMAGING SYSTEM

<u>Xu, Hanyang</u>, Fudan University, China <u>Xu, Feng</u>, Fudan University, China <u>Jin, Yaqiu</u>, Fudan University, China

TH1.R16.3: AN EFFICIENT AREA-BASED ALGORITHM FOR SAR RADIOMETRIC TERRAIN CORRECTION AND MAP PROJECTION

Shiroma, Gustavo H. X., NASA Jet Propulsion Laboratory, California Institute of Technology, United States Agram, Piyush, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Fattahi, Heresh, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Lavalle, Marco, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Burns, Ryan, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Buckley, Sean, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

TH1.R16.4: PRELIMINARY RESULT OF MIMO SAR TOMOGRAPHY VIA 3D FFBP

<u>Li, Linghao</u>, Beijing Institute of Technology, China <u>Wang, Yan</u>, Beijing Institute of Technology, China <u>Ding, Zegang</u>, Beijing Institute of Technology, China <u>Liu, Minkun</u>, Beijing Institute of Technology, China <u>Zeng, Tao</u>, Beijing Institute of Technology, China <u>Long, Teng</u>, Beijing Institute of Technology, China

TH1.R16.5: A REAL-TIME IMAGING PROCESSING METHOD BASED ON MODIFIED RMA WITH SUB-APERTURE IMAGES FUSION FOR SPACEBORNE SPOTLIGHT SAR

<u>Zhou, Fang</u>, School of Computer and Information, China <u>Yang, Jun</u>, School of Computer and Information, China <u>Sun, Guangcai</u>, National Key Lab of Radar Signal Processing, China <u>Zhang, Jiajia</u>, Key Laboratory of Aperture Array and Space Application, China

TH1.R16.6: IMAGING OF MULTI-CHANNEL SLIDING SPOTLIGHT SAR WITH UP- AND

DOWN-CHIRP MODULATION FOR RANGE AMBIGUITY SUPPRESSION

<u>Miyamoto, Mayu</u>, Mitsubishi Electric Corporation, Japan <u>Oishi, Noboru</u>, Mitsubishi Electric Corporation, Japan <u>Tsuchida, Masayoshi</u>, Mitsubishi Electric Corporation, Japan <u>Nakamura, Shohei</u>, Mitsubishi Electric Corporation, Japan <u>Suwa, Kei</u>, Mitsubishi Electric Corporation, Japan

TH1.R16.7: TIME-DOMAIN SAR PROCESSOR FOR SENTINEL-1 TOPS DATA

<u>Anghel, Andrei</u>, University Politehnica of Bucharest, Romania <u>Cacoveanu, Remus</u>, EOS Electronic Systems / University Politehnica of Bucharest, Romania <u>Rommen, Bjorn</u>, European Space Agency (ESA-ESTEC), Netherlands <u>Datcu, Mihai</u>, German Aerospace Center (DLR) / University Politehnica of Bucharest, Germany

TH1.R16.8: AN EFFICIENT MEO SAR IMAGING ALGORITHM BASED ON OPTIMAL IMAGING COORDINATE SYSTEM

<u>Liu, Wenkang</u>, Xidian University, China <u>Sun, Guang-Cai</u>, Xidian University, China <u>Xing</u>, <u>Mengdao</u>, Xidian University, China <u>Pascazio</u>, <u>Vito</u>, Università di Napoli "Parthenope", Italy

TH1.R16.9: DERIVING VELOCITY FIELDS OF SUBMESOSCALE EDDIES USING MULTI-SENSOR IMAGERY

<u>Yanovsky, Igor</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Holt, Benjamin</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Ayoub, Francois</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

TH1.R16.10: MULTICHANNEL SLIDING SPOTLIGHT SAR IMAGING: FIRST RESULT OF GF-3 SATELLITE

Fang, Tingzhu, Aerospace Information Research Institute, Chinese Academy of Sciences, China Deng, Yunkai, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liang, Da, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhang, Lei, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhang, Heng, Aerospace Information Research Institute, Chinese Academy of Sciences, China Fan, Huaitao, Aerospace Information Research Institute, Chinese Academy of Sciences, China Yu, Weidong, Aerospace Information Research Institute, Chinese Academy of Sciences, China

TH1.R16.11: AN IMPROVED SPECKLE FILTER FOR SENTINEL-1 SAR IMAGE PROCESSING

<u>Tan, Songxin</u>, South Dakota State University, United States <u>Klemisch, Adam</u>, South Dakota State University, United States <u>Groeneveld, David</u>, Advanced Remote Sensing Inc., United States

TH1.R17 - Learning and Adaptive Thursday, October 1, 05:00 - 07:00 • Room 17 Methods for Image Clustering

TH1.R17.1: PATCH BASED LAND COVER CLASSIFICATION: A COMPARISON OF DEEP LEARNING, SVM AND NN CLASSIFIERS

<u>Pal, Mahesh</u>, National Institute of Technology, Kurukshetra, India <u>Poriya, Akshay</u>, National Institute of Technology, Kurukshetra, India <u>Rohilla, Himanshu</u>, National Institute of Technology, Kurukshetra, India <u>Charan Teja, B.</u>, National Institute of Technology, Kurukshetra, India

TH1.R17.2: A LEARNABLE BLUR KERNEL FOR REMOTE SENSING IMAGE RETRIEVAL

Peng, Zelin, Xidian University, China Wang, Guanchun, Xidian University, China Zhang, Xiangrong, Xidian University, China Tang, Xu, Xidian University, China Gao, Li, State Key Laboratory of Geo-information Engineering, China Jiao, Licheng, Xidian University, China

TH1.R17.3: INTEGRATION OF SENTINEL 1 AND 2 OBSERVATIONS FOR MAPPING EARLY AND LATE SOWING OF SOYBEAN AND COTTON CROP USING DEEP LEARNING

<u>Mohite, Jayantrao</u>, Tata Consultancy Services, India <u>Sawant, Suryakant</u>, Tata Consultancy Services, India <u>Pappula, Srinivasu</u>, Tata Consultancy Services, India <u>Pappula, Srinivasu</u>, Tata Consultancy Services, India

TH1.R17.4: END-TO-END DEEP LEARNING SEMANTIC CLASSIFICATION ARCHITECTURE FOR REMOTE SENSING IMAGERY

Gu, Haiyan, Chinese Academy of Surveying and Mapping, China Yang, Yi, Chinese Academy of Surveying and Mapping, China Han, Yanshun, Chinese Academy of Surveying and Mapping, China Li, Haitao, Chinese Academy of Surveying and Mapping, China Tang, Ying, Lanzhou Jiaotong University, China

TH1.R17.5: PYRAMID CONVOLUTIONAL NEURAL NETWORKS AND BOTTLENECK RESIDUAL MODULES FOR CLASSIFICATION OF MULTISPECTRAL IMAGES

<u>Huang, Yukun</u>, Jiangxi University of Finance and Economics, China <u>Wei, Jingbo</u>, Nanchang University, China <u>Tang, Wenchao</u>, Nanchang University, China <u>He, Chaoqi</u>, Nanchang University, China

TH1.R17.6: SAMPLING SUBJECTIVE POLYGONS FOR PATCH-BASED DEEP LEARNING LAND-USE CLASSIFICATION IN SATELLITE IMAGES

<u>Arndt, Jacob</u>, Oak Ridge National Laboratory, United States <u>Lunga, Dalton</u>, Oak Ridge National Laboratory, United States

TH1.R17.7: SIMILAR REGION RECOMMENDATION BASED ON HISTOGRAM FEATURES

<u>Liu, Qiankun</u>, University of Electronic Science and Technology of China, China <u>Liu, Qiang</u>, University of Electronic Science and Technology of China, China <u>Xu, Dingyou</u>, University of Electronic Science and Technology of China, China <u>He, Jing</u>, University of Electronic Science and Technology of China, China <u>Mao, Yukun</u>, University of Electronic Science and Technology of China, China

TH1.R17.8: A CYCLE GAN APPROACH FOR HETEROGENEOUS DOMAIN ADAPTATION IN LAND USE CLASSIFICATION

<u>Voreiter, Claire</u>, Université Bretagne Sud, France <u>Burnel, Jean-Christophe</u>, Université Bretagne Sud, France <u>Lassalle, Pierre</u>, Centre National d'Etudes Spatiales (CNES), France <u>Spigai, Marc</u>, Thales Alenia Space, France <u>Hugues, Romain</u>, Thales Alenia Space, France <u>Courty, Nicolas</u>, Université Bretagne Sud, France

TH1.R17.9: FROM SUPERVISED TO UNSUPERVISED LEARNING FOR LAND COVER ANALYSIS OF SENTINEL-2 MULTISPECTRAL IMAGES.

<u>Saha, Jayasree</u>, Indian Institute of Technology Kharagpur, India <u>Khanna, Yuvraj</u>, Indian Institute of Technology Kharagpur, India <u>Mukhopadhyay, Jayanta</u>, Indian Institute of Technology Kharagpur, India <u>Aikat, Subhas</u>, Indian Institute of Technology Kharagpur, India

TH1.R17.10: DEEP CONVOLUTIONAL NEURAL NETWORK FOR MANGROVE MAPPING

<u>lovan, Corina</u>, Institut de Recherche pour le Developpement, France <u>Kulbicki, Michel</u>, Institut de Recherche pour le Developpement, France <u>Mermet, Eric</u>, École des hautes études en sciences sociales, France

TH1.R17.11: APPROACHING REMOTE SENSING IMAGE CLASSIFICATION WITH ENSEMBLES OF SUPPORT VECTOR MACHINES ON THE D-WAVE QUANTUM ANNEALER

<u>Cavallaro, Gabriele</u>, Forschungszentrum Jülich, Germany <u>Willsch, Dennis</u>, Forschungszentrum Jülich, Germany <u>Willsch, Madita</u>, Forschungszentrum Jülich, Germany <u>Michielsen, Kristel</u>, Forschungszentrum Jülich, Germany <u>Riedel, Morris</u>, Forschungszentrum Jülich, Germany

TH1.R18 - Analysis of Multitemporal Images

Thursday, October 1, 05:00 - 07:00 • Room 18

TH1.R18.1: A SAR-BASED FEASIBILITY STUDY ON DETECTION OF OIL SEEPAGE FROM BURIED PIPELINES

<u>Guida, Raffaella</u>, Surrey Space Centre, United Kingdom <u>Amitrano, Donato</u>, Surrey Space Centre, United Kingdom <u>Iervolino, Pasquale</u>, Surrey Space Centre, United Kingdom <u>Jenney, Lorraine</u>, DNV GL, United Kingdom <u>Wright, Louise</u>, National Physical Laboratory, United Kingdom

TH1.R18.2: POLARIMETRIC SCATTERING CHARACTERISTIC ANALYSIS OF DISASTER AFFECTED AREA BASED ON HUYNEN-EULER PARAMETERS

<u>Liang, Liting</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Zhang, Yunhua</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Li, Dong</u>, National Space Science Center, Chinese Academy of Sciences, China

TH1.R18.3: ENHANCING CONVENTIONAL SAR CHANGE DETECTION PERFORMANCE WITH APODIZATION

<u>Vu, Viet Thuy,</u> Blekinge Institute of Technology, Sweden <u>Pettersson, Mats</u>, Blekinge Institute of Technology, Sweden <u>Sjögren, Thomas</u>, Swedish Defense Research Agency, Sweden

TH1.R18.4: LANDSLIDE DETECTION BASED ON GLCM USING SAR IMAGES

<u>Li, Baihui</u>, University of Electronic Science and Technology of China, China <u>Chen, Yan</u>, University of Electronic Science and Technology of China, China <u>Chen, Yunping</u>, University of Electronic Science and Technology of China, China <u>Lu, Youchun</u>, China Center for Resources Satellite Data and Application, China <u>Ma, Cunshi</u>, University of Electronic Science and Technology of China, China

TH1.R18.5: DEFORMATION VELOCITY MONITORING IN KUNMING CITY USING ASCENDING AND DESCENDING SENTINEL-1A DATA WITH SBAS-INSAR TECHNIQUE

<u>Guo, Shipeng</u>, Southwest Forestry University, China <u>Ji, Yongjie</u>, Southwest Forestry University, China <u>Tian, Xin</u>, Chinese Academy of Forestry, China <u>Zhang, Wangfei</u>, Southwest Forestry University, China <u>Li, Yun</u>, Southwest Forestry University, China <u>Zhang, Tingwei</u>, Southwest forestry university, China <u>Zhang, Tingwei</u>, Southwest forestry university, China

TH1.R18.6: CHANGE DETECTION AND SIGNATURE CLASSIFICATION FOR SAR GMTI

<u>Vu, Viet Thuy</u>, Blekinge Institute of Technology, Sweden <u>Pettersson, Mats</u>, Blekinge Institute of Technology, Sweden <u>Sjögren, Thomas</u>, Swedish Defense Research Agency, Sweden

TH1.R18.7: EXTENDING THE FOLKI-PIV ALGORITHM FOR THE COHERENT COREGISTRATION OF SAR IMAGES

Ribalta, Angel, Fraunhofer FHR, Germany

TH1.R18.8: SNOW CHARACTERIZATION AND AVALANCHE DETECTION IN THE INDIAN HIMALAYA

Patil, Akshay, Indian Institute of Technology Bombay, India Singh, Gulab, Indian Institute of Technology Bombay, India Kumar, Sanjeev, Snow and Avalanche Study Establishment, India Mani, Sneh, Snow and Avalanche Study Establishment, India Bandyopadhyay, Debmita, Indian Institute of Technology Bombay, India Nela, Bala Raju, Indian Institute of Technology Bombay, India Musthafa, Mohamed, Indian Institute of Technology Bombay, India Mohanty, Shradha, Indian Institute of Technology Bombay, India

TH1.R18.9: AN AUTOMATIC SPECTRAL RULE-BASED SYSTEM FOR REAL-TIME THERMAL ANOMALIES DETECTION USING GOES-16 ABI DATA

<u>de Carvalho, Luiz F.</u>, Visiona Space Technology, Brazil <u>Laneve, Giovanni</u>, University of Rome, Italy <u>Baraldi, Andrea</u>, Italian Space Agency, Italy <u>Santilli, Giancarlo</u>, University of Brasilia, Brazil

TH1.R18.10: EVALUATION OF SPATIAL-TEMPORAL VARIATION OF VEGETATION RESTORATION IN DEXING COPPER MINE AREA USING REMOTE SENSING DATA

Zhang, Xiangwen, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Liu, Rongyuan, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Gan, Fuping, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Wang, Wei, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Ding, Ling, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Yan, Bokun, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China

TH1.R18.11: MERRAMAX: A MACHINE LEARNING APPROACH TO STOCHASTIC CONVERGENCE WITH A MULTI-VARIATE DATASET

<u>Carroll, Mark</u>, NASA, United States <u>Schnase</u>, <u>John</u>, NASA, United States <u>Gill</u>, <u>Roger</u>, NASA, United States <u>Tamkin</u>, <u>Glenn</u>, NASA, United States <u>Li, Jian</u>, NASA, United States <u>Maxwell</u>, <u>Thomas</u>, NASA, United States <u>Strong</u>, <u>Savannah</u>, NASA, United States <u>Aronne</u>, <u>Mary</u>, NASA, United States

TH1.R19 - Atmospheric Sounding: Thursday, October 1, 05:00 - 07:00

Room 19 Missions, Technology, Methods and Applications

TH1.R19.1: MONITORING RAPID CHANGE IN THE ATMOSPHERE USING CYGNSS

WIND SPEED MEASUREMENTS

<u>Bringer, Alexandra</u>, The Ohio State University, United States <u>Al-Khadi, Mohammad</u>, The Ohio State University, United States <u>Johnson, Joel</u>, The Ohio State University, United States <u>Park</u>, <u>Jeonghwan</u>, NOAA, United States

TH1.R19.2: NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG

Divakarla, Murty, IMSG@NOAA, United States <u>Kalluri, Satya</u>, Center for Satellite Applications and Research, United States <u>Pryor, Ken</u>, Center for Satellite Applications and Research, United States <u>Barnet, Chris</u>, STC, Inc.,, United States <u>Tan, Changyi</u>, IMSG@NOAA, United States <u>Wilson, Mike</u>, IMSG@NOAA, United States <u>Zhu, Tong</u>, IMSG@NOAA, United States <u>Warner, Juying</u>, University of Maryland, United States <u>Nalli, Nick</u>, IMSG@NOAA, United States <u>Wang, Tianyuan</u>, IMSG@NOAA, United States <u>Wolf, Walter</u>, Center for Satellite Applications and Research, United States <u>Zhou, Lihang</u>, Center for Satellite Applications and Research, United States

TH1.R19.3: ESTIMATION OF LOCATION AND INTENSITY OF TROPICAL CYCLONES BASED ON MICROWAVE SOUNDING INSTRUMENTS

<u>Hu, Hao</u>, Chinese Academy of Meteorological Sciences, China <u>Weng, Fuzhong</u>, Chinese Academy of Meteorological Sciences, China

TH1.R19.4: DETECTION AND CHARACTERIZATION OF IONOSPHERIC ACTIVITY AT HIGH LATITUDE FROM SAR MEASUREMENTS

<u>Mainvis, Aymeric</u>, ONERA - The French Aerospace Lab, France <u>Fabbro, Vincent</u>, ONERA - The French Aerospace Lab, France

TH1.R19.5: APPLICATIONS OF QUALITY CONTROL PROCEDURES FOR TEMPERATURE AND HUMIDITY PROFILES RETRIEVED FROM GROUND-BASED MICROWAVE RADIOMETER

<u>Fu, Xinshu</u>, Shanghai Ecological Forecasting and Remote Sensing Center, China <u>Gou, Yabin</u>, Hangzhou Meteorological Bureau, China <u>Wang, Xiaofeng</u>, Shanghai Ecological Forecasting and Remote Sensing Center, China <u>Peng, Jie</u>, Shanghai Ecological Forecasting and Remote Sensing Center, China

TH1.R19.6: MISSION OPERATIONS AND SCIENCE PLAN FOR THE MEZNSAT CUBESAT MISSION FOR GREENHOUSE GASES MONITORING

<u>Issa, Hamzeh</u>, Khalifa University of Science and Technology, United Arab Emirates <u>Marpu, Prashanth</u>, Khalifa University of Science and Technology, United Arab Emirates <u>Jallad, Abdul-Halim</u>, American University of Ras Al Khaimah Ras Al Khaimah, United Arab Emirates <u>Al Marar, Abdulla</u>, UAE Space Agency, United Arab Emirates

TH1.R19.7: THE RETRIEVAL OF SURFACE ATMOSPHERIC PRESSURE OVER THE OCEANS USING 50-60 GHZ AND 118.75 GHZ PASSIVE MICROWAVE OBSERVATIONS

Zhang, Zijin, National Space Science Center, Chinese Academy of Sciences, China Dong, Xiaolong, National Space Science Center, Chinese Academy of Sciences, China

TH1.R19.8: FMCW RADAR IN THE DIGITAL AGE: A SYNTHESISER BASED RADAR WIND PROFILER SIGNAL GENERATION

<u>Klugmann, Dirk</u>, S&AO Ltd, United Kingdom <u>Chindea, Stefan</u>, University of Bath, United Kingdom <u>Watson, Robert</u>, University of Bath, United Kingdom

TH1.R19.9: SUBMILLIMETER WAVE DIFFERENTIAL ABSORPTION RADAR FOR WATER VAPOR SOUNDING IN THE MARTIAN ATMOSPHERE

Pradhan, Omkar, NASA Jet Propulsion Laboratory, United States Cooper, Ken, NASA Jet Propulsion Laboratory, United States Tampari, Leslie, NASA Jet Propulsion Laboratory, United States Drouin, Brian, NASA Jet Propulsion Laboratory, United States Monje, Raquel, NASA Jet Propulsion Laboratory, United States Roy, Richard, NASA Jet Propulsion Laboratory, United States Siles, Jose, NASA Jet Propulsion Laboratory, United States Cochrane, Corey, NASA Jet Propulsion Laboratory, United States

TH1.R19.10: TOWARDS A MASS-CONSISTENT METHODOLOGY FOR REALISTIC MELTING HYDROMETEOR RETRIEVAL

<u>Kuo, Kwo-Sen</u>, University of Maryland, United States <u>Loftus, Adrian</u>, University of Maryland,

United States Olson, William, University of Maryland,-Baltimore County, United States Schrom, Robert, Universities Space Research Association, United States Johnson, Benjamin, University Corporation for Atmospheric Research, United States Adams, Ian, NASA Goddard Space Flight Center, United States

TH1.R19.11: VTEC AT LOW LATITUDE STATION USING GALILEO PSEUDORANGE

<u>Panimboza, Jonathan</u>, Universidad de las Fuerzas Armadas ESPE, Ecuador <u>Tierra, Alfonso</u>, Universidad de las Fuerzas Armadas ESPE, Ecuador

TH1.R19.12: SPATIAL AND TEMPORAL CHARACTERISTICS OF SEA FOG IN YELLOW SEA AND BOHAI SEA BASED ON ACTIVE AND PASSIVE REMOTE SENSING

Wan, Jianhua, China University of Petroleum (East China), China Su, Jing, China University of Petroleum (East China), China Sheng, Hui, China University of Petroleum (East China), China Liu, Shanwei, China University of Petroleum (East China), China Li, Jiajia, China university of Petroleum (East China), China University of Petr

TH2.R1 - Soil Properties

Thursday, October 1, 07:30 - 09:30 • Room 1

TH2.R1.1: EFFECT OF SPATIAL RESOLUTION ON SOIL PROPERTIES RETRIEVAL FROM IMAGING SPECTROSCOPY: AN ASSESSMENT OF THE HYPERSPECTRAL CHIME MISSION POTENTIAL

<u>Casa, Raffaele</u>, University of Tuscia, Italy <u>Pignatti, Stefano</u>, CNR, Italy <u>Pascucci, Simone</u>, CNR, Italy <u>Huang, Wenjiang</u>, Chinese Academy of Sciences, China <u>Pepe, Monica</u>, CNR, Italy

TH2.R1.2: CLAY CONTENT MAPPING USING SOIL MOISTURE PRODUCTS DERIVED FROM A SYNERGETIC USE OF SENTINEL-1 AND SENTINEL-2 DATA

Bousbih, Safa, Centre d'Etudes Spatiales de la Biosphère, France Zribi, Mehrez, Centre d'Etudes Spatiales de la Biosphère, France Chabaane Lili, Zohra, Institut National Agronomique de Tunisie, Tunisia Baghdadi, Nicolas, Institut national de recherche en agriculture, alimentation et environnement, France Gorrab, Azza, Centre d'Etudes Spatiales de la Biosphère, France Ben Aissa, Nadhira, Institut National Agronomique de Tunisie, Tunisia

TH2.R1.3: SENTINEL-1 IMAGERY INCORPORATING MACHINE LEARNING FOR DRYLAND SALINITY MONITORING: A CASE STUDY IN ESPERANCE, WESTERN AUSTRALIA

Zhang, Qianqian, China Agricultural University, China Zhou, Zheng-Shu, Commonwealth Scientific and Industrial Research Organisation, Australia Caccetta, Peter, Commonwealth Scientific and Industrial Research Organisation, Australia Simons, John, Department of Primary Industries and Regional Development, Australia Li, Li, China Agricultural University, China

TH2.R1.4: OMP-BASED ALGORITHM FOR MINERAL REFLECTANCE SPECTRA DECONVOLUTION FROM HYPERSPECTRAL IMAGES

<u>Rialland, Ronan</u>, French Alternative Energies and Atomic Energy Commission (CEA), France <u>Soussen, Charles</u>, CentraleSupélec, Université Paris-Saclay, France <u>Marion, Rodolphe</u>, French Alternative Energies and Atomic Energy Commission (CEA), France <u>Carrère, Véronique</u>, Université Nantes, France

TH2.R1.5: SOIL MOISTURE ESTIMATION BASED ON LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER BASIN, CHINA

Li, Rui, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Shi, Jiancheng, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Zhao, Tianjie, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Wang, Tianxing, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Lu, Shanlong, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

TH2.R1.6: SPATIAL DOWNSCALING OF LAND SURFACE TEMPERATURE BASED ON SURFACE ENERGY BALANCE

<u>Hu, Yongxin</u>, College of Resources and Environment, University of Chinese Academy of Sciences, China <u>Tang, Ronglin</u>, State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China <u>Jiang, Xiaoguang</u>, College of Resources and

Environment, University of Chinese Academy of Sciences, China Li, Zhao-Liang, State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Jiang, Yazhen, State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Liu, Meng, Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China

TH2.R1.7: ELECTROMAGNETIC SCATTERING BEHAVIOR OF A NEW ORGANIC SOIL DIELECTRIC MODEL FOR LONG-WAVELENGTH RADAR RETRIEVAL OF PERMAFROST ACTIVE LAYER SOIL PROPERTIES

<u>Bakian-Dogaheh, Kazem</u>, University of Southern California, United States <u>Chen, Richard</u>, NASA Jet Propulsion Laboratory, United States <u>Moghaddam, Mahta</u>, University of Southern California, United States <u>Tabatabaeenejad</u>, <u>Alireza</u>, University of Southern California, United States

TH2.R1.8: MONITORING SOILWATER AND ORGANIC CARBON STORAGE PATTERNS AT THE ARCTIC FOOTHILLS, ALASKA, USING INSAR

Wu, Yue, University of Texas at Austin, United States Chen, Jingyi, University of Texas at Austin, United States O'Connor, Michael, University of Texas at Austin, United States Ferencz, Stephen, University of Texas at Austin, United States Kling, George, University of Michigan, United States Cardenas, M. Bayani, University of Texas at Austin, United States

TH2.R2 - Analytic Center Thursday, October 1, 07:30 - 09:30 • Room 2 Frameworks for Monitoring and Assessing Disasters at Diverse Spatiotemporal Scales

TH2.R2.1: THE QUAKES ANALYTIC CENTER FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL SCALES OF TECTONIC AND EARTHQUAKE PROCESSES

Donnellan, Andrea, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Parker, Jay, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Granat, Robert, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Glasscoe, Margaret, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Hawkins, Brian, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Rundle, John, University of California, Davis, United States Grant Ludwig, Lisa, University of California, Irvine, United States Pierce, Marlon, Indiana University, United States Warlon, Indiana University, United States

TH2.R2.2: GEODETIC DATA ASSIMILATION FOR EVALUATING VOLCANIC UNREST

<u>Gregg, Patricia M.</u>, University of Illinois at Urbana-Champaign, United States <u>Albright, John A.</u>, University of Illinois at Urbana-Champaign, United States <u>Zhan, Yan</u>, University of Illinois at Urbana-Champaign, United States <u>Pettijohn, J. Cory</u>, University of Illinois at Urbana-Champaign, United States

TH2.R2.3: DISTINGUISHING INFLATION DRIVERS AT SHALLOW MAGMATIC SYSTEMS USING ENSEMBLE-BASED DATA ASSIMILATION

<u>Albright, John</u>, University of Illinois at Urbana-Champaign, United States <u>Gregg, Patricia</u>, University of Illinois at Urbana-Champaign, United States

TH2.R2.5: ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING

Kosovic, Branko, National Center for Atmospheric Research, United States Jimenez, Pedro,
National Center for Atmospheric Research, United States McCandless, Tyler, National Center
for Atmospheric Research, United States Petzke, Bill, National Center for Atmospheric
Research, United States Massie, Steven, University of Colorado, United States SiemsAnderson, Amanda, National Center for Atmospheric Research, United States DeCastro, Amy,
National Center for Atmospheric Research, United States Munoz-Esparza, Domingo, National
Center for Atmospheric Research, United States Haupt, Sue Ellen, National Center for
Atmospheric Research, United States

TH2.R2.6: SUPPORTING AQUACULTURE IN THE CHESAPEAKE BAY USING ARTIFICIAL INTELLIGENCE TO DETECT POOR WATER QUALITY WITH REMOTE SENSING

Schollaert Uz, Stephanie, NASA Goddard Space Flight Center, United States Ames, Troy, NASA Goddard Space Flight Center, United States Memarsadeghi, Nargess, NASA Goddard Space Flight Center, United States McDonnell, Shannon, University of Maryland, United States Blough, Neil, University of Maryland, United States Mehta, Amita, NASA GFSC/UMBC, United States McKay, John, Maryland Department of the Environment, United States

TH2.R2.7: NASA NEMO-NET - A NEURAL MULTIMODAL OBSERVATION & TRAINING NETWORK FOR MARINE ECOSYSTEM MAPPING AT DIVERSE SPATIOTEMPORAL SCALES

<u>Chirayath, Ved</u>, NASA Ames Research Center, United States <u>Li, Alan</u>, NASA Ames Research Center, United States <u>Torres-Perez, Juan</u>, NASA Ames Research Center, United States <u>Segal-Rozenhaimer, Michal</u>, NASA Ames Research Center, United States <u>van den Bergh, Jarrett</u>, NASA Ames Research Center, United States

TH2.R2.8: COMMUNITY REORGANIZATION RESPONSE TO CLIMATE CHANGE: SPECIES INTERACTIONS, STATE-SPACE MODELING AND FOOD WEBS

Swenson, Jennifer J., Duke University, United States Qiu, Tong, Duke University, United States Schwantes, Amanda M., Duke University, United States Kilner, Christopher, Duke University, United States Nunez, Chase, Universität Leipzig, Germany Scher, Lane, Duke University, United States Sharma, Shubham, Duke University, United States Clark, James S., Duke University, United States

TH2.R3 - Feature Reduction by Neural and/or Spatial Characterization II

Thursday, October 1, 07:30 - 09:30 • Room 3

TH2.R3.1: DEEP MANIFOLD LEARNING NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Li, Zhengying, Chongqing University, China <u>Huang, Hong</u>, Chongqing University, China <u>Pu</u>, Chunyu, Chongqing University, China

TH2.R3.2: BAND ELIMINATION FOR DIMENSIONALITY REDUCTION OF HYPERSPECTRAL IMAGES USING MUTUAL INFORMATION

<u>Dey, Abhishek</u>, Bethune College, University of Calcutta, India <u>Ghosh, Susmita</u>, Jadavpur University, India <u>Ghosh, Ashish</u>, Indian Statistical Institute, India

TH2.R3.3: DIMENSIONALITY REDUCTION USING 3D RESIDUAL AUTOENCODER FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Pande, Shivam</u>, Indian Institute of Technology Bombay, India <u>Banerjee, Biplab</u>, Indian Institute of Technology Bombay, India

TH2.R3.4: HYPERSPECTRAL TARGET DETECTION BASED ON TARGET-CONSTRAINED INTERFERENCE-MINIMIZED BAND SELECTION

<u>Shang, Xiaodi</u>, Dalian Maritime University, China <u>Song, Meiping</u>, Dalian Maritime University, China <u>Wang, Yulei</u>, Dalian Maritime University, China <u>Yu, Haoyang</u>, Dalian Maritime University, China <u>Chang, Chien-I</u>, University of Maryland Baltimore County, China

TH2.R3.5: SPATIAL-SPECTRAL COMBINATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION

<u>Pu, Chunyu</u>, College of Opto-Electronics Engineering of Chongqing University, China <u>Huang</u>, <u>Hong</u>, College of Opto-Electronics Engineering of Chongqing University, China <u>Li, Zhengying</u>, College of Opto-Electronics Engineering of Chongqing University, China

TH2.R3.6: NEURAL NETWORK PRUNING FOR HYPERSPECTRAL IMAGE BAND SELECTION

<u>Wang, QiXiong</u>, Beihang University, China <u>Luo, Xiaoyan</u>, Beihang University, China <u>Li, Sen</u>, Beihang University, China <u>Yin, Jihao</u>, Beihang University, China

TH2.R3.7: CREATING RGB IMAGES FROM HYPERSPECTRAL IMAGES USING A COLOR MATCHING FUNCTION

<u>Magnusson, Magnus</u>, University of Iceland, Iceland <u>Sigurdsson, Jakob</u>, University of Iceland, Iceland <u>Armansson, Sveinn Eirikur</u>, University of Iceland, Iceland <u>Ulfarsson, Magnus Orn</u>, University of Iceland, Iceland <u>Deborah, Hilda</u>, Norwegian University of Science and

Technology, Norway <u>Sveinsson, Johannes R</u>, University of Iceland, Iceland

TH2.R3.8: UNSUPERVISED HYPERSPECTRAL EMBEDDING BY LEARNING A DEEP REGRESSION NETWORK

<u>Hong, Danfeng</u>, German Aerospace Center (DLR), Germany <u>Yao, Jing</u>, German Aerospace Center (DLR), Germany <u>Chanussot, Jocelyn</u>, Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LJK, France <u>Zhu, Xiaoxiang</u>, German Aerospace Center (DLR), Germany

TH2.R3.9: META NETWORK FOR RADAR HRRP NONCOOPERATIVE TARGET RECOGNITION WITH MISSING ASPECTS

<u>Tian, Long</u>, Xidian University, China <u>Chen, Bo</u>, Xidian University, China <u>Peng, Yang</u>, Xidian University, China <u>Du, Chuan</u>, Sun Yat-sen University, China <u>Wu, Zhenhua</u>, Anhui University, China <u>Liu, Hongwei</u>, Xidian University, China

TH2.R3.10: REMOTE SENSING IMAGES FEATURE LEARNING BASED ON MULTI-BRANCH NETWORKS

<u>Liu, Chao</u>, Xidian University, China <u>Tang, Xu</u>, Xidian University, China <u>Ma, Jingjing</u>, Xidian University, China <u>Zhang, Xiangrong</u>, Xidian University, China <u>Liu, Fang</u>, Nanjing University of Science and Technology, China <u>Ma, Junyong</u>, Science and Technology on Electro-optic Control Laboratory, China <u>Jiao</u>, <u>Licheng</u>, Xidian University, China

TH2.R3.11: STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION

Soares, Anderson, National Institute for Space Research (INPE), Brazil Bendini, Hugo, National Institute for Space Research (INPE), Brazil Vaz, Daiane, National Institute for Space Research (INPE), Brazil Uehara, Tatiana, National Institute for Space Research (INPE), Brazil Neves, Alana, National Institute for Space Research (INPE), Brazil Lechler, Sarah, University of Muenster, Germany Körting, Thales, National Institute for Space Research (INPE), Brazil Fonseca, Leila, National Institute for Space Research (INPE), Brazil

TH2.R4 - Next Generation of LEO/GEO Microwave and Infrared Sounders

Thursday, October 1, 07:30 - 09:30 • Room 4

TH2.R4.1: THE NEXT GENERATION US LEO HYPERSPECTRAL INFRARED SOUNDER

<u>Tobin, David</u>, University of Wisconsin-Madison, United States <u>Best, Fred</u>, University of Wisconsin-Madison, United States <u>Knuteson, Robert</u>, University of Wisconsin-Madison, United States <u>Revercomb, Henry</u>, University of Wisconsin-Madison, United States <u>Smith, William</u>, University of Wisconsin-Madison, United States <u>Taylor, Joe</u>, University of Wisconsin-Madison, United States

TH2.R4.2: LESSONS LEARNED FROM AIRS FOR FUTURE GRATING IR SOUNDERS

Pagano, Thomas, California Institute of Technology, United States

TH2.R4.3: THE NASA TROPICS MISSION AS A PATHFINDER FOR FUTURE OPERATIONAL EARTH OBSERVING SYSTEMS

<u>Blackwell, William</u>, MIT Lincoln Laboratory, United States

TH2.R4.4: GEOSTAR - A 'SHOVEL READY' GEOSTATIONARY MICROWAVE SOUNDER

Lambrigtsen, Bjorn, NASA Jet Propulsion Laboratory, United States

TH2.R4.5: NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND

Brown, Shannon, NASA Jet Propulsion Laboratory, United States Bosch, Javier, NASA Jet Propulsion Laboratory, United States Cofield, Richard, NASA Jet Propulsion Laboratory, United States Cooperrider, Joelle, NASA Jet Propulsion Laboratory, United States Hodges, Richard, NASA Jet Propulsion Laboratory, United States Kangaslahti, Pekka, NASA Jet Propulsion Laboratory, United States Misra, Sidharth, NASA Jet Propulsion Laboratory, United States Ramos, Isaac, NASA Jet Propulsion Laboratory, United States Gaier, Todd, NASA Jet Propulsion Laboratory, United States Lim, Boon, NASA Jet Propulsion Laboratory, United States Padmanabhan, Sharmila, NASA Jet Propulsion Laboratory, United States Berg, Wes, Colorado State University, United States Venkatachalam, Chandrasekaran, Colorado State University, United States

TH2.R4.6: EXPEDITIOUS IMPLEMENTATION OF A HYPERSPECTRAL IMAGING INFRARED SOUNDER (HIIS) IN GEOSTATIONARY ORBIT

Taylor, Joe K., University of Wisconsin-Madison Space Science and Engineering Center, United States Revercomb, Henry, University of Wisconsin-Madison Space Science and Engineering Center, United States Smith Sr., William, University of Wisconsin-Madison Space Science and Engineering Center, United States Knuteson, Robert, University of Wisconsin-Madison Space Science and Engineering Center, United States Tobin, David, University of Wisconsin-Madison Space Science and Engineering Center, United States Best, Fred, University of Wisconsin-Madison Space Science and Engineering Center, United States Gero, P. Jonathan, University of Wisconsin-Madison Space Science and Engineering Center, United States Glumb, Ronald, L3Harris, United States

TH2.R4.7: REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION

Johnson, Joel, The Ohio State University, United States Ball, Chris, The Ohio State University, United States McKelvey, Christa, The Ohio State University, United States Chen, Chi-Chih, The Ohio State University, United States Misra, Sidharth, NASA Jet Propulsion Laboratory, United States Brown, Shannon, NASA Jet Propulsion Laboratory, United States Jarnot, Robert, NASA Jet Propulsion Laboratory, United States Bendig, Rudi, NASA Jet Propulsion Laboratory, United States Horgan, Kevin, NASA Goddard Space Flight Center, United States Lucey, Jared, NASA Goddard Space Flight Center, United States Piepmeier, Jeffrey, NASA Goddard Space Flight Center, United States Monahan, Nick, Blue Canyon Technologies, United States Laczkowski, Doug, Blue Canyon Technologies, United States

TH2.R5 - Data Fusion: SAR and Optical

Thursday, October 1, 07:30 - 09:30 • Room 5

TH2.R5.1: CLOUD REMOVAL IN UNPAIRED SENTINEL-2 IMAGERY USING CYCLE-CONSISTENT GAN AND SAR-OPTICAL DATA FUSION

<u>Ebel, Patrick</u>, Technical University of Munich, Germany <u>Schmitt, Michael</u>, Technical University of Munich, Germany <u>Zhu, Xiaoxiang</u>, Technical University of Munich, Germany

TH2.R5.2: GAN-BASED SAR-TO-OPTICAL IMAGE TRANSLATION WITH REGION INFORMATION

<u>Doi, Kento</u>, University of Tokyo, Japan <u>Sakurada, Ken</u>, National Institute of Advanced Industrial Science and Technology, Japan <u>Onishi, Masaki</u>, National Institute of Advanced Industrial Science and Technology, Japan <u>Iwasaki</u>, <u>Akira</u>, University of Tokyo, Japan

TH2.R5.3: SATELLITE DATA FUSION OF MULTIPLE OBSERVED XCO2 USING COMPRESSIVE SENSING AND DEEP LEARNING

Nguyen, Phuong, University Of Maryland Baltimore County, United States Shivadekar, Samit, University Of Maryland Baltimore County, United States Chukkapalli, Sai Sree Laya, University Of Maryland Baltimore County, United States Halem, Milton, University Of Maryland Baltimore County, United States

TH2.R5.4: SAR AND AIS DATA FUSION FOR DENSE SHIPPING ENVIRONMENTS

Rodger, Maximilian, University of Surrey, United Kingdom Guida, Raffaella, University of Surrey, United Kingdom

TH2.R5.5: ON THE FUSION STRATEGIES OF SENTINEL-1 AND SENTINEL-2 DATA FOR LOCAL CLIMATE ZONE CLASSIFICATION

<u>Gawlikowski, Jakob</u>, German Aerospace Center, Germany <u>Schmitt, Michael</u>, Technical University of Munich, Germany <u>Kruspe, Anna</u>, German Aerospace Center, Germany <u>Zhu, Xiao</u> <u>Xiang</u>, German Aerospace Center, Germany

TH2.R5.6: MULTI-POL SAR DATA FUSION FOR COASTLINE EXTRACTION BY NEURAL NETWORKS CHAINING

<u>De Laurentiis, Leonardo</u>, University of Rome Tor Vergata, Italy <u>Latini, Daniele</u>, University of Rome Tor Vergata, Italy <u>Schiavon, Giovanni</u>, University of Rome Tor Vergata, Italy <u>Del Frate, Fabio</u>, University of Rome Tor Vergata, Italy

TH2.R5.7: AUTOMATIC AREA-BASED REGISTRATION OF OPTICAL AND SAR IMAGES THROUGH GENERATIVE ADVERSARIAL NETWORKS AND A CORRELATION-TYPE METRIC

Maggiolo, Luca, University of Genoa, Italy Solarna, David, University of Genoa, Italy Moser. Gabriele, University of Genoa, Italy Serpico, Sebastiano, University of Genoa, Italy

TH2.R5.8: AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI-SENSOR SATELLITE IMAGERY APPROACH

Muñoz, Erith, FAO, Ecuador Enriquez, Jhonatan, Instituto de Investigacion Geologico y Energetico, Ecuador Toctaguano, Daniel, Instituto de Investigacion Geologico y Energetico, Ecuador Bustos, Mariaelisa, Instituto de Investigacion Geologico y Energetico, Ecuador Betancourt, Franz, Instituto de Investigacion Geologico y Energetico, Ecuador Sangucho, Carmen, Instituto de Investigacion Geologico y Energetico, Ecuador Parra, Victor, Instituto de Investigacion Geologico y Energetico, Ecuador Lima, Aracely, Instituto de Investigacion Geologico y Energetico, Ecuador Zozaya, Alfonso, Universidad Tecnológica Metropolitana, Chile

TH2.R5.9: OPTICAL AND POLARIMETRIC SAR DATA FUSION TERRAIN CLASSIFICATION USING PROBABILISTIC FEATURE FUSION

<u>West, R. Derek</u>, Sandia National Laboratories, United States <u>Yocky, David</u>, Sandia National Laboratories, United States <u>Redman, Brian</u>, Sandia National Laboratories, United States <u>van der Laan, John</u>, Sandia National Laboratories, United States <u>Anderson, Dylan</u>, Sandia National Laboratories, United States

TH2.R5.10: SAR IMAGE SUPER-RESOLUTION BASE ON WEIGHTED DENSE CONNECTED CONVOLUTIONAL NETWORK

Yu, Jianwen, UESTC, China Li, Wenchao, UESTC, China Li, Zhongyu, UESTC, China Wu, Junjie, UESTC, China Yang, Haiguang, UESTC, China Yang, Jianyu, UESTC, China

TH2.R5.11: PYSRRESNET: SUPER RESOLUTION FOR VIDEO SATELLITE IMAGERY VIA PYRAMID RESIDUAL NETWORK

Xiao, Man, Sun Yat-sen University, China He, Zhi, Sun Yat-sen University, China Wu, Jiemin, Sun Yat-sen University, China

TH2.R6 - Land Cover Dynamics II Thursday, October 1, 07:30 - 09:30 • Room 6

TH2.R6.1: URBAN RESIDENTIAL AREA SPRAWL SIMULATION OF METROPOLITAN "SUBURBANIZATION" TREND IN BEIJING

<u>Liu, Fang</u>, Beijing University of Civil Engineering and Architecture, United States <u>Sun, Weilun</u>, Beijing University of Civil Engineering and Architecture, China

TH2.R6.2: VEGETATION INDICES DERIVED FROM FENGYUN-3D MERSI-II DATA

<u>Han, Xiuzhen</u>, National Meteorological Satellite Center, China <u>Weng, Fuzhong</u>, Chinese Academy of Meteorological Sciences, United States <u>Han, Yang</u>, National Meteorological Satellite Center, China <u>Huang, He</u>, Nanjing University, China <u>Li, Shengqi</u>, Nanjing University of Information Science and Technology, China

TH2.R6.3: A 21-YEAR (1990-2011) RECORD OF LAND COVER CHANGES AND URBAN DYNAMICS OF SHANGHAI CITY DERIVED FROM LANDSAT IMAGES

<u>Liao, Yuanqin</u>, Shanghai Institute of Geological Survey, China <u>Pan, Haiyan</u>, Tongji university, China <u>Xie, Huan</u>, Tongji university, China <u>Tong, Xiaohua</u>, Tongji university, China <u>Xu, Xiong</u>, Tongji university, China

TH2.R6.4: DETECTING IRRIGATION EFFECT ON SURFACE TEMPERATURE USING MODIS AND LAND SURFACE MODEL IN WHOLE UZBEKISTAN

<u>Touge, Yoshiya</u>, Tohoku University, Japan <u>Muthoni Mbugua, Jacqueline</u>, Tohoku University, Japan <u>Kazama, So</u>, Tohoku University, Japan <u>Khujanazarov, Temur</u>, Kyoto Universeity, Japan <u>Tanaka, Kenji</u>, Kyoto Universeity, Japan

TH2.R6.5: AN AUTOMATIC METHOD FOR MAPPING PEN AQUACULTURE IN A SHALLOW LAKE

<u>Luo, Juhua</u>, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences,

China <u>Sun</u>, <u>Zhe</u>, University of Chinese Academy of Sciences, China <u>Yang</u>, <u>Jingzhicheng</u>, University of Chinese Academy of Sciences, China <u>Mao</u>, <u>Zhigang</u>, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, China <u>Lu</u>, <u>Lirong</u>, University of Chinese Academy of Sciences, China

TH2.R6.6: EVALUATIING THE NDLI'S PERFORMANCE FOR IDENTIFYING WATER SURFACE USING SENTINEL-2 MSI DATA

Nguyen, Kim-Anh, National Central University, Taiwan Liou, Yuei-An, National Central University, Taiwan Ho, Le-Thu, Institute of Geography, Vietnam Academy of Science and Technology, Taiwan

TH2.R6.7: ESTIMATION OF REINFORCED SLOPE DYNAMICS USING ALOS-2/ PALSAR-2 AND VALIDATION BY TERRESTRIAL LASER SCANNER

<u>Asaka, Tomohito</u>, Nihon University, Japan <u>Nonaka, Takashi</u>, Nihon University, Japan <u>Iwashita</u>, <u>Keishi</u>, Nihon University, Japan <u>Uchida, Yuki</u>, Nihon University, Japan <u>Sugimura, Toshiro</u>, Nihon University, Japan

TH2.R6.8: MULTI-SCALE DEEP RESIDUAL LEARNING FOR CLOUD REMOVAL

Yang, Qiaoqiao, China University of Petroleum (East China), China Wang, Guangxing, China University of Petroleum (East China), China Zhao, Yaxuan, China University of Petroleum (East China), China Zhang, Xiaoyu, China University of Petroleum (East China), China Dong, Guoshuai, China University of Petroleum (East China), China Ren, Peng, China University of Petroleum (East China), China China China), China

TH2.R6.9: ASSESSMENT OF LAND CONSUMPTION FOR SDG INDICATOR 11.3.1 USING GLOBAL AND LOCAL BUILT-UP AREA MAPS

Shelestov, Andrii, Space Research Institute SSAU-NASU, Ukraine Kussul, Nataliia, Space Research Institute SSAU-NASU, Ukraine Yailymov, Bohdan, Space Research Institute SSAU-NASU, Ukraine Shumilo, Leonid, Space Research Institute SSAU-NASU, Ukraine Bilokonska, Yulia, Space Research Institute SSAU-NASU, Ukraine

TH2.R7 - Integrating Physical Models into Machine Learning (ML) Models

Thursday, October 1, 07:30 - 09:30 • Room 7

TH2.R7.1: THE ROLE OF PHYSICAL MODELS IN THE ARTIFICIAL INTELLIGENCE ERA

Bruzzone, Lorenzo, University of Trento, Italy

TH2.R7.2: COMBINING PARAMETRIC LAND SURFACE MODELS WITH MACHINE LEARNING

<u>Pelissier, Craig</u>, NASA, United States <u>Frame, Jonathan</u>, University of Alabama, United States <u>Nearing, Grey</u>, University of Alabama, United States

TH2.R7.3: DNN-BASED SEMANTIC EXTRACTION: FAST LEARNING FROM MULTISPECTRAL SIGNATURES

<u>Calota, Iulia</u>, University Politehnica of Bucharest, Romania <u>Faur, Daniela</u>, University Politehnica of Bucharest, Romania <u>Datcu, Mihai</u>, University Politehnica of Bucharest; German Aerospace Center, Romania

TH2.R7.4: A DEEP MACHINE LEARNING APPROACH FOR LIDAR BASED BOUNDARY LAYER HEIGHT DETECTION

Sleeman, Jennifer, University of Maryland Baltimore County, United States <u>Yang, Zhifeng</u>, University of Maryland Baltimore County, United States <u>Caicedo, Vanessa</u>, University of Maryland Baltimore County, United States <u>Halem, Milton</u>, University of Maryland Baltimore County, United States <u>Demoz, Belay</u>, University of Maryland Baltimore County, United States <u>Delgado, Ruben</u>, University of Maryland Baltimore County, United States

TH2.R7.5: ANALYSIS OF HYPERSPECTRAL DATA BY MEANS OF TRANSPORT MODELS AND MACHINE LEARNING

<u>Czaja, Wojciech</u>, Univeristy of Maryland College Park, United States <u>Dong, Dong</u>, Univeristy of Maryland College Park, United States <u>Jabin, Pierre-Emmanuel</u>, Univeristy of Maryland College Park, United States <u>Ndjakou Njeunje, Franck Olivier</u>, Univeristy of Maryland College Park, United States

TH2.R7.6: ROTATIONAL EQUIVARIANCE FOR OBJECT CLASSIFICATION USING XVIEW

Bynum, Lucius, Pacific Northwest National Laboratory, United States Doster, Timothy, Pacific Northwest National Laboratory, United States Emerson, Tegan, Pacific Northwest National Laboratory, United States Kvinge, Henry, Pacific Northwest National Laboratory, United States

TH2.R7.7: PHYSICALLY MEANINGFUL DICTIONARIES FOR EO CROWDSOURCING: A ML FOR BLOCKCHAIN ARCHITECTURE

Coca, Mihai, University Politehnica of Bucharest, Romania Neagoe, Iulia, University Politehnica of Bucharest, Romania Datcu, Mihai, German Aerospace Center (DLR), Romania

TH2.R7.8: QUANTUM ANNEALING APPROACH: FEATURE EXTRACTION AND SEGMENTATION OF SYNTHETIC APERTURE RADAR IMAGE

Otgonbaatar, Soronzonbold, German Aerospace Center, Germany Datcu, Mihai, German Aerospace Center, Germany

TH2.R7.9: QUANTUM ASSISTED IMAGE REGISTRATION

<u>Pelissier, Craig</u>, NASA, United States <u>Ames, Troy</u>, NASA, United States <u>Le Moigne, Jacqueline,</u> NASA, United States

TH2.R7.10: QUANTUM IMAGING FOR SPACE OBJECTS

<u>Pepe, Francesco V.</u>, Università degli Studi di Bari, Italy <u>Scagliola, Alessio</u>, Università degli studi di Bari, Italy <u>Garuccio, Augusto</u>, Università degli Studi di Bari, Italy <u>D'Angelo, Milena</u>, Università degli studi di Bari, Italy

TH2.R8 - Ocean Altimetry

Thursday, October 1, 07:30 - 09:30 • Room 8

TH2.R8.1: VALIDATION OF JASON-3 ALTIMETER USING TIDE GAUGES AROUND NORTH AMERICA

Zhai, Wanlin, National Ocean Technology Center, China Zhu, Jianhua, National Ocean Technology Center, China

TH2.R8.2: IN-ORBIT CALIBRATION AND VALIDATION OF HY-2B ALTIMETER USING AN IMPROVED TRANSPONDER

Wang, Caiyun, National Space Science Center, Chinese Academy of Sciences, China Guo, Wei, National Space Science Center, Chinese Academy of Sciences, China Liu, Peng, National Space Science Center, Chinese Academy of Sciences, China Wang, Te, National Space Science Center, Chinese Academy of Sciences, China Cui, Hongbin, University of Chinese Academy of Sciences, China

TH2.R8.3: SIMULATION STUDY ON BASELINE ERROR ESTIMATION OF WIDE-SWATH ALTIMETER BY INTERFEROMETRIC PHASE AFTER FLAT-EARTH PHASE REMOVAL

<u>Miao, Xiangying</u>, Ocean University of China, China <u>Miao, Hongli</u>, Ocean University of China, China

TH2.R8.4: PRELIMINARY PRECISION ASSESSMENT OF HY-2B ALTIMETER DATA OVER ANTARCTICA AND GREENLAND

<u>Jiang, Maofei</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Xu, Ke</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Jia, Yongjun</u>, National Satellite Ocean Application Service, China

TH2.R8.5: AN ESTIMATE OF THE DECAY RATE OF SWELLS USING ALTIMETER DATA

Gao, Zhiyi, National Marine Environmental Forecasting Center, China Yu, Fujiang, National Marine Environmental Forecasting Center, China Wei, Yongliang, College of Marine Sciences, Shanghai Ocean University, China Lu, Hengxing, College of Marine Sciences, Shanghai Ocean University, China Zhang, Liangsong, Fujian Marine Forecasting Center, China Lu, Mei, Fujian Marine Forecasting Center, China Xu, Ying, National Satellite Ocean Application Service, China

TH2.R8.6: SIMULATION OF THE WIDE SWATH SEA SURFACE HEIGHT CALIBRATION USING GNSS BUOY ARRAY

Xu, Xi-Yu, Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China, China

TH2.R8.7: WAVE-CURRENT INTERACTION IN THE NORTHWEST PACIFIC OCEAN

USING SATELLITE ALTIMETER DATA

<u>Woo, Hye-Jin</u>, Seoul National University, Korea (South) <u>Park, Kyung-Ae</u>, Seoul National University, Korea (South)

TH2.R8.8: ANALYSIS OF SENTINEL-3A SYNTHETIC APERTURE RADAR (SAR). ALTIMETRY WAVEFORMS OVER THE SOUTHEAST ASIA REGION

<u>Idris, Nurul Hazrina</u>, Universiti Teknologi Malaysia, Malaysia <u>Vignudelli, Stefano</u>, Consiglio Nazionale delle Ricerche (CNR), Area delle Ricerca CNR S.Cataldo, Italy <u>Deng, Xiaoli</u>, University of Newcastle, Australia

TH2.R8.9: IMPROVED ORBIT DETERMINATION OF THE CYGNSS SATELLITES AND ITS APPLICATION TO GNSS-R OCEAN ALTIMETRY

<u>Conrad, Alex</u>, University of Colorado Boulder, United States <u>Axelrad, Penina</u>, University of Colorado Boulder, United States <u>Zuffada, Cinzia</u>, NASA Jet Propulsion Laboratory, United States <u>Haines, Bruce</u>, NASA Jet Propulsion Laboratory, United States <u>O'Brien, Andrew</u>, The Ohio State University, United States <u>Loria, Eric</u>, The Ohio State University, United States

TH2.R8.10: IMPROVING THE ESTIMATION OF THE SEA LEVEL ANOMALY SLOPE

<u>Mailhes, Corinne</u>, University of Toulouse, France <u>Besson, Olivier</u>, University of Toulouse, France <u>Guillot, Amandine</u>, Centre National d'Etudes Spatiales (CNES), France <u>Le Gac, Sophie</u>, Centre National d'Etudes Spatiales (CNES), France

TH2.R8.11: PHOTON-COUNTING LIDAR: LINEAR DENSITY MULTI-LEVEL CLASSIFICATION METHOD FOR OFFSHORE AREAS

<u>Xu, Qi</u>, Tongji University, China <u>Xie, Huan</u>, Tongji University, China <u>Ye, Dan</u>, Tongji University,

China Tong, Xiaohua, Tongji University, China

TH2.R9 - Airborne/Ground-base and Thursday, October 1, 07:30 - 09:30 • Room 9 Processing Imaging Techniques

TH2.R9.1: A FOCUS STACKING ALGORITHM FOR AIRBORNE SAR IMAGES

<u>Oishi, Noboru</u>, Mitsubishi Electric Corporation, Japan <u>Suwa, Kei</u>, Mitsubishi Electric Corporation, Japan

TH2.R9.2: AN IMPROVED IMAGING ALGORITHM FOR AIRBORNE NEAR-NADIR TOPS SAR WITH YAW ANGLE ERROR

<u>Li, Han</u>, Xidian University, China <u>Suo, Zhiyong</u>, Xidian University, China <u>Zheng, Chengxin</u>, Xidian University, China <u>Zhang, Jinqiang</u>, Shanghai Radio Equipment Research Institute, China <u>Li, Zhenfang</u>, Xidian University, China

TH2.R9.3: FMCW SAR DATA INVERSION

<u>Casalini, Emiliano</u>, University of Zurich, Switzerland <u>Henke, Daniel</u>, University of Zurich, Switzerland

TH2.R9.4: THE PHASE ERROR ANALYSIS AND COMPENSATION OF MRUAV-SAR

<u>Zhang, Yun</u>, Harbin Institute of Technology, China <u>Zhu, Xin</u>, Harbin Institute of Technology, China <u>Lu, Chenyue</u>, Harbin Institute of Technology, China <u>Lu, Chenyue</u>, Harbin Institute of Technology, China

TH2.R9.5: UNAMBIGUOUS SIGNAL RECONSTRUCTION ALGORITHM FOR HIGH SQUINT MULTICHANNEL SAR MOUNTED ON HIGH SPEED MANEUVERING PLATFORMS

<u>Li, Ning, Xidian University, China Sun, Guang-Cai, Xidian University, China Xing, Mengdao, Xidian University, China</u>

TH2.R9.6: A VARIABLE-DECOUPLING METHOD USED IN MSR-BASED IMAGING ALGORITHMS FOR SAR WITH CONSTANT ACCELERATION

Zhang, Yun, Harbin Institute of Technology, China Zhang, Haojian, Harbin Institute of Technology (Shenzhen), China Zhang, Tingting, Harbin Institute of Technology (Shenzhen), China Li, Hongbo, Harbin Institute of Technology, China Mu, Huilin, Harbin Institute of Technology, China

TH2.R9.7: EXPLAINING ANOMALIES IN SAR AND SCATTEROMETER SOIL MOISTURE RETRIEVALS FROM DRY SOILS WITH SUB-SURFACE SCATTERING

<u>Morrison, Keith</u>, University of Reading, United Kingdom <u>Wagner, Wolfgang</u>, Technical

University of Vienna, Austria

TH2.R9.8: SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L

Montzka, Carsten, Forschungszentrum Jülich, Germany Brogi, Cosimo, Forschungszentrum Jülich, Germany Mengen, David, Forschungszentrum Jülich, Germany Matveeva, Maria, Forschungszentrum Jülich, Germany Baum, Stephani, Forschungszentrum Jülich, Germany Schüttemeyer, Dirk, European Space Agency, Netherlands Bayat, Bagher, Forschungszentrum Jülich, Germany Bogena, Heye, Forschungszentrum Jülich, Germany Coccia, Alex, Metasensing BV, Netherlands Masalias, Gerard, Metasensing BV, Netherlands Graf, Verena, Forschungszentrum Jülich, Germany Jakobi, Jannis, Forschungszentrum Jülich, Germany Jonard, Francois, Forschungszentrum Jülich, Germany Ma, Yueling, Forschungszentrum Jülich, Germany Mattia, Francesco, Consiglio Nazionale delle Ricerche (CNR), Italy Palmisano, Davide, Consiglio Nazionale delle Ricerche (CNR), Italy Jagdhuber, Thomas, German Aerospace Center, Germany Fluhrer, Anke, German Aerospace Center, Germany Schumacher, Maike, University of Hohenheim, Germany Schmidt, Marius, Forschungszentrum Jülich, Germany Vereecken, Harry, Forschungszentrum Jülich, Germany

TH2.R9.9: GROUND MOVING TARGET IMAGING BASED ON MSOKT AND KT FOR SYNTHETIC APERTURE RADAR

<u>Wan, Jun</u>, Chongqing University, China <u>Chen, Zhanye</u>, Chongqing University, China <u>Zhou, Yu</u>, Xidian University, China <u>Li, Dong</u>, Chongqing University, China <u>Huang, Yan</u>, Southeast University, China <u>Zhang, Linrang</u>, Xidian University, China

TH2.R9.10: HIERARCHICAL ATTENTION FOR SHIP DETECTION IN SAR IMAGES

<u>Zhu, Chunbo</u>, Beihang University, China <u>Zhao, Danpei</u>, Beihang University, China <u>Liu, Ziming</u>, Beihang University, China <u>Mao, Yinan</u>, Beihang University, China

TH2.R9.11: AN ANTENNA BEAM STEERING STRATEGY FOR SAR ECHO SIMULATION IN HIGHLY ELLIPTICAL ORBIT

<u>Hu, Xinchang</u>, Beihang University, China <u>Wang, Pengbo</u>, Beihang University, China <u>Chen, Jie</u>, Beihang University, China <u>Yang, Wei</u>, Beihang University, China <u>Guo, Yanan</u>, Beihang University, China

TH2.R9.12: EFFICIENT TIME DOMAIN ECHO SIMULATION OF BISTATIC SAR CONSIDERING TOPOGRAPHY VARIATION

Chen, Tianfu, University of Electronic Science and Technology of China, China Zhang, Jiyu, University of Electronic Science and Technology of China, China Li, Wenchao, University of Electronic Science and Technology of China, China Wu, Junjie, University of Electronic Science and Technology of China, China Li, Zhongyu, University of Electronic Science and Technology of China, China Huang, Yulin, University of Electronic Science and Technology of China, China Yang, Jianyu, University of Electronic Science and Technology of China, China

TH2.R10.1: DEEP NEURAL NETWORKS FOR FOREST GROWING STOCK VOLUME RETRIEVAL: A COMPARATIVE ANALYSIS FOR L-BAND SAR DATA

Tanase, Mihai, National Institute for Research and Development in Forestry "Marin Dracea", Romania Marin, Gheorghe, National Institute for Research and Development in Forestry "Marin Dracea", Romania Belenguer-Plomer, Miguel, Universidad de Alcala de Henares, Spain Borlaf, Ignacio, Universidad de Alcala de Henares, Spain Popescu, Flaviu, Romanian Forest Owners' Association, Romania Badea, Ovidiu, National Institute for Research and Development in Forestry "Marin Dracea", Romania

TH2.R10.2: TROPICAL FOREST HEIGHT AND UNDERLYING TOPOGRAPHY FROM TANDEM-X SAR INTERFEROMETRY

<u>Lei, Yang</u>, California Institute of Technology, United States <u>Treuhaft, Robert</u>, NASA Jet Propulsion Laboratory, United States <u>Gonçalves, Fabio</u>, Canopy Remote Sensing Solutions, Brazil

TH2.R10.3: HIGH-RESOLUTION WOODY VEGETATION COVER, HEIGHT AND BIOMASS MAPPING ACROSS AUSTRALIA

<u>Van Dijk, Albert</u>, Australian National University, Australia <u>Liao, Zhanmang</u>, University of Electronic Science and Technology of China, China

TH2.R10.4: ESTIMATION OF FOREST ABOVE-GROUND BIOMASS WITH C-BAND SCATTEROMETER BACKSCATTER OBSERVATIONS

<u>Santoro, Maurizio</u>, Gamma Remote Sensing, Switzerland <u>Cartus, Oliver</u>, Gamma Remote Sensing, Switzerland <u>Wegmüller</u>, <u>Urs</u>, Gamma Remote Sensing, Switzerland

TH2.R10.5: A REGIONAL L-BAND HIGH BIOMASS ESTIMATION FRAMEWORK LEVERAGING SPACEBORNE LIDAR AND INTERFEROMETRIC DATA TO OVERCOME BACKSCATTER SATURATION

Marshak, Charlie, NASA Jet Propulsion Laboratory, United States Simard, Marc, NASA Jet Propulsion Laboratory, United States Duncanson, Laura, University of Maryland, United States Silva, Carlos, University of Maryland, United States Denbina, Michael, NASA Jet Propulsion Laboratory, United States Liao, Tien-Hao, California Institute of Technology, United States

TH2.R10.6: WEAK RESPONSE OF VEGETATION PHOTOSYNTHESIS TO METEOROLOGICAL DROUGHTS IN SOUTHWEST CHINA: INSIGHTS FROM GOME-2 SOLAR-INDUCED FLUORESCENCE

Qi. Yangqian, University of British Columbia, Canada Zeng, Zhao-Cheng, California Institute of Technology, United States

TH2.R10.7: ALLOMETRIC RELATIONSHIPS BETWEEN ABOVE-GROUND BIOMASS AND LIDAR FULL WAVEFORM MEASUREMENTS - POTENTIAL APPLICATIONS FOR GLOBAL ECOSYSTEM DYNAMICS INVESTIGATION (GEDI) MISSION

<u>Ni-Meister, Wenge</u>, Hunter College of The City University of New York, United States <u>Lee</u>, <u>Shihyal</u>, Science Application International Corp. and NASA Goddard Space Flight Center, United States

TH2.R10.8: VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION

Wang, Mengjia, Beijing Normal University, China Wigneron, Jean-Pierre, National Institute of Agricultural Research (INRAE), France Sun, Rui, Beijing Normal University, China Ciais.

Philippe, Laboratoire des Sciences du Climat et de l'Environnement, France Brandt, Martin, University of Copenhagen, Denmark Liu, Yi, Nanjing University of Information Science and Technology, China Frappart, Frédéric, Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), France Li. Xiaojun, National Institute of Agricultural Research (INRA), China Liu, Xiangzhuo, National Institute of Agricultural Research (INRA), China Fan, Lei, Nanjing University of Information Science and Technology, China Fensholt, Rasmus, University of Copenhagen, Denmark

TH2.R10.9: VICARIOUS VALIDATION OF L-BAND VEGETATION OPTICAL DEPTH

Lewis-Beck, Colin, University of Iowa, United States <u>Cirone, Richard</u>, Iowa State University, United States <u>Walker, Victoria</u>, University of Montana, United States <u>Feldman, Andrew</u>, Massachusetts Institute of Technology, United States <u>Chaubell, Julian</u>, NASA Jet Propulsion Laboratory, United States <u>Colliander, Andreas</u>, NASA Jet Propulsion Laboratory, United States <u>Wigneron, Jean-Pierre</u>, Institut National de la Recherche Agronomique, United States <u>Hornbuckle, Brian</u>, Iowa State University, United States

TH2.R10.10: NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA

<u>Liu, Xiangzhuo</u>, INRAE, France <u>Wigneron, J.-P.</u>, INRAE, France <u>Frappart, Frédéric</u>, Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), France <u>Baghdadi, Nicolas</u>, IRSTEA, France <u>Zribi, Mehrez</u>, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France <u>Jagdhuber, Thomas</u>, German Aerospace Center (DLR), Germany <u>Li, Xiaojun</u>, INRAE, France <u>Wang, Mengjia</u>, INRAE, France <u>Fan, Lei</u>, Nanjing University of Information Science and Technology, China <u>Moisy, Christophe</u>, INRAE, France

TH2.R10.11: A HIGHLY CHLOROPHYLL-SENSITIVE AND LAI-INSENSITIVE INDEX BASED ON THE RED-EDGE BAND: CSI

Zhang, Hu, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Jing, Aerospace Information Research Institute, Chinese Academy of Sciences, China Liu, Qinhuo, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhao, Jing, Aerospace Information Research Institute, Chinese Academy of Sciences, China Dong, Yadong, Aerospace Information Research Institute, Chinese Academy of Sciences,

China

TH2.R11 - Envisioning the Role of Thursday, October 1, 07:30 - 09:30 • Room 11 Remote Sensing in Agriculture in 2030

TH2.R11.1: END-USER DRIVEN REMOTE SENSING FOR AGRICULTURAL APPLICATIONS

Roth, Keely, The Climate Corporation, United States

TH2.R11.2: NASA HARVEST(ING) EARTH OBSERVATIONS FOR INFORMED AGRICULTURAL DECISIONS

Whitcraft, Alyssa, NASA Harvest, United States Becker-Reshef, Inbal, NASA Harvest, United States Justice, Christopher, NASA Harvest, United States

TH2.R11.3: A MULTI-MODAL APPROACH FOR MONITORING CHANGES IN AGRICULTURE IN THE MEKONG RIVER DELTA

Neigh, Christopher, NASA Goddard Space Flight Center, United States Thomas, Nathan, Earth System Science Interdisciplinary Center University of Maryland College Park, NASA Goddard Space Flight Center, United States Carroll, Mark, NASA Goddard Space Flight Center, United States Wooten, Margaret, Science Systems Applications Inc., NASA Goddard Space Flight Center, United States McCarty, Jessica, Miami University, United States

TH2.R11.4: EXPLORING THE POSSIBILITY OF ASSESSING BIOCHEMICAL VARIABLES IN SUGARCANE CROP WITH SENTINEL-2 DATA

<u>Panwar, Ekta</u>, Indian Institute of Technology Roorkee, India <u>Singh, Dharmendra</u>, Indian Institute of Technology Roorkee, India <u>Sharma, Ashwini Kumar</u>, Indian Institute of Technology Roorkee, India

TH2.R11.5: EARTH OBSERVATION AT FINER SCALES IS CRITICAL TO FARMING COMMUNITIES FACING INCREASED WATER SHORTAGES OVER THE NEXT DECADE

<u>Vanthof, Victoria</u>, University of Waterloo, Canada <u>Kelly, Richard</u>, University of Waterloo, Canada

TH2.R11.6: VIRTUAL ENVIRONMENTS & SUSTAINABLE AGRICULTURE: A CASE STUDY

Lourenço, João, University of Trás-os-Montes e Alto Douro, Portugal <u>Teixeira, João</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Carvalho, Paulo</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Pádua, Luís</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Adão, Telmo</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Peres, Emanuel</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Sousa, Joaquim J.</u>, University of Trás-os-Montes e Alto Douro, Portugal

TH2.R11.7: CAPTURING CORN AND SOYBEAN YIELD VARIABILITY AT FIELD SCALE USING VERY HIGH SPATIAL RESOLUTION SATELLITE DATA

<u>Skakun, Sergii</u>, University of Maryland, United States <u>Brown, Meredith</u>, University of Maryland, United States <u>Roger, Jean-Claude</u>, University of Maryland, United States <u>Vermote, Eric</u>, NASA Goddard Space Flight Center, United States

TH2.R12 - Advanced Remote Sensing Data Analysis for Sustainable Development Thursday, October 1, 07:30 - 09:30 • Room 12

TH2.R12.1: ACCELERATING SUSTAINABLE DEVELOPMENT WITH EARTH INTELLIGENCE

<u>Musgrave, Madison</u>, Maxar, United States <u>Hallas, Matt</u>, Maxar, United States <u>Price, Rhiannan</u>, Maxar, United States <u>Pacifici, Fabio</u>, Maxar, United States

TH2.R12.2: PATHWAYS TO MULTITEMPORAL RADAR SOUNDING IN TERRESTRIAL

GLACIOLOGY

Schroeder, Dustin, Stanford University, United States

TH2.R12.3: BETWEEN VULNERABILITY AND SUSTAINABILITY: EVALUATING THE FLOOD IMPACT ON URBAN ROAD NETWORK

<u>Huang, Kuan-ting</u>, National Taipei University of Technology, Taiwan <u>Luo, Qian</u>, National Taipei University of Technology, Taiwan

TH2.R12.4: REMOTE SENSING AND DEEP LEARNING FOR SUSTAINABLE MINING

Ghamisi, Pedram, Helmholtz Zentrum Dresden Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Germany Li, Hao, Heidelberg University, Germany Jackisch, Robert, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Germany Rasti, Behnood, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Germany Gloaguen, Richard, Helmholtz Zentrum Dresden Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Germany

TH2.R12.5: A FLUORESCENCE LIDAR SIMULATOR FOR THE DESIGN OF ADVANCED WATER QUALITY ASSESSMENT METHODOLOGIES

<u>Matteoli, Stefania</u>, National Research Council of Italy, Italy <u>Diani, Marco</u>, Italian Naval Academy, Italy <u>Corsini, Giovanni</u>, University of Pisa, Italy

TH2.R12.6: TOWARDS UNCOVERING SOCIO-ECONOMIC INEQUALITIES USING VHR SATELLITE IMAGES AND DEEP LEARNING

<u>Persello, Claudio</u>, University of Twente, Netherlands <u>Kuffer, Monika</u>, University of Twente, Netherlands

TH2.R12.7: DAMAGE CHARACTERIZATION IN URBAN ENVIRONMENTS FROM MULTITEMPORAL REMOTE SENSING DATASETS BUILT FROM PREVIOUS EVENTS

<u>Adriano, Bruno</u>, RIKEN Center for Advanced Intelligence Project, Japan <u>Xia, Junshi</u>, RIKEN Center for Advanced Intelligence Project, Japan <u>Yokoya, Naoto</u>, RIKEN Center for Advanced Intelligence Project, Japan <u>Miura, Hiroyuki</u>, Hiroshima University, Japan <u>Matsuoka, Masashi</u>, Tokyo Institute of Technology, Japan <u>Koshimura, Shunichi</u>, Tohoku University, Japan

TH2.R12.8: HIGH SPECTRAL AND TEMPORAL RESOLUTION IMAGING ANALYSIS FOR MONITORING ALGAL BLOOM IN WATER RESERVOIR IN THE WARM SEASON

<u>German, Alba</u>, Mario Gulich Institute, Argentina <u>Ferral, Anabella</u>, Mario Gulich Institute, Argentina <u>Scavuzzo, Carlos Marcelo</u>, Mario Gulich Institute, Argentina <u>Shimoni, Michal</u>, Signal and Image Centre, Belgium

TH2.R13 - Radio Frequency Interference (RFI) in Microwave Remote Sensing

Thursday, October 1, 07:30 - 09:30 • Room 13

TH2.R13.1: MAPPING OCEAN-REFLECTED RADIO FREQUENCY INTERFERENCE FOR THE GPM MICROWAVE IMAGER USING NORMALIZED RETRIEVAL COST FUNCTION

<u>Adams, Ian</u>, NASA Goddard Space Flight Center, United States <u>Munchak, Stephen Joseph</u>, NASA Goddard Space Flight Center, United States

TH2.R13.2: GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS

Oliva, Roger, Zenithal Blue Technologies, Spain Onrubia, Raul, Zenithal Blue Technologies, Spain Martellucci, Antonio, European Space Agency, Netherlands Daganzo-Eusebio, Elena, European Space Agency, Netherlands Jorge, Flavio, European Space Agency, Netherlands English, Stephen, European Centre for Medium-Range Weather Forecast, United Kingdom de Rosnay, Patricia, European Centre for Medium-Range Weather Forecast, United Kingdom Weston, Peter, European Centre for Medium-Range Weather Forecast, United Kingdom Barbosa, Jose, Research and Development in Aerospace GmbH, Switzerland Nestoras, Ioannis, Research and Development in Aerospace GmbH, Switzerland

TH2.R13.3: RETRIEVAL OF RFI CHARACTERISTICS USING L-BAND SATELLITE DATA

Soldo, Yan, NASA GSFC/USRA, United States Oliva, Roger, European Space Agency, United States Le Vine, David, NASA Goddard Space Flight Center, United States Bringer, Alexandra, The Ohio State University, United States de Matthaeis, Paolo, NASA Goddard Space Flight Center, United States

TH2.R13.5: SIMILARITY APPROACH FOR RADIO FREQUENCY INTERFERENCE DETECTION AND CORRECTION IN MULTI-RECEIVER SAR

<u>Natsuaki, Ryo</u>, University of Tokyo, Japan <u>Jaeger, Marc</u>, German Aerospace Center, Germany <u>Prats-Iraola, Pau</u>, German Aerospace Center, Germany

TH2.R13.6: WIDEBAND INTERFERENCE SUPPRESSION FOR SAR BY TIME-FREQUENCY-PULSE JOINT DOMAIN PROCESSING

<u>Su. Jia</u>, Northwestern Polytechnical University, China <u>Li, Haojiang</u>, Northwestern Polytechnical University, China <u>Tao, Mingliang</u>, Northwestern Polytechnical University, China <u>Fan, Yifei</u>, Northwestern Polytechnical University, China <u>Wang, Ling</u>, Northwestern Polytechnical University, China <u>Tao, Haihong</u>, Xidian University, China

TH2.R13.7: THE SPECTRUM OUTLOOK FOR EARTH REMOTE SENSING POST WRC-19

Houts, Jacquelynne, NASA, United States Kim, Edward, NASA, United States

TH2.R13.8: AGENDA ITEMS OF THE WORLD RADIOCOMMUNICATION CONFERENCE 2023 RELEVANT TO REMOTE SENSING

<u>de Matthaeis, Paolo</u>, NASA Goddard Space Flight Center, United States <u>von Deak, Thomas</u>, National Oceanic and Atmospheric Administration (NOAA), United States <u>Oliva, Roger</u>, European Space Agency, Spain <u>Bollian, Tobias</u>, German Aerospace Center (DLR), Germany

TH2.R14 - Data Management and Thursday, October 1, 07:30 - 09:30 • Room 14 Systems II

TH2.R14.1: THE EARTHSERVER GLOBAL DATACUBE FEDERATION

Baumann, Peter, Jacobs University | rasdaman GmbH, Germany

TH2.R14.2: DESIGN AND DEVELOPMENT OF SPATIO-TEMPORAL FUSION AND OPERATION PLATFORM FOR ANCIENT AND MODERN MAPS

Ren, Liyan, Key Laboratory for Aerial Remote Sensing Technology of Ministry of Natural Resources, China Li, Yingcheng, Key Laboratory for Aerial Remote Sensing Technology of Ministry of Natural Resources, China Xiao, Jincheng, Key Laboratory for Aerial Remote Sensing Technology of Ministry of Natural Resources, China Xi, Haijian, Key Laboratory for Aerial Remote Sensing Technology of Ministry of Natural Resources, China

TH2.R14.3: ROAD VECTORIZATION BASED ON IMAGE PIXEL TRACKING AND ATTRIBUTE MATCHING METHOD

Yuan, Lang, University of Electronic Science and Technology of China, China Li, Yuxia, University of Electronic Science and Technology of China, China Yang, Chao, University of Electronic Science and Technology of China, China Fan, Kunlong, University of Electronic Science and Technology of China, China Si, Yu, University of Electronic Science and Technology of China, China Tong, Ling, University of Electronic Science and Technology of China, China China China China

TH2.R14.4: JOINT NODE SELECTION AND SPACE-TIME RESOURCE ALLOCATION STRATEGY FOR MULTIPLE TARGETS TRACKING IN NETTED RADAR SYSTEM

<u>Su, Yang</u>, University of Electronic Science and Technology of China, China <u>He, Zishu</u>, University of Electronic Science and Technology of China, China

TH2.R14.5: ERDDAP: PROVIDING EASY ACCESS TO REMOTE SENSING DATA FOR SCIENTISTS AND STUDENTS

<u>Wilson, Cara</u>, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, United States <u>Robinson, Dale</u>, University of California, Santa Cruz, United States <u>Simons, Robert A.</u>, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, United States

TH2.R14.6: THE TRANSMISSION INTERFACE DESIGN OF HALL-EFFECT SENSOR

<u>Fan, Hua</u>, University of Electronic Science and Technology of China, China <u>Zeng, Yongqin</u>, University of Electronic Science and Technology of China, China

TH2.R14.7: FPGA BASED DIGITAL MAGNETIC FIELD DETECTION SYSTEM

Fan, Hua, University of Electronic Science and Technology of China, China Yang, Jingxuan, University of Electronic Science and Technology of China, China Zhang, Jia, Shanghai Anlogic Info Technology Co., Ltd, China Zhang, Ke, Chengdu HiWafer Semiconductor Co., Ltd., China

Xing, Dezhi, Chongqing United Microelectronics Center, China Feng, Quanyuan, School of Information Science and Technology, Southwest Jiaotong University, China

TH2.R14.8: OPTIMIZATION OF HIGH PRECISION SAR ADC USED IN THE REMOTE SENSING TECHNOLOGY

Fan, Hua, University of Electronic Science and Technology of China, China Yang, Jingxuan, University of Electronic Science and Technology of China, China Cen, Yuanjun, Chengdu Sino Microelectronics Technology Co., Ltd., China Feng, Quanyuan, School of Information Science and Technology, Southwest Jiaotong University, China

TH2.R14.9: GEONOTE: A FIELD NOTEBOOK AND DATABASE FOR GEOLOGY

Cordova Gallardo, Omar Alejandro, Universidad de Guadalajara, Mexico De-la-Torre, Miguel, Universidad de Guadalajara, Mexico Ayala Carazas, Luis, Explorock SAC Soluciones Geológicas, Peru Rosas Elguera, José Guadalupe, Universidad de Guadalajara, Mexico Acevedo Juárez, Brenda, Universidad de Guadalajara, Mexico

TH2.R14.10: A CROWDSOURCING-BASED PLATFORM FOR LABELLING REMOTE SENSING IMAGES

Zhao, Jianghua, Chinese Academy of Sciences, China Wang, Xuezhi, Computer Network Information Center, China Zhou, Yuanchun, Computer Network Information Center, China

TH2.R14.11: CLASSIFICATION OF ERRORS IN GEOGRAPHIC DATA USING ISO 19157

Porfirio, Barbara, Universidade Federal do ABC, Brazil Adaniya, Nicolle, Universidade Federal do ABC, Brazil Josko, João, Universidade Federal do ABC, Brazil Oikawa, Marcio, Universidade Federal do ABC, Brazil do ABC, Brazil

TH2.R14.12: A METHOD TO IDENTIFY HIGH-QUALITY PURE SNOW DATA IN POLDER DATABASE

Guo, Jing, Beijing Normal University, China Jiao, Ziti, Beijing Normal University, China Cui, Lei, Beijing Normal University, China Yin, Siyang, Beijing Normal University, China Chang, Yaxuan, Beijing Normal University, China Xie, Rui, Beijing Normal University, China Li, Sijie, Beijing Normal University, China Zhu, Zidong, Beijing Normal University, China China Zhu, Zidong, Beijing Normal University, China China Zhu, Zidong, Beijing Normal University, China

TH2.R15 - ALOS-2/-4

Thursday, October 1, 07:30 - 09:30 • Room 15

TH2.R15.1: TRIAL OF DEFORESTATION DETECTION BY USING 25M RESOLUTION PALSAR-2/SCANSAR DATA

<u>Watanabe, Manabu</u>, Tokyo Denki University, Japan <u>Koyama, Christian</u>, Tokyo Denki University, Japan <u>Hayashi, Masato</u>, Japan Aerospace Exploration Agency, Japan <u>Nagatani, Izumi</u>, Japan Aerospace Exploration Agency, Japan <u>Tadono, Takeo</u>, Japan Aerospace Exploration Agency, Japan <u>Shimada, Masanobu</u>, Tokyo Denki University, Japan

TH2.R15.2: CHANGE DETECTION IN BI-TEMPORAL ALOS-2 PALSAR-2 POLARIMETRIC DATA

<u>Lee, Ken Yoong</u>, National University of Singapore, Singapore <u>Hou, Chen Guang</u>, National University of Singapore, Singapore <u>Liew, Soo Chin</u>, National University of Singapore, Singapore <u>Kwoh, Leong Keong</u>, National University of Singapore, Singapore

TH2.R15.3: ALOS-4 L-BAND SAR OBSERVATION CONCEPT AND DEVELOPMENT STATUS

<u>Motohka, Takeshi</u>, Japan Aerospace Exploration Agency, Japan <u>Kankaku, Yukihiro</u>, Japan Aerospace Exploration Agency, Japan <u>Miura, Satoko</u>, Japan Aerospace Exploration Agency, Japan <u>Suzuki, Shinichi</u>, Japan Aerospace Exploration Agency, Japan

TH2.R15.4: MONITORING OF FISHING BOATS BY ALOS-2/4 DATA

<u>Arii, Motofumi</u>, Mitsubishi Electric Corpolation, Japan <u>Nishimura, Takeshi</u>, Mitsubishi Space Software Co., Ltd., Japan <u>Serizawa, Jin</u>, Mitsubishi Space Software Co., Ltd., Japan

TH2.R15.5: RAINFALL-INDUCED CHANGES IN L-BAND BACKSCATTER OVER TROPICAL FORESTS AND THEIR IMPACT ON DEFORESTATION MONITORING

Koyama, Christian, Tokyo Denki University, Japan Watanabe, Manabu, Tokyo Denki University, Japan Hayashi, Masato, Japan Aerospace Exploration Agency, Japan Nagatani, Izumi, Japan Aerospace Exploration Agency, Japan Tadono, Takeo, Japan Aerospace Exploration Agency, Japan Shimada, Masanobu, Tokyo Denki University, Japan

TH2.R15.6: DETECTION OF SLOW MOVEMENT AREAS IN THE FOREST AREA USING THE TIME SERIES L-BAND SAR INTERFEROMETRY

<u>Iwatate, Wataru</u>, Tokyo Denki University, Japan <u>Fujiyama, Kaho</u>, Tokyo Denki University, Japan <u>Takahashi, Koya</u>, Tokyo Denki University, Japan <u>Shimada, Masanobu</u>, Tokyo Denki University, Japan

TH2.R15.7: SEASONAL CHANGE ANALYSIS FOR ALOS-2 PALSAR-2 DEFORESTATION DETECTION

Nagatani, Izumi, Japan Aerospace Exploration Agency, Japan Hayashi, Masato, Japan Aerospace Exploration Agency, Japan Watanabe, Manabu, Tokyo Denki University, Japan Tadono, Takeo, Japan Aerospace Exploration Agency, Japan Watanabe, Tomohiro, Japan Aerospace Exploration Agency, Japan Koyama, Christian, Tokyo Denki University, Japan Shimada, Masanobu, Tokyo Denki University, Japan

TH2.R16 - Remote Sensing in the Thursday, October 1, 07:30 - 09:30 • Room 16 Energy Industry: A Tool to Monitor Environmental Footprints and Reduce Risks

TH2.R16.1: THE ENERGY SECTOR: AN OPPORTUNITY FOR ENVIRONMENT SOLUTIONS TO IDENTIFY AND TACKLE CHALLENGES ALL ALONG THE VALUE CHAIN

Pajot, Emmanuel, EARSC, Belgium Bideaud, Helene, Total, France

TH2.R16.2: MONITORING METHANE EMISSIONS AT INDIVIDUAL OIL AND GAS SITES WITH SATELLITES: A NEW TOOL AT THE DAWN OF GLOBAL TRANSPARENCY

Gauthier, Jean-Francois, GHGSat, Canada

TH2.R16.3: USE OF SAR IMAGERY AND ARTIFICIAL INTELLIGENCE FOR A MULTI-COMPONENTS OCEAN MONITORING

Messager, Christophe, Extreme Weather Expertises, France <u>Tran-Vu</u>, <u>La</u>, Extreme Weather Expertises, France <u>Sahl</u>, <u>Remi</u>, Extreme Weather Expertises, France <u>Dupont</u>, <u>Paco</u>, Extreme Weather Expertises, France <u>Prothon</u>, <u>Etienne</u>, Extreme Weather Expertises, France <u>Honnorat</u>, <u>Marc</u>, Extreme Weather Expertises, France

TH2.R16.4: TIMELY UPDATE OF EMISSION FLUXES WITH SATELLITE INFORMATION

<u>Kushta, Jonilda</u>, The Cyprus Institute, Cyprus <u>Georgiou, George</u>, The Cyprus Institute, Cyprus <u>Lelieveld, Jos</u>, Max Planck Institute for Chemistry, Germany

TH2.R16.5: VALIDATION OF INNOVATIVE SYSTEMS OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION REDUCING EMISSIONS AND INCREASING SAFETY

<u>Watremez, Xavier, TOTAL, France Baron, Thierry, TOTAL, France Marblé, André, TOTAL, France Miegebielle, Véronique, TOTAL, France Marcarian, Xavier, TOTAL, France Foucher, Pierre-Yves, ONERA, France Cézard, Nicolas, ONERA, France Raybaut, Myriam, ONERA, France Cezard, Nicolas, ONERA, France Raybaut, Myriam, ONERA, France</u>

TH2.R16.6: AUTOMATIC OIL SLICK DETECTION FOR ENVIRONMENTAL DOMAIN USING SYNTHETIC APERTURE RADAR (SAR) IMAGES

<u>Miegebielle, Veronique</u>, TOTAL SA, France <u>Conche, Bruno</u>, TOTAL SA, France <u>Killisly, Clement</u>, TOTAL SA, France <u>Bideaud, Helene</u>, TOTAL SA, France <u>Gomes, Anael</u>, TOTAL SA, France <u>Huang, Zhexuan</u>, TOTAL SA, France <u>Xie, peigen</u>, TOTAL SA, France

TH2.R17 - Global Sensing through Thursday, October 1, 07:30 - 09:30 • Room 17 New Observing Strategies for Local Solutions

TH2.R17.1: LEVERAGING SPACE AND GROUND ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE

<u>Chien, Steve</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Boerkoel, James</u>, Harvey Mudd College, United States <u>Mason, James</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Wang, Daniel</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Davies, Ashley Gerard</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Mueting, Joel</u>, Planet Labs Inc., United States <u>Vittaldev, Vivek</u>, Planet Labs Inc., United States

Shah, Vishwa, Planet Labs Inc., United States Zuleta, Ignacio, Planet Labs Inc., United States

TH2.R17.2: COORDINATING OBSERVATION AT GLOBAL AND LOCAL SCALES: SERVICE-ORIENTED PLATFORM TO EVALUATE MISSION ARCHITECTURES

<u>Grogan, Paul</u>, Stevens Institute of Technology, United States <u>Stern, Jordan</u>, Stevens Institute of Technology, United States

TH2.R17.3: D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS

Nag, Sreeja, NASA Ames Research Center, United States Moghaddam, Mahta, University of Southern California, United States Selva, Daniel, Texas A&M University, United States Frank, Jeremy, NASA Ames Research Center, United States Ravindra, Vinay, NASA Ames Research Center, United States Levinson, Richard, NASA Ames Research Center, United States Azemati, Amir, University of Southern California, United States Aguilar, Alan, Texas A&M University, United States Li, Alan, NASA Ames Research Center, United States Akbar, Ruzbeh, Massachusetts Institute of Technology, United States

TH2.R17.4: SPCTOR: SENSING POLICY CONTROLLER AND OPTIMIZER

Moghaddam, Mahta, University of Southern California, United States Akbar, Ruzbeh, MIT, United States Prager, Samuel, USC, United States Silva, Agnelo, METER Group Inc., United States Entekhabi, Dara, MIT, United States

TH2.R17.5: EMULATING AND VERIFYING SENSING, COMPUTATION, AND COMMUNICATION IN DISTRIBUTED REMOTE SENSING SYSTEMS

<u>French, Matthew</u>, University of Southern California, United States <u>Paolieri, Marco</u>, University of Southern California, United States <u>Menon, Vivek</u>, University of Southern California, United States <u>Schmidt, Andrew</u>, University of Southern California, United States

TH2.R17.6: AN INNOVATIVE SPACECUBE APPLICATION FOR ATMOSPHERIC SCIENCE

<u>Carr, James</u>, Carr Astronautics, United States <u>Wilson, Christopher</u>, NASA Goddard Space Flight Center, United States <u>Wu, Dong</u>, NASA Goddard Space Flight Center, United States <u>French, Matthew</u>, USC/ISI, United States <u>Kelly, Michael</u>, Johns Hopkins University Applied Physics Laboratory, United States

TH2.R17.7: SEISMIC SIGNAL SYNTHESIS BY GENERATIVE ADVERSARIAL NETWORK WITH GATED CONVOLUTIONAL NEURAL NETWORK STRUCTURE

<u>Li, Yuanming</u>, Korea University, Korea (South) <u>Ku, Bonhwa</u>, Korea University, Korea (South) <u>Kim, Gwantae</u>, Korea University, Korea (South) <u>Ahn, Jae-kwang</u>, Korea Meteorological

Administrat. Korea (South) Ko. Hanseok. Korea University. Korea (South)

TH2.R18 - Hyperspectral Unmixing Thursday, October 1, 07:30 - 09:30 • Room 18

TH2.R18.1: NONLOCAL LOW-RANK NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING

<u>Xiong, Fengchao</u>, Nanjing University of Science and Technology, China <u>Qian, Kun</u>, JiangNan University, China <u>Lu, Jianfeng</u>, Nanjing University of Science and Technology, China <u>Zhou</u>, <u>Jun</u>, Griffith University, Australia <u>Qian, Yuntao</u>, Zhejiang University, China

TH2.R18.2: AN IMPROVED BILINEAR MIXTURE MODEL CONSIDERING ADJACENCY AND SHADE EFFECTS

Yang, Bin, Donghua University, China Chen, Zhao, Donghua University, China

TH2.R18.3: HAZARDOUS NOXIOUS SUBSTANCE DETECTION BASED ON HYPERSPECTRAL REMOTE SENSING TECHNIQUE

Park, Jae-Jin, Seoul National University, Korea (South) Park, Kyung-Ae, Seoul National University, Korea (South) Foucher, Pierre-Yves, Office National d'Etudes et Recherches Aérospatiales, France Deliot, Philippe, Office National d'Etudes et Recherches Aérospatiales, France Le Floch, Stéphane, Centre of Documentation, Research and Experimentation on Accidental Water Pollution, France Kim, Tae-Sung, Korea Research Institute of Ships & Ocean Engineering, Korea (South) Oh, Sangwoo, Korea Research Institute of Ships & Ocean Engineering, Korea (South) Lee, Moonjin, Korea Research Institute of Ships & Ocean Engineering, Korea (South)

TH2.R18.4: SPECTRAL-SPATIAL HYPERSPECTRAL UNMIXING IN TRANSFORMED DOMAINS

Xu, ChenGuang, Nanchang Institute of Technology, China Zhang, ShaoQuan, Nanchang Institute of Technology, China Deng, Chengzhi, Nanchang Institute of Technology, China Wu. Zhaoming, Nanchang Institute of Technology, China

TH2.R18.5: HYPERSPECTRAL UNMIXING VIA RECURRENT NEURAL NETWORK WITH **CHAIN CLASSIFIER**

Lei, Mingyu, Xidian University, China Li, Jie, Xidian University, China Qi, Lin, Xidian University, China Wang, Ying, Xidian University, China Gao, Xinbo, Xidian University, China

TH2.R18.6: SPECTRAL-SPATIAL WEIGHTED SPARSE NONNEGATIVE TENSOR **FACTORIZATION FOR HYPERSPECTRAL UNMIXING**

Zhang, Shaoquan, Nanchang Institute of Technology, China Zhang, Guorong, Nanchang Institute of Technology, China Deng, Chengzhi, Nanchang Institute of Technology, China Li, Jun, Sun Yat-sen University, China Wang, Shenggian, Nanchang Institute of Technology, China Wang, Jun, Nanchang Institute of Technology, China Plaza, Antonio, University of Extremadura, Spain

TH2.R18.7: A GEOMETRIC VIEW OF FAST GRAM DETERMINANT-BASED ENDMEMBER **EXTRACTION ALGORITHM FOR HYPERSPECTRAL IMAGERY**

Xu, Ning, Institute of Electronics, Chinese Academy of Sciences, China Hu, Yuxin, Institute of Electronics, Chinese Academy of Sciences, China Geng, Xiurui, Institute of Electronics, Chinese Academy of Sciences, China Wang, Yanan, Beijing Institute of Track and Communication Technology, China

TH2.R18.8: MULTI-TEMPORAL HYPERSPECTRAL IMAGES UNMIXING BY MIXED **DISTRIBUTION CONSIDERING SMOOTH VARIATION OF ABUNDANCE**

Lu, Youkang, Nanjing University of Science and Technology, China Liu, Hongyi, Nanjing University of Science and Technology, China Wu, Zebin, Nanjing University of Science and Technology, China Wei, Zhihui, Nanjing University of Science and Technology, China

TH2.R18.9: DEEP LEARNING IN HYPERSPECTRAL UNMIXING: A REVIEW

Bhatt, Jignesh, Indian Institute of Information Technology Vadodara, India Joshi, Manjunath, DA-IICT Gandhinagar, India

TH2.R18.10: HYPERSPECTRAL TARGET DETECTION WITH ROI FEATURE **TRANSFORMATION**

Shi, Yanzi, Xidian University, China Li, Jiaojiao, Xidian University, China Li, Yunsong, Xidian University, China

TH2.R19 - Satellite Remote

Thursday, October 1, 07:30 - 09:30 • Room 19

Sensing of Atmospheric

Composition: Algorithms, Applications, and Process Studies I

TH2.R19.1: GLOBAL LAYERED AEROSOL DISTRIBUTIONS FROM CALIOP AND MODIS **OBSERVATIONS DURING 2006-2016**

Wang, Lingyu, Tsinghua University, China Lyu, Baolei, Huayun Sounding Meteorology Technology Corporation, China Bai, Yuqi, Tsinghua University, China

TH2.R19.2: MODEL SIMULATION OF ANTHROPOGENIC IMPACTS ON THE NEAR **FUTURE CLIMATE**

Nakata, Makiko, Kindai University, Japan

TH2.R19.3: DETECTION OF AEROSOLS ABOVE CLOUDS BASED ON GCOM-C/SGLI **MEASUREMENTS**

Mukai, Sonoyo, Kyoto College of Graduate Studies for Informatics, Japan Fujito, Toshiyuki, Kyoto College of Graduate Studies for Informatics, Japan Nakata, Makiko, Kindai University, Japan <u>Sano, Itaru</u>, Kindai University, Japan

TH2.R19.4: RETRIEVAL OF AEROSOL OPTICAL DEPTH (AOD) FROM THE LANDSAT8 **OLI OBSERVATIONS OVER BEIJING**

Liang, Tianchen, Shandong University of Science and Technology, China Sun, Lin, Shandong University of Science and Technology, China

TH2.R19.5: SMOKE INJECTION HEIGHT OF WILDFIRE EVENT BASED ON MULTI-SOURCE REMOTE SENSING DATA IN YUNNAN PROVINCE, CHINA

Wang, Wenjia, University of Science and Technology of China, China Zhang, Qixing, University of Science and Technology of China, China Luo, Jie, University of Science and Technology of China, China Zhao, Ranran, University of Science and Technology of China, China Zhang, Yongming, University of Science and Technology of China, China

TH2.R19.6: PRELIMINARY EVALUATION OF HIMAWARI-8 HOURLY AEROSOL PRODUCTS OVER CHINA

<u>Li, Xin</u>, Jiangsu Normal University, China <u>Li, Yingjie</u>, Jiangsu Normal University, China <u>Ma, Qingmiao</u>, Jiangsu Normal University, China <u>Chen, Jing</u>, Sun Yat-Sen University, China <u>Chen, Jing</u>, Jiangsu Normal University, China

TH2.R19.7: AEROSOL OPTICAL DEPTH ESTIMATE USING GROUND-MEASURED SPECTRAL SKYLIGHT RATIO METHOD

<u>Nie, Jing</u>, Peking University, China <u>Ren, Huazhong</u>, Peking University, China <u>Zeng, Hui</u>, Peking University, China <u>Dong, Jiaji</u>, Peking University, China <u>Guo, Jinxin</u>, Peking University, China <u>Zheng, Yitong</u>, Peking University, China

TH2.R19.8: OBSERVING URBAN AEROSOLS USING CO-LOCATED NO2 ENHANCEMENT FROM TROPOMI

Jiang, Fang-Qing, Chengdu University of Information Technology, China Zeng, Zhao-Cheng, UCLA/Caltech, United States

TH2.R19.9: IMPACT OF PRECIPITATION ON MILLIMETER-WAVE BACKHAUL LINKS FOR 5G CELLULAR NETWORKS

Han, Congzheng, Institute of Atmospheric Physics, Chinese Academy of Sciences, China Ji, Baofeng, Henan University of Science and Technology, China Zhang, Gaoyuan, Henan University of Science and Technology, China Huo, Juan, Institute of Atmospheric Physics, Chinese Academy of Sciences, China

TH2.R19.10: SOURCE CHARACTERIZATION OF AEROSOLS AND TRENDS DURING 2000-2019 OVER DELHI (INDIA)

Rai, Ajeet, Indian Institute of Technology Mandi, India Singh, Ramesh P., Chapman University, United States Shukla, Dericks Praise, Indian Institute of Technology, Mandi, India

TH2.R19.11: AEROSOL INVERSION FOR LANDSAT 8 OLI DATA USING DEEP LEARNING ALGORITHM

Jia, Chen, Shandong University of Science and Technology, China Sun, Lin, Shandong University of Science and Technology, China Wang, Yongji, Shandong University of Science and Technology, China

TH2.R20 - Detection of Objects in Thursday, October 1, 07:30 - 09:30 • Room 20 Complex Environments

TH2.R20.1: RISK ASSESSMENT OF DRINKING WATER SOURCE BASED ON HIGH SPATIAL RESOLUTION REMOTE SENSING

Zheng, Yalan, Nanjing Normal University, China Shen, Qian, Nanjing Normal University, China Tao, Shikang, Nanjing Normal University, China Cao, Qi, Nanjing Normal University, China Feng, Chenyang, Nanjing Normal University, China Wang, Min, Nanjing Normal University, China China

TH2.R20.2: AIRCRAFT TARGET DETECTION IN POLSAR IMAGE BASED ON REGION SEGMENTATION AND MULTI-FEATURE DECISION

<u>Han, Ping</u>, Civil Aviation University of China, China <u>Lu, Bin</u>, Civil Aviation University of China, China <u>Zhou, Bo</u>, Civil Aviation University of China, China <u>Han, Binbin</u>, Civil Aviation University of China, China

TH2.R20.3: INVESTIGATION ON THE METHOD OF ESTABLISHING CONSTRUCTION WASTE TRAINING SAMPLE DATABASE AND ITS APPLICATIONS

Luo, Ting, Beijing University of Civil Engineering and Architecture, China Zhou, Lei, Beijing University of Civil Engineering and Architecture, China Zhu, Yinuo, Beijing University of Civil Engineering and Architecture, China Du, Mingyi, Beijing University of Civil Engineering and Architecture, China He, Congcong, Beijing University of Civil Engineering and Architecture, China Wang, Yani, Beijing University of Civil Engineering and Architecture, China Wang, Siyu,

Beijing University of Civil Engineering and Architecture, China <u>Gao, Ting</u>, Beijing University of Civil Engineering and Architecture, China

TH2.R20.4: SPECTRAL-SPATIAL STACKED AUTOENCODERS BASED ON THE BILATERAL FILTER FOR HYPERSPECTRAL ANOMALY DETECTION

<u>Zhao, Chunhui</u>, Harbin Engineering University, China <u>Li, Chuang</u>, Harbin Engineering University, China <u>Feng, Shou</u>, Harbin Engineering University, China <u>Su, Nan</u>, Harbin Engineering University, China

TH2.R20.5: AUTOMATIC BENTHIC HABITAT MAPPING USING INEXPENSIVE UNDERWATER DRONES

<u>Gauci, Adam</u>, University of Malta, Malta <u>Deidun, Alan</u>, University of Malta, Malta <u>Abela, John</u>, University of Malta, Malta <u>Cachia, Ernest</u>, University of Malta, Malta <u>Dimech, Sean</u>, University of Malta, Malta

TH2.R20.6: DETECTION OF RAIL FASTENERS FROM AERIAL IMAGES USING DEEP CONVOLUTION NEURAL NETWORKS

Ranyal, Eshta, Indian Institute of Technology, Roorkee, India Jain, Kamal, Indian Institute of Technology, Roorkee, India

TH2.R20.7: SEISMIC FAULT ANALYSIS USING CURVATURE ATTRIBUTE AND VISUAL SALIENCY

<u>Singh, Gagandeep</u>, Indian Institute of Technology Kharagpur, India <u>Mahadik, Rahul</u>, Indian Institute of Technology Kharagpur, India <u>Mohanty, William K.</u>, Indian Institute of Technology Kharagpur, India <u>Routray, Aurobinda</u>, Indian Institute of Technology Kharagpur, India

TH2.R20.8: OIL SPILL DETECTION FROM SAR IMAGES BY DEEP LEARNING

Ronci, Federico, University of Rome Tor Vergata, Italy Avolio, Corrado, e-GEOS - an Italian Space Agency and Telespazio company, Italy Di Donna, Mauro, e-GEOS - an Italian Space Agency and Telespazio company, Italy Zavagli, Massimo, e-GEOS - an Italian Space Agency and Telespazio company, Italy Piccialli, Veronica, University of Rome Tor Vergata, Italy Costantini, Mario, e-GEOS - an Italian Space Agency and Telespazio company, Italy

TH2.R20.9: MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING

Hu, Wei, Duke University, United States Alexander, Ben, Duke University, United States Cathcart, Wendell, Duke University, United States Hu, Atsushi, Duke University, United States Nair, Varun, Duke University, United States Zuo, Lin, Duke University, United States Malof, Jordan, Duke University, United States Collins, Leslie, Duke University, United States Bradbury, Kyle, Duke University, United States

TH2.R20.10: OIL TANK DETECTION IN SATELLITE IMAGES VIA A CONTRARIO CLUSTERING

<u>Tadros, Antoine</u>, Ecole Normale Supérieure Paris-Saclay, France <u>Drouyer, Sébastien</u>, Ecole Normale Supérieure Paris-Saclay, France <u>Grompone von Gioi, Rafael</u>, Ecole Normale Supérieure Paris-Saclay, France <u>Carvalho, Lucas</u>, Kayrros, France

TH2.R20.11: FEATURE-BASED TEMPLATE MATCHING FOR JOGGLED FISHPLATE DETECTION IN RAILROAD TRACK WITH DRONE IMAGES

<u>Saini, Aradhya</u>, Indian Institute of Technology Roorkee, India <u>Agarwal, Ankush</u>, Indian Institute of Technology Roorkee, India <u>Singh, Dharmendra</u>, Indian Institute of Technology Roorkee, India

TH2.R20.12: AN ALGORITHM FOR BURIED PIPELINE DETECTION USING A 3-D BISTATIC IMAGING RADAR

<u>Aljurbua, Abdulrahman</u>, University of Michigan, United States <u>Sarabandi, Kamal</u>, University of <u>Michigan, United States</u>

FR1.R1 - Soils and Hydrology

Friday, October 2, 05:00 - 07:00 • Room 1

FR1.R1.1: IMPROVEMENT OF SOIL TEXTURE CLASSIFICATION WITH LIDAR DATA

Pittman, Rory, York University, Canada Hu, Baoxin, York University, Canada

FR1.R1.2: RESEARCH ON WATER SUITABILITY OF MAIZE PLANTING RANGE IN NORTHEAST CHINA

Li, Lei, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China Li, Xiaofeng, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China Zheng, Xingming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China

FR1.R1.3: USE OF X-RAY FLUORESCENCE TO EXPEDITE SAMPLING TO EVALUATE AND VISUALIZE SOIL LEAD CONCENTRATIONS AT WEST POINT, NY

Wallen, Benjamin, United States Military Academy, United States Kimball, Mindy, United States Military Academy, United States Military Academy, United States Military Academy, United States Sheehan, Nathaniel, United States Military Academy, United States Flagg, Timothy, United States Military Academy, United States

FR1.R1.4: ASSESSMENT OF MODEL-BASED SURFACE SOIL TEMPERATURE PRODUCTS UNSING GLOBAL DENSE IN-SITU OBSERVATIONS

<u>Ma, Hongliang</u>, Wuhan University, China <u>Zeng, Jiangyuan</u>, State Key Laboratory of Remote Sensing Science, Chinese Academy of Sciences, China <u>Zhang, Xiang</u>, Wuhan University, China <u>Chen, Nengcheng</u>, Wuhan University, China

FR1.R1.5: ASSESSMENT OF HEAVY METAL POLLUTION IN AGRICULTURAL SOIL AROUND A GOLD MINE AREA IN YITONG COUNTY

<u>Wu, Fuyu</u>, China University of Mining and Technology, China <u>Wang, Xue</u>, East China Normal University, China <u>Tan, Kun</u>, East China Normal University, China <u>Liu, Zhaoxian</u>, Second Surveying and Mapping Institute of Hebei, China

FR1.R1.6: EVALUATING LAND SURFACE MOISTURE CONDITIONS BEFORE AND AFTER FLASH-FLOOD STORM FROM OPTICAL AND THERMAL DATA: MODELS COMPARISON AND VALIDATION

<u>Bannari, Abderrazak</u>, Arabian Gulf University, Bahrain <u>Bahi, Hicham</u>, Mohammed VI Polytechnic University, Benguerir, Morocco <u>Rhinane, Hassan</u>, Faculty of Sciences Ain Chock, University Hassan II, Morocco

FR1.R1.7: SOILSCAPE WIRELESS IN SITU NETWORKS IN SUPPORT OF CYGNSS LAND APPLICATIONS

Akbar, Ruzbeh, MIT, United States Campbell, James, University of Southern California, United States Silva, Agnelo, METER Group Inc., United States Chen, Richard, University of Southern California, United States Hodges, Erik, University of Southern California, United States Entekhabi, Dara, MIT, United States Ruf, Chris, University of Michigan - Ann Arbor, United States Moghaddam, Mahta, University of Southern California, United States

FR1.R1.8: SOIL MOISTURE ESTIMATION BY USING MULTI-ANGULAR AND MULTI-TEMPORAL OBSERVATIONS FROM SMOS

Bai, Yu, State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Jia, Li, State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhao, Tianjie, State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China Shi, Jiancheng, State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, China

FR1.R1.9: TIME-OF-FLIGHT SOIL MOISTURE ESTIMATION USING RF BACKSCATTER TAGS

<u>Josephson, Colleen</u>, Stanford University, United States <u>Barnhart, Bradley</u>, Stanford University, United States <u>Winstein, Keith</u>, Stanford University, United States <u>Katti, Sachin</u>, Stanford University, United States <u>Chandra, Ranveer</u>, Microsoft, United States

FR1.R1.10: DESIGN AND EXPERIMENT OF MICROWAVE SOIL MOISTURE SENSOR

Gao, Bo, University of Electronic Science and Technology of China, China Chen, Zihan, University of Electronic Science and Technology of China, China Gong, Xun, University of Electronic Science and Technology of China, China Wang, Peicheng, University of Electronic Science and Technology of China, China Tong, Ling, University of Electronic Science and Technology of China, China

FR1.R1.11: EVALUATION OF THE EFFECTS OF HETEROGENEOUS SOIL MOISTURE ON MEASURED BRIGHTNESS TEMPERATURE BY A MICROWAVE RADIOMETER

Zhang, Tao, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Zhao, Shaojie, State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, China Wang, Guanghui, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Dai, Hailun, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China Li, Yunqing, School of Urban Construction, Beijing City University, China Liu, Yu, Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, China

FR1.R1.12: TOWARDS SUSTAINABLE GROUNDWATER MANAGEMENT: PREDICTING DEFORMATION SCENARIOS WITH COUPLED HYDROGEOPHYSICAL MODELS

Smith, Ryan, Missouri University of Science and Technology, United States Knight, Rosemary,

FR1.R2 - Machine Learning for Earth Friday, October 2, 05:00 - 07:00 • Room 2 Observation II

FR1.R2.1: CLASSIFYING GLOBAL LOW CLOUD MORPHOLOGY WITH A DEEP LEARNING MODEL: RESULTS AND POTENTIAL USE

Yuan, Tianle, NASA GFSC / UMBC JCET, United States Song, Hua, NASA GFSC / SSAI, United States Mohrmann, John, Univ. of Washington, United States Wood, Robert, Univ. of Washington, United States Meyer, Kerry, NASA Goddard Space Flight Center, United States Oreopoulos, Lazaros, NASA Goddard Space Flight Center, United States Platnick, Steven, NASA Goddard Space Flight Center, United States

FR1.R2.2: DEEP RECURRENT NEURAL NETWORK FOR CROP CLASSIFICATION TASK BASED ON SENTINEL-1 AND SENTINEL-2 IMAGERY

<u>Kussul, Nataliia</u>, Space Research Institute, Ukraine <u>Lavreniuk, Mykola</u>, Space Research Institute, Ukraine <u>Shumilo, Leonid</u>, Space Research Institute, Ukraine

FR1.R2.3: A FAST SEARCH SYSTEM FOR REMOTE SENSING IMAGERY BASED ON BAG OF VISUAL WORDS AND LATENT DIRICHLET ALLOCATION

<u>Karmakar, Chandrabali</u>, German Aerospace Center (DLR), Germany <u>Datcu, Mihai</u>, German Aerospace Center (DLR), Germany

FR1.R2.4: COMPLEXITY ANALYSIS OF AN EDGE PRESERVING CNN SAR DESPECKLING ALGORITHM

<u>Vitale, Sergio</u>, Università di Napoli Parthenope, Italy <u>Ferraioli, Giampaolo</u>, Università di Napoli Parthenope, Italy <u>Pascazio, Vito</u>, Università di Napoli Parthenope, Italy

FR1.R2.5: A DECEPTIVE JAMMING TEMPLATE SYNTHESIS METHOD FOR SAR USING GENERATIVE ADVERSARIAL NETS

<u>Fan, Weiwei</u>, Xidian University, China <u>Zhou, Feng</u>, Xidian University, China <u>Tian, Tian</u>, Xidian University, China

FR1.R2.6: IDENTIFYING SEA ICE RIDGING IN SAR IMAGERY USING CONVOLUTIONAL NEURAL NETWORKS

<u>Sola, Daniel</u>, University of Waterloo, Canada <u>Nagi, Anmol Sharan</u>, University of Waterloo, Canada <u>Scott, K Andrea</u>, University of Waterloo, Canada

FR1.R2.7: MULTI-SCALE AND TEMPORAL TRANSFER LEARNING FOR AUTOMATIC TRACKING OF INTERNAL ICE LAYERS

<u>Yari, Masoud</u>, University of Maryland, Baltimore County, United States <u>Rahnemoonfar</u>, <u>Maryam</u>, University of Maryland, Baltimore County, United States <u>Paden</u>, <u>John</u>, Kansas University, United States

FR1.R2.8: THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT CONCEPT

Bosch Lluis, Xavier, NASA Jet Propulsion Laboratory, United States Ogut, Mehmet, NASA Jet Propulsion Laboratory, United States Misra, Sidharth, NASA Jet Propulsion Laboratory, United States Kangaslahti, Pekka, NASA Jet Propulsion Laboratory, United States Jiang, Jonathan, NASA Jet Propulsion Laboratory, United States Schlecht, Erich, NASA Jet Propulsion Laboratory, United States Deal, William, Northrop Grumman Corporation, United States

FR1.R2.9: SCHEDULING MISSION RECONFIGURATION FOR AN INTERFEROMETRY SYNTHETIC APERTURE RADAR USING DEEP REINFORCEMENT LEARNING

<u>Viros-i-Martin, Antoni</u>, Texas A&M University, United States <u>Selva, Daniel</u>, Texas A&M University, United States <u>Alimo, Ryan</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

FR1.R2.10: DATA MINING ON THE CANDELA CLOUD PLATFORM

Yao, Wei, German Aerospace Center, Germany <u>Dumitru, Octavian</u>, German Aerospace Center, Germany <u>Lorenzo, Jose</u>, ATOS SPAIN SA, Spain <u>Datcu, Mihai</u>, German Aerospace Center, Germany

FR1.R2.11: THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE STRATEGIES

Ogut, Mehmet, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Bosch-Lluis, Xavier, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Misra, Sidharth, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Kangaslahti, Pekka, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Jiang, Jonathan, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Schlecht, Erich, NASA Jet Propulsion Laboratory, California Institute of Technology, United States Deal, William, Northrop Grumman Corporation, United States Leong, Kevin, Northrop Grumman Corporation, United States Cooke, Caitlyn, Northrop Grumman Corporation, United States Tucek, John, Northrop Grumman Corporation, United States

FR1.R2.12: PENALTY DRIVEN TRAINING SAMPLE REFINEMENT TECHNIQUE FOR HYPERSPECTRAL IMAGES CLASSIFICATION USING ANT COLONY OPTIMIZATION

Sharma, Shakti, Bennett University, India

FR1.R3 - SAR Polarimetry: Theory and Friday, October 2, 05:00 - 07:00 • Room 3 Applications

FR1.R3.1: ASSESSMENT OF POLSAR AND INSAR TIME-SERIES FROM THE 2019 NASA AM-PM CAMPAIGN FOR ABOVE-GROUND BIOMASS ESTIMATION

<u>Lavalle, Marco</u>, NASA Jet Propulsion Laboratory, United States <u>Khati, Unmesh</u>, NASA Jet Propulsion Laboratory, United States <u>Shiroma, Gustavo</u>, NASA Jet Propulsion Laboratory, United States <u>Chapman, Bruce</u>, NASA Jet Propulsion Laboratory, United States

FR1.R3.2: POLSAR ANALYSIS OF COHERENT AND DIFFUSE DOUBLE-BOUNCE SCATTERING OCCURING WITHIN A VEGETATED MEDIUM

Abdo, Ray, IETR, France Ferro-Famil, Laurent, IETR, France

FR1.R3.3: SPACEBORNE TRANSMITTER - STATIONARY RECEIVER BISTATIC SAR POLARIMETRY - EXPERIMENTAL RESULTS

<u>Ciuca, Madalina</u>, Grenoble INP / University POLITEHNICA of Bucharest, France <u>Anghel, Andrei,</u> University Politehnica of Bucharest, Romania <u>Cacoveanu, Remus</u>, University Politehnica of Bucharest, Romania <u>Vasile, Gabriel</u>, CNRS / Grenoble INP, France <u>Gay, Michel</u>, CNRS / Grenoble INP, France <u>Ciochina, Silviu</u>, University Politehnica of Bucharest, Romania

FR1.R3.4: POLARIMETRIC GUIDED NONLOCAL MEANS COVARIANCE MATRIX ESTIMATION FOR DEFOLIATION MAPPING

<u>Agersborg, Jørgen</u>, UiT The Arctic University of Norway, Norway <u>Anfinsen, Stian Normann</u>, UiT The Arctic University of Norway, Norway <u>Jepsen, Jane Uhd</u>, Norwegian Institute for Nature Research (NINA), Norway

FR1.R3.5: ANALYSIS OF SINGLE-POL AND QUAD-POL DAMAGE INDICATORS FOR EXTRACTION OF BUILDING DAMAGES CAUSED BY 2016 KUMAMOTO EARTHQUAKE

<u>Park, Sang-Eun</u>, Sejong University, Korea (South) <u>Lee, Yeji</u>, Sejong University, Korea (South) <u>Kim, Minhwa</u>, Sejong University, Korea (South) <u>Jung, Yoon Taek</u>, Sejong University, Korea (South)

FR1.R3.6: A NEW WAY FOR DETECTING MAN-MADE TARGETS AND STRUCTURES WITHIN FORESTS USING TIME SERIES OF POLARIMETRIC SAR IMAGES.

<u>Taillade, Thibault</u>, CentraleSupélec, France <u>Thirion-Lefevre, Laetitia</u>, CentraleSupélec, France <u>Guinvarc'h</u>, <u>Régis</u>, CentraleSupélec, France

FR1.R3.7: THE EFFECT OF HYBRID POLARIMETRIC DESCRIPTORS ON CLASSIFICATION ACCURACY OF VARIOUS LAND COVER TYPES

<u>Turkar, Varsha</u>, Don Bosco College of Engineering, India <u>De, Shaunak</u>, Orbital Insight, United States <u>Das, Anup</u>, Space Application Center, ISRO, India <u>Shitole, Sanjay</u>, UMIT, S.N.D.T. Women's University, India <u>Deo, Rinki</u>, Havard University, India <u>Patnaik, Kaushik</u>, Orbital Insight, United States

FR1.R3.8: LAND COVER CLASSIFICATION WITH CPOLINSAR IMAGE VIA M-DELTA DECOMPOSITION AND OPTIMAL POLARIMETRIC COHERENCE COEFFICIENT

Xing, Cheng, Tsinghua University, China Xu, Liying, Shanghai Institute of Satellite Engineering, China Yin, Junjun, University of Science and Technology Beijing, China Yang, Lian, Tsinghua University, China

FR1.R4 - Wetlands and Inland Waters IIFriday, October 2, 05:00 - 07:00 Room 4

FR1.R4.1: FIRST ASSESSMENT OF NOVASAR-1 S-BAND SAR BACKSCATTER CHARACTERISTICS OVER TROPICAL WETLANDS

Rosenqvist, Ake, solo Earth Observation, Japan Parker, Amy, Commonwealth Scientific and Industrial Research Organisation, Australia Zhou, Zheng-Shu, Commonwealth Scientific and Industrial Research Organisation, Australia Brindle, Laura, Commonwealth Scientific and Industrial Research Organisation, Australia Held, Alex, Commonwealth Scientific and Industrial Research Organisation, Australia

FR1.R4.2: MINING EXPORTS AND CLIMATE VARIABILITY INFLUENCING GRACE-DERIVED WATER STORAGE TREND ESTIMATES IN AUSTRALIA

<u>Castellazzi, Pascal</u>, CSIRO, Australia <u>Chopping, Richard</u>, Government of Western Australia, Australia <u>Brouard, Charles</u>, (Former) INRS, Canada

FR1.R4.3: TRACKING CHANGES IN INUNDATION EXTENT OF A BOREAL WETLAND IN ALASKA USING L-BAND SAR

<u>Chapman, Bruce</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Kasischke, Eric</u>, University of Maryland, United States <u>French, Nancy</u>, Michigan Tech Research Institute, United States <u>Rupp, Danielle</u>, Michigan Tech, United States <u>Kane, Evan</u>, Michigan Tech, United States

FR1.R4.4: SWOT APPLICATIONS FOR WRF-HYDRO MODELING IN ALASKA

Elmer, Nicholas, NASA Postdoctoral Program, United States Hain, Christopher, NASA Marshall Space Flight Center, United States McCreight, James, National Center for Atmospheric Research, United States Gochis, David, National Center for Atmospheric Research, United States

FR1.R4.5: AN ANALYSIS OF ICESAT-2, PALSAR-2 AND SENTINEL-1 DATA FOR THE ASSESSMENT OF INUNDATION CHARACTERISTICS IN THE AMAZON BASIN

Rosenquist, Jessica, City University of New York, United States Rosenquist, Ake, solo Earth Observation (soloEO), Japan McDonald, Kyle, City University of New York, United States

FR1.R4.6: STUDY FLOOD REGIME USING HIGH TEMPORAL RESOLUTION SENTINEL-1 IMAGES

<u>Ho Tong Minh, Dinh</u>, INRAE, France <u>El Moussawi, Ibrahim</u>, INRAE, France <u>Ngo, Yen-Nhi</u>, INRAE, France <u>Baghdadi, Nicolas</u>, INRAE, France <u>Blatrix, Rumais</u>, University of Montpellier, France <u>McKey, Doyle</u>, University of Montpellier, France

FR1.R4.7: GLOBAL WEEKLY INLAND SURFACE WATER DYNAMICS FROM L-BAND MICROWAVE

Al Bitar, Ahmad, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France Parrens, Marie, Université de Purpan, France Fatras, Christophe, CLS, France Pena Luque, Santiago, CNES, France

FR1.R4.8: CHANGES IN WATER SURFACE AREA DURING THE PAST 30 YEARS IN A RAMSAR WETLAND IN DURANGO, MEXICO USING LANDSAT DATA

<u>Sandoval, Sarahi</u>, CONACYT-IPN, Mexico <u>Escobar, Jonathan G</u>, Institulo Politecnico Nacional, Mexico

FR1.R4.9: COMPREHENSIVE ANALYSIS OF CO2 FLUXES AND REFLECTANCE

CORRELATIONS IN THE WETLAND ECOSYSTEM

<u>Ciężkowski, Wojciech</u>, Warsaw University of Life Sciences, Poland <u>Kleniewska, Małgorzata</u>, Warsaw University of Life Sciences, Poland <u>Chormański, Jarosław</u>, Warsaw University of Life Sciences, Poland

FR1.R4.10: POYANG LAKE VEGETATION BIOMASS INVERSION USING RADARSAT-2 POLSAR DATA AND SIMPLIFIED WATER-CLOUD MODEL

Shen, Guozhuang, RADI, CAS, China Li, Chunjiang, RADI, CAS, China

FR1.R4.11: CONVOLUTIONAL NEURAL NETWORK FOR COASTAL WETLAND CLASSIFICATION IN HYPERSPECTRAL IMAGE

<u>Liu, Chang</u>, Beijing Institute of Technology, China <u>Zhang, Mengmeng</u>, Beijing Institute of Technology, China <u>Li, Wei</u>, Beijing Institute of Technology, China <u>Sun, Weiwei</u>, Ningbo University, China <u>Tao, Ran</u>, Beijing Institute of Technology, China

FR1.R4.12: INVESTIGATION OF THE ABILITY OF A PASSIVE MICROWAVE SENSOR TO MONITOR SURFACE WATER OVER COMPLEX LANDSCAPE IN EASTERN SIBERIA

<u>Mizuochi, Hiroki</u>, National Institute of Advanced Industrial Science and Technology, Japan <u>Hiyama, Tetsuya</u>, Nagoya University, Japan

FR1.R5 - Networks and Time Series Methods for Remote Sensing

Friday, October 2, 05:00 - 07:00 • Room 5

FR1.R5.1: UNSUPERVISED SEQUENTIAL CLASSIFICATION OF MODIS TIME-SERIES

<u>Grobler, Trienko</u>, Stellenbosch University, South Africa <u>Kleynhans, Waldo</u>, University of Pretoria, South Africa <u>Salmon, Brian</u>, University of Tasmania, Australia <u>Burger, Christiaan</u>, Stellenbosch University, South Africa

FR1.R5.2: EMPLOYING DEEP LEARNING TO ENABLE VISUAL EXPLORATION OF EARTH SCIENCE EVENTS

Maskey, Manil, NASA Marshall Space Flight Center, United States Ramachandran, Rahul, NASA Marshall Space Flight Center, United States Gurung, Iksha, University of Alabama in Huntsville, United States Ramasubramanian, Muthukumaran, University of Alabama in Huntsville, United States Freitag, Brian, University of Alabama in Huntsville, United States Kaulfus, Aaron, University of Alabama in Huntsville, United States Priftis, Georgios, University of Alabama in Huntsville, United States Bollinger, Drew, Development Seed, United States Mestre, Ricardo, Development Seed, United States da Silva, Daniel, Development Seed, United States

FR1.R5.3: A QUANTITATIVE ANALYSIS ON THE USE OF SUPERVISED MACHINE LEARNING IN EARTH SCIENCE

<u>Virts, Katrina</u>, University of Alabama in Huntsville, United States <u>Shirey</u>, <u>Ashlyn</u>, University of Alabama in Huntsville, United States <u>Priftis</u>, <u>George</u>, University of Alabama in Huntsville, United States <u>Ankur</u>, <u>Kumar</u>, University of Alabama in Huntsville, United States <u>Ramasubramanian</u>, <u>Muthukumaran</u>, University of Alabama in Huntsville, United States <u>Muhammad</u>, <u>Hassan</u>, University of Alabama in Huntsville, United States <u>Acharya</u>, <u>Ashish</u>, University of Alabama in Huntsville, United States <u>Ramachandran</u>, <u>Rahul</u>, National Aeronautics and Space Administration, United States

FR1.R5.4: CLOUD DETECTION USING GABOR FILTERS AND ATTENTION-BASED CONVOLUTIONAL NEURAL NETWORK FOR REMOTE SENSING IMAGES

Zhang, Jing, State Key Laboratory of Integrated Service Networks, Xidian University, China Zhou, Qin, State Key Laboratory of Integrated Service Networks, Xidian University, China Wang, Hui, State Key Laboratory of Integrated Service Networks, Xidian University, China Wang, Yuchen, State Key Laboratory of Integrated Service Networks, Xidian University, China Li, Yunsong, State Key Laboratory of Integrated Service Networks, Xidian University, China

FR1.R5.5: IMPROVED CLOUD DETECTION MODEL USING S-NPP CRIS FSR DATA VIA MACHINE LEARNING

Zhang, Mengfan, University of Electronic Science and Technology of China, China Chen, Hao, University of Electronic Science and Technology of China, China Liu, Guanghui, University of Electronic Science and Technology of China, China Tian, Miao, University of Electronic Science and Technology of China, China

FR1.R5.6: LABEL SMOOTHING TECHNIQUE FOR ORDINAL CLASSIFICATION IN CLOUD ASSESSMENT

Wei, Yuxuan, East China Normal University, China Liu, Qixuan, East China Normal University, China Zhang, Guixu, East China Normal University, China Peng, Yaxin, Shanghai University, China Shen, Chaomin, East China Normal University, China

FR1.R5.7: NEW NETWORK BASED ON UNET++ AND DENSENET FOR BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGERY

Tong, Zhonggui, University of Electronic Science and Technology of China, China Li, Yuxia, University of Electronic Science and Technology of China, China Li, Yuzhen, ChengDu Software Industry Development Center, China Fan, Kunlong, University of Electronic Science and Technology of China, China Si, Yu, University of Electronic Science and Technology of China, China He, Lei, Chengdu University of Information Technology, China

FR1.R5.8: DETECTION OF SOLAR CORONAL MASS EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS

<u>Valsesia, Diego</u>, Politecnico di Torino, Italy <u>Grippi, Andrea</u>, Politecnico di Torino, Italy <u>Magli, Enrico</u>, Politecnico di Torino, Italy <u>Susino, Roberto</u>, National Institute for Astrophysics - Astrophysical Observatory of Torino, Italy <u>Telloni, Daniele</u>, National Institute for Astrophysics - Astrophysical Observatory of Torino, Italy <u>Nicolini, Gianalfredo</u>, National Institute for Astrophysics - Astrophysical Observatory of Torino, Italy <u>Casti, Marta</u>, ALTEC SpA, Italy <u>Mulone, Angelo Fabio</u>, ALTEC SpA, Italy <u>Messineo, Rosario</u>, ALTEC SpA, Italy

FR1.R5.9: VESSEL DETECTION USING IMAGE PROCESSING AND NEURAL NETWORKS

<u>Bereta, Konstantina</u>, MarineTraffic, Greece <u>Grasso, Raffaele</u>, NATO-STO-CMRE, Italy <u>Zissis</u>, <u>Dimitris</u>, University of the Aegean, Greece

FR1.R5.10: SATELLITE-DERIVED BATHYMETRY USING DEEP CONVOLUTIONAL NEURAL NETWORK

<u>Wilson, Bibin</u>, Indian Institute of Technology Bombay, India <u>Kurian, Nikhil Cherian</u>, Indian Institute of Technology Bombay, India <u>Singh, Anand</u>, Indian Institute of Technology Bombay, India <u>Sethi, Amit</u>, Indian Institute of Technology Bombay, India

FR1.R5.11: HUMAN IDENTIFICATION USING MICRO-MOTION AND LIGHTWEIGHT NEURAL NETWORKS

Sun, Li, Xi'an Jiaotong University, China Xu, Hua, Airforce Engineering University, China Zhang, Guohe, Xi'an Jiaotong University, China Liang, Feng, Xi'an Jiaotong University, China Tian, Zhichao, Xi'an Jiaotong University, China Yuan, Yanxin, Airforce Engineering University, China

FR1.R5.12: LARGE-SCALE PRECISE MAPPING OF AGRICULTURAL FIELDS IN SENTINEL-2 SATELLITE IMAGE TIME SERIES

<u>Solano-Correa, Yady Tatiana</u>, Fondazione Bruno Kessler, Italy <u>Carcereri, Daniel</u>, University of Trento, Italy <u>Bovolo, Francesca</u>, Fondazione Bruno Kessler, Italy <u>Bruzzone, Lorenzo</u>, University of Trento, Italy

FR1.R6 - Image and Data Fusion II

Friday, October 2, 05:00 - 07:00 • Room 6

FR1.R6.1: A ROBUST MATCHING METHOD FOR OPTICAL AND SAR IMAGES BASED ON COARSE-TO-FINE MECHANISM

<u>Li, Cong</u>, Xidian University, China <u>Chen, Shuxuan</u>, Beijing Aerospace Automatic Control Institute, China <u>Sun, Kun</u>, Xidian University, China <u>Liang, Yi</u>, Xidian University, China

FR1.R6.2: MULTIMODAL DATA FUSION VIA ENTROPY MINIMIZATION

<u>Michalenko, Joshua</u>, Sandia National Laboratories, United States <u>Linville, Lisa</u>, Sandia National Laboratories, United States <u>Anderson, Dylan</u>, Sandia National Laboratories, United States

FR1.R6.3: A GLOBAL ANALYSIS OF PASSIVE MICROWAVE BRIGHTNESS TEMPERATURE DIURNAL CYCLE

<u>Sharifnezhad, Zahra</u>, CUNY - CCNY, United States <u>Norouzi, Hamid</u>, CUNY - citytech, United States <u>Blake, Reginald</u>, CUNY - citytech, United States <u>Gil, Emmanuel</u>, CUNY - citytech, United States

FR1.R6.4: DEVELOPMENT OF STATISTICAL BASED DECISION TREE ALGORITHM FOR MIXED CLASS CLASSIFICATION WITH SENTINEL-2 DATA

Singh, Vatsala, Mody University of Science and Technology, Rajasthan, India, India Singh, Keshava P, IIT (BHU) Varanasi, India

FR1.R6.5: SUPERPIXEL BASED SPATIAL AND TEMPORAL ADAPTIVE REFLECTANCE FUSION MODEL

<u>Wang, Wei</u>, China University of Petroleum (East China), China <u>Sun, Genyun</u>, China University of Petroleum (East China), China <u>Yao, Yanjuan</u>, Ministry of Environmental protection of China, China <u>Zhang, Aizhu</u>, China University of Petroleum (East China), China

FR1.R6.6: HYPERSPECTRAL IMAGE RESTORATION VIA GLOBAL TOTAL VARIATION REGULARIZED LOCAL NONCONVEX LOW-RANK MATRIX APPROXIMATION

Zeng, Haijin, Northwest A&F University, China Xie, Xiaozhen, Northwest A&F University, China Ning, Jifeng, Northwest A&F University, China

FR1.R6.7: EFFECTS OF UNBALANCED DATA ON RADIOMETRIC TRANSFORMING MODEL FITTING FOR RELATIVE RADIOMETRIC NORMALIZATION

<u>Gan, Wenxia</u>, Wuhan Institute of Technology, China <u>Geng, Jing</u>, Beijing Institute of Technology, China <u>Yu, Weihang</u>, Beijing Institute of Technology, China <u>Yu, Weihang</u>, Beijing Institute of Technology, China <u>Yuan</u>, <u>Hanning</u>, Beijing Institute of Technology, China <u>Qin, Rongjun</u>, The Ohio State University, China

FR1.R6.9: DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE

Moreno-Martinez, Alvaro, Universitat de València, Spain Izquierdo-Verdiguier, Emma, University of Natural Resources and Life Sciences (BOKU), Austria Camps-Valls, Gustau, Universitat de València, Spain Maneta, Marco, University of Montana, United States Muñoz-Marí, Jordi, Universitat de València, Spain Robinson, Nathaniel, University of Montana, United States Adsuara, Jose E., Universitat de València, Spain Campos, Manuel, Universitat de València, Spain García-Haro, Javier, Universitat de València, Spain Perez, Adrian, Universitat de València, Spain Clinton, Nicholas, Google, United States Kimball, John, University of Montana, United States Running, Steven W., University of Montana, United States

FR1.R6.10: HYPERSPECTRAL ANOMALY DETECTION VIA BAND FUSION

<u>Li, Fang</u>, Dalian Maritime University, China <u>Song, Meiping</u>, Dalian Maritime University, China <u>Chang, Chein-I</u>, Dalian Maritime University / University of Maryland, China

FR1.R6.11: FUSION OF SAR AND OPTICAL REMOTE SENSING IMAGES BASED ON DEEP CONVOLUTION GENERATIVE ADVERSARIAL NETWORKS

Ning, Yuanyong, Beijing University of Posts and Telecommunications, China You, Yanan, Beijing University of Posts and Telecommunications, China Cao, Jingyi, Beijing University of Posts and Telecommunications, China Liu, Fang, Beijing University of Posts and Telecommunications, China

FR1.R6.12: A FUSION METHOD OF SAR IMAGE AND OPTICAL IMAGE BASED ON NSCT AND GRAM-SCHMIDT TRANSFORM

Yan, Biyuan, Nanjing University of Aeronautics and Astronautics, China Kong, Yingying,
Nanjing University of Aeronautics and Astronautics, China

FR1.R7 - Data Fusion: The Al Era Friday, October 2, 05:00 - 07:00 • Room 7

FR1.R7.1: CHANGE DETECTION WITH HETEROGENEOUS REMOTE SENSING DATA: FROM SEMI-PARAMETRIC REGRESSION TO DEEP LEARNING

Moser, Gabriele, University of Genoa, Italy Anfinsen, Stian, UiT The Arctic University of Norway, Norway Luppino, Luigi, UiT The Arctic University of Norway, Norway Serpico, Sebastiano, University of Genoa, Italy

FR1.R7.2: ADDRESSING RELIABILITY OF MULTIMODAL REMOTE SENSING TO ENHANCE MULTISENSOR DATA FUSION AND TRANSFER LEARNING

<u>Marinoni, Andrea</u>, UiT The Arctic University of Norway, Norway <u>Chlaily, Saloua</u>, UiT The Arctic University of Norway, Norway <u>Jutten, Christian</u>, University of Grenoble Alpes, France

FR1.R7.3: POWER SERIES MODULE FOR SEMANTIC SEGMENTATION IN REMOTE SENSING IMAGE

Yang, Kunping, State Key Laboratory of LIESMARS, Wuhan University, China Liu, Zicheng, State Key Laboratory of LIESMARS, Wuhan University, China Xia, Gui-Song, State Key Laboratory of LIESMARS, Wuhan University, China Zhang, Liangpei, State Key Laboratory of LIESMARS, Wuhan University, China

FR1.R7.4: FILTERING INTERNAL TIDES FROM WIDE-SWATH ALTIMETER DATA USING CONVOLUTIONAL NEURAL NETWORKS

Lguensat, Redouane, Université Grenoble Alpes, France Fablet, Ronan, IMT Atlantique, France Le Sommer, Julien, Université Grenoble Alpes, France Metref, Sammy, Université Grenoble Alpes, France Cosme, Emmanuel, Université Grenoble Alpes, France Ouenniche, Kaouther, IMT Atlantique, France Drumetz, Lucas, IMT Atlantique, France Gula, Jonathan, Ifremer, France

FR1.R7.5: REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK

<u>Davis, Timothy</u>, Technische Universität Berlin, Germany <u>Jain, Vinit</u>, Technische Universität Berlin, Germany <u>Ley, Andreas</u>, Technische Universität Berlin, Germany <u>D'Hondt, Olivier</u>, Technische Universität Berlin, Germany <u>Valade, Sébastien</u>, German Research Centre for Geosciences (GFZ), Germany <u>Hellwich, Olaf</u>, Technische Universität Berlin, Germany

FR1.R7.6: PREDICTION OF SORGHUM BIOMASS USING TIME SERIES UAV-BASED HYPERSPECTRAL AND LIDAR DATA

<u>Masjedi, Ali</u>, Purdue University, United States <u>Crawford, Melba</u>, Purdue University, United States

FR1.R7.7: BUILDING INSTANCE SEGMENTATION AND BOUNDARY REGULARIZATION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES

<u>Zhao, Wufan</u>, University of Twente, Netherlands <u>Persello, Claudio</u>, University of Twente, Netherlands <u>Stein, Alfred</u>, University of Twente, Netherlands

FR1.R7.8: ROAD NETWORK AND TRAVEL TIME EXTRACTION FROM MULTIPLE LOOK ANGLES WITH SPACENET DATA

<u>Van Etten, Adam</u>, In-Q-Tel CosmiQ Works, United States <u>Shermeyer, Jacob</u>, In-Q-Tel CosmiQ Works, United States <u>Hogan, Daniel</u>, In-Q-Tel CosmiQ Works, United States <u>Weir, Nicholas</u>, In-Q-Tel CosmiO Works, United States <u>Lewis, Rvan, In-O-Tel CosmiO Works</u>, United States

FR1.R8 - Ocean Biology, Temperature Friday, October 2, 05:00 - 07:00

Room 8 and Salinity, Altimetry and Coastal Zone

FR1.R8.1: EVALUATION OF HY-2B ALTIMETER PRODUCTS OVER OCEAN

Jiang, Maofei, National Space Science Center, Chinese Academy of Sciences, China Xu, Ke, National Space Science Center, Chinese Academy of Sciences, China Jia, Yongjun, National Satellite Ocean Application Service, China Fan, Chenqing, First Institute of Oceanography, Ministry of Natural Resources, China Xu, Xiyu, National Space Science Center, Chinese Academy of Sciences, China

FR1.R8.2: DEVELOPMENT AND INTEGRATION TEST OF AN IMPROVED TRANSPONDER FOR HY-2B ALTIMETER

<u>Wang, Caiyun</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Guo</u>, <u>Wei</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Liu</u>, <u>Peng</u>, National Space Science Center, Chinese Academy of Sciences, China <u>Wang</u>, <u>Te</u>, National Space Science Center, Chinese Academy of Sciences, China

FR1.R8.3: GRAVITY ANOMALY AND ITS ACCURACY ASSESSMENT FROM HY-2A/GM ALTIMETRY DATA IN THE SOUTH CHINA SEA

Liu, Qiankun, University of Chinese Academy of Sciences; National Space Science Center, Chinese Academy of Sciences, China Xu, Ke, National Space Science Center, Chinese Academy of Sciences, China Jiang, Maofei, National Space Science Center, Chinese Academy of Sciences, China Wang, Jiaming, University of Chinese Academy of Sciences; National Space Science Center, Chinese Academy of Sciences, China

FR1.R8.4: MOBILE AND AIRBORNE LIDAR SCANNING OF BEACH ELEVATION CHANGE DUE TO HURRICANE HARVEY

<u>Garcia, Isabel</u>, Texas A&M University-Corpus Christi, United States <u>Starek, Michael J.</u>, Texas A&M University-Corpus Christi, United States <u>Chu, Tianxing</u>, Texas A&M University-Corpus Christi, United States

FR1.R8.5: FEASIBILITY ANALYSIS AND SUITABLE ANTENNA DIRECTIONS OF IGNSS-R ALTIMETRY MEASUREMENT FOR AVOIDING THE INTERSATELLITE INTERFERENCE

Sun, Yixuan, Beihang University, China Yang, Dongkai, Beihang University, China Xia, Junming, Chinese Academy of Center, China Du, Yi, Beihang University, China Yin, Cong, Chinese Academy of Center, China

FR1.R8.6: COMPARISON OF QUASI-ANALYTICAL ALGORITHMS BASED ON IOCCG DATA

Zhan, Jie, School of Marine Science and Technology, Tianjin University, China Zhang, Dianjun, School of Marine Science and Technology, Tianjin University, China Zhang, Guangyun, School of Geomatics Science and Technology, Nanjing Tech University, China Wang, Chenxu, School of Geomatics Science and Technology, Nanjing Tech University, China

FR1.R8.7: OCEAN COLOR NET (OCN) FOR THE BARENTS SEA

Asim, Muhammad, UiT The Arctic University of Norway, Norway Brekke, Camilla, UiT The Arctic University of Norway, Norway Mahmood, Arif, Information Technology University, Lahore, Pakistan Eltoft, Torbjørn, UiT The Arctic University of Norway, Norway Reigstad, Marit, UiT The Arctic University of Norway, Norway

FR1.R8.8: VALIDATION OF SEA SURFACE TEMPERATURE FROM FY-3C VIRR

<u>Li, Ninghui</u>, Ocean University of China, China <u>Guan, Lei</u>, Ocean University of China, China <u>Qu, Liqin</u>, Ocean University of China, China

FR1.R8.9: NUMERICAL SIMULATION OF PLANKTON DYNAMICS AND ITS SENSITIVITY TO SEASONAL VARIATIONS IN FRESHWATER FORCING

<u>Deb, Saswati</u>, Fisheries and Oceans Canada, Gulf Fisheries Centre, Canada <u>Das, Bhaskar</u>, Université de Moncton, Canada

FR1.R8.10: LAND AND SEA ICE MASK OPTIMIZATION FOR SCANNING MICROWAVE RADIOMETER OF HY-2B SATELLITE

Wang, Shishuai, Piesat Information Technology Co., Ltd., China Li, Yan, Piesat Information Technology Co., Ltd., China Yin, Xiaobin, Piesat Information Technology Co., Ltd., China Zhou, Wu, National Satellite Ocean Application Service, China Jin, Xu, China Academy of Space Technology, China Lv, Xiaofeng, Beijing Piesat Information Technology Co. Ltd, China

FR1.R8.11: EVALUATION OF SEA SURFACE TEMPERATURE FROM HY-1C DATA

<u>Wang, Hongyan</u>, National Satellite Ocean Application Service, China <u>Lin, Mingsen</u>, National Satellite Ocean Application Service, China <u>Ma, Chaofei</u>, National Satellite Ocean Application Service, China <u>Yin, Xiaobin</u>, Beijing Piesat Information Technology Co. Ltd, China <u>Guan, Lei</u>, Ocean University of China, China

FR1.R8.12: ESTIMATION OF COLORED DISSOLVED ORGANIC MATTER FROM SATELLITE DATA

<u>Liew, Soo Chin</u>, National University of Singapore, Singapore <u>Wong, Joel</u>, National University of Singapore, Singapore <u>Wong, Flizabeth</u>, National University of Singapore, Singapore

FR1.R9 - Processing and Imaging Techniques IV

Friday, October 2, 05:00 - 07:00 • Room 9

FR1.R9.1: BI-DIRECTIONAL PROCESSING ALGORITHM WITH RPM AND WKD BASED DOPPLER VELOCITY ESTIMATOR FOR 3-D DOPPLER-RADAR IMAGING

<u>Hayashi, Takumi</u>, University of Electro-Communications, Japan <u>Kidera, Shouhei</u>, University of Electro-Communications, Japan

FR1.R9.2: SHIP POSITIONING AND RADIAL VELOCITY ESTIMATION FOR SPACEBORNE SAR BASED ON ENERGY CENTER EXTRACTION

<u>You, Dong</u>, Xidian University, China <u>Sun, Guang-Cai</u>, Xidian University, China <u>Xing, Mengdao</u>, Xidian University, China <u>Li, Yachao</u>, Xidian University, China

FR1.R9.3: SHIP CLASSIFICATION IN SAR IMAGES VIA SUPER-RESOLUTION GENERATIVE ADVERSARIAL NETWORK WITH SMALL TRAINING DATASET

<u>ChangChong, Lu</u>, University of Science and Technology of China, China <u>Weihai, Li</u>, University of Science and Technology of China, China

FR1.R9.4: AN OPTIMIZATION ALGORITHM OF MOVING TARGETS REFOCUSING VIA PARAMETER ESTIMATION DEPENDENCE OF MAXIMUM SHARPNESS PRINCIPLE AFTER BP INTEGRAL

<u>Tong, Xuyao</u>, Xidian University, China <u>Xing, Mengdao</u>, Xidian University, China <u>Sun, Guang-Cai</u>, Xidian University, China

<u>Chen, Zhanye</u>, Chongqing University, China <u>Huang, Yan</u>, Southeast University, China <u>Wan</u>, <u>Jun</u>, Chongqing University, China <u>Li, Li</u>, Chongqing University, China <u>Zeng, Zhiqiang</u>, Chongqing University, China <u>Zhou</u>, <u>Shuwei</u>, Chongqing University, China

FR1.R9.6: CLUTTER SUPPRESSION AND MOVING TARGET RADIAL VELOCITY ESTIMATION METHOD FOR HRWS MULTICHANNEL SYSTEM BASED ON SUBSPACE PROJECTION

<u>Li, Boyu, Xidian University, China Sun, Guang-Cai, Xidian University, China Xing, Mengdao, Xidian University, China</u>

FR1.R9.7: A SIDELOBE REDUCTION ALGORITHM FOR SAR IMAGERY FORMED BY FAST BACK PROJECTION ALGORITHM BASED ON SPECTRUM COMPRESSION

<u>Chen, Xiaoxiang</u>, Xidian University, China <u>Xing, Mengdao</u>, Xidian University, China <u>Wan, Minghui</u>, Xidian University, China <u>Sun, Guangcai</u>, Xidian University, China

FR1.R9.8: METHOD FOR ELIMINATING SPURIOUS SIGNAL FROM DERAMPED SAR RAW DATA

Lim, Byoung-Gyun, Korea Aerospace Research Institute, Korea (South)

FR1.R9.9: A FAST 3-D IMAGING METHOD FOR CIRCULAR SAR BASED ON 3-D BACK-PROJECTION ALGORITHM

Han, Dong, Aerospace Information Research Institute, Chinese Academy of Sciences, China Zhou, Liangjiang, Aerospace Information Research Institute, Chinese Academy of Sciences, China Jiao, Zekun, Aerospace Information Research Institute, Chinese Academy of Sciences, China Song, Chen, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wu, Yirong, Aerospace Information Research Institute, Chinese Academy of Sciences, China

FR1.R9.10: LINEAR ARRAY 3-D SAR SPARSE IMAGING VIA CONVOLUTIONAL NEURAL NETWORK

Wang, Mou, University of Electronic Science and Technology of China, China Wei, Shunjun, University of Electronic Science and Technology of China, China Shi, Jun, University of Electronic Science and Technology of China, China Wu, Yue, University of Electronic Science and Technology of China, China Liang, Jiadian, University of Electronic Science and Technology of China, China Qu, Qizhe, University of Electronic Science and Technology of China, China China China

FR1.R9.11: SYNTHETIC APERTURE RADAR FOCUSING BASED ON BACK-PROJECTION AND COMPRESSIVE SENSING

Focsa, Adrian, Military Technical Academy "Ferdinand I", Bucharest, Romania, Romania Anghel, Andrei, Research Center for Spatial Information- CEOSpaceTech – University Politehnica of Bucharest, Romania Toma, Ştefan-Adrian, Military Technical Academy "Ferdinand I", Bucharest, Romania, Romania Datcu, Mihai, German Aerospace Center (DLR), Romania

FR1.R9.12: TWO-STEP BISTATIC SPACEBORNE SLIDING-SPOTLIGHT SAR IMAGING AGORITHM BASED ON ACCURATE RANGE MODEL

Xiang, Jianbing, Aerospace Information Research Institute, Chinese Academy of Sciences, China Lv, Xiaolei, Aerospace Information Research Institute, Chinese Academy of Sciences, China Fu, Xikai, Aerospace Information Research Institute, Chinese Academy of Sciences,

China Yun, Ye, Aerospace Information Research Institute, Chinese Academy of Sciences,

FR1.R10 - Topography, Geology and Friday, October 2, 05:00 - 07:00 • Room 10 Geomorphology I

FR1.R10.1: DEVELOPMENT OF LOW-COST GROUND CONTROL SYSTEM FOR UAV-BASED MAPPING

Rodriguez, Jorge, Universidad Nacional de Colombia, Colombia Angulo, Victor, Universidad Distrital Francisco Jose de Caldas, Colombia Gaona, Elvis, Universidad Distrital Francisco Jose de Caldas, Colombia Lizarazo, Ivan, Universidad Nacional de Colombia, Colombia

FR1.R10.2: USING UNSUPERVISED CLUSTERING FOR ANALYZING AIRBORNE GAMMA-RAY SPECTROMETRY DATA

<u>Derkacz Weihermann, Jessica</u>, Federal University of Paraná, Brazil <u>Pinheiro Ferreira, Matheus</u>, Military Institute of Engineering, Brazil <u>Fonseca Ferreira, Francisco José</u>, Federal University of Paraná, Brazil <u>Moreira Silva, Adalene</u>, University of Brasília, Brazil

FR1.R10.3: BIOGEOCHEMICAL EXPLORATION OF GOLD MINERALIZATION AND ITS PATHFINDER ELEMENTS USING HYPERSPECTRAL REMOTE SENSING

<u>Chakraborty, Rupsa</u>, Massey University, New Zealand <u>Kereszturi, Gabor</u>, Massey University, New Zealand <u>Durance, Patricia</u>, BHP Billiton, Australia <u>Pullanagari, Reddy</u>, Massey University, New Zealand <u>Ashraf, Salman</u>, GNS Science, New Zealand <u>Anderson, Chris</u>, Massey University, New Zealand

FR1.R10.4: AN IMPROVED PROGRESSIVE TIN DENSIFICATION ALGORITHM FOR LIDAR DATA FILTERING BASED ON SEGMENTATION AND TERRAIN-ADAPTIVE PARAMETERS

Yang, Kai, University of Electronic Science and Technology of China, China Wang, Yong, East Carolina University, United States

FR1.R10.5: FAULT DISPLACEMENT DETECTION CAUSED BY LARGE EARTHQUAKE USING EXTENDED DEEPMATCHING

Kumon, Yuki, University of Tokyo, Japan Iwasaki, Akira, University of Tokyo, Japan

FR1.R10.6: RE-EVALUATING BASALTIC DEPOSITS IN MARE NUBIUM WITH CE-2. CELMS DATA

Meng, Zhiguo, Jilin University, China Dong, Mengna, Jilin University, China Yang, Changbao, Jilin University, China Cai, Zhanchuan, Macau University of Science and Technology, China Wang, Yongzhi, Jilin University, China Shi, Yanxiang, Jilin University, China Hu, Shuo, Jilin University, China

FR1.R10.7: LWIR HYPERSPECTRAL MAPPING OF THE GAMSBERG DEPOSIT, AGGENEYS, SOUTH AFRICA

Schodlok, Martin C., Federal Institute for Geosciences and Natural Resources (BGR), Germany Frei, Michaela, Federal Institute for Geosciences and Natural Resources (BGR), Germany

FR1.R10.8: DETECTION OF PRE-FAILURE DEFORMATION OF THE 2017 MAOXIAN LANDSLIDE WITH TIME-SERIES INSAR AND MULTI-TEMPORAL OPTICAL DATASETS

<u>Kuang, Jianming</u>, University of New South Wales, Australia <u>Ge, Linlin</u>, University of New South Wales, Australia <u>Ng, Alex Hay-Man</u>, Guangdong University of Technology, China <u>Du, Zheyuan</u>, University of New South Wales, Australia <u>Zhang, Qi</u>, University of New South Wales, Australia

FR1.R10.9: RESOLVING GROUNDWATER CONDUITS IN HYPER-ARID ERODED KARSTS USING HIGH-RESOLUTION L-BAND SAR AND OPTICAL IMAGES

Normand, Jonathan C.L, University of Southern California, United States <u>Heggy, Essam</u>, University of Southern California, United States

FR1.R10.10: IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS

<u>Bishop, Janice</u>, SETI Institute, United States <u>Parente, Mario</u>, University of Massachusetts at Amherst, United States <u>Saranathan, Arun</u>, University of Massachusetts at Amherst, United States <u>Itoh, Yuki</u>, University of Massachusetts at Amherst, United States <u>Weitz, Catherine</u>, Planetary Science Institute, United States <u>Flahaut, Jessica</u>, CRPG CNRS Nancy, France <u>Gross</u>,

<u>Christoph</u>, Freie Universität Berlin, Germany <u>Danielsen</u>, <u>Jacob</u>, SETI Institute, United States <u>Usabal</u>, <u>Gabriela</u>, Brown University, United States <u>Miura</u>, <u>Jasper</u>, Brown University, United States

FR1.R10.11: DETECTING RECENT LANDSLIDE ACTIVITIES IN YIGONG AND SURROUNDING AREAS IN EASTERN TIBET OF CHINA BASED ON GF-3 SAR AMPLITUDE IMAGERY

<u>Jia, Weijie</u>, China Academy of Sciences, China <u>Wang, Mengfei</u>, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China <u>Jiang, Decai</u>, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China

FR1.R10.12: QUALITY ASSESSMENT OF THREE DIGITAL ELEVATION MODELS WITH 30 M RESOLUTION BY TAKING 12 M TANDEM-X DEM AS REFERENCE

<u>Han, Haijiao</u>, Peking University, China <u>Zeng, Qiming</u>, Peking University, China <u>Jiao, Jian</u>, Peking University, China

FR1.R11 - Remote Sensing for Crop Friday, October 2, 05:00 - 07:00 • Room 11 Parameters II

FR1.R11.1: ASSESSING CROP PRODUCTIVITY IN DECONTAMINATED FARMLAND IN FUKUSHIMA USING MICRO-SATELLITE VENMS AND HYPERSPECTRAL SENSING

<u>Inoue, Yoshio</u>, University of Tokyo, Japan <u>Dedieu, Gerard</u>, Centre d'Etudes Spatiales de la Biosphère, CESBIO, France <u>Yoshida, Naofumi</u>, Fukushima Agricultural Technology Center, Japan <u>Saito, Takashi</u>, Fukushima Agricultural Technology Center, Japan <u>Iwasaki, Akira</u>, University of Tokyo, Japan <u>Sakaiya, Eiji</u>, Aomori Prefectural Industrial Technology Center, Japan

FR1.R11.2: CROP YIELD ESTIMATION USING MULTI-SOURCE SATELLITE IMAGE SERIES AND DEEP LEARNING

<u>Ghazaryan, Gohar</u>, University of Bonn, Germany <u>Skakun, Sergii</u>, University of Maryland, United States <u>König, Simon</u>, University of Bonn, Germany <u>Eyshi Rezaei, Ehsan</u>, University of Göttingen, Germany <u>Siebert, Stefan</u>, University of Göttingen, Germany <u>Dubovyk, Olena</u>, University of Bonn, Germany

FR1.R11.3: A SATELLITE-BASED METHODOLOGY FOR HARVEST DATE DETECTION AND YIELD PREDICTION IN SUGARCANE

<u>Shendryk, Yuri</u>, CSIRO, Australia <u>Pan, Lecheng</u>, CSIRO, Australia <u>Craigie, Matthew</u>, CSIRO, Australia <u>Stasolla, Mattia</u>, Royal Military Academy, Belgium <u>Ticehurst, Catherine</u>, CSIRO, Australia <u>Thorburn, Peter</u>, CSIRO, Australia

FR1.R11.4: PADDY FIELD MAPPING IN EASTERN PART OF ASIA USING SENTINEL-1 AND SENTINEL-2

<u>Inoue, Shimpei</u>, National Institute for Environmental Studies, Japan <u>Ito, Akihiko</u>, National Institute for Environmental Studies, Japan <u>Yonezawa, Chinatsu</u>, Tohoku University, Japan

FR1.R11.5: CROP EVAPOTRANSPIRATION ESTIMATES FOR SUGARCANE BASED ON REMOTE SENSING AND LAND SURFACE MODEL IN THAILAND

<u>Das, Kamal</u>, IBM Research India, India <u>Khiripet, Noppadon</u>, National Science and Technology Development Agency (NSTDA), Thailand <u>Chattanrassamee, Panyawat</u>, Mitr-Phol, Thailand, Thailand <u>Kijkullert, Chalerm</u>, Mitr-Phol, Thailand, Thailand <u>Veerachit, Vorraveerukorn</u>, Mitr-Phol, Thailand, Thailand

FR1.R11.6: LANDSAT-BASED RECONSTRUCTION OF CORN AND SOYBEAN YIELD HISTORIES IN THE UNITED STATES SINCE 1999

<u>Lobell, David</u>, Stanford University, United States <u>Dado, Walter</u>, Stanford University, United States <u>Deines, Jillian</u>, Stanford University, United States <u>di Tommaso, Stefania</u>, Stanford University, United States <u>Wang, Sherrie</u>, Stanford University, United States

FR1.R11.7: USING NDVI TIME SERIES CURVE CHANGE RATE TO ESTIMATE WINTER WHEAT YIELD

<u>Ji, Zhonglin</u>, Beijing Normal University, China <u>Pan, Yaozhong</u>, Beijing Normal University, China <u>Li, Muyi</u>, Beijing Normal University, China

FR1.R11.8: ASSESSING THE EFFECTS OF NUTRIENT STRESS ON THE RED TO FAR-RED RATIOS OF LIGHT TRANSMITTED BY UNIFACIAL PLANT LEAVES

Baranoski, Gladimir, University of Waterloo, Canada

FR1.R11.9: EXPLOITING THE TEXTURAL INDICES OF UAV MULTISPECTRAL IMAGERY TO PREDICT RICE GRAIN YIELD

Zheng, Hengbiao, Nanjing Agricultural University, China Zhu, Yan, Nanjing Agricultural University, China Cheng, Tao, Nanjing Agricultural University, China

FR1.R11.10: ESTIMATION OF LEAF ANGLE DISTRIBUTION BASED ON STATISTICAL PROPERTIES OF LEAF SHADING DISTRIBUTION

<u>Uto, Kuniaki</u>, Tokyo Institute of Technology, Japan <u>Dalla Mura, Mauro</u>, Univ. Grenoble Alpes, France <u>Sasaki, Yuka</u>, Yamagata University, Japan <u>Shinoda, Koichi</u>, Tokyo Institute of Technology, Japan

FR1.R11.11: COMBINING UAS AND SENTINEL-2 DATA TO ESTIMATE CANOPY PARAMETERS OF A COTTON CROP USING MACHINE LEARNING

Ashapure, Akash, Purdue University, United States Jung, Jinha, Purdue University, United States Oh, Sungchan, Purdue University, United States Chang, Anjin, Texas A&M University Corpus Christi, United States Dube, Nothabo, Texas A&M AgriLife Research at Corpus Christi, United States Landivar, Juan, Texas A&M AgriLife Research at Corpus Christi, United States

FR1.R12 - Unmixing and Anomaly Detection

Friday, October 2, 05:00 - 07:00 • Room 12

FR1.R12.1: CAUCHY NMF FOR HYPERSPECTRAL UNMIXING

<u>Peng, Jiangtao</u>, Hubei University, China <u>Jiang, Fan</u>, Hubei University, China <u>Sun, Weiwei</u>, Ningbo University, China <u>Zhou, Yicong</u>, University of Macau, China

FR1.R12.2: SEMI-AUTOMATIC FULLY SPARSE SEMANTIC MODELING FRAMEWORK FOR HYPERSPECTRAL UNMIXING

Wang, Linlin, China University of Geosciences, China Zhu, Qiqi, China University of Geosciences, China Zeng, Wen, China University of Geosciences, China Zhong, Yanfei, Wuhan University, China Guan, Qingfeng, China University of Geosciences, China Zhang, Liangpei, Wuhan University, China Li, Deren, Wuhan University, China

FR1.R12.3: SUPERPIXEL-BASED SPATIAL CONSTRAINTS SPARSE UNMIXING FOR HYPERSPECTRAL REMOTE SENSING IMAGERY

<u>Li, Hao</u>, China University of Geosciences (Wuhan), China <u>Feng, Ruyi</u>, China University of Geosciences (Wuhan), China <u>Wang, Lizhe</u>, China University of Geosciences (Wuhan), China <u>Zhang, Yanfei</u>, Wuhan University, China <u>Zhang, Liangpei</u>, Wuhan University, China

FR1.R12.4: SPATIAL-SPECTRAL AUTOENCODER NETWORKS FOR HYPERSPECTRAL UNMIXING

<u>Huang, Yongfa</u>, Xidian University, China <u>Li, Jie</u>, Xidian University, China <u>Qi, Lin</u>, Xidian University, China <u>Wang, Ying</u>, Xidian University, China <u>Gao, Xinbo</u>, Xidian University, China

FR1.R12.5: SEMI-SUPERVISED HYPERSPECTRAL UNMIXING WITH VERY DEEP CONVOLUTIONAL NEURAL NETWORKS

Bai, Jiayu, China University of Geosciences, China Feng, Ruyi, China University of Geosciences, China Wang, Lizhe, China University of Geosciences, China Li, Hao, China University of Geosciences, China Li, Fengpeng, China University of Geosciences, China Zhong, Yanfei, Wuhan University, China Zhang, Liangpei, Wuhan University, China

FR1.R12.6: HYPERSPECTRAL NONLINEAR UNMIXING VIA GENERATIVE ADVERSARIAL NETWORK

<u>Tang, Maofeng</u>, University of Tennessee, United States <u>Qu, Ying</u>, University of Tennessee, United States <u>Qi, Hairong</u>, University of Tennessee, United States

FR1.R12.7: IMPROVING THE CLASSIFICATION IN SHADOWED AREAS USING NONLINEAR SPECTRAL UNMIXING

Zhang, Guichen, German Aerospace Center, Germany Cerra, Daniele, German Aerospace Center, Germany Mueller, Rupert, German Aerospace Center, Germany

FR1.R12.8: A BACKGROUND REFINEMENT COLLABORATIVE REPRESENTATION METHOD WITH SALIENCY WEIGHT FOR HYPERSPECTRAL ANOMALY DETECTION

Hou, Zengfu, Beijing Institute of Technology, China Li, Wei, Beijing Institute of Technology, China Gao, Lianru, Chinese Academy of Sciences, China Zhang, Bing, Chinese Academy of Sciences, China Ma, Pengge, Zhengzhou University of Aeronautics, China Sun, Junling, Zhengzhou University of Aeronautics, China

FR1.R12.9: HYPERSPECTRAL ANOMALY DETECTION BASED ON ISOLATION FOREST WITH BAND CLUSTERING

<u>Huang, Yuancheng</u>, Xi'an University of Science and Technology, China <u>Xue, Yuanyuan</u>, Xi'an University of Science and Technology, China <u>Su, Yuanchao</u>, Xi'an University of Science and Technology, China <u>Han, Shanshan</u>, Xi'an University of Science and Technology, China

FR1.R12.10: DISCRIMINATIVE SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL ANOMALY DETECTION

<u>Jiang, Tao</u>, Xidian University, China <u>Xie, Weiying</u>, Xidian University, China <u>Li, Yunsong</u>, Xidian University, China <u>Du, Qian</u>, Mississippi State University, United States

FR1.R12.11: JOINT SPARSE REPRESENTATION AND MULTITASK LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION

Zhang, Yuxiang, Institute of Geophysics and Geomatics, China University of Geosciences, China He, Kai, Institute of Geophysics and Geomatics, China University of Geosciences, China Dong, Yanni, Institute of Geophysics and Geomatics, China University of Geosciences, China Wu, Ke, Institute of Geophysics and Geomatics, China University of Geosciences, China Chen, Tao, Institute of Geophysics and Geomatics, China University of Geosciences, China University of G

FR1.R13 - Microwave Radiometer Calibration and RFI II

Friday, October 2, 05:00 - 07:00 \circ Room 13

FR1.R13.1: REMOTE SENSING AND PROPOSED FEDERAL SPECTRUM ACTIONS: WILL PASSIVE MICROWAVE REMOTE SENSING BE AFFECTED?

<u>Kunkee, David</u>, The Aerospace Corporation, United States <u>Lubar, David</u>, The Aerospace Corporation, United States

FR1.R13.2: ARTIFACT-FREE RFI LOCALIZATION BASED ON SPATIAL SMOOTHING MUSIC IN SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETERS

<u>Zheng, Tao</u>, Huazhong University of Science and Technology, China <u>Hu, Fei</u>, Huazhong University of Science and Technology, China <u>Hu, Hao</u>, Huazhong University of Science and Technology, China <u>Fu, Peng</u>, Huazhong University of Science and Technology, China

FR1.R13.3: LOCATION OF SMOS RFI SOURCES USING A MATRIX COMPLETION APPROACH

Zhu, Dong, Tsinghua University, China Li, Gang, Tsinghua University, China

FR1.R13.4: CHARACTERIZING SYSTEMATIC ERRORS IN THE FARADAY ROTATION RETRIEVAL FROM SMOS MEASUREMENTS

Rubino, Roselena, Universitat Politècnica de Catalunya (UPC), Spain <u>Duffo, Nuria</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>González-Gambau, Verónica</u>, Barcelona Expert Center, Spain <u>Torres, Francesc</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Corbella, Ignasi</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Martín-Neira, Manuel</u>, European Space Agency, Spain

FR1.R13.5: P-BAND RADIOMETRY: RFI AND CALIBRATION FOR UWBRAD

<u>Andrews, Mark</u>, Ohio State University, United States <u>Johnson, Joel</u>, Ohio State University, United States <u>Bringer, Alexandra</u>, Ohio State University, United States <u>Brogioni, Marco</u>, CNR IFAC, Italy <u>Macelloni, Giovanni</u>, CNR IFAC, Italy <u>Leduc-Leballeur, Marion</u>, CNR IFAC, Italy

FR1.R13.6: ERROR ESTIMATION OF THE MEASURED TIME DELAY USING WIDEBAND AUTOCORRELATION RADIOMETRY

<u>Mousavi, Seyedmohammad</u>, University of Michigan, United States <u>De Roo, Roger</u>, University of Michigan, United States <u>Sarabandi, Kamal</u>, University of Michigan, United States <u>England</u>, <u>Anthony</u>, University of Michigan, United States

FR1.R13.7: PRE-LAUNCH CALIBRATION OF THE NASA TROPICS CONSTELLATION MISSION

<u>Leslie, R. Vincent</u>, MIT Lincoln Laboratory, United States <u>Blackwell, William J.</u>, MIT Lincoln

Laboratory, United States <u>Cunningham, Andrew</u>, MIT Lincoln Laboratory, United States <u>DiLiberto, Michael</u>, MIT Lincoln Laboratory, United States <u>Eshbaugh, James</u>, MIT Lincoln Laboratory, United States <u>Osaretin, Idahosa</u>, MIT Lincoln Laboratory, United States

FR1.R13.8: CALIBRATION OF THE SMAP RADIOMETER FOR OCEAN APPLICATIONS

<u>Meissner, Thomas</u>, Remote Sensing Systems, United States <u>Wentz, Frank</u>, Remote Sensing Systems, United States

FR1.R13.9: ON STUDY OF ERROR SOURCES IN MICROWAVE THERMAL VACUUM NON-LINEARITY TEST AND ON-ORBIT VERIFICATION

Yang, Hu, University of Maryland, United States Sun, Ninghai, NOAA/NESDIS/STAR, United States Liu, Quanhua, NOAA/NESDIS/STAR, United States Leslie, R. Vincent, MITLL, United States Kim, Edward, NASA Goddard Space Flight Center, United States Liu, Cheng-Hsuan, NASA/GESTAR, United States Sammons, Matthew, NASA/Fibertek, United States Feuntes, James, Northrop Grumman, United States

FR1.R13.10: TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE

Gong, Xun, University of Electronic Science and Technology of China, China Tong, Ling, University of Electronic Science and Technology of China, China Gao, Bo, University of Electronic Science and Technology of China, China Wang, Peicheng, University of Electronic Science and Technology of China, China Gao, Xinyi, University of Electronic Science and Technology of China, China Liu, Yukai, University of Electronic Science and Technology of China, China Wang, Jiakun, Xian Institute of Space Radio Technology, China Li, Hao, Xian Institute of Space Radio Technology, China Li, Yinan, Xian Institute of Space Radio Technology, China Li, Yinan, Xian Institute of Space Radio Technology, China He, Zheng, Xian Institute of Space Radio Technology, China

FR1.R13.11: MONITORING IN THE RFI ENVIRONMENT USING SMAP DATA FROM 2015-2020

<u>Bringer, Alexandra</u>, The Ohio State University, United States <u>Daehn, Matt</u>, The Ohio State University, United States <u>Johnson, Joel</u>, The Ohio State University, United States <u>Soldo, Yan</u>, NASA Goddard Space Flight Center, United States <u>Le Vine, David</u>, NASA Goddard Space Flight Center, United States

FR1.R14 - Target Detection and Localization

Friday, October 2, 05:00 - 07:00 • Room 14

FR1.R14.1: WEIGHTED HIERARCHICAL SPARSE REPRESENTATION FOR HYPERSPECTRAL TARGET DETECTION

Wei, Chenlu, School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, China Jiang, Zhiyu, School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, China Yuan, Yuan, School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, China

FR1.R14.2: A FAST LOW RANK APPROXIMATION AND SPARSITY REPRESENTATION APPROACH TO HYPERSPECTRAL ANOMALY DETECTION

<u>Chen, Jie</u>, UNIVERSITY OF MARYLAND, Baltimore County, United States <u>Cao, Hongju</u>, Dalian Maritime University, China <u>Chen, Shuhan</u>, Zhejiang University, China <u>Chang, Chein-I</u>, UNIVERSITY OF MARYLAND, Baltimore County, United States

FR1.R14.3: HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK

Chen, Xiaoying, Xidian University, China Wang, Xiuxiu, Xidian University, China Guo, Chubing, CETC Key Laboratory of Data Link Technology, China Chen, Chao, IBM Research, United States Gou, Shuiping, Xidian University, China Yu, Tao, Laboratory of Spectral Imaging Technique, Xi'an Institute of Optics and Precision, Chinese Academy Sciences; CAS Key Laboratory of Spectral Imaging Technology, China Jiao, Changzhe, Xidian University, China

FR1.R14.4: HUMAN DETECTION WITH RANGE-DOPPLER SIGNATURES USING 3D CONVOLUTIONAL NEURAL NETWORKS

<u>Kim, Youngwook</u>, California State University, Fresno, United States <u>Alnujaim, Ibrahim</u>, California State University, Fresno, United States <u>You, Sungjin</u>, Electronics and Telecommunications Research Institute, Korea (South) <u>Jeong, Byung Jang</u>, Electronics and Telecommunications Research Institute, Korea (South)

FR1.R14.5: SIMPLE, FAST, ACCURATE OBJECT DETECTION BASED ON ANCHOR-FREE METHOD FOR HIGH RESOLUTION REMOTE SENSING IMAGES

<u>Liu, Yijian</u>, Beijing University of Posts and Telecommunications, China <u>Yang, Junli</u>, Beijing University of Posts and Telecommunications, China <u>Cui, Wenqian</u>, Beijing University of Posts and Telecommunications, China

FR1.R14.6: IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE ON SAR IMAGE SHIP DETECTION BASED ON DEEP LEARNING

<u>Shao, Puyang</u>, Inner Mongolia University of Technology, China <u>Lu, Xiaoqi</u>, Inner Mongolia University of Technology, China <u>Huang, Pingping</u>, Inner Mongolia University of Technology, China <u>Xu, Wei</u>, Inner Mongolia University of Technology, China <u>Dong, Yifan</u>, Inner Mongolia University of Technology, China

FR1.R14.7: OBJECT DETECTION FOR REMOTE SENSING IMAGE BASED ON DEEP LEARNING

Zheng, Yongxiang, Beijing University of Posts and Telecommunications, China <u>Ha, Rui</u>, Beijing University of Posts and Telecommunications, China

FR1.R14.8: TOWARDS AUTOMATIC DETECTION OF DARK FEATURES IN THE BARENTS SEA USING SYNTHETIC APERTURE RADAR

Cristea, Anca, UiT The Arctic University of Norway, Norway Johansson, A. Malin, UiT The Arctic University of Norway, Norway Filimonova, Natalya A., SCANEX Group, Operational monitoring department, Russia Ivonin, Dmitry, Shirshov Institute of Oceanology RAS, Russia Hughes, Nicholas E., Norwegian Meteorological Institute, Norway Doulgeris, Anthony P., UiT The Arctic University of Norway, Norway Brekke, Camilla, UiT The Arctic University of Norway, Norway

FR1.R14.9: SYNTHETIC MINORITY CLASS DATA BY GENERATIVE ADVERSARIAL NETWORK FOR IMBALANCED SAR TARGET RECOGNITION

<u>Luo, Zhongming</u>, Shanghai Jiao Tong University, China <u>Jiang, Xue</u>, Shanghai Jiao Tong University, China <u>Liu, Xingzhao</u>, Shanghai Jiao Tong University, China

FR1.R14.10: MULTI-SCALE REMOTE SENSING TARGETS DETECTION WITH ROTATED FEATURE PYRAMID

<u>Mao, Yinan</u>, Beihang University, China <u>Chen, Ziqiang</u>, Beihang University, China <u>Dou, Hongkun</u>, Beihang University, China <u>Zhao, Danpei</u>, Beihang University, China <u>Liu, Ziming</u>, Beihang University, China

FR1.R14.11: HARBOR DETECTION IN SAR IMAGES BASED ON MULTIDIRECTIONAL ONE-DIMENSIONAL SCANNING

Wang, Rufei, University of Electronic Science and Technology of China, China Xu, Fanyun, University of Electronic Science and Technology of China, China Zhang, Qian, University of Electronic Science and Technology of China, China Pei, Jifang, University of Electronic Science and Technology of China, China Huang, Yulin, University of Electronic Science and Technology of China, China Yang, Jianyu, University of Electronic Science and Technology of China, China

FR1.R15 - UAV and Airborne Platforms Applications II

Friday, October 2, 05:00 - 07:00 • Room 15

FR1.R15.1: DETECTION OF SEASONAL ARCTIC TERRAIN CHANGE USING A SMALL UNMANNED AIRCRAFT SYSTEM (SUAS) ON THE ALASKAN NORTH SLOPE

O'Banion, Matthew, United States Military Academy - West Point, United States Oxendine, Christopher, United States Military Academy - West Point, United States Eck, Riley, United States Military Academy - West Point, United States Mcgettigan, Seamus, United States Military Academy - West Point, United States Wright, William, United States Military Academy - West Point, United States Gallaher, Shawn, United States Naval Academy, United States Smith, Joseph, United States Naval Academy, United States Douglas, Thomas, United States Army Corps of Engineers, United States

FR1.R15.2: CONDITIONS OF AERIAL PHOTOGRAPHY TO REDUCE DOMING EFFECT

Obanawa, Hiroyuki, National Agriculture and Food Research Organization, Japan Sakanoue, Seiichi, National Agriculture and Food Research Organization, Japan

FR1.R15.3: DETECT GEOGRAPHICAL LOCATION BY MULTI-VIEW SCENE MATCHING

<u>Liu, Chen</u>, Northwestern Polytechnical University, China <u>Yuan, Yuan</u>, Northwestern Polytechnical University, China <u>Liu, Ganchao</u>, Northwestern Polytechnical University, China

FR1.R15.4: KALMAN FILTER-BASED TRAJECTORY ESTIMATION USING A LOW-COST SENSOR AND AERIAL IMAGES

Garcia-Huerta, Raul A., Instituto Tecnologico y de Estudios Superiores de Occidente, Mexico Villalon-Turrubiates, Ivan E., Instituto Tecnologico y de Estudios Superiores de Occidente, Mexico González-Jiménez, Luis E., Instituto Tecnologico y de Estudios Superiores de Occidente, Mexico Allende-Alba, Gerardo, German Aerospace Center, Germany

FR1.R15.5: COMPUTATIONAL-VISION BASED ORTHORECTIFICATION AND GEOREFRENCING FOR CORRECT LOCALIZATION OF RAILWAY TRACK IN UAV IMAGERY

<u>Singh, Arun Kumar</u>, Indian Institute of Technology Roorkee, India <u>Swarup, Anushka</u>, University of Florida, United States <u>Phartiyal, Gopal Singh</u>, Indian Institute of Technology Roorkee, India <u>Singh, Dharmendra</u>, Indian Institute of Technology Roorkee, India

FR1.R15.6: WIDEBAND WAVEFORM GENERATION AND MEASUREMENT FOR HIGH-RESOLUTION X-BAND UAV-SAR

Kim, Kyeong-Rok, Ajou university, Korea (South) Kim, Jae-Hyun, Ajou university, Korea (South)

FR1.R15.7: REMOTE SENSING SYSTEMS FOR URBAN-SCALE DRONE AND AIR TAXI OPERATIONS

Bajaj, Apoorva, University of Massachusetts Amherst, United States Philips, Brenda, University of Massachusetts Amherst, United States Lyons, Eric, University of Massachusetts Amherst, United States Westbrook, David, University of Massachusetts Amherst, United States Zink, Michael, University of Massachusetts Amherst, United States Chandrasekar, Venkatachalam, Colorado State University, United States Huffman, Ernest, North Central Texas Council of Governments, United States

FR1.R15.8: TARGET INFLUENCE ON GROUND CONTROL POINTS (GCPS) IDENTIFICATION IN AERIAL IMAGES

Hruska, Jonas, University of Trás-os-Montes e Alto Douro, Portugal Pádua, Luís, University of Trás-os-Montes e Alto Douro, Portugal Adão, Telmo, University of Trás-os-Montes e Alto Douro, Portugal Peres, Emanuel, University of Trás-os-Montes e Alto Douro and INESC-TEC, Portugal Martinho, José, University of Trás-os-Montes e Alto Douro, Portugal Sousa, Joaquim J., University of Trás-os-Montes e Alto Douro and INESC-TEC, Portugal

FR1.R15.9: THE NEW PARAMOTOR PROJECT: FLEXIBILITY AT LOW COST TO OVERCOME MAIN LIMITATIONS OF MULTI-COPTERS AND FIXED-WINGS UAVS

<u>Albespy, Benjamin</u>, University Savoie Mont Blanc, France <u>Pádua, Luís</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Roux, Emile</u>, University Savoie Mont Blanc, France <u>Sousa, Joaquim J.</u>, University of Trás-os-Montes e Alto Douro, Portugal

FR1.R15.10: MULTI-AGENTS PATH PLANNING FOR A SWARM OF UNMANNED AERIAL VEHICLES

<u>Chyba, Monique</u>, University of Hawaii, United States <u>Carney, Richard</u>, University of Hawaii, United States <u>Gray, Chris</u>, University of Hawaii, United States <u>Trimble</u>, <u>Zachary</u>, University of Hawaii, United States

FR1.R15.11: TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING

Liu, Yuanzhong, University of Electronic Science and Technology of China, China Xing, Minfeng, University of Electronic Science and Technology of China, China Zhou, Xiaozhe, University of Electronic Science and Technology of China, China Song, Yang, University of Western Ontario, Canada Wang, Danyang, University of Electronic Science and Technology of China, China

FR1.R15.12: ESTIMATION OF LEAF AREA INDEX IN CHESTNUT TREES USING MULTISPECTRAL DATA FROM AN UNMANNED AERIAL VEHICLE

<u>Pádua, Luís</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Marques, Pedro</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Martins, Luís</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Sousa, António</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Peres, Emanuel</u>, University of Trás-os-Montes e Alto Douro, Portugal <u>Sousa, Joaquim J.</u>, University of Trás-os-Montes e Alto Douro, Portugal

FR1.R16 - Processing and Imaging Techniques V

Friday, October 2, 05:00 - 07:00 • Room 16

FR1.R16.1: A NON-LINEARLY MOVING SHIP AUTOFOCUS METHOD UNDER HYBRID COORDINATE SYSTEM

<u>Li, Guofei</u>, Xidian University, China <u>Zhang, Gang</u>, Xidian University, China <u>Qin, Hanlin</u>, Xidian University, China <u>Liang, Yi</u>, Xidian University, China

FR1.R16.2: SAR TARGET CLASSIFICATION WITH LIMITED DATA VIA DATA DRIVEN ACTIVE LEARNING

Zhou, Yue, Shanghai Jiao Tong University, China <u>Jiang, Xue</u>, Shanghai Jiao Tong University, China <u>Li, Zhou</u>, Beijing Institute of Remote Sensing Information, China <u>Liu, Xingzhao</u>, Shanghai Jiao Tong University, China

FR1.R16.3: EFFICIENT INSAR IMAGING BASED ON FREQUENCY-DOMAIN BACK PROJECTION ALGORITHM

Wu, Yue, University of Electronic Science and Technology of China, China Wei, Shunjun, University of Electronic Science and Technology of China, China Wang, Mou, University of Electronic Science and Technology of China, China Liang, Jiadian, University of Electronic Science and Technology of China, China Zhang, Xiaoling, University of Electronic Science and Technology of China, China

FR1.R16.4: ISAR COMPRESSIVE SENSING IMAGING USING CONVOLUTION NEURAL NETWORK WITH INTERPRETABLE OPTIMIZATION

<u>Liang, Jiadian</u>, University of Electronic Science and Technology of China, China <u>Wei, Shunjun</u>, University of Electronic Science and Technology of China, China <u>Wang, Mou</u>, University of Electronic Science and Technology of China, China <u>Su, Hao</u>, University of Electronic Science and Technology of China, China <u>Shi, Jun</u>, University of Electronic Science and Technology of China, China <u>Zhang, Xiaoling</u>, University of Electronic Science and Technology of China, China

FR1.R16.5: AN ANALYTICAL FRAMEWORK FOR UNDERSTANDING PERSISTENT SCATTERER INCIDENCE IN INSAR IMAGERY WITH BANDWIDTH AND WAVELENGTH

<u>Huang, Stacey</u>, Stanford University, United States <u>Zebker, Howard</u>, Stanford University, United States

FR1.R16.6: HIGH-RESOLUTION OPTICAL AND SAR IMAGE REGISTRATION USING LOCAL SELF-SIMILAR DESCRIPTOR BASED ON EDGE FEATURE

Pan, Yiqun, University of Electronic Science and Technology of China, China Tong, Ling, University of Electronic Science and Technology of China, China Li, Yuxia, University of Electronic Science and Technology of China, China Xiao, Fanghong, University of Electronic Science and Technology of China, China Wang, Haoyu, University of Electronic Science and Technology of China, China

FR1.R16.7: COSMO-SKYMED RANGE MEASUREMENTS FOR DISPLACEMENT MONITORING USING AMPLITUDE PERSISTENT SCATTERERS

<u>Belloni, Valeria</u>, Sapienza University of Rome, Italy <u>Di Tullio, Marco</u>, Sapienza University of Rome, Italy <u>Ravanelli, Roberta</u>, Sapienza University of Rome, Italy <u>Fratarcangeli, Francesca</u>, Sapienza University of Rome, Italy <u>Nascetti, Andrea</u>, KTH Royal Institute of Technology, Sweden <u>Crespi, Mattia</u>, Sapienza University of Rome, Italy

FR1.R16.8: A ROBUST AMBIGUITY REMOVAL METHOD FOR STAGGERED SAR

<u>Liao, Xingxing</u>, University of Electronic Science and Technology of China, China <u>Xu</u>, <u>Mingming</u>, Beijing Institute of Spacecraft System Engineering; Beijing Institute of Technology, China <u>Li, Kun</u>, Beijing Institute of Spacecraft System Engineering, China <u>Liu, Zhe</u>, University of Electronic Science and Technology of China, China

FR1.R16.9: SHIP DETECTION IN SAR IMAGES USING CONVOLUTIONAL VARIATIONAL

AUTOENCODERS

<u>Ferreira, Nuno</u>, Instituto Superior Técnico - Universidade de Lisboa, Portugal <u>Silveira, Margarida</u>, Instituto Superior Técnico - Universidade de Lisboa, Portugal

FR1.R16.10: TOWARDS DEEP UNSUPERVISED SAR DESPECKLING WITH BLIND-SPOT CONVOLUTIONAL NEURAL NETWORKS

<u>Bordone Molini, Andrea</u>, Politecnico di Torino, Italy <u>Valsesia, Diego</u>, Politecnico di Torino, Italy <u>Fracastoro, Giulia</u>, Politecnico di Torino, Italy <u>Magli, Enrico</u>, Politecnico di Torino, Italy

FR1.R16.11: REMOTE SENSING DATA AUGMENTATION THROUGH ADVERSARIAL TRAINING

<u>Lv, Ning</u>, Xidian University, China <u>Ma, Hongxiang</u>, Xidian University, China <u>Chen, Chen</u>, Xidian University, China <u>Pei, Qingqi</u>, Xidian University, China <u>Zhou, Yang</u>, Ministry of water resources of China, China <u>Xiao</u>, <u>Fenglin</u>, Ministry of water resources of China, China <u>Li, Ji</u>, Ministry of water resources of China, China

FR1.R17 - Machine Learning for Multitemporal Image Analysis

Friday, October 2, 05:00 - 07:00 • Room 17

FR1.R17.1: S2-CGAN: SELF-SUPERVISED ADVERSARIAL REPRESENTATION LEARNING FOR BINARY CHANGE DETECTION IN MULTISPECTRAL IMAGES

<u>Holgado Alvarez, Jose Luis</u>, TU Berlin, Germany <u>Ravanbakhsh, Mahdyar</u>, TU Berlin, Germany <u>Demir, Begüm</u>, TU Berlin, Germany

FR1.R17.2: FLOOD MAPPING WITH SAR AND MULTI-SPECTRAL REMOTE SENSING IMAGES BASED ON WEIGHTED EVIDENTIAL FUSION

<u>Chen, Xi</u>, Peking University, China <u>Cui, Yaokui</u>, Peking University, China <u>Wen, Changjun</u>, Ministry of Civil Affairs of the People's Republic of China, China <u>Zheng, Mingxuan</u>, Ministry of Civil Affairs of the People's Republic of China, China <u>Gao, Yuan</u>, Ministry of Civil Affairs of the People's Republic of China, China <u>Li, Jing</u>, Beijing Normal University, China

FR1.R17.3: A GPU ACCELERATED CONTOURLET METHOD FOR DETECTING CHANGES DUE TO FIRE USING REMOTE SENSING

<u>Ansari, Rizwan Ahmed</u>, North Carolina Central University, United States <u>Thomas, Winnie</u>, Indian Institute of Technology Bombay, India <u>Malhotra, Rakesh</u>, North Carolina Central University, United States <u>Buddhiraju, Krishna Mohan</u>, Indian Institute of Technology Bombay, India

FR1.R17.4: HYPERSPECTRAL IMAGE CHANGE DETECTION BY SELF-SUPERVISED TENSOR NETWORK

Zhou, Feng, Donghua University, China Chen, Zhao, Donghua University, China

FR1.R17.5: CHANGE DETECTION NETWORK OF NEARSHORE SHIPS FOR MULTI-TEMPORAL OPTICAL REMOTE SENSING IMAGES

<u>Cao, Jingyi</u>, Beijing University of Posts and Telecommunications, China <u>You, Yanan</u>, Beijing University of Posts and Telecommunications, China <u>Ning, Yuanyong</u>, Beijing University of Posts and Telecommunications, China <u>Zhou, Wenli</u>, Beijing University of Posts and Telecommunications. China

FR1.R17.6: GEOSOT GRID REMOTE SENSING INTELLIGENT INTERPRETATION MODEL BASED ON FINE-TUNING RESNET-18: A CASE STUDY OF CONSTRUCTION LAND

Zhu, Daoye, Peking University, China Yang, Yi, Peking University, China Zhai, Weixin, Peking University, China Ren, Fuhu, Peking University, China Cheng, Chengqi, Peking University, China Huang, Min, Wuhan University, China

FR1.R17.8: CHANGE OF GLACIAL LAKE IN KARAKORAM RANGE

Mou, Fan, University of Electronic Science and Technology of China, China Wang, Danyang, University of Electronic Science and Technology of China, China Liu, Jiaxi, University of Electronic Science and Technology of China, China Zheng, Zezhong, University of Electronic Science and Technology of China, China Jiang, Liming, Chinese Academy of Sciences, China Zhou, Guoqing, Guilin University of Technology, China Zhou, Fangrong, Yunnan Power Grid Co., Ltd., China

FR1.R17.9: SIAMESE GENERATIVE ADVERSARIAL NETWORK FOR CHANGE

DETECTION UNDER DIFFERENT SCALES

<u>Liu, Mengxi</u>, Sun Yat-sen University, China <u>Shi, Qian</u>, Sun Yat-sen University, China <u>Liu, Penghua</u>, Sun Yat-sen University, China <u>Wan, Cheng</u>, Sun Yat-sen University, China

FR1.R17.10: A DEEP GENERALIZED CORRELATION NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION

<u>Wang, Rongfang</u>, Xidian University, China <u>Wang, Weidong</u>, Xidian University, China <u>Chen, Jia-Wei</u>, Xidian University, China <u>Jiao, Licheng</u>, Xidian University, China <u>Hao, Hongxia</u>, Xidian University, China

FR1.R17.11: A LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION

<u>Wang, Rongfang</u>, Xidian University, China <u>Ding, Fan</u>, Xidian University, China <u>Chen, Jia-Wei</u>, Xidian University, China <u>Jiao, Licheng</u>, Xidian University, China <u>Wang, Liang</u>, Xidian University, China

FR1.R17.12: PROPAGATED UNCERTAINTY FOR HORIZONTAL GROUND MOTION DERIVED FROM MULTI-TEMPORAL DIGITAL ELEVATION MODELS

<u>Hartzell, Preston</u>, University of Houston, United States <u>Glennie, Craig</u>, University of Houston, United States

FR1.R18 - Network Based Classifier Friday, October 2, 05:00 - 07:00 • Room 18

FR1.R18.1: IMPROVEMENT OF CNN-BASED ROAD EXTRACTION FROM SATELLITE IMAGES VIA MORPHOLOGICAL IMAGE PROCESSING

<u>Im, Heeji</u>, Ajou University, Korea (South) <u>Yang, Hoeseok</u>, Ajou University, Korea (South)

FR1.R18.2: IRON ORE REGION SEGMENTATION USING HIGH-RESOLUTION REMOTE SENSING IMAGES BASED ON RES-U-NET

<u>Mustafa, Noman</u>, Shanghai Jiao Tong University, China <u>Zhao, Juanping</u>, Shanghai Jiao Tong University, China <u>Liu, Zeyu</u>, Shanghai Jiao Tong University, China <u>Zhang, Zenghui</u>, Shanghai Jiao Tong University, China <u>Yu, Wenxian</u>, Shanghai Jiao Tong University, China

FR1.R18.3: AN EMPIRICAL STUDY ON FULLY CONVOLUTIONAL NETWORK AND HYPERCOLUMN METHODS FOR UAV REMOTE SENSING IMAGERY CLASSIFICATION

<u>Su, Lihong</u>, Texas A&M University-Corpus Christi, United States <u>Huang, Yuxia</u>, Texas A&M University-Corpus Christi, United States <u>Hu, Zhiyong</u>, University of West Florida, United States

FR1.R18.4: SEGMENTATION OF HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGE BASED ON U-NET CONVOLUTIONAL NETWORKS

Zheng, Xiaoxiong, China University of Geosciences, China Chen, Tao, China University of Geosciences, China University of Geosciences, China

FR1.R18.5: SHIP SEGMENTATION ON HIGH-RESOLUTION SAR IMAGE BY A 3D DILATED MULTISCALE U-NET

<u>Li, Jichao</u>, Xidian University, China <u>Guo, Chubing</u>, CETC, China <u>Gou, Shuiping</u>, Xidian University, China <u>Chen, Yuanbo</u>, Beijing Huahang Radio Measurement and Research Institute, China <u>Wang, Miao</u>, Xidian University, China <u>Chen, Jia-Wei</u>, Xidian University, China

FR1.R18.6: A NOVEL GLOBAL-AWARE DEEP NETWORK FOR ROAD DETECTION OF VERY HIGH RESOLUTION REMOTE SENSING

<u>Lu, Xiaoyan</u>, Wuhan University, China <u>Zhong, Yanfei</u>, Wuhan University, China <u>Zheng, Zhuo</u>, Wuhan University, China

FR1.R18.7: DEEP ENCODER-DECODER NETWORK BASED ON THE UP AND DOWN BLOCKS USING WAVELET TRANSFORM FOR CLOUD DETECTION

Zhang, Jing, State Key Laboratory of Integrated Service Networks, Xidian University, China Wang, Hui, State Key Laboratory of Integrated Service Networks, Xidian University, China Zhou, Qin, State Key Laboratory of Integrated Service Networks, Xidian University, China Wang, Yuchen, State Key Laboratory of Integrated Service Networks, Xidian University, China Li, Yunsong, State Key Laboratory of Integrated Service Networks, Xidian University, China

FR1.R18.8: BILATERAL SIAMESE NETWORK FOR CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES

<u>Fu, Chenqin</u>, Shanghai Jiao Tong University, China <u>Bao, Tengfei</u>, Shanghai Jiao Tong University, China <u>Lv, Liang</u>, Shanghai Jiao Tong University, China <u>Liu, Jingdong</u>, Shanghai Jiao Tong University, China <u>Huo, Hong</u>, Shanghai Jiao Tong University, China <u>Huo, Hong</u>, Shanghai Jiao Tong University, China

FR1.R18.9: APPLICATION OF A HYPER-PARAMETER OPTIMIZATION ALGORITHM USING MARS SURROGATE FOR DEEP POLSAR IMAGE CLASSIFICATION MODELS

<u>Liu, Guangyuan</u>, Xidian University, China <u>Li, Yangyang</u>, Xidian University, China <u>Jiao, Licheng</u>, Xidian University, China

FR1.R18.10: LIGHT-WEIGHT ATTENTION SEMANTIC SEGMENTATION NETWORK FOR HIGH-RESOLUTION REMOTE SENSING IMAGES

<u>Liu, Siyu</u>, University of Electronic Science and Technology of China, China <u>He, Changtao</u>, Sichuan Jiuzhou Eletric Group Co., Ltd, China <u>Bai, Haiwei</u>, University of Electronic Science and Technology of China, China <u>Zhang, Yijie</u>, University of Electronic Science and Technology of China, China <u>Cheng, Jian</u>, University of Electronic Science and Technology of China, China

FR1.R18.11: NEW NETWORK BASED ON D-LINKNET AND RESNEXT FOR HIGH RESOLUTION SATELLITE IMAGERY ROAD EXTRACTION

Fan, Kunlong, University of Electronic Science and Technology of China, China Li, Yuxia, University of Electronic Science and Technology of China, China He, Lei, Chengdu University of Information Technology, China Yuan, Lang, University of Electronic Science and Technology of China, China Tong, Ling, University of Electronic Science and Technology of China, China

FR1.R18.12: AUTOMATED OPENSTREETMAP DATA ALIGNMENT FOR ROAD NETWORK MAPPING

<u>Liu, Tao</u>, Oak Ridge National Laboratory, United States <u>Lunga, Dalton</u>, Oak Ridge National Laboratory, United States

FR1.R19 - Satellite Remote Sensing Friday, October 2, 05:00 - 07:00 • Room 19 of Atmospheric Composition:

Algorithms, Applications, and Process Studies II

FR1.R19.1: DETECTION OF NIGHTTIME FIRE COMBUSTION EFFICIENCY FOR WILDFIRES FROM VIIRS

Wang, Jun, University of Iowa, United States Zhou, Meng, University of Iowa, United States Roudinin, Sepehr, University of Iowa, United States Xu, Xiaoguang, University of Iowa, United States Castro Garcia, Lorena, University of Iowa, United States Hyer, Edward, Naval Research Laboratory, United States Reid, Jeffrey, Naval Research Laboratory, United States Da Silva, Arlindo, NASA Goddard Space Flight Center, United States

FR1.R19.2: RECOVERY OF THE CARBON MONOXIDE PRODUCT FROM S5P-TROPOMI BY FUSING MULTIPLE DATASETS: A CASE STUDY IN HUBEI PROVINCE, CHINA

<u>Wang, Yuan</u>, Wuhan University, China <u>Yuan, Qiangqiang</u>, Wuhan University, China <u>Xiao</u>, <u>Ruixue</u>, Shandong University, China <u>Li, Tongwen</u>, Wuhan University, China <u>Zhang, Liangpei</u>, Wuhan University, China

FR1.R19.3: CHARACTERIZATION OF BIOMASS BURNING AEROSOLS DURING THE 2019 FIRE EVENT: SINGAPORE AND KUCHING CITIES

<u>Salinas, Santo V.</u>, National University of Singapore, Singapore <u>Tan, Li</u>, National University of Singapore, Singapore <u>Madala, Srikanth</u>, National University of Singapore, Singapore <u>Liew</u>, <u>Soo Chin</u>, National University of Singapore, Singapore

FR1.R19.4: ANALYZING METEOROLOGICAL AND CHEMICAL CONDITIONS FOR TWO HIGH OZONE EVENTS OVER THE NEW YORK CITY AND LONG ISLAND REGION

<u>Tian, Yuhong</u>, New York State Department of Environmental Conservation, United States <u>LaFarr, Margaret</u>, New York State Department of Environmental Conservation, United States <u>Yun, Jeongran</u>, New York State Department of Environmental Conservation, United States <u>Civerolo, Kevin</u>, New York State Department of Environmental Conservation, United States <u>Hao, Winston</u>, New York State Department of Environmental Conservation, United States <u>Zalewsky, Eric</u>, New York State Department of Environmental Conservation, United States <u>Zhou, Liming</u>, University at Albany, State University of New York, United States

FR1.R19.5: PRODUCTS AND SCIENCE ACHIEVEMENTS OF GOSAT SATELLITE SERIES

<u>Matsunaga, Tsuneo</u>, National Institute for Environmental Studies, Japan <u>Kuze, Akihiko</u>, Japan Aerospace Exploration Agency, Japan <u>Imasu, Ryoichi</u>, University of Tokyo, Japan

FR1.R19.6: RETRIEVAL OF TOTAL OZONE COLUMN USING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY (DOAS) ALGORITHM FROM ULTRAVIOLET SOLAR RADIATION DATA

Li, Wan, Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China Qian, Yonggang, Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China Wang, Ning, Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Kun, Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China Ma, Lingling, Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China Tang, Lingli, Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Chuanrong, Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China Li, Chuanrong, Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China

FR1.R19.7: EVALUATION OF THE RELATIONSHIP BETWEEN IASI NH3R-I TOTAL COLUMN AND TERRESTRIAL VEGETATION CONDITIONS

Wu, Zihua, Peking University, China Qin, Qiming, Peking University, China

FR1.R19.8: ESTIMATE OF GROUND-LEVEL OZONE CONCENTRATIONS BY USING OMI OBSERVATIONS AND MACHINE LEARNING: A CASE STUDY IN ATLANTA GEORGIA U.S.A.

<u>Huang, Guanyu</u>, Spelman College, United States <u>Liu, Xiong</u>, Harvard Smithsonian Center for Astrophysics, United States

FR1.R19.9: CHANGE IN LAND AND OCEAN PARAMETERS ALONG THE TRACK OF TROPICAL CYCLONE FANI

<u>Chauhan, Akshansha</u>, Sharda University, India <u>Singh, Ramesh P</u>, Chapman University, United States <u>Kumar, Rajesh</u>, Central University of Rajasthan, India <u>Dash, Prasanjit</u>, Colorado State University CIRA, United States

FR1.R19.10: SATELLITE-BASED HIGH-SPATIAL-RESOLUTION AND HIGH-QUALITY FINE PARTICULATE MATTERS ACROSS CHINA

Wei, Jing, Beijing Normal University, China Li, Zhanqing, University of Maryland, United States

FR1.R19.11: LONG-TERM SPATIOTEMPORAL TREND ANALYSIS (1998-2016) OF PM2.5 IN CHINA USING SATELLITE PRODUCT

<u>Han, Weihong</u>, University of Electronic Science and Technology of China, China <u>Tong, Ling</u>, University of Electronic Science and Technology of China, China <u>Wen, Jiang</u>, University of Electronic Science and Technology of China, China

FR2.R1 - Hydrologic Remote Sensing, Friday, October 2, 07:30 - 09:30 • Room 1 Modeling and Data Assimilation

FR2.R1.1: ADAPTIVE FILTERING FOR (SOIL MOISTURE) DATA ASSIMILATION

<u>Gruber, Alexander, KU Leuven, Belgium De Lannoy, Gabrielle, KU Leuven, Belgium</u>

FR2.R1.2: IMPACT OF MODEL COUPLING BIAS ON WATER FLUX ESTIMATES ACQUIRED FROM A LAND DATA ASSIMILATION SYSTEM

Crow, Wade, USDA ARS, United States

FR2.R1.3: INVESTIGATING THE ASSIMILATION OF LEAF AREA INDEX PRODUCTS AT DIFFERENT TEMPORAL RESOLUTIONS IN A LAND SURFACE MODEL

<u>Zhang, Xinxuan</u>, George Mason University, United States <u>Maggioni, Viviana</u>, George Mason University, United States <u>Rahman, Azbina</u>, George Mason University, United States

FR2.R1.4: ANTECEDENT WETNESS CONDITIONS OF EUROPEAN FLOODS: A COMPREHENSIVE STUDY

<u>Massari, Christian</u>, National Research Council, Italy <u>Camici, Stefania</u>, National Research Council, Italy

FR2.R1.5: THE POTENTIAL OF SWOT RIVER DISCHARGE ESTIMATES TO CONSTRAIN HYDROLOGICAL PROCESSES GLOBALLY IN UNGAGED BASINS

<u>Durand, Michael</u>, Ohio State University, United States <u>Gleason, Colin</u>, University of Massachusetts Amherst, United States <u>Prata de Moraes Frasson, Renato</u>, Ohio State University, United States <u>Pavelsky, Tamlin</u>, University of North Carolina, United States

FR2.R1.6: STORM POWER OUTAGE PREDICTION AND VERIFICATION USING NWP MODELS AND REMOTE SENSING DATA

<u>Cerrai, Diego</u>, University of Connecticut, United States <u>Watson, Peter</u>, University of Connecticut, United States <u>Yang, Feifei</u>, University of Connecticut, United States <u>Koukoula, Marika</u>, University of Connecticut, United States <u>Anagnostou, Emmanouil</u>, University of Connecticut, United States

FR2.R1.7: OBSERVATION-DRIVEN ESTIMATION OF SURFACE WATER BALANCE COMPONENTS FROM SMAP MEASUREMENTS

Akbar, Ruzbeh, Massachusetts Institute of Technology, United States Gianotti, Daniel, Massachusetts Institute of Technology, United States McColl, Kaighin, Harvard University, United States Salvucci, Guido, Boston University, United States Entekhabi, Dara, Massachusetts institute of technology, United States

FR2.R2 - Machine Learning and Artificial Intelligence for Remote Sensing

Friday, October 2, 07:30 - 09:30 • Room 2

FR2.R2.1: IMPROVED GENETIC ALGORITHM FOR BUNDLE ADJUSTMENT IN PHOTOGRAMMETRY

<u>Zuo, Zhengkang</u>, Peking University, China <u>Sun, Yiyuan</u>, Peking University, China <u>Zhang, Ruihua</u>, Peking University, China <u>Yan, Lei</u>, Peking University, China

FR2.R2.2: SATELLITE OBSERVATION OF TANSMERIDIONAL PROPAGATING INTERNAL WAVES IN THE CELEBES SEA

<u>Zhang, Xudong</u>, Institute of Oceanology, Chinese Academy of Sciences, China <u>Zhang, Tao</u>, Shandong University of Science and Technology; Institute of Oceanology, Chinese Academy of Sciences, China <u>Li, Xiaofeng</u>, Institute of Oceanology, Chinese Academy of Sciences, United States

FR2.R2.3: SPATIAL RESOLUTION ENHANCEMENT OF UNMANNED AIRCRAFT SYSTEM IMAGERY USING DEEP LEARNING-BASED SINGLE IMAGE SUPER-RESOLUTION

Pashaei, Mohammad, Texas A&M University-Corpus Christi, United States Starek, Michael J., Texas A&M University-Corpus Christi, United States Kamangir, Hamid, Texas A&M University-Corpus Christi, United States Berryhill, Jacob, Texas A&M University-Corpus Christi, United States

FR2.R2.4: EDGE PREDICTION NET FOR RECONSTRUCTING ROAD LABELS CONTAMINATED BY CLOUDS

Xu, Miao, Shanghai Jiao Tong University, China Li, Yuanxiang, Shanghai Jiao Tong University, China Zhong, Juanjuan, AVIC Leihua Electric Technology Research Institute, China Zhang, Yuxuan, Shanghai Jiao Tong University, China Liu, Xingang, AVIC Leihua Electric Technology Research Institute, China

FR2.R2.5: MINERAL DETECTION FROM HYPERSPECTRAL IMAGES USING A SPATIAL-SPECTRAL RESIDUAL CONVOLUTIONAL NEURAL NETWORK

Zeng, Hao, Beihang University, China Liu, Qingjie, Beihang University, China Han, Xiaoqing, Beijing Research Institute of Uranium Geology, China Wang, Yunhong, Beihang University, China

FR2.R2.6: RADIO-FREQUENCY INTERFERENCE LOCATION, DETECTION AND CLASSIFICATION USING DEEP NEURAL NETWORKS

<u>Perez, Adrian</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Querol, Jorge</u>, University of Luxembourg, Luxembourg <u>Park, Hyuk</u>, Universitat Politècnica de Catalunya (UPC), Spain <u>Camps, Adriano</u>, Universitat Politècnica de Catalunya (UPC), Spain

FR2.R2.7: UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA

Liang, Yuchen, Beijing Normal University, China Zhao, Zhengang, Beijing Normal University, China Wang, Hao, Beijing Normal University, China Cao, Ying, Beijing Institute of Geology, China Huang, Tao, Beijing Normal University, China Medjadba, Yasmine, Beijing Normal University, China Wang, Yuntao, Beijing Institute of Geology, China Jiao, RunCheng, Beijing Institute of Geology, China Chen, Siying, Beijing Normal University, China Yu, Xianchuan, Beijing Normal University, China

FR2.R2.8: HLS-BASED FPGA IMPLEMENTATION OF CONVOLUTIONAL DEEP BELIEF NETWORK FOR SIGNAL MODULATION RECOGNITION

Zhao, Jian, Harbin Institute of Technology, China Zhao, Yaqin, Harbin Institute of Technology, China Li, Hongbo, Harbin Institute of Technology, China Zhang, Yun, Harbin Institute of Technology, China Wu, Longwen, Harbin Institute of Technology, China

FR2.R2.9: CORRELATION ATTENTION FOR REMOTE SENSING IMAGE CAPTIONING

<u>Tian, Jingxian</u>, Xidian University, China <u>Wang, Shuang</u>, Xidian University, China <u>Gu, Yu</u>, Xidian University, China <u>Meng, Yun</u>, Xidian University, China <u>Ye, Xiutiao</u>, Xidian University, China <u>Zhang, Lei</u>, Xidian University, China <u>Wang, Jihui</u>, Xidian University, China <u>Hou, Biao</u>, Xidian University, China

FR2.R2.10: RTC-GAN: REAL-TIME CLASSIFICATION OF SATELLITE IMAGERY USING DEEP GENERATIVE ADVERSARIAL NETWORKS WITH INFUSED SPECTRAL INFORMATION

Gandikota, Rohit, National Remote Sensing Center, Indian Space Research Organisation, India Kavluru, Radha Krishna, National Remote Sensing Center, Indian Space Research Organisation, India Sharma, Anupama, National Remote Sensing Center, Indian Space Research Organisation, India M., ManjuSarma, National Remote Sensing Center, Indian Space Research Organisation, India Bothale, Vinod M., National Remote Sensing Center, Indian Space Research Organisation, India

FR2.R2.11: A METHOD TO CREATE TRAINING DATASET FOR DEHAZING WITH CYCLEGAN

Zhang, Hui, Kunming Power Supply Bureau of Yunnan Power Grid Co., Ltd, China Mou, Fan, University of Electronic Science and Technology of China, China Duan, Shangqi, Kunming Power Supply Bureau of Yunnan Power Grid Co., Ltd, China Huang, Shuangde, Kunming Power Supply Bureau of Yunnan Power Grid Co., Ltd, China Wang, Shengwei, Kunming Power Supply Bureau of Yunnan Power Grid Co., Ltd, China Xu., Debin, Kunming Power Supply Bureau of Yunnan Power Grid Co., Ltd, China Zheng, Zezhong, University of Electronic Science and Technology of China, China

FR2.R2.12: RADAR SENSOR SIMULATION WITH GENERATIVE ADVERSARIAL NETWORK

Rahnemoonfar, Maryam, University of Maryland, Baltimore County, United States Yari, Masoud, University of Maryland, Baltimore County, United States Paden, John, University of Kansas, United States

FR2.R3 - Object Detection and Segmentation

Friday, October 2, 07:30 - 09:30 • Room 3

FR2.R3.1: CLOUD SHADOW DETECTION IN HYPERSPECTRAL IMAGERY USING BACKPROPAGATION NEURAL NETWORK WITH LIDAR DATA

Xu, Meng, Shenzhen University, China Jia, Sen, Shenzhen University, China

FR2.R3.2: AUTOMATIC SINGLE-IMAGE BASED CLOUD DETECTION METHOD WITHOUT PRIOR INFORMATION

<u>Liu, Yuhan</u>, University of Electronic Science and Technology of China, China <u>Peng, Zhenming</u>, University of Electronic Science and Technology of China, China

FR2.R3.3: SATELLITE ATTITUDE CHANGE RECOGNITION BASED ON MULTI-FRAME IMAGE BY 3D CONVOLUTIONAL NEURAL NETWORKS

Yuan, Haoxuan, Harbin Institute of Technology, China Zhang, Yun, Harbin Institute of

Technology, China <u>Gong, Xiaodong</u>, Southwest electronic equipment research institute, China <u>Li, Hongbo</u>, Harbin Institute of Technology, China <u>Niu, Muqun</u>, Harbin Institute of Technology, China

FR2.R3.4: HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN REMOTE SENSING IMAGES?

Souza, Eniuce, State University of Maringa, Brazil Marques Jr., Ademir, Unisinos University, Brazil Horota, Rafael, Unisinos University, Brazil Kupssinsku, Lucas, Unisinos University, Brazil Rossa, Pedro, Unisinos University, Brazil Aires, Alysson, Unisinos University, Brazil Silveira Junior, Luiz, Unisinos University, Brazil Veronez, Maurício, Unisinos University, Brazil Cazarin, Carol, PETROBRAS, Brazil

FR2.R3.5: REDUCING THE RECEIVING ARRAY COMPLEXITY BY USING THE PARALLEL STOCHASTIC RESONANCE SYSTEM

<u>He, Di</u>, Shanghai Jiao Tong University, China <u>Zhu, Fusheng</u>, Guangdong Communications & Networks Institute, China <u>Sun, Lijuan</u>, NXP Semiconductors, China <u>Yu, Wenxian</u>, Shanghai Jiao Tong University, China

FR2.R3.6: RESEARCH ON C&I JAMMING BASED ON FREQUENCY DIVERSE ARRAY ANTENNA

Wang, Hui, State Grid Anhui Electric Power CO., LTD, China Zhang, Shunsheng, University of Electronic Science and Technology of China, China Zhang, Lu, State Grid Anhui Electric Power CO., LTD, China Wang, Xiaowei, State Grid Anhui Electric Power CO., LTD, China Huang, Bang, University of Electronic Science and Technology of China, China

FR2.R3.7: OBJECT DETECTION FOR REMOTE SENSING IMAGES BASED ON GUIDED ANCHORING AND FEATURE FUSION

<u>Wang, Wei</u>, National University of Defense Technology, China <u>Tian, Zhuangzhuang</u>, National University of Defense Technology, China <u>Zhan, Ronghui</u>, National University of Defense Technology, China <u>Zhang, Jun</u>, National University of Defense Technology, China <u>Zhuang, Zhaowen</u>, National University of Defense Technology, China

FR2.R3.8: HIGH-RESOLUTION IMAGING BASED ON TEMPORAL-SPATIAL STOCHASTIC RADIATION FIELD AND COMPRESSIVE SENSING THEORY

<u>Zhang, Rui</u>, Xidian University, China <u>Quan, Yinghui</u>, Xidian University, China <u>Xu, Ran</u>, Beijing Institue of Electronic System Engineering, China <u>Zhu, Shengqi</u>, Xidian University, China <u>Li, Yachao</u>, Xidian University, China <u>Xing, Mengdao</u>, Xidian University, China

FR2.R3.9: A DEFORMABLE CONVOLUTION NEURAL NETWORK FOR SAR ATR

Wang, Zhiyong, University of Electronic Science and Technology of China, China Wang, Chenwei, University of Electronic Science and Technology of China, China Pei, Jifang, University of Electronic Science and Technology of China, China Huang, Yulin, University of Electronic Science and Technology of China, China Zhang, Yin, University of Electronic Science and Technology of China, China Yang, Haiguang, University of Electronic Science and Technology of China, China

FR2.R3.10: A NOVEL FRAMEWORK OF CNN INTEGRATED WITH ADABOOST FOR REMOTE SENSING SCENE CLASSIFICATION

<u>Hu, Xudong</u>, Wuhan University, China <u>Zhang, Penglin</u>, Wuhan University, China <u>Zhang, Qi</u>, Wuhan University, China

FR2.R3.11: SUPERVISED ADAPTIVE-RPN NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES

<u>Tang, Xu</u>, Xidian University, China <u>Zhang, Huayu</u>, Xidian University, China <u>Ma, Jingjing</u>, Xidian University, China <u>Zhang, Xiangrong</u>, Xidian University, China <u>Jiao, Licheng</u>, Xidian University, China

FR2.R3.12: DEEP ADAPTIVE PROPOSAL NETWORK IN OPTICAL REMOTE SENSING IMAGES OBJECTIVE DETECTION

<u>Li, Lingling</u>, Xidian University, China <u>Cheng, Lin</u>, Xidian University, China <u>Guo, Xiaohui</u>, Xidian University, China <u>Liu, Xu</u>, Xidian University, China <u>Jiao, Licheng</u>, Xidian University, China <u>Liu, Fang</u>, Xidian University, China

FR2.R4 - New Algorithms for Friday, October 2, 07:30 - 09:30 • Room 4 NewSpace: Detecting Difficult Targets

FR2.R4.1: HYPERSTRING CONSTRUCTION OF SUB-PIXEL DETECTORS

Schaum, Alan, Naval Research Laboratory, United States

FR2.R4.2: REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS

Thompson, David R, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Bue, Brian</u>, NASA Jet Propulsion Laboratory, California Institute of Technology / University of Arizona, United States <u>Duren, Riley</u>, NASA Jet Propulsion Laboratory, California Institute of Technology / University of Arizona, United States <u>Elder, Clayton</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Frankenberg</u>, <u>Christian</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Green, Robert</u>, NASA Jet Propulsion Laboratory, United States <u>Hook, Simon</u>, NASA Jet Propulsion Laboratory, United States <u>Miller, Charles</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Thorpe, Andrew</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States <u>Dennison, Philip</u>, NASA Jet Propulsion Laboratory, California Institute of Technology, United States

FR2.R4.3: IMPROVING PHYSICAL AND STATISTICAL MODELS FOR DETECTING DIFFICULT TARGETS WITH LRT DETECTORS IN CLOSED-FORM

<u>Matteoli, Stefania</u>, National Research Council of Italy, Italy <u>Diani, Marco</u>, Italian Naval Academy, Italy <u>Corsini, Giovanni</u>, University of Pisa, Italy

FR2.R4.4: OFF-NADIR LONGWAVE INFRARED HYPERSPECTRAL MATERIAL IDENTIFICATION USING RADIOMETRIC MODELS

Zelinski, Michael, Lawrence Livermore National Laboratory, United States

FR2.R4.5: A NEW AUTOENCODER TRAINING PARADIGM FOR UNSUPERVISED HYPERSPECTRAL ANOMALY DETECTION

Merrill, Nicholas, Virginia Tech, United States Olson, Colin, U.S. Naval Research Laboratory, United States

FR2.R4.6: MULTI-TEMPORAL UNMIXING FOR THE DETECTION AND CONCENTRATION OF CHEMICALS IN POLLUTED WATER

<u>Shimoni, Michal</u>, Belgian Royal Military Academy, Belgium <u>Perneel, Christiaan</u>, Royal Military academy, Belgium

FR2.R4.7: TEMPORAL ANOMALY DETECTION IN MULTISPECTRAL IMAGERY

<u>Ziemann, Amanda</u>, Los Alamos National Laboratory, United States <u>Simonoko, Hope</u>, Los Alamos National Laboratory, United States <u>Flynn, Eric</u>, Los Alamos National Laboratory, United States

FR2.R5 - Data Fusion: Hyperspectral Friday, October 2, 07:30 - 09:30 • Room 5 and Lidar

FR2.R5.1: DENSIFICATION OF AIRBORNE LIDAR POINT CLOUD WITH FUSED ENCODER-DECODER NETWORKS

Wang, Weimin, National Institute of Advanced Industrial Science and Technology (AIST), Japan Vinayaraj, Poliyapram, AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), Japan Nakamura, Ryosuke, National Institute of Advanced Industrial Science and Technology (AIST), Japan

FR2.R5.2: FUSION OF MULTISPECTRAL LIDAR AND HYPERSPECTRAL IMAGERY

Rasti, Behnood, Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany Ghamisi, Pedram, Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Germany Gloaguen, Richard, Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany

FR2.R5.3: DEEP INTRA FUSION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION

<u>Hu, Jing</u>, Xi'an University of Technology, China <u>Chen, Huilin</u>, Xi'an University of Technology, China <u>Zhao, Minghua</u>, Xi'an University of Technology, China <u>Li, Yunsong</u>, Xidian University,

China

FR2.R5.4: COMBINED THE DATA-DRIVEN WITH MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED NOISE REMOVAL IN HYPERSPECTRAL IMAGE

Zhang, Qiang, Wuhan University, China Sun, Fujun, Beijing Electro-mechanical Engineering Institute, China Yuan, Qiangqiang, Wuhan University, China Li, Jie, Wuhan University, China Shen, Huanfeng, Wuhan University, China Zhang, Liangpei, Wuhan University, China

FR2.R5.5: DEEP RESIDUAL SPATIAL ATTENTION NETWORK FOR HYPERSPECTRAL PANSHARPENING

Zheng, Yuxuan, State Key Laboratory of Integrated Service Networks, Xidian University, China Li, Jiaojiao, State Key Laboratory of Integrated Service Networks, Xidian University, China Li, Yunsong, State Key Laboratory of Integrated Service Networks, Xidian University, China Shi, Yanzi, State Key Laboratory of Integrated Service Networks, Xidian University, China Qu. Jiahui, State Key Laboratory of Integrated Service Networks, Xidian University, China

FR2.R5.6: PROBABILITY FUSION FOR HYPERSPECTRAL AND LIDAR DATA

<u>Ge, Chiru</u>, Shandong Normal University, China <u>Du, Qian</u>, Mississippi State University, United States

FR2.R5.7: CNN-BASED TREE SPECIES CLASSIFICATION USING AIRBORNE LIDAR DATA AND HIGH-RESOLUTION SATELLITE IMAGE

<u>Li, Hui</u>, Aerospace Information Research Institute, China <u>Hu, Baoxin</u>, York University, Canada <u>Li, Qian</u>, York University, Canada <u>Jing, Linhai</u>, Aerospace Information Research Institute, China

FR2.R5.8: HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION USING NON-CONVEX RELAXATION LOW RANK AND TOTAL VARIATION REGULARIZATION

<u>Yuan, Yue</u>, Northwestern Polytechnical University, China <u>Qi, Wang</u>, Northwestern Polytechnical University, China <u>Li, Xuelong</u>, Northwestern Polytechnical University, China

FR2.R5.9: DATA-DRIVEN AND MODEL-DRIVEN SPECTRAL SUPERRESOLUTION ALGORITHMS: COMBINATION, ANALYSIS AND APPLICATION FOR CLASSIFICATION

<u>He, Jiang</u>, Wuhan University, China <u>Li, Jie</u>, Wuhan University, China <u>Yuan, Qianggiang</u>, Wuhan University, China

FR2.R5.10: LOCALLY LINEAR RECONSTRUCTION FOR SPECTRAL ENHANCEMENT USING LIMITED PIXEL-TO-PIXEL MULTISPECTRAL AND HYPERSPECTRAL DATA

Hong, Danfeng, German Aerospace Center (DLR), Germany Yao, Jing, German Aerospace Center (DLR), Germany Hang, Renlong, Nanjing University of Information Science and Technology, China Chanussot, Jocelyn, Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LJK, France

FR2.R5.11: TOTAL NUCLEAR NORMS OF GRADIENTS FOR HYPERSPECTRAL IMAGE PANSHARPENING

<u>Yuzuriha, Ryota</u>, University of Kitakyushu, Japan <u>Kurihara, Ryuji</u>, University of Kitakyushu, Japan <u>Matsuoka, Ryo</u>, Kyushu Institute of Technology, Japan <u>Okuda, Masahiro</u>, University of Kitakyushu, Japan

FR2.R6 - Advanced Processing Tools Friday, October 2, 07:30 - 09:30 • Room 6 for Feature Extraction and Reductions

FR2.R6.1: A RADIATION BASED TOPOGRAPHIC CORRECTION METHOD ON LANDSAT 8/OLI SURFACE REFLECTANCE

Zhao, Wei, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China Li, Xinjuan, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China Wen, Fengping, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China Wang, Wei, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China

FR2.R6.2: HYPERSPECTRAL DATA CLASSIFICATION AND REGRESSION USING WAVELET TRANSFORM

<u>Yamada, Takato</u>, University of Tokyo, Japan <u>lwasaki, Akira</u>, University of Tokyo, Japan <u>lnoue,</u> <u>Yoshio</u>, University of Tokyo, Japan

FR2.R6.3: NOISE ANALYSIS OF HYPERSPECTRAL IMAGES CAPTURED BY DIFFERENT SENSORS

Zhang, Shuo, Hunan University, China <u>Kang, Xudong</u>, Hunan University, China <u>Mo, Yan</u>, Hunan University, China <u>Li, Shutao</u>, Hunan University, China

FR2.R6.4: RESEARCH OF HILBERT HUANG TRANSFORM ALGORITHM AND ITS IMPROVEMENT

<u>Luo. Jingxin</u>, Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China, China <u>Tang, Jianyang</u>, Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China, China

FR2.R6.5: A NOVEL VARIATIONAL AUTOENCODER BASED RADAR SIGNAL RECONSTRUCTION ALGORITHM USING POLLUTED DATA

Jing, Zehuan, Xidian University, China <u>Wu, Bin</u>, Xidian University, China <u>Li, Peng</u>, Xidian University, China <u>Yang, Rui</u>, Xidian University, China <u>Li, Jingyi</u>, Xidian University, China <u>Wang, Zhao</u>, Xidian University, China

FR2.R6.6: DR-KNN: A HYBRID APPROACH FOR DIMENSIONALITY REDUCTION OF EO IMAGE DATASETS

<u>Griparis, Andreea</u>, University Politehnica of Bucharest, Research Center for Spatial Information, Romania <u>Faur, Daniela</u>, University Politehnica of Bucharest, Research Center for Spatial Information, Romania <u>Datcu, Mihai</u>, German Aerospace Center (DLR), Germany

FR2.R6.7: SUBPIXEL-LEVEL EDGE FEATURE MATCHING FOR SAR AND OPTICAL IMAGES BASED ON ZERNIKE MOMENTS

<u>Qian, Huan</u>, Beijing Normal University, China <u>Yue, Jianwei</u>, Beijing Normal University, China <u>Chen, Min</u>, Southwest Jiaotong University, China <u>Wang, Modi</u>, Beijing Normal University, China <u>Xin, Haiqiang</u>, Xinjiang Academy of Surveying and Mapping, China

FR2.R6.8: POLSAR IMAGE FEATURE EXTRACTION BASED ON CO-REGULARIZATION

<u>Huang, Xiayuan</u>, Chinese Academy of Sciences, China <u>Nie, Xiangli</u>, Chinese Academy of Sciences, China <u>Qiao, Hong</u>, Chinese Academy of Sciences, China

FR2.R6.9: VIDEO SATELLITE IMAGERY SUPER RESOLUTION FOR 'JILIN-1' VIA A SINGLE-AND-MULTI FRAME ENSEMBLED FRAMEWORK

Zhang, Shu, Wuhan University, China <u>Yuan, Qiangqiang</u>, Wuhan University, China <u>Li, Jie</u>, Wuhan University, China

FR2.R6.10: ADVANCING TEXTURE METRICS TO MODEL LANDSCAPE HETEROGENEITY

Schuh, Leila, University of Zurich, Switzerland Schaepman, Michael, University of Zurich, Switzerland Santos, Maria J., University of Zurich, Switzerland de Jong, Rogier, Swiss Re Institute, Switzerland Furrer, Reinhard, University of Zurich, Switzerland

FR2.R6.11: RESEARCH ON STEREO MATCHING FOR SATELLITE GENERALIZED IMAGE PAIR BASED ON IMPROVED SURF AND RFM

Li, Xiaoxi, University of Electronic Science and Technology of China, China Luo, Xin, University of Electronic Science and Technology of China, China Wu, Yuxuan, University of Electronic Science and Technology of China, China Li, Zhuotao, University of Electronic Science and Technology of China, China Xu, Wenbo, University of Electronic Science and Technology of China, China

FR2.R6.12: A FAST DENSE FEATURE TRACKING ROUTINE WITH ITS APPLICATION IN CRYOSPHERE REMOTE SENSING USING SENTINEL-1 AND LANDSAT-8 DATA

Lei, Yang, California Institute of Technology, United States Gardner, Alex, NASA Jet Propulsion
Laboratory, United States Agram, Plyush, NASA Jet Propulsion Laboratory, United States

FR2.R7 - Deep Learning Meets Earth Friday, October 2, 07:30 - 09:30 • Room 7 Sciences: From Hybrid Modeling to Explainability

FR2.R7.1: ADVANCING DEEP LEARNING FOR EARTH SCIENCES: FROM HYBRID MODELING TO INTERPRETABILITY

<u>Camps-Valls, Gustau</u>, Universitat de València, Spain <u>Reichstein, Markus</u>, German Aerospace Center (DLR), Germany <u>Tuia</u>, <u>Devis</u>, Wageningen University and Research (WUR), Netherlands

FR2.R7.2: INTERPRETABLE SCENICNESS FROM SENTINEL-2 IMAGERY

<u>Levering, Alex</u>, Wageningen University, Netherlands <u>Marcos, Diego</u>, Wageningen University, Netherlands <u>Lobry, Sylvain</u>, Wageningen University, Netherlands <u>Tuia, Devis</u>, Wageningen University, Netherlands

FR2.R7.3: TOWARDS PHYSICALLY-CONSISTENT, DATA-DRIVEN MODELS OF CONVECTION

<u>Beucler, Tom</u>, University of California, Irvine, United States <u>Pritchard, Michael</u>, University of California, Irvine, United States <u>Gentine, Pierre</u>, Columbia University, United States <u>Rasp</u>, <u>Stephan</u>, Technische Universität München, Germany

FR2.R7.5: INTERPRETABILITY OF RECURRENT NEURAL NETWORKS IN REMOTE SENSING

<u>Pérez-Suay, Adrián</u>, Universitat de València, Spain <u>Adsuara, Jose E.</u>, Universitat de València, Spain <u>Piles, Maria</u>, Universitat de València, Spain <u>Martínez-Ferrer, Laura</u>, Universitat de València, Spain <u>Díaz, Emiliano</u>, Universitat de València, Spain <u>Moreno-Martínez, Álvaro</u>, Universitat de València, Spain <u>Camps-Valls, Gustau</u>, Universitat de València, Spain

FR2.R7.6: MODELING MOUNTAIN SNOWPACK DYNAMICS WITH CGANS: A VALIDATION STUDY

<u>Manepalli, Ashray</u>, terrafuse, inc., United States <u>Mudigonda, Mayur</u>, terrafuse, inc., United States <u>Albert, Adrian</u>, terrafuse, inc., United States

FR2.R7.7: DISCOVERING DIFFERENTIAL EQUATIONS FROM EARTH OBSERVATION DATA

Adsuara, Jose E., Universitat de València, Spain <u>Pérez-Suay</u>, <u>Adrián</u>, Universitat de València, Spain <u>Moreno-Martínez</u>, <u>Álvaro</u>, Universitat de València, Spain <u>Camps-Valls</u>, <u>Gustau</u>, Universitat de València, Spain <u>Kraemer</u>, <u>Guido</u>, Max Planck Institute for Biogeochemistry, Germany <u>Reichstein</u>, <u>Markus</u>, Max Planck Institute for Biogeochemistry, Germany <u>Mahecha</u>, <u>Miguel</u>, Max Planck Institute for Biogeochemistry, Germany

FR2.R7.8: JOINT SPATIAL AND GRAPH CONVOLUTIONAL NEURAL NETWORKS - A HYBRID MODEL FOR SPATIAL-SPECTRAL GEOSPATIAL IMAGE ANALYSIS

<u>Foroozandeh Shahraki, Farideh</u>, University of Houston, United States <u>Prasad, Saurabh</u>, University of Houston, United States

FR2.R8 - Marine Coastal Processes monitored by SAR

Friday, October 2, 07:30 - 09:30 • Room 8

FR2.R8.1: SAR MONITORING OF COASTAL CHANGES IN INTERTIDAL AREAS

Gade, Martin, Universität Hamburg, Germany

FR2.R8.2: RETRIEVAL OF SEA SURFACE WIND SPEED BY SPACEBORNE SAR BASED ON MACHINE LEARNING

Li, Xiao-Ming, Aerospace Information Research Institute, Chinese Academy of Sciences, China

FR2.R8.3: INVESTIGATION OF TROPICAL CYCLONE WIND ASYMMETRY FROM CROSS-POLARIZATION SAR IMAGERY

<u>Yang, Xiaofeng</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Wang, Sheng</u>, Aerospace Information Research Institute, Chinese Academy of Sciences, China <u>Ren, Kaijun</u>, National University of Defense Technology, China

FR2.R8.4: MONITORING HARSH COASTAL ENVIRONMENTS USING POLARIMETRIC SAR DATA: THE CASE OF SOLWAY FIRTH WETLANDS

Nunziata, Ferdinando, Università degli Studi di Napoli Parthenope, Italy Ferrentino, Emanuele, Università degli Studi di Napoli Parthenope, Italy Marino, Armando, University of Stirling, United Kingdom Buono, Andrea, Università degli Studi di Napoli Parthenope, Italy Migliaccio, Maurizio, Università degli Studi di Napoli Parthenope, Italy

FR2.R8.5: IMPACT OF INTENSE AQUACULTURE ON COASTAL ENVIRONMENTS SEEN BY SAR

<u>Chatziantoniou, Andromachi</u>, University of the Aegean, Greece <u>Topouzelis, Konstantinos</u>, University of the Aegean, Greece

FR2.R8.6: COMPARISON OF RADARSAT-2 AND RCM SIMULATED DATA FOR THE

DETECTION OF ACTIONABLE OCEAN SURFACE OIL

Staples, Gordon, MDA, Canada Garcia, Oscar, WaterMapping, United States

FR2.R9 - Classification Methods

Friday, October 2, 07:30 - 09:30 • Room 9

FR2.R9.1: POTENTIAL OF LAND COVER CLASSIFICATION BASED ON GF-1 AND GF-3 DATA

Yu, Ruikun, Shandong Jianzhu University, China Wang, Guanghui, Ministry of Natural Resource, China Shi, Tongguang, Shandong Jianzhu University, China Zhang, Wei, Ministry of Natural Resource, China Lu, Chen, Ministry of Natural Resource, China Zhang, Tao, Ministry of Natural Resource, China

FR2.R9.2: CLASSIFICATION OF WINTER LAND COVER IN NEW ZEALAND HILL COUNTRY FOR RISKY PRACTICE IDENTIFICATION

Amies, Alexander, Manaaki Whenua – Landcare Research, New Zealand Belliss, Stella,
Manaaki Whenua – Landcare Research, New Zealand North, Heather, Manaaki Whenua –
Landcare Research, New Zealand Pairman, David, Manaaki Whenua – Landcare Research,
New Zealand Dymond, John, Manaaki Whenua – Landcare Research, New Zealand Schindler,
Jan, Manaaki Whenua – Landcare Research, New Zealand Shepherd, James, Manaaki Whenua
– Landcare Research, New Zealand Drewry, John, Manaaki Whenua – Landcare Research,
New Zealand

FR2.R9.3: SEMI-SUPERVISED LAND COVER CLASSIFICATION USING PI-SAR2 OBSERVATION DATA

Arima, Yuya, National Institute of Information and Communications Technology, Japan Kojima, Shoichiro, National Institute of Information and Communications Technology, Japan Lemoto, Jyunpei, National Institute of Information and Communications Technology, Japan Konno, Tomohiko, National Institute of Information and Communications Technology, Japan

FR2.R9.4: HIGHLY CONTAMINATED WORK MODE IDENTIFICATION OF PHASED ARRAY RADAR USING DEEP LEARNING METHOD

Hui, Xiaolong, Key Laboratory of Electronic Information Countermeasure and Simulation Technology Ministry of Education, School of Electronic Engineering, Xidian University, China Wu, Bin, Key Laboratory of Electronic Information Countermeasure and Simulation Technology Ministry of Education, School of Electronic Engineering, Xidian University, China Li, Peng, Key Laboratory of Electronic Information Countermeasure and Simulation Technology Ministry of Education, School of Electronic Engineering, Xidian University, China Hou, Chao, Key Laboratory of Electronic Information Countermeasure and Simulation Technology Ministry of Education, School of Electronic Engineering, Xidian University, China Wang, Zhao, Key Laboratory of Electronic Information Countermeasure and Simulation Technology Ministry of Education, School of Electronic Engineering, Xidian University, China Technology Ministry of Education, School of Electronic Engineering, Xidian University, China

FR2.R9.5: KERNEL ROTATIONAL NETWORK FOR SYNTHETIC APERTURE RADAR TARGET RECOGNITION

Zhou, Yuanyuan, University of Electronic Science and Technology of China, China Hu, Yao, University of Electronic Science and Technology of China, China Wang, Chen, University of Electronic Science and Technology of China, China Wang, Mou, University of Electronic Science and Technology of China, China Shi, Jun, University of Electronic Science and Technology of China, China Wei, Shunjun, University of Electronic Science and Technology of China, China

FR2.R9.6: EXTRACTION OF POWER LINES AND PYLONS FROM LIDAR POINT CLOUDS USING A GCN-BASED METHOD

<u>Li, Wen</u>, Xiamen University, China <u>Zhang, Ziyue</u>, University of Nottingham Ningbo China, China <u>Luo, Zhipeng</u>, Xiamen University, China <u>Xiao, Zhenlong</u>, Xiamen University, China <u>Wang, Cheng</u>, Xiamen University, China <u>Li, Jonathan</u>, University of Waterloo, Canada

FR2.R9.7: A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR 3D POINT CLOUDS

Sha, Zhengchuan, Xiamen University, China Zhu, Qing, Xiamen University, China Chen, Yiping, Xiamen University, China Wang, Cheng, Xiamen University, China Nurunnabi, Abdul, University of Luxembourg, Luxembourg Li, Jonathan, Xiamen University, Luxembourg

FR2.R9.8: MAPPING THE LAND DEVELOPMENT PROCESSES USING DATA TRANSFORMATION AND CLUSTERING METHODS

<u>Pourmohammadi, Pariya</u>, West Virginia University, United States <u>Adjeroh, Donald</u>, West Virginia University, United States <u>Strager, Michael</u>, West Virginia University, United States

FR2.R9.9: KERNEL LOCAL SAMPLE DIRECTIONAL DISCRIMINANT EMBEDDING FOR SAR AUTOMATIC TARGET RECOGNITION

Liu, Xian, University of Electronic Science and Technology of China, China Pei, Jifang, University of Electronic Science and Technology of China, China Huang, Yulin, University of Electronic Science and Technology of China, China Yang, Jianyu, University of Electronic Science and Technology of China, China

FR2.R9.10: RADAR SIGNAL INTRA-PULSE MODULATION RECOGNITION BASED ON CONTOUR EXTRACTION

Yu, Zhengyang, Xidian University, China Tang, Jianlong, Xidian University, China

FR2.R9.11: TREE SPECIES CLASSIFICATION BASED ON AIRBORNE LIDAR AND HYPERSPECTRAL DATA

<u>Lu, Xukun</u>, China Academy of Electronics and Information Technology, China <u>Liu, Gang</u>, China Academy of Electronics and Information Technology, China <u>Ning, Silan</u>, University of Electronic Science and Technology of China, China <u>Su, Zhonghua</u>, University of Electronic Science and Technology of China, China <u>He, Ze</u>, University of Electronic Science and <u>Technology of China</u>. China

FR2.R10 - Topography, Geology and $\,$ Friday, October 2, 07:30 - 09:30 \circ Room 10 Geomorphology II

FR2.R10.1: MICROWAVE THERMAL EMISSION FEATURES OF MARE TRANQUILLITATIS AND MARE SERENITATIS INDICATED BY CE2 CELMS DATA

Meng, Zhiguo, Jilin University, China Lei, Jietao, Jilin University, China Chen, Shengbo, Jilin University, China Yang, Changbao, Jilin University, China Yue, Zongyu, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Zhang, Yubo, Jilin University, China

FR2.R10.2: A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA

Muller, Marianne, Unisinos University, Brazil Sales, Vinicius, Unisinos University, Brazil Zanotta, Daniel, Unisinos University, Brazil Marques Junior, Ademir, Unisinos University, Brazil Guimarães, Tainá, Unisinos University, Brazil Bachi, Leonardo, Unisinos University, Brazil Souza, Eniuce, Unisinos University, Brazil Brum, Diego, Unisinos University, Brazil Gonzaga Junior, Luiz, Unisinos University, Brazil Veronez, Mauricio, Unisinos University, Brazil Cazarin, Caroline, CENPES/PETROBRÁS, Brazil

FR2.R10.3: RISK INVESTIGATION OF LANDSLIDE HAZARD AND DISASTER EMERGENCY BASED ON MULTI-PLATFORMS REMOTE SENSING TECHNIQUES

Jiang, Wenliang, Institute of Crustal Dynamics, China Earthqake Administration, China Jiao, Qisong, Institute of Crustal Dynamics, China Earthqake Administration, China Luo, Yi, Institute of Crustal Dynamics, China Earthqake Administration, China Li, Yongsheng, Institute of Crustal Dynamics, China Earthqake Administration, China Li, Qiang, Institute of Crustal Dynamics, China Earthqake Administration, China Li, Bingquan, Institute of Crustal Dynamics, China Earthqake Administration, China

FR2.R10.4: SURFICIAL IRON MINERAL POTENTIAL MAPPING FROM ASTER DATA IN MALMBERGET AND ADJOINING AREA IN NORRBOTTEN COUNTY SWEDEN

<u>Pal, Mahendra Kumar</u>, Luleå University of Technology, Sweden <u>Rasmussen, Thorkild Maack</u>, Luleå University of Technology, Sweden <u>Abdolmaleki, Mehdi</u>, Luleå University of Technology, Sweden

FR2.R10.5: EVALUATION OF TEMPERATURE IN A SELF-BURNING COAL WASTE PILE CONSIDERING UAV DATA AND IN SITU MEASUREMENTS

<u>Teodoro, Ana</u>, University of Porto, Institute of Earth Sciences, Portugal <u>Fernandes, João</u>, University of Porto, Institute of Earth Sciences, Portugal <u>Santos, Patricia</u>, University of Porto, Institute of Earth Sciences, Portugal <u>Duarte, Lia</u>, University of Porto, Institute of Earth

Sciences, Portugal Flores, Deolinda, University of Porto, Institute of Earth Sciences, Portugal

FR2.R10.6: LOCAL VALIDATION AND COMPARISON OF GLOBAL DIGITAL ELEVATION MODELS USING A LARGE ASSEMBLY OF GNSS GROUND MEASUREMENTS

<u>Baade, Jussi</u>, Friedrich Schiller University Jena, Germany <u>Schmullius, Christiane</u>, Friedrich Schiller University Jena, Germany

FR2.R10.7: MULTI-SCALE APPROACH USING REMOTE SENSING TECHNIQUES FOR LITHIUM PEGMATITE EXPLORATION: FIRST RESULTS

Cardoso-Fernandes, Joana, University of Porto, Portugal <u>Teodoro, Ana Cláudia</u>, University of Porto, Portugal <u>Lima, Alexandre</u>, University of Porto, Portugal <u>Mielke, Christian</u>, German Research Center for Geosciences, Germany <u>Körting, Friederike</u>, German Research Center for Geosciences, Germany <u>Roda-Robles, Encarnación</u>, Universidad del País Vasco, Spain <u>Cauzid</u>, <u>Jean</u>, Université de Lorraine, France

FR2.R10.8: VOLUME MEASUREMENT OF COASTAL BEDROCK EROSION USING UAV AND TLS

<u>Hayakawa, Yuichi</u>, Hokkaido University, Japan <u>Obanawa, Hiroyuki</u>, National Agriculture and Food Research Organization, Japan

FR2.R10.9: DATA IMBALANCE IN LANDSLIDE SUSCEPTIBILITY ZONATION: A CASE STUDY OF MANDAKINI RIVER BASIN, UTTARAKHAND, INDIA

<u>Gupta, Sharad Kumar</u>, Indian Institute of Technology Mandi, India <u>Shukla, Dericks P.</u>, Indian Institute of Technology Mandi, India

FR2.R10.10: IDENTIFICATION OF LANDSLIDE SUSCEPTIBLE AREAS FOR THE PROPER SETTLEMENT PLANNING IN THE KALI GANDAKI ROAD CORRIDOR, NEPAL

<u>Chen, Feiyu</u>, Sichuan University, China <u>Raj Adhikari, Basanta</u>, Sichuan University, China <u>Tian</u>, <u>Bingwei</u>, Sichuan University, China

FR2.R10.11: LARGE SCALE ASSESSMENT OF FREE GLOBAL DEMS THROUGH THE GOOGLE EARTH ENGINE PLATFORM

Ravanelli, Roberta, Sapienza University of Rome, Italy Nascetti, Andrea, KTH Royal Institute of Technology, Italy Crespi, Mattia, Sapienza University of Rome, Italy

FR2.R10.12: A GLOBAL ARCHIVE OF DINSAR CO-SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA

Monterroso, Fernando, IREA-CNR, Italy Ali, Zeeshan, University of Naples "Parthenope", Italy Bonano, Manuela, IREA-CNR, Italy De Luca, Claudio, IREA-CNR, Italy De Novellis, Vincenzo, IREA-CNR, Italy Lanari, Riccardo, IREA-CNR, Italy Manunta, Michele, IREA-CNR, Italy Manzo, Mariarosaria, IREA-CNR, Italy Onorato, Giovanni, IREA-CNR, Italy Valerio, Emanuela, IREA-CNR, Italy Zinno, Ivana, IREA-CNR, Italy Casu, Francesco, IREA-CNR, Italy

FR2.R11 - Remote Sensing for Crop Friday, October 2, 07:30 - 09:30 • Room 11 Parameters III

FR2.R11.1: CALIBRATION OF A SVAT MODEL IN THE CENTRAL ZONE OF MEXICO WITH IN-SITU DATA OVER A CORN FIELD REGION

Huerta Batiz, Héctor Ernesto, Instituto Politécnico Nacional, Mexico Constantino Recillas, Daniel Enrique, Instituto Politécnico Nacional, Mexico Monsiváis Huertero, Alejandro, Instituto Politécnico Nacional, Mexico Torres Gómez, Aura Citlalli, Instituto de Geografía y Geomatica Ing. Jorge L. Tamayo, Mexico Judge, Jasmeet, Center of Remote Sensing Dep. of Agric. and Biol. Eng, Mexico

FR2.R11.2: IMPROVING THE RICE YIELD ESTIMATION USING SMOS AND CYGNSS GNSS-R DATA

Zhan, Qian, China University of Geosciences (Beijing), China Vall-llossera, Mercè, Universitat Politècnica de Catalunya, Spain Pablos, Miriam, Institute of Marine Sciences (ICM), Spain Camps, Adriano, Universitat Politècnica de Catalunya, Spain Portal, Gerard, Universitat Politècnica de Catalunya, Spain Chaparro, David, Universitat Politècnica de Catalunya, Spain

FR2.R11.3: EMPIRICAL COMBINATION OF LANDSAT 7 AND 8 IMAGERY TO DETECT THE PHENOLOGICAL CHANGES IN RAINFED CROPLAND VEGETATION

Shen, Jianxiu, Murdoch University, Australia Evans, Fiona H., Murdoch University, Australia

FR2.R11.4: WINTER WHEAT PHENOLOGY EXTRACTION BASED ON DENSE TIME SERIES OF SENYINEL-1A DATA

Qiu, Lin, China University of Petroleum (East China), China Sun, Genyun, China University of Petroleum (East China), China Zhang, Aizhu, China University of Petroleum (East China), China Yao, Yanjuan, Ministry of Environmental protection of China, China

FR2.R11.5: PREDICTION OF GRAIN PROTEIN CONTENT OF WINTER WHEAT USING UAV BASED HYPERSPECTRAL DATA

Yang, Siqi, Peking University, China Wu, Haobo, Peking University, China Hu, Ling, Peking University, China Fan, Wenjie, Peking University, China Ren, Huazhong, Peking University, China

FR2.R11.6: ESTIMATING CHLOROPHYLL CONTENT OF RICE BASED ON UAV-BASED HYPERSPECTRAL IMAGERY AND CONTINUOUS WAVELET TRANSFORM

An, Ganggiang, University of Electronic Science and Technology of China, China Xing, Minfeng, University of Electronic Science and Technology of China, China Liao, Chunhua, Western University, Canada He, Binbin, University of Electronic Science and Technology of China, China

FR2.R11.7: SENTINEL-2 AND PLANETSCOPE DATA FUSION INTO DAILY 3 M IMAGES FOR LEAF AREA INDEX MONITORING

Sadeh, Yuval, Monash University, Australia Zhu, Xuan, Monash University, Australia Dunkerley, David, Monash University, Australia Walker, Jeffrey P., Monash University, Australia Zhang, Yuxi, Monash University, Australia Rozenstein, Offer, Volcani Center, Israel Manivasagam, V.S., Volcani Center, Israel Chenu, Karine, University of Queensland, Australia

FR2.R11.8: TOWARD MATURITY ASSESSMENT OF SNAP BEAN CROPS: A BEST-CASE GREENHOUSE SCENARIO

<u>Hassanzadeh, Amirhossein</u>, Rochester Institute of Technology, United States <u>Murphy, Sean</u>, Cornell University, United States <u>Pethybridge, Sarah</u>, Cornell University, United States <u>van Aardt, Jan</u>, Rochester Institute of Technology, United States <u>Zhang, Fei</u>, Rochester Institute of Technology, United States

FR2.R11.9: IMPROVED DROUGHT MONITORING METHOD BASED ON MULTISOURCE REMOTE SENSING DATA

<u>Wang, Zhengdong</u>, University of Chinese Academy of Sciences, China <u>Guo, Peng</u>, Shandong Agricultural University, China <u>Wan, Hong</u>, Shandong Agricultural University, China

FR2.R11.10: LEAF COUNTING IN RICE (ORYZA SATIVA L.) USING OBJECT DETECTION: A DEEP LEARNING APPROACH

<u>Kumar Vishal, Mukesh</u>, Indian Institute of Technology Bombay, India <u>Banerjee</u>, <u>Biplab</u>, Indian Institute of Technology Bombay, India <u>Saluja</u>, <u>Rohit</u>, Indian Institute of Technology Bombay, India <u>Raju</u>, <u>Dhandapani</u>, ICAR-IARI, India <u>Viswanathan</u>, <u>Chinnusamy</u>, ICAR-IARI, India <u>Kumar</u>, <u>Sudhir</u>, ICAR-IARI, India <u>Sahoo</u>, <u>Rabi Narayan</u>, ICAR-IARI, India <u>Adinarayana</u>, <u>Jagarlapudi</u>, Indian Institute of Technology Bombay, India

FR2.R11.11: MARKOV CHAIN MONTE CARLO AND FOUR-DIMENSIONAL VARIATIONAL APPROACH BASED WINTER WHEAT YIELD ESTIMATION

<u>Huang, Hai</u>, China Agricultural University, China <u>Huang, Jianxi Huang</u>, China Agricultural University, China <u>Wu, Yantong</u>, University of Electronic Science and Technology of China, <u>China</u>

FR2.R12 - Target Detection I

Friday, October 2, 07:30 - 09:30 • Room 12

FR2.R12.1: AN EFFICIENT COHERENT INTEGRATION APPROACH FOR BISTATIC SAR MOVING TARGET DETECTION AND PARAMETER ESTIMATION BASED ON 2-D DERAMP PROCESSING

<u>Liu, Zhutian</u>, University of Electronic Science and Technology of China, China <u>Li, Zhongyu</u>, University of Electronic Science and Technology of China, China <u>Sun, Zhichao</u>, University of Electronic Science and Technology of China, China <u>Wu, Junjie</u>, University of Electronic Science and Technology of China, China <u>Huang, Yulin</u>, University of Electronic Science and Technology of China, China <u>Yang, Jianyu</u>, University of Electronic Science and Technology of China, China <u>FR2.R12.2: A WEAK MOVING POINT TARGET DETECTION METHOD BASED ON HIGH</u>

FRAME RATE SAR IMAGE SEQUENCES AND MACHINE LEARNING

<u>Zhao, Chen</u>, Beihang University, China <u>Wang, Pengbo</u>, Beihang University, China <u>Chen, Jie</u>, Beihang University, China <u>Yang, Wei</u>, Beihang University, China

FR2.R12.3: REMOTELY SENSED METHOD FOR DETECTION OF SPATIAL DISTRIBUTION PATTERN OF DRYLAND PLANTS IN WATER LIMITED ECOSYSTEM

Hoshino, Buho, Rakuno Gakuen University, Japan Tian, Ying, Rakuno Gakuen University, Japan Shima, Keita, Rakuno Gakuen University, Japan Riga, Su, Rakuno Gakuen University, Japan Enkhtuvshin, Zoljarga, Mongolian Hydrological, Meteorological and Environmental Center of Sainshand, Japan McCarthy, Christopher, University of California, San Diego, Japan Purevtseren, Myagmartseren, National University of Mongolia, Japan

FR2.R12.4: SHADOW DETECTION IN SAR IMAGES: AN OTSU- AND CFAR-BASED METHOD

<u>Li, Haixiang</u>, University of Electronic Science and Technology of China, China <u>Yu, Xuelian</u>, University of Electronic Science and Technology of China, China <u>Sun, Xindong</u>, University of Electronic Science and Technology of China, China <u>Tian, Jinchuan</u>, University of Electronic Science and Technology of China, China <u>Wang, Xuegang</u>, University of Electronic Science and Technology of China, China

FR2.R12.5: GO DECOMPOSITION (GODEC) APPROACH TO FINDING LOW RANK AND SPARSITY MATRICES FOR HYPERSPECTRAL TARGET DETECTION

Cao, Hongju, Dalian Maritime University, China Shang, Xiaodi, Dalian Maritime University, China Wang, Yulei, Dalian Maritime University, China Song, Meiping, Dalian Maritime University, China Chen, Shuhan, Zhejiang University, China Chang, Chein-I, Dalian Maritime University, China

FR2.R12.6: A TWO-STEP SHIP TARGET DETECTION METHOD IN HIGH-RESOLUTION SAR IMAGE BASED ON COARSE-TO-FINE MECHANISM

<u>Sun, Kun</u>, Xidian University, China <u>Li, Yuanyuan</u>, Shanghai Radio Equipment Research Institution, China <u>Li, Cong</u>, Xidian University, China <u>Liang, Yi</u>, Xidian University, China <u>Xing, Mengdao</u>, Xidian University, China

FR2.R12.7: A LONG-TIME INTEGRATION METHOD FOR GNSS-BASED PASSIVE RADAR DETECTION OF MARINE TARGET WITH MULTI-STAGE MOTIONS

Huang, Chuan, University of Electronic Science and Technology of China, China Li, Zhongyu, University of Electronic Science and Technology of China, China Wu, Junjie, University of Electronic Science and Technology of China, China Huang, Yulin, University of Electronic Science and Technology of China, China Yang, Haiguang, University of Electronic Science and Technology of China, China Yang, Jianyu, University of Electronic Science and Technology of China, China

FR2.R12.8: EXPERIMENTAL RESULTS FOR GNSS-R BASED MOVING TARGET INDICATION

<u>Zhou, Xinkai</u>, Beihang University, China <u>Wang, PengBo</u>, Beihang University, China <u>Chen, Jie</u>, Beihang University, China <u>Zeng, HongCheng</u>, Beihang University, China <u>Pei, ZengCan</u>, Beihang University, China

FR2.R12.9: SUB-PIXEL MAPPING METHOD BASED ON K-SVD DICTIONARY LEARNING AND TOTAL VARIATION MINIMIZATION

Msellmi, Bouthayna, Univ. Manouba, RIADI GDL-lab, Tunisia Picone, Daniele, Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Tunisia Ben Rabah, Zouhaier, RIADI GDL-lab, Manouba, Tunisia Dalla mura, Mauro, INP GRENOBLE, Tunisia Farah, Imed Riadh, RIADI GDL-lab, Manouba, Tunisia

FR2.R12.10: ESTIMATION METHOD OF MICRO-DOPPLER PARAMETERS BASED ON CONCENTRATION OF TIME-FREQUENCY ROTATION DOMAIN

<u>Chen, Song</u>, University of Chinese Academy of Sciences, China <u>Liangjiang</u>, <u>Zhou</u>, University of Chinese Academy of Sciences, China <u>Wei, Liang</u>, University of Chinese Academy of Sciences, China <u>Dong</u>, <u>Han</u>, University of Chinese Academy of Sciences, China <u>Yirong</u>, <u>Wu</u>, University of Chinese Academy of Sciences, China <u>Chibiao</u>, <u>Ding</u>, University of Chinese Academy of Sciences, China

FR2.R12.11: FUSARIUM WILT INSPECTION FOR PHALAENOPSIS USING UNIFORM

INTERVAL HYPERSPECTRAL BAND SELECTION TECHNIQUES

<u>Chen, Bo-Han</u>, National Chung Hsing University, Taiwan <u>Ouyang, Yen-Chieh</u>, National Chung Hsing University, Taiwan <u>Ou-Yang, Mang</u>, National Chiao-Tung University, Taiwan <u>Guo, Horng-Yuh</u>, Taiwan Agriculture Research Institute, Taiwan <u>Liu, Tsang-Sen</u>, Taiwan Agriculture Research Institute, Taiwan <u>Chen, Hsian-Min</u>, Taichung Veterans General Hospital,, Taiwan <u>Wu, Chao-Cheng</u>, National Taipei University of Technology, Taiwan <u>Wen, Chia- Hsien</u>, Providence University, Taiwan <u>Chang, Chgein-I</u>, UMBC, United States <u>Shih, Min-Shao</u>, National Chung

FR2.R13 - Microwave Radiometer Instrumentation and Data Analysis

Friday, October 2, 07:30 - 09:30 • Room 13

FR2.R13.1: TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION

Martin-Neira, Manuel, European Space Agency, Netherlands Suess, Martin, European Space Agency, Netherlands Karafolas, Nikos, European Space Agency, Netherlands Piironen, Petri, European Space Agency, Netherlands Deborgies, François, European Space Agency, Netherlands Catalan, Albert, TRYO Aeorospace, Spain Vilaseca, Roger, TRYO Aeorospace, Spain Montero, José, TRYO Aeorospace, Spain Puertolas, Montserrat, TRYO Aeorospace, Spain Outumuro, Diego, TRYO Aeorospace, Spain Corbella, Ignasi, Polytechic University of Catalonia, Spain <u>Durán, Israel</u>, Polytechic University of Catalonia, Spain <u>Duffo, Nuria</u>, Polytechic University of Catalonia, Spain Materni, Roberto, Saphyrion Sagl, Switzerland Mengual, Teresa, DAS Photonics, Spain Piqueras, Miguel Angel, DAS Photonics, Spain Olea, Ana, Airbus Defence and Space, Spain Solana, Andrés, Airbus Defence and Space, Spain Closa, Josep, Airbus Defence and Space, Spain Zurita, Albert, Airbus Defence and Space, Spain Ramírez, Juan Ignacio, Airbus Defence and Space, Spain Breinbjerg, Olav, Technical University of Denmark, Denmark Bjørstorp, Jeppe Majlund, Technical University of Denmark, Denmark Kaslis, Kyriakos, Technical University of Denmark, Denmark Kristensen, Steen S, Technical University of Denmark, Denmark Oliva, Roger, Zenithal Blue Technologies, Spain Onrubia, Raúl, Zenithal Blue Technologies, Spain Camps, Adriano, MITICS, Spain Querol, Jorge, MITICS, Spain

FR2.R13.2: A WAVENUMBER DOMAIN IMAGING ALGORITHM FOR SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETRY IN NEAR-FIELD

<u>Fu, Peng</u>, Huazhong University of Science and Technology, China <u>Hu, Fei</u>, Huazhong University of Science and Technology, China <u>Hu, Hao</u>, Huazhong University of Science and Technology, China <u>Zheng, Tao</u>, Huazhong University of Science and Technology, China

FR2.R13.3: A NOVEL IF RECEIVER STRUCTURE IN HYPERSPECTRAL RADIOMETER

Zhao, Quan, School of Automation Engineering, University of Electronic Science and Technology of China, China Tong, Ling, School of Automation Engineering, University of Electronic Science and Technology of China, China Gao, Bo, School of Automation Engineering, University of Electronic Science and Technology of China, China

FR2.R13.4: STUDY ON THE IMPROVEMENT OF THE HYPERSPECTRUM RADIOMETER DIGITAL INTERMEDIATE FREQUENCY MODULE

Liu, Yukai, University of Electronic Science and Technology of China, China Tong, Ling, University of Electronic Science and Technology of China, China Gong, Xun, University of Electronic Science and Technology of China, China Gao, Xinyi, University of Electronic Science and Technology of China, China Wang, Peicheng, University of Electronic Science and Technology of China, China Gao, Bo, University of Electronic Science and Technology of China, China Gao, Bo, University of Electronic Science and Technology of China, China

FR2.R13.5: HIGH SPECTRAL RESOLUTION V-BAND DIGITAL CORRELATING SPECTROMETER FOR CLIMATE MONITORING

<u>Venkitasubramony, Aravind</u>, University of Colorado Boulder, United States <u>Gasiewski, Albin</u>, University of Colorado Boulder, United States

FR2.R13.6: POST-LAUNCH PERFORMANCE ASSESSMENT OF METOP-C ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) INSTRUMENT NOISE AND ANTENNA TEMPERATURE DATA

Yan, Banghua, NOAA Center for Satellite Applications and Research, United States Chen,

Junye, Global Science and Technology Inc., United States

FR2.R13.7: A COST-EFFECTIVE PORTABLE L-BAND RADIOMETER FOR DRONE AND GROUND-BASED APPLICATIONS

<u>Houtz, Derek</u>, Swiss Federal Research Institute WSL, Switzerland <u>Naderpour, Reza</u>, Swiss Federal Research Institute WSL, Switzerland <u>Schwank, Mike</u>, Swiss Federal Research Institute WSL, Switzerland

FR2.R13.8: COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES

<u>Vanin, Felice M.</u>, European Space Agency, Netherlands <u>Laberinti, Paolo</u>, European Space Agency, Netherlands <u>Donlon, Craig James</u>, European Space Agency, Netherlands <u>Fiorelli, Bendetta</u>, European Space Agency, Netherlands <u>Barat, Itziar</u>, European Space Agency, Netherlands <u>Pinol Sole, Monteserrat</u>, European Space Agency, Netherlands <u>Palladino, Massimo</u>, European Space Agency, Netherlands <u>Rudolph, Tobias</u>, European Space Agency, Netherlands <u>Galeazzi, Claudio</u>, European Space Agency, Netherlands

FR2.R13.9: SPATIAL RESOLUTION ENHANCEMENT OF RADIOMETER MEASUREMENTS COLLECTED BY THE FUTURE MICROWAVE CIMR MISSION

Nunziata, Ferdinando, Università degli Studi di Napoli Parthenope, Italy Alparone, Matteo, Università degli Studi di Napoli Parthenope, Italy Camps, Adriano, Universitat Politècnica de Catalunya-BarcelonaTech and Institut d'Estudis Espacials de Catalunya, Spain Zurita, Alberto M., AIRBUS Defence & Space, Space Systems, Spain Migliaccio, Maurizio, Università degli Studi di Napoli Parthenope, Italy

FR2.R13.10: AN ENHANCED PRODUCT FOR THE FSSCAT MICROWAVE RADIOMETER

Alparone, Matteo, Università degli Studi di Napoli Parthenope, Italy Camps, Adriano, Universitat Politècnica de Catalunya-BarcelonaTech and Institut d'Estudis Espacials de Catalunya, Spain Nunziata, Ferdinando, Università degli Studi di Napoli Parthenope, Italy Migliaccio, Maurizio, Università degli Studi di Napoli Parthenope, Italy

FR2.R13.11: MECHANICALLY-ACTUATED RECONFIGURABLE REFLECTARRAY (MARR) FOR MICROWAVE SINGLE PIXEL IMAGER (MSPI)

Bobak, Justin, Naval Research Laboratory, United States Rudolph, Scott, Naval Research Laboratory, United States Nurnberger, Michael, Naval Research Laboratory, United States Alqadah, Hatim, Naval Research Laboratory, United States Hicks, Brian, Naval Research Laboratory, United States Markowski, Blerta, Naval Research Laboratory, United States Bonanno, David, Naval Research Laboratory, United States Bounds, William, Naval Research Laboratory, United States

FR2.R13.12: IMAGING ALGORITHM AND MEASUREMENT ERROR IMPACT ON RETRIEVALS FROM THE MICROWAVE SINGLE PIXEL IMAGER (MSPI)

<u>Bobak, Justin</u>, Naval Research Laboratory, United States <u>Alqadah, Hatim</u>, Naval Research Laboratory, United States <u>Nurnberger, Michael</u>, Naval Research Laboratory, United States <u>Rudolph, Scott</u>, Naval Research Laboratory, United States <u>Bounds, William</u>, Naval Research <u>Laboratory, United States Himani, Tanish</u>, Naval Research <u>Laboratory, United States</u>

FR2.R14 - Remote Sensing for Mineral and Oil & Gas Exploration and Production Friday, October 2, 07:30 - 09:30 • Room 14

FR2.R14.1: IMAGING SPECTROSCOPY APPLIED TO MINERAL MAPPING OVER LARGE AREAS: USGS ANALYSIS OF AVIRIS-CLASSIC DATA COVERING CALIFORNIA AND NEVADA

<u>Kokaly, Raymond</u>, USGS, United States <u>Swayze, Gregg</u>, USGS, United States <u>Livo, Eric</u>, USGS, United States <u>Hoefen, Todd</u>, USGS, United States <u>Meyer, John</u>, Colorado School of Mines, United States

FR2.R14.3: TOWARDS 4D VIRTUAL OUTCROPS WITH HYPERSPECTRAL IMAGING

<u>Gloaguen, Richard</u>, Helmholz Institute Freiberg for Resource Technology, Germany <u>Kirsch, Moritz</u>, Helmholz Institute Freiberg for Resource Technology, Germany <u>Lorenz, Sandra</u>, Helmholz Institute Freiberg for Resource Technology, Germany <u>Booysen, René</u>, Helmholz

Institute Freiberg for Resource Technology, Germany Zimmermann, Robert, Helmholz Institute Freiberg for Resource Technology, Germany Ghamisi, Pedram, Helmholz Institute Freiberg for Resource Technology, Germany Rasti, Behnood, Helmholz Institute Freiberg for Resource Technology, Germany

FR2.R14.4: USING LONG WAVE INFRARED SPECTROSCOPY TO DETERMINE CHANGES IN THE MAFIC MINERALOGY OF DRILL CORE SAMPLES FROM THE HUMU'ULA GROUNDWATER RESEARCH PROJECT.

<u>Sheevam, Pooja</u>, Univeristy of Nevada - Reno, United States <u>Calvin, Wendy</u>, Univeristy of Nevada - Reno, United States

FR2.R14.5: QUANTITATIVE PREDICTIONS OF REE ABUNDANCES IN CARBONATITES USING REFLECTANCE SPECTROSCOPY

<u>Kopackova, Veronika</u>, Czech Geological Survey, Czech Republic <u>Rapprich, Vladislav</u>, Czech Geological Survey, Czech Republic <u>Magna, Tomas</u>, Czech Geological Survey, Czech Republic

FR2.R14.6: REMOTE SENSING OF OIL IN VEGETATED REGIONS: AN OVERVIEW OF RECENT ADVANCES AND FUTURE CHALLENGES TOWARD OPERATIONAL APPLICATIONS

<u>Lassalle, Guillaume</u>, University of Campinas (UNICAMP), Brazil <u>Fabre, Sophie</u>, ONERA, France <u>Credoz, Anthony</u>, TOTAL, France <u>Dubucq, Dominique</u>, TOTAL, France <u>de Souza Filho, Carlos</u> <u>Roberto</u>, University of Campinas (UNICAMP), Brazil

FR2.R14.7: GEOLOGICAL CHARACTERIZATION OF NIAQORNARSSUIT COMPLEX BASED ON AIRBORNE HYPERSPECTRAL AND MAGNETIC DATA FUSION

Kuras, Agnieszka, Norwegian University of Life Sciences, Norway Salehi, Sara, Geological Survey of Denmark and Greenland, Denmark Rogass, Christian, Helmholtz Centre Potsdam, Germany Mielke, Christian, Helmholtz Centre Potsdam, Germany Heincke, Bjoern, Geological Survey of Denmark and Greenland, Denmark Koellner, Nicole, Helmholtz Centre Potsdam, Germany Altenberger, Uwe, University of Potsdam, Germany Koerting, Friederike, Helmholtz Centre Potsdam, Germany

FR2.R14.8: PETROLEUM HYDROCARBON SWIR- LWIR SPECTRAL SIGNATURES & REMOTE SENSING DETECTION: PROSPECTS AND CONSTRAINTS

Souza Filho, Carlos, University of Campinas, Brazil

FR2.R15 - Copernicus C- and L- band $\,$ Friday, October 2, 07:30 - 09:30 $\,\circ$ Room 15 SAR Missions: Status, Evolution and

Contribution to Monitoring of Geohazards, Natural Disasters and Cryosphere Dynamics

FR2.R15.1: COPERNICUS SENTINEL MISSION AT C- AND L-BAND: CURRENT STATUS AND FUTURE PERSPECTIVES

<u>Torres, Ramon</u>, European Space Agency, Netherlands <u>Davidson, Malcolm</u>, European Space Agency, Netherlands <u>Geudtner, Dirk</u>, European Space Agency, Netherlands

FR2.R15.2: ENHANCED SEA ICE MONITORING AT L- AND C-BANDS USING ROSE-L AND SENTINEL-1

<u>Dierking, Wolfgang</u>, Alfred Wegener Institute, Germany <u>Davidson, Malcolm</u>, European Space Agency (ESA-ESTEC), Netherlands

FR2.R15.3: ENHANCED LAND COVER AND FLOOD MAPPING AT C- AND L-BAND

<u>Pierdicca, Nazzareno</u>, Sapienza University of Rome, Italy <u>Chini, Marco</u>, Luxembourg Institute of Science and Technology, Luxembourg <u>Pulvirenti, Luca</u>, CIMA Research Foundation, Italy

FR2.R15.4: GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN

Lanari, Riccardo, IREA-CNR, Italy Ali, Zeeshan, IREA-CNR, Universita Degli Studi Di Napoli, Parthenope, Italy Bonano, Manuela, IREA-CNR, IMAA-CNR, Italy Buonanno, Sabatino, IREA-CNR, Italy Casu, Francesco, IREA-CNR, Italy De Luca, Claudio, IREA-CNR, Italy Fusco, Adele, IREA-CNR, Italy Manunta, Michele, IREA-CNR, Italy Manzo, Mariarosaria, IREA-CNR, Italy Onorato, Giovanni, IREA-CNR, Italy Zinno, Ivana, IREA-CNR, Italy

FR2.R15.5: OPERATIONAL SOIL MOISTURE MAPPING AT C-BAND AND PERSPECTIVES FOR L-BAND

Mattia, Francesco, Consiglio Nazionale delle Ricerche (CNR), Italy Balenzano, Anna, Consiglio Nazionale delle Ricerche (CNR), Italy Lovergine, Francesco Paolo, Consiglio Nazionale delle Ricerche (CNR), Italy Palmisano, Davide, Consiglio Nazionale delle Ricerche (CNR), Italy Satalino, Giuseppe, Consiglio Nazionale delle Ricerche (CNR), Italy Davidson, Malcolm, European Space Agency (ESA), Netherlands

FR2.R15.6: P-BAND SYNTHETIC APERTURE RADAR FOR PLANETARY SUBSURFACE IMAGING APPLICATIONS

Rincon, Rafael, NASA, United States Carter, Lynn, NASA, United States Lu. Daniel, NASA, United States Du Toit, Cornelis, NASA, United States Perrine, Martin, NASA, United States Hollibaugh-Baker, David, NASA, United States Generie, Joseph, NASA, United States

FR2.R16 - Enhancement Methods for Friday, October 2, 07:30 - 09:30 • Room 16 Image Analysis

FR2.R16.1: DATA ADAPTIVE IMAGE ENHANCEMENT AND CLASSIFICATION FOR SYNTHETIC APERTURE SONAR

<u>Gerg, Isaac</u>, Pennsylvania State University, United States <u>Williams, David</u>, Centre for Maritime Research and Experimentation, Italy <u>Monga, Vishal</u>, Pennsylvania State University, United States

FR2.R16.2: DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY

Zhang, Nannan, Research Institute of Petroleum Exploration & Development, Petrochina, China Zhao, Hang, Research Institute of Petroleum Exploration & Development, Petrochina, China Liu, Yang, Research Institute of Petroleum Exploration & Development, PetroChina, China Liu, Song, Research Institute of Petroleum Exploration & Development, PetroChina, China Ma, Zhiguo, Research Institute of Petroleum Exploration & Development, PetroChina, China Guo, Hongyan, Research Institute of Petroleum Exploration & Development, PetroChina, China Dong, Wentong, Research Institute of Petroleum Exploration & Development, PetroChina, China Zhou, Hongying, Research Institute of Petroleum Exploration & Development, PetroChina, China Sun, Zhongyong, Research Institute of Petroleum Exploration & Development, PetroChina, China Qian, Kaijun, Research Institute of Petroleum Exploration & Development, PetroChina, China Qian, Kaijun, Research Institute of Petroleum Exploration & Development, PetroChina, China Qian, Kaijun, Research Institute of Petroleum Exploration & Development, PetroChina, China Qian, Kaijun, Research Institute of Petroleum Exploration & Development, PetroChina, China

FR2.R16.3: ADAPTIVE FUSION AND MASK REFINEMENT INSTANCE SEGMENTATION NETWORK FOR HIGH RESOLUTION REMOTE SENSING IMAGES

Ran, Jie, Chongqing University of Posts and Telecommunications, China Yang, Feng, Chongqing University of Posts and Telecommunications, China Gao, Chenqiang, Chongqing University of Posts and Telecommunications, China Zhao, Yue, Chongqing University of Posts and Telecommunications, China Qin, Anyong, Chongqing University of Posts and Telecommunications, China

FR2.R16.4: A NOVEL SUPPORT VECTOR MACHINE BASED RADAR INDIVIDUAL RECOGNITION ALGORITHM UNDER INCONSISTENT NOISE CONDITION

<u>Wu, Jiayue</u>, Xidian University, China <u>Wu, Bin</u>, Xidian University, China <u>Niu, Haonan</u>, Xidian University, China <u>Ma, Congcong</u>, Xidian University, China <u>Wang, Zhao</u>, Xidian University, China <u>Li, Peng</u>, Xidian University, China

FR2.R16.5: DATA AUGMENTATION FOR SHIP DETECTION USING KOMPSAT-5 IMAGES AND DEEP LEARNING MODEL

Lee, Seung-Jae, Korea Aerospace Research Institute (KARI), Korea (South) Chang, Jae-Young, Korea Aerospace Research Institute (KARI), Korea (South) Lee, Kwang-Jae, Korea Aerospace Research Institute (KARI), Korea (South) Oh, Kwan-Young, Korea Aerospace Research Institute (KARI), Korea (South)

FR2.R16.6: ELLIPSE-FCN: OIL TANKS DETECTION FROM REMOTE SENSING IMAGES WITH FULLY CONVOLUTION NETWORK

<u>Cui, Ziteng</u>, Shanghai Jiao Tong University, China <u>Guo, Weiwei</u>, Tongji University, China <u>Zhang, Zenghui</u>, Shanghai Jiao Tong University, China <u>Chen, Huiyuan</u>, Shanghai Jiao Tong University, China <u>Yu, Wenxian</u>, Shanghai Jiao Tong University, China

FR2.R16.7: SHIP DETECTION AND FINE-GRAINED RECOGNITION IN LARGE-FORMAT

REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORK

<u>Li, Jingrun</u>, School of Artificial Intelligence and Automation, Huazhong University of Science Technology, China <u>Tian, Jinwen</u>, School of Artificial Intelligence and Automation, Huazhong University of Science Technology, China <u>Gao, Peng</u>, School of Artificial Intelligence and Automation, Huazhong University of Science Technology, China <u>Li, Linfeng</u>, School of Artificial Intelligence and Automation, Huazhong University of Science Technology, China

FR2.R16.8: SAR IMAGE SHIP DETECTION BASED ON SCENE INTERPRETATION

<u>Hou, Shilong</u>, Dalian University of Technology, China <u>Ma, Xiaorui</u>, Dalian University of Technology, China <u>Wang, Xinrong</u>, Space Star Technology Co.Ltd, China <u>Fu, Zanhao</u>, Chongqing University, China <u>Wang, Jie</u>, Dalian University of Technology, China <u>Wang, Hongyu</u>, Dalian University of Technology, China

FR2.R16.9: IMAGE CLASSIFICATION IN SYNTHETIC APERTURE RADAR USING RECONSTRUCTION FROM LEARNED INVERSE SCATTERING

<u>Alvarez, Jacqueline</u>, University of California, Merced, United States <u>DeGuchy, Omar</u>, University of California, Merced, United States <u>Marcia, Roummel</u>, University of California, Merced, United States

FR2.R16.10: A DETECTION METHOD OF MULTI-SENSOR FOR RADAR COUNTERMEASURE NETWORK

<u>Tang, Yanli</u>, University of Electronic Science and Technology of China, China <u>Wan, Tao</u>, University of Electronic Science and Technology of China, China <u>Jiang, Kaili</u>, University of Electronic Science and Technology of China, China <u>Xiong, Ying</u>, University of Electronic Science and Technology of China, China <u>Tang, Bin</u>, University of Electronic Science and Technology of China, China

FR2.R16.11: VIZUALIZATION OF SAR CATEGORIES USING COMPLEX VALUED DEEP LEARNING

Gleich, Dušan, University of Maribor, Slovenia

FR2.R17 - Bistatic and Digital Beamforming SAR

Friday, October 2, 07:30 - 09:30 • Room 17

FR2.R17.1: FOCUSING OF SPACEBORNE SAR DATA USING THE IMPROVED NONLINEAR CHIRP SCALING ALGORITHM

Tang, Wanru, University of Electronic Science and Technology of China, China Huang, Bang, University of Electronic Science and Technology of China, China Zhang, Shunsheng, University of Electronic Science and Technology of China, China Wang, WenQin, University of Electronic Science and Technology of China, China Liu, Wenbo, University of Electronic Science and Technology of China, China

FR2.R17.2: PERFORMANCE ANALYSIS AND CONFIGURATION DESIGN OF GEOSYNCHRONOUS SPACEBORNE-AIRBORNE BISTATIC MOVING TARGET INDICATION SYSTEM

<u>Cui, Chang</u>, Beijing Institute of Technology, China <u>Dong, Xichao</u>, Beijing Institute of Technology, China <u>Hu, Cheng</u>, Beijing Institute of Technology, China

FR2.R17.3: SPACE TARGETS RESCALING BASED ON BISTATIC ISAR SYSTEM

<u>Xu, Dan, Xidian University, China Sun, Guang-Cai, Xidian University, China You, Dong, Xidian University, China Xing, Mengdao, Xidian University, China Pascazio, Vito, Università degli Studi di Napoli Parthenope, Italy</u>

FR2.R17.4: AN IMAGE-DOMAIN BASELINE ERROR ESTIMATION METHOD FOR AZIMUTH MULTI-CHANNEL SAR

<u>Xiang, Jixiang</u>, Xidian University, China <u>Sun, Guangcai</u>, Xidian University, China <u>Zhang, Zijing</u>, Xidian University, China <u>Wang, Yuqi</u>, Xidian University, China <u>Guo, Liang</u>, Xidian University, China <u>Xing, Mengdao</u>, Xidian University, China

FR2.R17.5: FAST TOTAL VARIATION SUPERRESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING

<u>Zhang, Qiping</u>, University of Electronic Science and Technology of China, China <u>Zhang, Yongchao</u>, University of Electronic Science and Technology of China, China <u>Zhang, Yin</u>,

University of Electronic Science and Technology of China, China <u>Huang, Yulin</u>, University of Electronic Science and Technology of China, China <u>Li, Wenchao</u>, University of Electronic Science and Technology of China, China <u>Yang, Jianyu</u>, University of Electronic Science and Technology of China, China

FR2.R17.6: IONOSPHERE ESTIMATION OF THE SPLIT-SPECTRUM INSAR BASED ON IRI MODEL

Zhang, Kexin, Institute of Remote Sensing and Geographic Information System, Peking University, China Jiao, Jian, Institute of Remote Sensing and Geographic Information System, Peking University, China Zeng, Qiming, Institute of Remote Sensing and Geographic Information System, Peking University, China

FR2.R17.7: AN ALGORITHM FOR ADAPTIVE DETERMINATION OF RADAR COHERENT INTEGRATION TIME

<u>DeLong, Jakob</u>, The Ohio State University, United States <u>Johnson, Joel T.</u>, The Ohio State University, United States

FR2.R17.8: POLYPHASE CODING FOR WEATHER RADARS

<u>Kumar, Mohit</u>, Colorado State University, United States <u>Chandrasekar</u>, <u>V</u>, Colorado State University, United States <u>Joshil</u>, <u>Shashank</u>, Colorado State University, United States

FR2.R17.9: THE RELATIONSHIP BETWEEN EMULSION FILM THICKNESS AND NORMALIZED RADAR CROSS SECTION CONSTRUCTED BY EXPERIMENT

Guo, Jie, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, China Xu, Chenqi, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, China Zhang, Xi, First Institute of Oceanography, Ministry of Natural Resources, China Ren, Guangbo, First Institute of Oceanography, Ministry of Natural Resources, China

FR2.R17.10: SDR IMPLEMENTATION OF A TESTBED FOR SYNCHRONIZATION OF COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS

Merlano-Duncan, Juan Carlos, SNT University of Luxembourg, Luxembourg Querol, Jorge, SNT University of Luxembourg, Luxembourg Martinez-Marrero, Liz, SNT University of Luxembourg, Luxembourg Krivochiza, Jevgenij, SNT University of Luxembourg, Luxembourg Camps, Adriano, Universitat Politècnica de Catalunya-BarcelonaTech and IEEC/CTE-UPC, Spain Chatzinotas, Symeon, SNT University of Luxembourg, Luxembourg Ottersten, Bjorn, SNT University of Luxembourg, Luxembourg

FR2.R18 - Analysis of Satellite ImagesFriday, October 2, 07:30 - 09:30 • Room 18 Time Series

FR2.R18.1: ANALYSIS OF THE SPATIAL AND TEMPORAL VARIATIONS OF LAND SURFACE TEMPERATURE OVER THE TIBETAN PLATEAU FROM 2000 TO 2018

<u>Yang, Mengjiao</u>, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China <u>Zhao, Wei</u>, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China <u>Zhan, Qiqi</u>, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China

FR2.R18.2: RAPID MAPPING OF BUSHFIRE HAZARD USING LANDSAT IMAGES AND GOOGLE EARTH ENGINE

<u>He, Yuhong</u>, University of Toronto Mississauga, Canada <u>Bonney, Mitchell</u>, University of Toronto Mississauga, Canada <u>Myint, Soe</u>, Arizona State University, Canada

FR2.R18.3: LANDSLIDE MONITORING AND DETECTION FOR MOUNTAINOUS AREAS USING SBAS COMBINED WITH GLCM

<u>Li, Baihui</u>, University of Electronic Science and Technology of China, China <u>Chen, Yan</u>, University of Electronic Science and Technology of China, China <u>Chen, Yunping</u>, University of Electronic Science and Technology of China, China <u>Lu, Youchun</u>, China Center for Resources Satellite Data and Application, China <u>Du, Min</u>, University of Electronic Science and Technology of China, China <u>Jiang, Linghai</u>, University of Electronic Science and Technology of China, China

FR2.R18.4: LONG-TERM VARIATION OF GLOBAL LAI AND THE UNCERTAINTY: ANALYSIS OF THE GEOV2 AND MODIS LAI PRODUCTS

Fang, Hongliang, Institute of Geographic Sciences and Natural Resources Research, Chinese

Academy of Sciences, China Wang, Yao, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Zhang, Yinghui, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Li, Sijia, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. China

FR2.R18.5: CHANGE OF IMPERVIOUS SURFACE OF CHENGDU CITY, CHINA

He, Yue, University of Electronic Science and Technology of China, China Zhang, Xiaobo, Chengdu Institute of Survey & Investigation, China Shi, Jibao, Chengdu Institute of Survey & Investigation, China Xia, Jun, Wuhan University, China Chen, Kai, Chengdu Institute of Survey & Investigation, China Weng, Tao, Chengdu Institute of Survey & Investigation, China Zheng, Zezhong, University of Electronic Science and Technology of China, China

FR2.R18.6: ANALYSIS OF TRAFFIC FLOW IN URBAN AREA FOR SATELLITE VIDEO

Yin, Zhiyong, Central South University, China Tang, Yuqi, Central South University, China

FR2.R18.7: SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS

Tanase, Mihai Andrei, Universidad de Alcala, Spain Borlaf, Ignacio, National Institute for Research and Development in Forestry "Marin Dracea, Romania Pascu, Ionut, National Institute for Research and Development in Forestry "Marin Dracea, Romania Pitar, Diana, National Institute for Research and Development in Forestry "Marin Dracea, Romania Apostol, Bogdan, National Institute for Research and Development in Forestry "Marin Dracea, Romania Petrila, Marius, National Institute for Research and Development in Forestry "Marin Dracea, Romania Chivulescu, Serban, National Institute for Research and Development in Forestry "Marin Dracea, Romania Leca, Stefan, National Institute for Research and Development in Forestry "Marin Dracea, Romania Pitar, Daniel, National Institute for Research and Development in Forestry "Marin Dracea, Romania Ciceu, Albert, National Institute for Research and Development in Forestry "Marin Dracea, Romania Dobre, Alexandru, National Institute for Research and Development in Forestry "Marin Dracea, Romania Popescu, Flaviu, National Institute for Research and Development in Forestry "Marin Dracea, Romania Badea, Ovidiu, National Institute for Research and Development in Forestry "Marin Dracea, Romania Aponte, Cristina, National Institute for Research and Development in Forestry "Marin Dracea, Romania

FR2.R18.8: RESEARCH ON THE DETECTION METHOD OF BUILDING SEISMIC DAMAGE CHANGE

<u>Zhao, Yan</u>, China Transport Telecommunications & Information Center, China <u>Ren, Huazhong</u>, Peking University, China <u>Geng, Danyang</u>, China Transport Telecommunications & Information Center, China

FR2.R18.9: MONITORING AND RISK ASSESSMENT OF HIGH-TEMPERATURE HEAT DAMAGE FOR SUMMER MAIZE BASED ON REMOTE SENSING DATA

<u>Yang, Lei</u>, Beijing Normal University, China <u>Song, Jinling</u>, Beijing Normal University, China <u>Han, Lijuan</u>, National Meteorological Center, Beijing, China <u>Xiao, Zhu</u>, Beijing Normal University, China <u>Wang, Xin</u>, Beijing Normal University, China

FR2.R18.10: ACTIVE FIRE MONITORING SERVICE FOR UKRAINE BASED ON SATELLITE DATA

<u>Shumilo, Leonid</u>, Space Research Institute NASU-SSAU, Ukraine <u>Bohdan, Yailymov</u>, Space Research Institute NASU-SSAU, Ukraine <u>Andrii, Shelestov</u>, Space Research Institute NASU-SSAU, Ukraine

FR2.R18.11: SPATIO-TEMPORAL STATISTICAL SEQUENTIAL ANALYSIS FOR TEMPERATURE CHANGE DETECTION IN SATELLITE IMAGERY

<u>Alfergani, Husam</u>, Rowan University, United States <u>Bouaynaya, Nidhal</u>, Rowan University, <u>United States Nazari, Rouzbeh</u>, <u>University of Alabama at Birmingham</u>, <u>United States</u>

FR2.R19 - Satellite Remote Sensing Friday, October 2, 07:30 - 09:30 • Room 19 of Atmospheric Composition:
Algorithms, Applications, and Process Studies III

FR2.R19.1: EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL

ACTION PLAN USING SATELLITE AEROSOL PRODUCT

Yang, Xinyue, Jiangsu Normal University, China Wang, Qianjie, Jiangsu Normal University, China Ma, Qingmiao, Jiangsu Normal University, China Li, Yingjie, Jiangsu Normal University, China Xue, Yong, China University of Mining and Technology, China Ling, Yun, Jiangsu Normal University, China Li, Xin, Jiangsu Normal University, China Chen, Fang, Jiangsu Normal University, China Huang, Nan, Jiangsu Normal University, China Zeng, Xing, Jiangsu Normal University, China Zeng, Xing, Jiangsu Normal University, China

FR2.R19.2: REVIEW OF GLOBAL NEAR REAL TIME PM2.5 ESTIMATES AND MODEL FORECASTS

<u>Kerekes, John</u>, U.S. Department of State, United States <u>Patel, Molini</u>, U.S. Department of State, United States <u>D'Angelo, Caroline</u>, U.S. Department of State, United States

FR2.R19.3: SATELLITE REMOTE SENSING OBSERVATIONS OF TRANS-ATLANTIC DUST TRANSPORT AND DEPOSITION: A MULTI-SENSOR ANALYSIS

Yu, Hongbin, NASA Goddard Space Flight Center, United States Tan, Qian, Bay Area Environmental Research Institute, United States Chin, Mian, NASA Goddard Space Flight Center, United States Kim, Dongchul, NASA Goddard Space Flight Center, United States Zhang, Zhibo, University of Maryland at Baltimore County, United States Song, Qianqian, University of Maryland at Baltimore County, United States

FR2.R19.4: WRF-CHEM SIMULATIONS OF AEROSOL TRANSPORT DURING THE ATTIKA FOREST FIRE EVENT OF JULY 2018

<u>Madala, Srikanth</u>, National University of Singapore, Singapore <u>Tan, Li</u>, National University of Singapore, Singapore <u>Salinas, Santo V.</u>, National University of Singapore, Singapore <u>Liew, Soo Chin</u>, National University of Singapore, Singapore

FR2.R19.5: MONITORING PM2.5 DISTRIBUTIONS OVER CHINA FROM GEOSTATIONARY SATELLITE OBSERVATIONS

Weng, Fuzhong, State Key Laboratory of Severe Weather, China <u>Huang, He</u>, Nanjing University, China <u>Han, Xiuzhen</u>, National Meteorological Satellite Center, China

FR2.R19.6: RETRIEVAL OF ARCTIC PARTICLE MICROPHYSICS FROM AIR-BORNE LIDAR AND SUN-PHOTOMETER DATA

<u>Böckmann, Christine</u>, University of Potsdam, Germany <u>Nakoudi, Konstantina</u>, Alfred Wegener Institute for Polar and Marine Research, Germany <u>Ritter, Christoph</u>, Alfred Wegener Institute for Polar and Marine Research, Germany <u>Herber, Andreas</u>, Alfred Wegener Institute for Polar and Marine Research, Germany

FR2.R19.7: DETECTING LAYER HEIGHT OF SMOKE AND DUST AEROSOLS OVER VEGETATED LAND AND WATER SURFACES VIA OXYGEN ABSORPTION BANDS

Zeng, Jing, University of Iowa, United States Xu, Xiaoguang, University of Maryland Baltimore County, United States Wang, Jun, University of Iowa, United States Wang, Yi, University of Iowa, United States Chen, Xi, University of Iowa, United States Lu, Zhendong, University of Iowa, United States Torres, Omar, NASA Goddard Space Flight Center, United States Reid, Jeffrey, Naval Research Laboratory, United States Miller, Steven, Cooperative Institute for Research in the Atmosphere, United States

FR2.R19.8: A HIGH-SPATIAL-RESOLUTION AEROSOL RETRIEVAL ALGORITHM FOR SENTINEL-2 IMAGES OVER BRIGHT URBAN SURFACES

Hou, Lei, University of Electronic Science and Technology of China, China Chen, Yunping, University of Electronic Science and Technology of China, China Ma, Cunshi, University of Electronic Science and Technology of China, China Yang, Yue, University of Electronic Science and Technology of China, China Chen, Yan, University of Electronic Science and Technology of China, China Sun, Yuan, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China Gu, Xingfa, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China

FR2.R19.9: HIGH RESOLUTION AEROSOL RETRIEVAL OVER URBAN SURFACES USING LANDSAT 8 OLI

<u>Yang, Yue</u>, University of Electronic Science and Technology of China, China <u>Chen, Yunping</u>, University of Electronic Science and Technology of China, China <u>Hou, Lei</u>, University of Electronic Science and Technology of China, China <u>Chen, Yan</u>, University of Electronic Science

and Technology of China, China <u>Sun, Yuan</u>, Chinese Academy of Sciences, China <u>Gu, Xingfa</u>, Chinese Academy of Sciences, China <u>Wei, Zhishen</u>, University of Electronic Science and Technology of China, China

FR2.R19.10: ESTIMATION OF DIRECTIONAL SURFACE REFLECTANCE AND ATMOSPHERIC AEROSOLS OVER EAST ASIA USING A MULTI-CHANNEL GEOSTATIONARY SATELLITE

<u>Lee, Kwon-Ho</u>, Gangneung-Wonju National University, Korea (South) <u>Yoo, Jung-Moon</u>, Ewha Womans University, Korea (South) <u>Wong, Main-Slagu</u>Hong Kong Polytechnic University, China

IGARSS 2020

Author Index

<u>ABCDEFGHIJKLMNOPQRSTUVWXYZ</u>

- 1	Λ.
L	_
	╮

A.Zaidan, Martha	pg. 4379 TU2.R11.10 - ON THE ESTIMATION OF THE LEAF ANGLE DISTRIBUTION FROM DRONE BASED PHOTOGRAMMETRY
Aavaste, Age	pg. 4750 TH1.R4.5 - METHODOLOGY FOR MAPPING FLOOD EXTENT ON ESTONIAN FLOODPLAINS
Abahussain, Asma	pg. 5729 WE1.R8.1 - PRELIMINARY RESULTS ON BLUE CARBON CONTENT MAPPING IN COASTAL WATERS OF THE ARABIAN GULF USING SATELLITE-BASED MODELING APPROACH
Abbasi, Bilawal	pg. 5430 WE1.R19.12 - EFFECTS OF CLOUD ON LAND SURFACE TEMPERATURE (LST) CHANGE IN THERMAL INFRARED REMOTE SENSING IMAGES: A CASE STUDY OF LANDSAT 8 DATA
Abdelfattah, Riadh	pg. 1003) WE1.R3.3 - POST-FLOOD SURFACE DEFORMATION ANALYSIS USING P-SBAS-DINSAR SENTINEL-1 PROCESSING IN THE NORTH OF TUNISIA pg. 1327) WE2.R3.5 - INFINITE NUMBER OF LOOKS PREDICTION IN POLSAR FILTERING BY LINEAR REGRESSION
Abdelguerfi, Mahdi	pg. 1853) TH1.R12.3 - FLIGHT DATA OF AIRPLANE FOR WIND FORECASTING pg. 976 TU2.R18.7 - LEVEE-CRACK DETECTION FROM SATELLITE OR DRONE IMAGERY USING MACHINE LEARNING APPROACHES
Abdeljaouad, Sâadi	pg. 1861 TH1.R12.5 - PLSR METHOD FOR CONTAMINATING MINERAL CONTENT PREDICTION FROM FIELD HYPERSPECTRAL REFLECTANCE: A CASE STUDY OF HAMMAM ZRIBA MINING AREA
Abdo, Ray	pg. 3865 FR1.R3.2 - POLSAR ANALYSIS OF COHERENT AND DIFFUSE DOUBLE-BOUNCE SCATTERING OCCURING WITHIN A VEGETATED MEDIUM pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Abdolmaleki, Mehdi	pg. 5215 FR2.R10.4 - SURFICIAL IRON MINERAL POTENTIAL MAPPING FROM ASTER DATA IN MALMBERGET AND ADJOINING AREA IN NORRBOTTEN COUNTY SWEDEN
Abdujabarov, Nuriddin	pg. 4546 WE1.R11.8 - OBSERVATION OF CROP GROWTH CONDITION IN DIFFERENT REGIONS OF UZBEKISTAN
Abe, Takahiro	pg. 6830 WE1.R2.4 - CO- AND POST-ERUPTIVE SURFACE

	DEFORMATION FOLLOWING THE 2018 ERUPTION OF KILAUEA VOLCANO REVEALED BY ALOS-2 MULTI-MODE IMAGES
Abela, John	pg. 2213 TH2.R20.5 - AUTOMATIC BENTHIC HABITAT MAPPING USING INEXPENSIVE UNDERWATER DRONES
Abraham, Saji	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2)
Acevedo Juárez, Brenda	pg. 3223 TH2.R14.9 - GEONOTE: A FIELD NOTEBOOK AND DATABASE FOR GEOLOGY
Acharya, Ashish	pg. 2252 FR1.R5.3 - A QUANTITATIVE ANALYSIS ON THE USE OF SUPERVISED MACHINE LEARNING IN EARTH SCIENCE
Achim, Alin	pg. 1568) WE2.R16.12 - A SIMULATION STUDY TO EVALUATE THE PERFORMANCE OF THE CAUCHY PROXIMAL OPERATOR IN DESPECKLING SAR IMAGES OF THE SEA SURFACE
Ackerman, Steve	WE1.R19.6 - EXTENDING NASA'S MODIS/VIIRS CLOUD CLIMATE DATA RECORD TO THE ADVANCED GEOSTATIONARY IMAGERS
Adagbasa, Efosa Gbenga	pg. 6646 TU1.R13.3 - SMALL SCALE SOIL EROSION SUSCEPTIBILITY MODELLING IN A PROTECTED MOUNTAINOUS GRASSLAND USING SENTINEL-2, FIELD, AND CLIMATE DATA
Adamescu, Mihai	pg. 4271 TU1.R1.6 - INTEGRATED PLATFORM FOR ECOSYSTEMS MONITORING BASED ON REMOTE AND IN SITU MEASUREMENTS
Adami, Marcos	pg. 4100 MO2.R1.7 - SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER pg. 1345 WE2.R3.10 - LAND COVER CLASSIFICATION OF AN AREA SUSCEPTIBLE TO LANDSLIDES USING RANDOM FOREST AND NDVI TIME SERIES DATA pg. 1389 WE2.R5.11 - MAPPING DEFORESTED AREAS IN THE CERRADO BIOME THROUGH RECURRENT NEURAL NETWORKS
Adams, lan	WE1.R19.1 - FIRST YEAR OF COSMIR OBSERVATIONS OF EAST COAST WINTER STORMS FROM THE IMPACTS CAMPAIGN pg. 3759 TH2.R13.1 - MAPPING OCEAN-REFLECTED RADIO FREQUENCY INTERFERENCE FOR THE GPM MICROWAVE IMAGER USING NORMALIZED RETRIEVAL COST FUNCTION pg. 5341 TU2.R19.1 - RECONFIGURING COSSIR FOR THE NEXT GENERATION OF CLOUD AND PRECIPITATION SCIENCE pg. 3608 WE2.R19.6 - RECENT ADVANCES TO THE OPENSSP PARTICLE AND SCATTERING DATABASE pg. 5469 TH1.R19.10 - TOWARDS A MASS-CONSISTENT METHODOLOGY FOR REALISTIC MELTING HYDROMETEOR RETRIEVAL
Adaniya, Nicolle	pg. 3231 TH2.R14.11 - CLASSIFICATION OF ERRORS IN GEOGRAPHIC DATA USING ISO 19157

Adelabu, Samuel	pg. 4493 WE1.R10.5 - TESTING AND COMPARING THE APPLICABILITY OF SENTINEL-2 AND LANDSAT 8 REFLECTANCE DATA IN ESTIMATING MOUNTAINOUS HERBACEOUS BIOMASS BEFORE AND AFTER FIRE USING RANDOM FOREST MODELLING
Adelabu, Samuel Adewale	pg. 6646 TU1.R13.3 - SMALL SCALE SOIL EROSION SUSCEPTIBILITY MODELLING IN A PROTECTED MOUNTAINOUS GRASSLAND USING SENTINEL-2, FIELD, AND CLIMATE DATA
Adhikari, Hari	pg. 1319 WE2.R3.3 - PRODUCING A GAP-FREE LANDSAT TIME SERIES FOR THE TAITA HILLS, SOUTHEASTERN KENYA
Adinarayana, Jagarlapudi	pg. 5286 FR2.R11.10 - LEAF COUNTING IN RICE (ORYZA SATIVA L.) USING OBJECT DETECTION: A DEEP LEARNING APPROACH
Adjeroh, Donald	pg. 2775 FR2.R9.8 - MAPPING THE LAND DEVELOPMENT PROCESSES USING DATA TRANSFORMATION AND CLUSTERING METHODS
Adriano, Bruno	pg. 3751 TH2.R12.7 - DAMAGE CHARACTERIZATION IN URBAN ENVIRONMENTS FROM MULTITEMPORAL REMOTE SENSING DATASETS BUILT FROM PREVIOUS EVENTS
Adsuara, Jose E.	pg. 3991 FR2.R7.5 - INTERPRETABILITY OF RECURRENT NEURAL NETWORKS IN REMOTE SENSING pg. 3999 FR2.R7.7 - DISCOVERING DIFFERENTIAL EQUATIONS FROM EARTH OBSERVATION DATA pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Adão, Telmo	pg. 6309 WE2.R17.4 - VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY TH2.R11.6 - VIRTUAL ENVIRONMENTS & SUSTAINABLE AGRICULTURE: A CASE STUDY pg. 6487 FR1.R15.8 - TARGET INFLUENCE ON GROUND CONTROL POINTS (GCPS) IDENTIFICATION IN AERIAL IMAGES pg. 4195 MO2.R11.9 - MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE
Agarwal, Ankush	pg. 2237 TH2.R20.11 - FEATURE-BASED TEMPLATE MATCHING FOR JOGGLED FISHPLATE DETECTION IN RAILROAD TRACK WITH DRONE IMAGES
Agersborg, Jørgen	pg. 3873 FR1.R3.4 - POLARIMETRIC GUIDED NONLOCAL MEANS COVARIANCE MATRIX ESTIMATION FOR DEFOLIATION MAPPING
Agram, Piyush	pg. 3139 WE2.R14.2 - SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS pg. 1897 TH1.R16.3 - AN EFFICIENT AREA-BASED ALGORITHM FOR SAR RADIOMETRIC TERRAIN CORRECTION AND MAP PROJECTION pg. 2743 FR2.R6.12 - A FAST DENSE FEATURE TRACKING

	ROUTINE WITH ITS APPLICATION IN CRYOSPHERE REMOTE SENSING USING SENTINEL-1 AND LANDSAT-8 DATA
Aguaiza, Santiago	WE1.R2.9 - DEFORMATION MONITORING AND SOURCE MODELLING BY INSAR OF THE WOLF VOLCANO (GALAPAGOS, ECUADOR)
Aguiar, Pedro	TU2.R3.6 - PS-INSAR TARGET CLASSIFICATION USING DEEP LEARNING
Aguilar, Alan	pg. 3841 TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS
Ahmad, Jawairia	pg. 2942 MO2.R9.7 - DIAGNOSTIC ANALYSIS OF A DATA ASSIMILATION FRAMEWORK FOR IMPROVING SNOW MASS ESTIMATION IN COMPLEX TERRAIN
Ahmed, Jebon	pg. 4299 TU2.R10.2 - DEVELOPMENT OF GREENNESS ANALYSIS TOOL USING REMOTE SENSING SATELLITE IMAGES
Ahmed, Razi	(pg. 96) MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION
Ahmed, Salman	pg. 1528 WE2.R16.2 - COMPARATIVE ANALYSIS BETWEEN OPTICAL AND FUSED IMAGE WITH SAR
Ahn, Jae-Kwang	pg. 6635 TU1.R2.12 - EARTHQUAKE EARLY WARNING USING LOW-COST MEMS SENSORS
Ahn, Jae-kwang	pg. 3857 TH2.R17.7 - SEISMIC SIGNAL SYNTHESIS BY GENERATIVE ADVERSARIAL NETWORK WITH GATED CONVOLUTIONAL NEURAL NETWORK STRUCTURE
Ai, Ping	pg. 1185 WE1.R17.4 - BUILDING RECOGNITION OF UAV REMOTE SENSING IMAGES BY DEEP LEARNING
Aiazzi, Bruno	pg. 232 MO2.R16.5 - AUTOMATIC FINE ALIGNMENT OF MULTISPECTRAL AND PANCHROMATIC IMAGES
Aikat, Subhas	pg. 1719] TH1.R5.3 - UNSUPERVISED LAND COVER CLASSIFICATION OF HYBRID POLSAR IMAGES USING DEEP NETWORK pg. 4084] MO2.R1.3 - A STUDY OF DETECTING COAL SEAM FIRES BY REMOVING OTHER HIGH TEMPERATURE LOCATIONS FROM LANDSAT 8 OLI/TIRS IMAGES pg. 1965] TH1.R17.9 - FROM SUPERVISED TO UNSUPERVISED LEARNING FOR LAND COVER ANALYSIS OF SENTINEL-2 MULTISPECTRAL IMAGES.
Aires, Alysson	pg. 2619 FR2.R3.4 - HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN REMOTE SENSING IMAGES?
Akay, Semih Sami	pg. 672 TU1.R12.5 - ASSESSING MORPHOLOGICAL CHANGES OF MEANDERING RIVERS USING UNMANNED AERIAL VEHICLES

Akbar, Fatemeh	pg. 1432 WE2.R6.11 - AN ACCURATE LOW-COST METHOD FOR Q-FACTOR AND RESONANCE FREQUENCY MEASUREMENTS OF RF AND MICROWAVE RESONATORS
Akbar, Ruzbeh	pg. 3841 TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS
	pg. 3845 TH2.R17.4 - SPCTOR: SENSING POLICY CONTROLLER AND OPTIMIZER
	pg. 3947 FR2.R1.7 - OBSERVATION-DRIVEN ESTIMATION OF SURFACE WATER BALANCE COMPONENTS FROM SMAP MEASUREMENTS
	pg. 5042 FR1.R1.7 - SOILSCAPE WIRELESS IN SITU NETWORKS IN SUPPORT OF CYGNSS LAND APPLICATIONS
Akl, Alexi	pg. 4359 TU2.R11.5 - OPEN-SOURCE SOFTWARE FOR CROP PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB IMAGES
Aksoy, Mustafa	pg. 6357 TH1.R13.4 - ACCURACY: ADAPTIVE CALIBRATION OF CUBESAT RADIOMETER CONSTELLATIONS
	pg. 2995 TU1.R9.9 - MULTI-FREQUENCY PASSIVE REMOTE SENSING OF ICE SHEETS FROM L-BAND TO W-BAND
Akwasi, Twum-Antwi	pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB- SAHARA AFRICA
Al Bitar, Ahmad	pg. 5089 FR1.R4.7 - GLOBAL WEEKLY INLAND SURFACE WATER DYNAMICS FROM L-BAND MICROWAVE
	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Al Marar, Abdulla	pg. 5454 TH1.R19.6 - MISSION OPERATIONS AND SCIENCE PLAN FOR THE MEZNSAT CUBESAT MISSION FOR GREENHOUSE GASES MONITORING
Al Sedairy, Talal	pg. 3585 WE2.R15.10 - THE SAR-XL MULTI-APERTURE X AND L BAND SAR SYSTEM WITH DIGITAL BEAMFORMING AND ITS CORRESPONDING DUAL-BAND APPLICATIONS
Al-Khadi, Mohammad	pg. 5434 TH1.R19.1 - MONITORING RAPID CHANGE IN THE ATMOSPHERE USING CYGNSS WIND SPEED MEASUREMENTS
Al-Khaldi, Mohammad	WE1.R13.2 - ASSESSMENT OF CYGNSS CHARACTERIZATION OF TROPICAL CYCLONES USING MATCHED FILTER BASED RETRIEVALS
	WE1.R13.5 - LAND AND OCEAN COHERENCE DETECTION USING THE CYCLONE GLOBAL NAVIGATION SATELLITE SYSTEM (CYGNSS) MISSION LEVEL-1 DELAY-DOPPLER MAPS
Al-Mulla, Yaseen	pg. 6297 WE2.R17.1 - USE OF DRONES AND SATELLITE IMAGES TO ASSESS THE HEALTH OF DATE PALM TREES

	[pg. 6297] WE2.R17.1 - USE OF DRONES AND SATELLITE IMAGES TO ASSESS THE HEALTH OF DATE PALM TREES
Al-Yaari, Amen	pg. 4434 WE1.R1.1 - DEVELOPMENT AND VALIDATION OF THE SMOS-IC VERSION 2 (V2) SOIL MOISTURE PRODUCT
Alaqeel, Abdulrahman	pg. 374 MO2.R19.9 - IMPROVED DETECTION TECHNIQUES FOR NEW MILLIMETER WAVE AUTOMOTIVE RADARS
Albano, Matteo	pg. 810 TU2.R3.7 - SUBSIDENCE MONITORING ALONG RAVENNA COASTAL AREA (NORTHERN ITALY) BY INSAR AND GPS DATA
Albert, Adrian	pg. 3995 FR2.R7.6 - MODELING MOUNTAIN SNOWPACK DYNAMICS WITH CGANS: A VALIDATION STUDY
Albespy, Benjamin	pg. 6491 FR1.R15.9 - THE NEW PARAMOTOR PROJECT: FLEXIBILITY AT LOW COST TO OVERCOME MAIN LIMITATIONS OF MULTI-COPTERS AND FIXED-WINGS UAVS
Albright, John	pg. 3622 TH2.R2.3 - DISTINGUISHING INFLATION DRIVERS AT SHALLOW MAGMATIC SYSTEMS USING ENSEMBLE-BASED DATA ASSIMILATION
Albright, John A.	pg. 3618 TH2.R2.2 - GEODETIC DATA ASSIMILATION FOR EVALUATING VOLCANIC UNREST
Aleksandrowicz, Sebastian	pg. 485 TU1.R6.3 - MULTIFRACTAL PARAMETERS FOR CLASSIFICATION OF HYPERSPECTRAL DATA (pg. 1691) TH1.R3.8 - MULTIFRACTAL FEATURES FOR LAND USE CLASSIFICATION
Alexander, Ben	pg. 2229 TH2.R20.9 - MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING
Alexander, David	pg. 6028 TU1.R14.11 - LIGHTGUIDE, INTEGRAL FIELD SNAPSHOT IMAGING SPECTROMETER FOR ENVIRONMENTAL IMAGING AND EARTH OBSERVATIONS
Alfergani, Husam	pg. 2917 FR2.R18.11 - SPATIO-TEMPORAL STATISTICAL SEQUENTIAL ANALYSIS FOR TEMPERATURE CHANGE DETECTION IN SATELLITE IMAGERY
Alharbi, Mohammad	pg. 3585 WE2.R15.10 - THE SAR-XL MULTI-APERTURE X AND L BAND SAR SYSTEM WITH DIGITAL BEAMFORMING AND ITS CORRESPONDING DUAL-BAND APPLICATIONS
Ali, Rumman	pg. 4665 WE2.R11.4 - USE OF REMOTE SENSING SATELLITE IMAGES IN RICE AREA MONITORING SYSTEM OF BANGLADESH
Ali, Syed Mohsin	pg. 7025 TU2.R20.1 - MODEL AND DATA UNCERTAINTY FOR SATELLITE TIME SERIES FORECASTING WITH DEEP RECURRENT MODELS

Ali, Tarig	pg. 1327 WE2.R3.5 - INFINITE NUMBER OF LOOKS PREDICTION IN POLSAR FILTERING BY LINEAR REGRESSION
Ali, Thamer-Salim	pg. 5729 WE1.R8.1 - PRELIMINARY RESULTS ON BLUE CARBON CONTENT MAPPING IN COASTAL WATERS OF THE ARABIAN GULF USING SATELLITE-BASED MODELING APPROACH
Ali, Zeeshan	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR COSEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Alimo, Ryan	pg. 6941 FR1.R2.9 - SCHEDULING MISSION RECONFIGURATION FOR AN INTERFEROMETRY SYNTHETIC APERTURE RADAR USING DEEP REINFORCEMENT LEARNING
Aljurbua, Abdulrahman	pg. 2241 TH2.R20.12 - AN ALGORITHM FOR BURIED PIPELINE DETECTION USING A 3-D BISTATIC IMAGING RADAR
Alkhaleefah, Mohammad	pg. 1548 WE2.R16.7 - RECURRENT DEEP LEARNING FOR RICE FIELDS DETECTION FROM SAR IMAGES
Alkhatlan, Alanoud	pg. 5729 WE1.R8.1 - PRELIMINARY RESULTS ON BLUE CARBON CONTENT MAPPING IN COASTAL WATERS OF THE ARABIAN GULF USING SATELLITE-BASED MODELING APPROACH
Allende-Alba, Gerardo	pg. 6471 FR1.R15.4 - KALMAN FILTER-BASED TRAJECTORY ESTIMATION USING A LOW-COST SENSOR AND AERIAL IMAGES
Alliez, Pierre	pg. 1837 TH1.R9.10 - SEMI2I: SEMANTICALLY CONSISTENT IMAGE-TO-IMAGE TRANSLATION FOR DOMAIN ADAPTATION OF REMOTE SENSING DATA
Allioux, Renaud	pg. 280 MO2.R17.6 - CONCURRENT SEGMENTATION AND OBJECT DETECTION CNNS FOR AIRCRAFT DETECTION AND IDENTIFICATION IN SATELLITE IMAGES
Alnujaim, Ibrahim	pg. 2440 FR1.R14.4 - HUMAN DETECTION WITH RANGE- DOPPLER SIGNATURES USING 3D CONVOLUTIONAL NEURAL NETWORKS
Alonso Gonzalez, Kevin	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Alonso, Kevin	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Alparone, Luciano	pg. 232 MO2.R16.5 - AUTOMATIC FINE ALIGNMENT OF MULTISPECTRAL AND PANCHROMATIC IMAGES
Alparone, Matteo	pg. 6539 FR2.R13.9 - SPATIAL RESOLUTION ENHANCEMENT OF RADIOMETER MEASUREMENTS COLLECTED BY THE FUTURE MICROWAVE CIMR MISSION

	pg. 6543 FR2.R13.10 - AN ENHANCED PRODUCT FOR THE FSSCAT MICROWAVE RADIOMETER
Alpers, Werner	pg. 3537 WE2.R8.5 - SMALL-SCALE AND SUB-MESOSCALE PHENOMENA ASSOCIATED WITH UPWELLING STUDIED BY SAR
Alqadah, Hatim	pg. 6547 FR2.R13.11 - MECHANICALLY-ACTUATED RECONFIGURABLE REFLECTARRAY (MARR) FOR MICROWAVE SINGLE PIXEL IMAGER (MSPI) pg. 6551 FR2.R13.12 - IMAGING ALGORITHM AND MEASUREMENT ERROR IMPACT ON RETRIEVALS FROM THE MICROWAVE SINGLE PIXEL IMAGER (MSPI)
Alrashed, Abdullah	pg. 3585 WE2.R15.10 - THE SAR-XL MULTI-APERTURE X AND L BAND SAR SYSTEM WITH DIGITAL BEAMFORMING AND ITS CORRESPONDING DUAL-BAND APPLICATIONS
Alsweiss, Suleiman	pg. 5982 TU1.R4.11 - AMSR-2 OBSERVATIONS OF HURRICANE DORIAN
Altenberger, Uwe	FR2.R14.7 - GEOLOGICAL CHARACTERIZATION OF NIAQORNARSSUIT COMPLEX BASED ON AIRBORNE HYPERSPECTRAL AND MAGNETIC DATA FUSION
Alvarez, Cesar	pg. 4610 WE2.R10.1 - ESTIMATION OF NITROGEN IN THE SOIL OF BALSA TREES IN ECUADOR USING UNMANNED AERIAL VEHICLES
Alvarez, Emilio	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Alvarez, Jacqueline	pg. 2867 FR2.R16.9 - IMAGE CLASSIFICATION IN SYNTHETIC APERTURE RADAR USING RECONSTRUCTION FROM LEARNED INVERSE SCATTERING
Alvarez, Jose Oliverio	pg. 1397 WE2.R6.2 - NONDESTRUCTIVE MICROWAVE SPECTROSCOPY IN CALCITE-RICH SHALE CORE SLABS
Amao, Joel	pg. 3059 WE1.R9.4 - UNSUPERVISED CLUSTERING OF C-BAND POLSAR DATA OVER SEA ICE
Amaral, Izidoro	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Amato, Joel	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2)
Ames, Troy	pg. 3629 TH2.R2.6 - SUPPORTING AQUACULTURE IN THE CHESAPEAKE BAY USING ARTIFICIAL INTELLIGENCE TO DETECT POOR WATER QUALITY WITH REMOTE SENSING (pg. 3696) TH2.R7.9 - QUANTUM ASSISTED IMAGE REGISTRATION
Amies, Alexander	pg. 2751 FR2.R9.2 - CLASSIFICATION OF WINTER LAND COVER IN NEW ZEALAND HILL COUNTRY FOR RISKY PRACTICE

	IDENTIFICATION
Amiot, Thierry	pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Amitrano, Donato	pg. 1977 TH1.R18.1 - A SAR-BASED FEASIBILITY STUDY ON DETECTION OF OIL SEEPAGE FROM BURIED PIPELINES
An, Gangqiang	pg. 5270 FR2.R11.6 - ESTIMATING CHLOROPHYLL CONTENT OF RICE BASED ON UAV-BASED HYPERSPECTRAL IMAGERY AND CONTINUOUS WAVELET TRANSFORM
Anagnostou, Emmanouil	pg. 3943 FR2.R1.6 - STORM POWER OUTAGE PREDICTION AND VERIFICATION USING NWP MODELS AND REMOTE SENSING DATA
Anderlini, Letizia	pg. 810 TU2.R3.7 - SUBSIDENCE MONITORING ALONG RAVENNA COASTAL AREA (NORTHERN ITALY) BY INSAR AND GPS DATA
Anderson, Andreas	pg. 4598 WE2.R1.10 - MACHINE LEARNING BASED SOIL MOISTURE RETRIEVAL FROM UNMANNED AIRCRAFT SYSTEM MULTISPECTRAL REMOTE SENSING
Anderson, Chris	pg. 5119 FR1.R10.3 - BIOGEOCHEMICAL EXPLORATION OF GOLD MINERALIZATION AND ITS PATHFINDER ELEMENTS USING HYPERSPECTRAL REMOTE SENSING
Anderson, Dylan	pg. 2296 FR1.R6.2 - MULTIMODAL DATA FUSION VIA ENTROPY MINIMIZATION pg. 2097 TH2.R5.9 - OPTICAL AND POLARIMETRIC SAR DATA FUSION TERRAIN CLASSIFICATION USING PROBABILISTIC FEATURE FUSION
Anderson, John	pg. 3070 WE1.R9.7 - MAPPING VEGETATION AND SEASONAL THAW DEPTH IN CENTRAL ALASKA USING AIRBORNE HYPERSPECTRAL AND LIDAR DATA
Anderson, Kent	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2).
Anderson, Nikolaus	pg. 6413 TH1.R15.9 - RAILROAD VALLEY RADIOMETRIC CALIBRATION TEST SITE (RADCATS) AS PART OF A GLOBAL RADIOMETRIC CALIBRATION NETWORK (RADCALNET)
Andrews, Mark	pg. 3010 TU2.R9.2 - ULTRA WIDEBAND RADIOMETER SIGNATURES OF ARCTIC SEA ICE: PRELIMINARY RESULTS FROM THE MOSAIC CAMPAIGN pg. 6434 FR1.R13.5 - P-BAND RADIOMETRY: RFI AND CALIBRATION FOR UWBRAD
Andrii, Shelestov	pg. 2913 FR2.R18.10 - ACTIVE FIRE MONITORING SERVICE

	FOR UKRAINE BASED ON SATELLITE DATA
Anfinsen, Stian	pg. 3892 FR1.R7.1 - CHANGE DETECTION WITH HETEROGENEOUS REMOTE SENSING DATA: FROM SEMI- PARAMETRIC REGRESSION TO DEEP LEARNING
Anfinsen, Stian Normann	pg. 3873 FR1.R3.4 - POLARIMETRIC GUIDED NONLOCAL MEANS COVARIANCE MATRIX ESTIMATION FOR DEFOLIATION MAPPING pg. 684 TU1.R12.8 - HETEROGENEOUS CHANGE DETECTION WITH SELF-SUPERVISED DEEP CANONICALLY CORRELATED AUTOENCODERS pg. 4327 TU2.R10.9 - GENERATION OF LIDAR-PREDICTED FOREST BIOMASS MAPS FROM RADAR BACKSCATTER WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
Angal, Amit	pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Angelino, Cesario Vincenzo	pg. 6770 TU2.R2.1 - POST-FIRE ASSESSMENT OF BURNED AREAS WITH LANDSAT-8 AND SENTINEL-2 IMAGERY TOGETHER WITH MODIS AND VIIRS ACTIVE FIRE PRODUCTS
Anghel, Andrei	pg. 3869 FR1.R3.3 - SPACEBORNE TRANSMITTER - STATIONARY RECEIVER BISTATIC SAR POLARIMETRY - EXPERIMENTAL RESULTS pg. 1913 TH1.R16.7 - TIME-DOMAIN SAR PROCESSOR FOR SENTINEL-1 TOPS DATA pg. 2376 FR1.R9.11 - SYNTHETIC APERTURE RADAR FOCUSING BASED ON BACK-PROJECTION AND COMPRESSIVE SENSING pg. 124 MO2.R6.11 - SINGLE-PASS SPACEBORNE TRANSMITTER-STATIONARY RECEIVER BISTATIC SAR TOMOGRAPHY - NOVEL SOLUTION WITH 3 IMAGING CHANNELS
Anguelova, Magdalena	pg. 5662 TU1.R8.5 - ABSORPTION AND SCATTERING BY SEA FOAM STREAKS AT MILLIMETER-WAVE FREQUENCIES
Angulo, Victor	pg. 5111 FR1.R10.1 - DEVELOPMENT OF LOW-COST GROUND CONTROL SYSTEM FOR UAV-BASED MAPPING pg. 4902 TH1.R11.10 - A SUPERVOXEL-BASED APPROACH FOR LEAVES SEGMENTATION OF POTATO PLANTS FROM POINT CLOUDS pg. 6627 TU1.R2.10 - SEISMIC ANALYSIS ON HISTORICAL BRIDGE USING PHOTOGRAMMETRY AND FINITE ELEMENTS
Ankur, Kumar	pg. 2252 FR1.R5.3 - A QUANTITATIVE ANALYSIS ON THE USE OF SUPERVISED MACHINE LEARNING IN EARTH SCIENCE
Annane, Bachir	pg. 5313 TU1.R19.6 - ASSIMILATION OF GNSS-R DELAY- DOPPLER MAPS INTO WEATHER MODELS
Ansari, Rizwan Ahmed	pg. 2523 FR1.R17.3 - A GPU ACCELERATED CONTOURLET METHOD FOR DETECTING CHANGES DUE TO FIRE USING REMOTE SENSING
Anterrieu, Eric	pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND

	RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS
	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-
Antoine, Raphaël	pg. 445 TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV
, and and a second	DRONE REMOTE SENSING USING PYTHON MODELLING ELECTRICAL RESISTIVITY IMAGING (PYMERI)
Antropov, Oleg	TU1.R4.3 - POTENTIAL OF MULTITEMPORAL ICEYE SAR DATA IN LAND COVER MAPPING APPLICATIONS
	pg. 4509 WE1.R10.9 - PREDICTING GROWING STOCK VOLUME OF BOREAL FORESTS USING VERY LONG TIME SERIES OF SENTINEL-1 DATA
	pg. 3581 WE2.R15.9 - ICEYE MICROSATELLITE SAR CONSTELLATION STATUS UPDATE: EVALUATION OF FIRST COMMERCIAL IMAGING MODES
	pg. 4283 TU1.R1.9 - CLASSIFICATION OF WIDE-AREA SAR MOSAICS: DEEP LEARNING APPROACH FOR CORINE BASED MAPPING OF FINLAND USING MULTITEMPORAL SENTINEL-1 DATA
Aoki, Takafumi	pg. 324 MO2.R18.6 - PARAMETER OPTIMIZATION FOR DETECTING SEISMIC GROUND DEFORMATION FROM AIRBORNE SAR IMAGES
Aoki, Yosuke	pg. 6822 WE1.R2.2 - LOCAL SUBSIDENCE OF ACTIVE VOLCANOES MEASURED BY SYNTHETIC APERTURE RADAR
Aouf, Lotfi	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Aparicio García, Ramón Sidonio	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Aponte, Cristina	pg. 4630 WE2.R10.6 - ARE HIGH SEVERITY FIRES INCREASING IN SOUTHERN AUSTRALIA?
	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Apostol, Bogdan	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Arai, Egidio	pg. 4263 TU1.R1.4 - FIRE OCCURRENCE IN THE BRAZILIAN SAVANNA CONSERVATION UNITS AND THEIR BUFFER ZONES pg. 4291 TU1.R1.11 - LAND USE AND LAND COVER MAPPING USING FRACTION IMAGES DERIVED FROM ANNUAL VIIRS-NPP DATASET
Arai, Motoyuki	pg. 3578 WE2.R15.8 - THE LATEST STATUS OF OUR COMMERCIAL SMALL SYNTHETIC APERTURE RADAR SATELLITE CONSTELLATION
Araujo da Silva, Marcos Paulo	pg. 6081 WE1.R4.3 - OFFSHORE DOPPLER WIND LIDAR

	ASSESSMENT OF ATMOSPHERIC STABILITY
Araus, Jose Luis	pg. 4359 TU2.R11.5 - OPEN-SOURCE SOFTWARE FOR CROP PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB IMAGES
Araus, José Luis	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Araya, Samuel	pg. 4598 WE2.R1.10 - MACHINE LEARNING BASED SOIL MOISTURE RETRIEVAL FROM UNMANNED AIRCRAFT SYSTEM MULTISPECTRAL REMOTE SENSING
Arbelot, Maxime	pg. 280 MO2.R17.6 - CONCURRENT SEGMENTATION AND OBJECT DETECTION CNNS FOR AIRCRAFT DETECTION AND IDENTIFICATION IN SATELLITE IMAGES
Arias Ballesteros, Manuel	pg. 6329 WE2.R17.9 - PLASTIC LITTER PROJECT 2019: EXPLORING THE DETECTION OF FLOATING PLASTIC LITTER USING DRONES AND SENTINEL 2 SATELLITE IMAGES
Arienzo, Alberto	pg. 232 MO2.R16.5 - AUTOMATIC FINE ALIGNMENT OF MULTISPECTRAL AND PANCHROMATIC IMAGES
Arifin, Bustanul	pg. 6401 TH1.R15.6 - LAPAN'S MID WAVELENGTH INFRARED CAMERA MODULE
Ariho, Gordon	pg. 822 TU2.R3.10 - MULTIPASS SAR PROCESSING FOR RADAR DEPTH SOUNDER CLUTTER SUPPRESSION, TOMOGRAPHIC PROCESSING, AND DISPLACEMENT MEASUREMENTS
Arii, Motofumi	pg. 308 MO2.R18.2 - EFFICIENT GPU-BASED LOCAL HISTOGRAM ANALYZER FOR CHANGE DETECTION IN SATELLITE SAR IMAGES pg. 3795 TH2.R15.4 - MONITORING OF FISHING BOATS BY ALOS-2/4 DATA
Arima, Yuya	pg. 2755 FR2.R9.3 - SEMI-SUPERVISED LAND COVER CLASSIFICATION USING PI-SAR2 OBSERVATION DATA
Arizmendi Vasconcelos, Eduardo	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Arizmendi Vasconcelos, Leonardo	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Armansson, Sveinn Eirikur	pg. 2045 TH2.R3.7 - CREATING RGB IMAGES FROM HYPERSPECTRAL IMAGES USING A COLOR MATCHING FUNCTION
Armston, John	TU2.R15.3 - TOWARDS PANTROPICAL STRUCTURE AND BIOMASS MAPPING FROM FUSION OF GEDI AND TANDEM-X

	DATA
Armstrong, Rory	pg. 3043 TU2.R9.11 - COMPARISON OF ASCAT ESTIMATED SNOW THICKNESS ON FIRST-YEAR SEA ICE IN THE CANADIAN ARCTIC WITH MODELED AND PASSIVE MICROWAVE DATA
Arndt, Jacob	pg. 1953 TH1.R17.6 - SAMPLING SUBJECTIVE POLYGONS FOR PATCH-BASED DEEP LEARNING LAND-USE CLASSIFICATION IN SATELLITE IMAGES
Arnold, Emily	pg. 822 TU2.R3.10 - MULTIPASS SAR PROCESSING FOR RADAR DEPTH SOUNDER CLUTTER SUPPRESSION, TOMOGRAPHIC PROCESSING, AND DISPLACEMENT MEASUREMENTS
Aronne, Mary	pg. 2017 TH1.R18.11 - MERRAMAX: A MACHINE LEARNING APPROACH TO STOCHASTIC CONVERGENCE WITH A MULTI-VARIATE DATASET
Arslanova, Linara	pg. 4874 TH1.R11.3 - RADAR-CROP-MONITOR - MAPPING AGRICULTURAL CONDITIONS WITH SENTINEL-1 TIME SERIES
Arumugam, Darmindra	pg. 1424 WE2.R6.9 - A PSEUDOSPECTRAL TIME-DOMAIN SIMULATOR FOR LARGE-SCALE HALF-SPACE ELECTROMAGNETIC SCATTERING AND RADAR SOUNDING APPLICATIONS
Asada, Shoichiro	pg. 3578 WE2.R15.8 - THE LATEST STATUS OF OUR COMMERCIAL SMALL SYNTHETIC APERTURE RADAR SATELLITE CONSTELLATION
Asaka, Tomohito	pg. 4963 TH2.R6.7 - ESTIMATION OF REINFORCED SLOPE DYNAMICS USING ALOS-2/ PALSAR-2 AND VALIDATION BY TERRESTRIAL LASER SCANNER
Asgarimehr, Milad	pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS-REFLECTOMETRY
Ashapure, Akash	pg. 4882 TH1.R11.5 - ESTIMATION OF VISUAL RATING OF TAR SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS (UAS) DATA AND MACHINE LEARNING TECHNIQUES pg. 5199 FR1.R11.11 - COMBINING UAS AND SENTINEL-2 DATA TO ESTIMATE CANOPY PARAMETERS OF A COTTON CROP USING MACHINE LEARNING
Ashraf, Salman	pg. 5119 FR1.R10.3 - BIOGEOCHEMICAL EXPLORATION OF GOLD MINERALIZATION AND ITS PATHFINDER ELEMENTS USING HYPERSPECTRAL REMOTE SENSING
Asim, Muhammad	pg. 5881 FR1.R8.7 - OCEAN COLOR NET (OCN) FOR THE BARENTS SEA
Aslam, Khusharah	pg. 1528 WE2.R16.2 - COMPARATIVE ANALYSIS BETWEEN OPTICAL AND FUSED IMAGE WITH SAR
Aslan, Barbaros	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Atherton, Jon	pg. 4379 TU2.R11.10 - ON THE ESTIMATION OF THE LEAF

	ANGLE DISTRIBUTION FROM DRONE BASED PHOTOGRAMMETRY
Atrey, Pranjal	pg. 2995 TU1.R9.9 - MULTI-FREQUENCY PASSIVE REMOTE SENSING OF ICE SHEETS FROM L-BAND TO W-BAND
Atsushi, Higuchi	pg. 4513 WE1.R10.10 - HOURLY GPP ESTIMATION IN AUSTRALIA USING HIMAWARI-8 AHI PRODUCTS
Atzori, Simone	pg. 6838 WE1.R2.6 - INTEGRATION OF INSAR AND GNSS DATA TO MONITOR VOLCANIC ACTIVITY OF SAKURAJIMA CALDERAS, JAPAN: FROM SMALL DISPLACEMENT MEASUREMENTS TO GEOPHYSICAL MODELING pg. 6854 WE1.R2.10 - INSAR DEFORMATION ANALYSIS AND SOURCE MODELLING OF THE GUAGUA PICHINCHA VOLCANO (ECUADOR)
Aubrun, Michelle	pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS
Auer, Stefan	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Aussenac-Gilles, Nathalie	pg. 3115 WE1.R14.7 - AN APPROACH FOR INTEGRATING EARTH OBSERVATION, CHANGE DETECTION AND CONTEXTUAL DATA FOR SEMANTIC SEARCH
Aussenac-Gillles, Nathalie	pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS
Avanthey, Loica	pg. 1572 WE2.R18.1 - UNDERWATER FIELD EQUIPMENT OF A NETWORK OF LANDMARKS OPTIMIZED FOR AUTOMATIC DETECTION BY AI pg. 1576 WE2.R18.2 - UNDERWATER CALIBRATION IN NEAR REAL TIME: FOCUS ON DETECTION OPTIMIZED BY AI AND SELECTION OF CALIBRATION PATTERNS pg. 3147 WE2.R14.4 - UNDERGRADUATE RESEARCH: INTERWEAVING EDUCATION AND RESEARCH THROUGH EXPLORATION ROBOTICS FOR CLOSE RANGE REMOTE SENSING
Avellaneda-Ruiz, Antonio	pg. 5026 FR1.R1.3 - USE OF X-RAY FLUORESCENCE TO EXPEDITE SAMPLING TO EVALUATE AND VISUALIZE SOIL LEAD CONCENTRATIONS AT WEST POINT, NY
Avolio, Corrado	pg. 2225 TH2.R20.8 - OIL SPILL DETECTION FROM SAR IMAGES BY DEEP LEARNING
Avrillon, Stephane	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Avvisati, Gala	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY).

Axelrad, Penina	pg. 5847 TH2.R8.9 - IMPROVED ORBIT DETERMINATION OF THE CYGNSS SATELLITES AND ITS APPLICATION TO GNSS-R OCEAN ALTIMETRY
Axensten, Peder	pg. 4822 TH1.R10.1 - NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING
Ayala Carazas, Luis	pg. 3223 TH2.R14.9 - GEONOTE: A FIELD NOTEBOOK AND DATABASE FOR GEOLOGY
Ayanzadeh, Ramin	pg. 3517 WE2.R7.9 - AN ENSEMBLE APPROACH FOR COMPRESSIVE SENSING WITH QUANTUM ANNEALERS
Ayotte, Kenneth	pg. 3010 TU2.R9.2 - ULTRA WIDEBAND RADIOMETER SIGNATURES OF ARCTIC SEA ICE: PRELIMINARY RESULTS FROM THE MOSAIC CAMPAIGN
Ayoub, Francois	pg. 1921 TH1.R16.9 - DERIVING VELOCITY FIELDS OF SUBMESOSCALE EDDIES USING MULTI-SENSOR IMAGERY
Azemati, Amir	pg. 3841 TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS
Aziz, Yawar	pg. 6802 TU2.R2.9 - A MACHINE LEARNING SOLUTION FOR OPERATIONAL REMOTE SENSING OF ACTIVE WILDFIRES
В	
Baade, Jussi	Pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1 Pg. 5222 FR2.R10.6 - LOCAL VALIDATION AND COMPARISON OF GLOBAL DIGITAL ELEVATION MODELS USING A LARGE ASSEMBLY OF GNSS GROUND MEASUREMENTS Pg. 4501 WE1.R10.7 - A MULTI-SCALE REMOTE SENSING APPROACH TO UNDERSTANDING VEGETATION DYNAMICS IN THE NAMA KAROO-GRASSLAND ECOTONE OF SOUTH AFRICA Pg. 4323 TU2.R10.8 - ANNUAL GRASS BIOMASS MAPPING WITH LANDSAT-8 AND SENTINEL-2 DATA OVER KRUGER NATIONAL PARK, SOUTH AFRICA
Babańczyk, Piotr	pg. 4430 TU2.R12.12 - ALGORITHM FOR URBAN SPONTANEOUS GREEN SPACE DETECTION BASED ON OPTICAL SATELLITE REMOTE SENSING
Baber, Sheila	pg. 3158 WE2.R14.7 - ERROR AND UNCERTAINTY IN EARTH OBSERVATION VALUE CHAINS
Bachaoui, El-Mostapha	pg. 6105 WE1.R7.2 - CAPABILITIES OF THE NEW MOROCCAN SATELLITE MOHAMMED-VI FOR PLANIMETRIC AND ALTIMETRIC MAPPING
Bachi, Leonardo	pg. 5207 FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE

	DATA IN A CONTROLLED KARST AREA
Bachmann, Markus	pg. 3403 TU2.R15.1 - TANDEM-X: 10 YEARS OF OPERATION
Bachmann, Martin	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Back, Minyoung	pg. 4088 MO2.R1.4 - ANALYSIS OF OIL STORAGE TREND USING KOMPSAT-5 SAR DATA
Backhus, Roger	pg. 3353 TU2.R13.4 - NEXT GENERATION GNSS-R INSTRUMENT
Badea, Ovidiu	pg. 4975 TH2.R10.1 - DEEP NEURAL NETWORKS FOR FOREST GROWING STOCK VOLUME RETRIEVAL: A COMPARATIVE ANALYSIS FOR L-BAND SAR DATA pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Badia, Marc	pg. 3574 WE2.R15.7 - DEMONSTRATION OF THE FEDERATED SATELLITE SYSTEMS CONCEPT FOR FUTURE EARTH OBSERVATION SATELLITE MISSIONS pg. 5986 TU1.R4.12 - RITA: REQUIREMENTS AND PRELIMINARY DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT
Baek, Kyungim	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY
Baghdadi, Nicolas	pg. 4910 TH2.R1.2 - CLAY CONTENT MAPPING USING SOIL MOISTURE PRODUCTS DERIVED FROM A SYNERGETIC USE OF SENTINEL-1 AND SENTINEL-2 DATA pg. 5085 FR1.R4.6 - STUDY FLOOD REGIME USING HIGH TEMPORAL RESOLUTION SENTINEL-1 IMAGES pg. 3154 WE2.R14.6 - THE FRENCH LAND DATA AND SERVICES CENTER: THEIA pg. 4711 TH1.R1.6 - IRRIGATION MAPPING USING SENTINEL-1 TIME SERIES pg. 4454 WE1.R1.6 - SOIL MOISTURE ESTIMATION AT 500M USING SENTINEL-1: APPLICATION TO TUNISIAN SITES pg. 328 MO2.R18.7 - VOLCANIC ERUPTION MONITORING USING COHERENCE CHANGE DETECTION MATRIX pg. 5011 TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
Bahi, Hicham	pg. 5038 FR1.R1.6 - EVALUATING LAND SURFACE MOISTURE CONDITIONS BEFORE AND AFTER FLASH-FLOOD STORM FROM OPTICAL AND THERMAL DATA: MODELS COMPARISON AND VALIDATION
Bahmanyar, Reza	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Bai, Dongjin	pg. 2968 TU1.R9.2 - A STUDY OF COMBINED ACTIVE PASSIVE MICROWAVE SOUNDING OF ICE SHEET INTERNAL

	TEMPERATURE PROFILING
Bai, Haiwei	pg. 2595 FR1.R18.10 - LIGHT-WEIGHT ATTENTION SEMANTIC SEGMENTATION NETWORK FOR HIGH-RESOLUTION REMOTE SENSING IMAGES
Bai, Jiayu	pg. 2400 FR1.R12.5 - SEMI-SUPERVISED HYPERSPECTRAL UNMIXING WITH VERY DEEP CONVOLUTIONAL NEURAL NETWORKS
Bai, Jing	pg. 501 TU1.R6.7 - A NEW HYPERSPECTRAL CLASSIFICATION METHOD BASED ON NON-SUBSAMPLED CONTOURLET TRANSFORM (NSCT) AND DEEP NEURAL NETWORK pg. 509 TU1.R6.9 - DECOUPLED NETWORK WITH ACTIVE LEARNING STRATEGY FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Bai, Shi	pg. 248 MO2.R16.9 - INTERPOLATION OF GEOCHEMICAL DATA WITH ASTER IMAGES BASED ON ALEXNET CONVOLUTION NEURAL NETWORK
Bai, Xia	pg. 1137 WE1.R16.4 - A NOVEL ISAR IMAGING ALGORITHM FOR NONUNIFORMLY ROTATING TARGET pg. 846 TU2.R5.5 - JOINT GROUP SPARSE COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Bai, Yan	pg. 6058 TU2.R4.7 - ENHANCING LEGACY AND SMALL SATELLITE CALIBRATION/VALIDATION SYSTEMS WITH 3D GLOBE CONTEXTUAL VISUALIZATION
Bai, Yang	pg. 296 MO2.R17.10 - WEAK TARGET DETECTION IN HIGH- RESOLUTION REMOTE SENSING IMAGES BY COMBINING SUPER-RESOLUTION AND DEFORMABLE FPN
Bai, Yingxin	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Bai, Yu	pg. 5045 FR1.R1.8 - SOIL MOISTURE ESTIMATION BY USING MULTI-ANGULAR AND MULTI-TEMPORAL OBSERVATIONS FROM SMOS
Bai, Yuqi	pg. 5481 TH2.R19.1 - GLOBAL LAYERED AEROSOL DISTRIBUTIONS FROM CALIOP AND MODIS OBSERVATIONS DURING 2006-2016
Baidar, Tina	pg. 4259 TU1.R1.3 - SENTINEL-2 MULTI-TEMPORAL DATA FOR RICE CROP CLASSIFICATION IN NEPAL
Bailey, Sean	pg. 3131 WE1.R14.11 - STANDARDIZED ALGORITHM DOCUMENTATION FOR IMPROVED SCIENTIFIC DATA UNDERSTANDING: THE ALGORITHM PUBLICATION TOOL PROTOTYPE
Baillie, Brenda	pg. 4626 WE2.R10.5 - FOREST FLOWS - REAL TIME MONITORING OF WATER QUANTITY AND QUALITY SPATIO- TEMPORAL DYNAMICS IN PLANTED FORESTS

Baipureddy, Neeraj	pg. 1659 TH1.R2.12 - TOPOGRAPHICAL FEATURE EXTRACTION USING MACHINE LEARNING TECHNIQUES FROM SENTINEL-2A IMAGERY
Baixo, Fernando	pg. 533 TU1.R7.3 - COMPARING THE PERFORMANCE OF MATHEMATICAL MORPHOLOGY AND BHATTACHARYYA DISTANCE FOR AIRPORT EXTRACTION
Bajaj, Apoorva	pg. 6483 FR1.R15.7 - REMOTE SENSING SYSTEMS FOR URBAN-SCALE DRONE AND AIR TAXI OPERATIONS
Bakian-Dogaheh, Kazem	pg. 4930 TH2.R1.7 - ELECTROMAGNETIC SCATTERING BEHAVIOR OF A NEW ORGANIC SOIL DIELECTRIC MODEL FOR LONG-WAVELENGTH RADAR RETRIEVAL OF PERMAFROST ACTIVE LAYER SOIL PROPERTIES
Bakker, Thomas	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE
Bakon, Matus	TU2.R3.6 - PS-INSAR TARGET CLASSIFICATION USING DEEP LEARNING [pg. 1026] WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)
Bala Raju, Nela	pg. 4335 TU2.R10.11 - FOREST ABOVE GROUND BIOMASS ESTIMATION USING MULTI-SENSOR GEOSTATISTICAL APPROACH
Balasubramaniam, Rajeswari	pg. 5805 TH1.R8.9 - PERFORMANCE ASSESSMENT OF CYGNSS HIGH WIND RETRIEVAL FOR THE IMPROVED EIRP CALIBRATION
Balenzano, Anna	pg. 4534) WE1.R11.5 - A EUROPEAN TEST SITE FOR GROUND DATA MEASUREMENT AND EARTH OBSERVATION SERVICES VALIDATION pg. 4069 FR2.R15.5 - OPERATIONAL SOIL MOISTURE MAPPING AT C-BAND AND PERSPECTIVES FOR L-BAND
Ball, Chris	TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Ball, John E.	pg. 1271 WE1.R20.2 - HYPERSPECTRAL BAND SELECTION USING MOTH-FLAME METAHEURISTIC OPTIMIZATION pg. 497 TU1.R6.6 - HYPERSPECTRAL IMAGE CLASSIFICATION USING FISHER'S LINEAR DISCRIMINANT ANALYSIS FEATURE REDUCTION WITH GABOR FILTERING AND CNN
Bally, Philippe	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016 HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM (GEP) pg. 3251 MO2.R2.4 - SYSTEMATIC AND AUTOMATIC LARGE- SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA

Balss, Ulrich	pg. 1165 WE1.R16.11 - FIRST EXPERIENCES WITH ACTIVE C-BAND RADAR REFLECTORS AND SENTINEL-1
Baltazar, Elsa	pg. 4489 WE1.R10.4 - APPLICATION OF RANDOM FOREST CLASSIFICATION TO DETECT THE PINE WILT DISEASE FROM HIGH RESOLUTION SPECTRAL IMAGES
Bandyopadhyay, Debmita	pg. 2005 TH1.R18.8 - SNOW CHARACTERIZATION AND AVALANCHE DETECTION IN THE INDIAN HIMALAYA pg. 2999 TU1.R9.10 - SURGING GLACIER DYNAMICS IN TARIM BASIN USING SAR DATA pg. 3002 TU1.R9.11 - ESTIMATING DYNAMIC PARAMETERS OF BARA SHIGRI GLACIER AND DERIVATION OF MASS BALANCE FROM VELOCITY
Banerjee, Biplab	pg. 2029 TH2.R3.3 - DIMENSIONALITY REDUCTION USING 3D RESIDUAL AUTOENCODER FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 5286 FR2.R11.10 - LEAF COUNTING IN RICE (ORYZA SATIVA L.) USING OBJECT DETECTION: A DEEP LEARNING APPROACH
Baney, Oliwia	pg. 3501 WE2.R7.5 - EXPLORING THE RELATIONSHIPS BETWEEN SCATTERING PHYSICS AND AUTO-ENCODER LATENT- SPACE EMBEDDING
Bannari, Abderrazak	Pg. 5729 WE1.R8.1 - PRELIMINARY RESULTS ON BLUE CARBON CONTENT MAPPING IN COASTAL WATERS OF THE ARABIAN GULF USING SATELLITE-BASED MODELING APPROACH Pg. 5990 TU1.R14.1 - GROUND REFLECTANCE FACTOR RETRIEVAL FROM LANDSAT (MSS, TM, ETM+, AND OLI) TIME SERIES DATA BASED ON SEMI-EMPIRICAL LINE APPROACH AND PSEUDOINVARIANT TARGETS IN ARID LANDSCAPE Pg. 6105 WE1.R7.2 - CAPABILITIES OF THE NEW MOROCCAN SATELLITE MOHAMMED-VI FOR PLANIMETRIC AND ALTIMETRIC MAPPING Pg. 5038 FR1.R1.6 - EVALUATING LAND SURFACE MOISTURE CONDITIONS BEFORE AND AFTER FLASH-FLOOD STORM FROM OPTICAL AND THERMAL DATA: MODELS COMPARISON AND VALIDATION
Banting, Roger	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION
Bao, Kuanle	pg. 6714 TU1.R15.10 - ESTIMATION OF SURFACE ALBEDO BASED ON FY-3D MERSI-2 TOA DATA
Bao, Meng	pg. 1774 TH1.R7.5 - A HIGH RESOLUTION SAR SHIP SAMPLE DATABASE AND SHIP TYPE CLASSIFICATION
Bao, Qingliu	pg. 5701 TU2.R8.4 - EFFECTS OF WIND ESTIMATION ERRORS ON OCEAN SURFACE CURRENT RETRIEVAL FOR A DOPPLER SCATTEROMETER
Bao, Tengfei	pg. 2587 FR1.R18.8 - BILATERAL SIAMESE NETWORK FOR CHANGE DETECTION USING HIGH RESOLUTION REMOTE

	SENSING IMAGES
Bao, Wenxing	pg. 862 TU2.R5.9 - ADAPTIVE NEIGHBORHOOD STRATEGY BASED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Baraldi, Andrea	pg. 2009 TH1.R18.9 - AN AUTOMATIC SPECTRAL RULE-BASED SYSTEM FOR REAL-TIME THERMAL ANOMALIES DETECTION USING GOES-16 ABI DATA
Baranoski, Gladimir	pg. 4878 TH1.R11.4 - ON THE ASYMMETRY OF THE RED TO FAR-RED RATIOS OF LIGHT PROPAGATED BY THE ADAXIAL AND ABAXIAL SURFACES OF BIFACIAL LEAVES pg. 5187 FR1.R11.8 - ASSESSING THE EFFECTS OF NUTRIENT STRESS ON THE RED TO FAR-RED RATIOS OF LIGHT TRANSMITTED BY UNIFACIAL PLANT LEAVES
Barat, Itziar	pg. 6535 FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES
Barb, Adrian	pg. 569 TU1.R10.1 - STUDY OF ACADEMIC WRITING EVOLUTION IN GEOSPATIAL DOMAIN USING NATURAL LANGUAGE PROCESSING TECHNIQUES
Barba Polo, J.	pg. 4715 TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV
Barber, David	pg. 3031 TU2.R9.8 - MODELING BACKSCATTER FROM OIL-CONTAMINATED SEA ICE USING A MULTI-LAYERED SCATTERING MODEL pg. 3043 TU2.R9.11 - COMPARISON OF ASCAT ESTIMATED SNOW THICKNESS ON FIRST-YEAR SEA ICE IN THE CANADIAN ARCTIC WITH MODELED AND PASSIVE MICROWAVE DATA
Barbosa, Jose	pg. 3762 TH2.R13.2 - GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS
Barbosa, José	pg. 5937 MO2.R13.9 - IONOSPHERIC SCINTILLATION MODEL LIMITATIONS AND IMPACT IN GNSS-R MISSIONS
Barbouchi, Meriem	pg. 1003 WE1.R3.3 - POST-FLOOD SURFACE DEFORMATION ANALYSIS USING P-SBAS-DINSAR SENTINEL-1 PROCESSING IN THE NORTH OF TUNISIA
Barciauskas, Aimee	Pg. 3097 WE1.R14.2 - ADVANCING OPEN SCIENCE THROUGH INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM (MAAP)'S DATA ECOSYSTEM Pg. 3131 WE1.R14.11 - STANDARDIZED ALGORITHM DOCUMENTATION FOR IMPROVED SCIENTIFIC DATA UNDERSTANDING: THE ALGORITHM PUBLICATION TOOL PROTOTYPE
barilluelli, Steldilu	pg. 5372 TU2.R19.9 - UNDERSTANDING SEVERE WEATHER

	EVENTS AT AIRPORT SPATIAL SCALE
Barkan, Roy	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Barnes, John	pg. 3135 WE2.R14.1 - AN INSTITUTIONAL PARTNERSHIP MODEL TO PROVIDE UNDERGRADUATE STUDENTS REMOTE SENSING EDUCATION/RESEARCH EXPERIENCES USING NOVEL INEXPENSIVE LIDAR INSTRUMENTATION
Barnet, Chris	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG
Barnhart, Bradley	pg. 5049 FR1.R1.9 - TIME-OF-FLIGHT SOIL MOISTURE ESTIMATION USING RF BACKSCATTER TAGS
Baron, Thierry	pg. 3825 TH2.R16.5 - VALIDATION OF INNOVATIVE SYSTEMS OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION REDUCING EMISSIONS AND INCREASING SAFETY
Barrett, Charles	pg. 4719 TH1.R1.8 - SMAP SOIL MOISTURE PRODUCT VALIDITY IN HETEROGENEOUS IRRIGATED REGIONS
Bartle, Aron	pg. 6385 TH1.R15.2 - DEVELOPMENT OF A HIGH-FIDELITY CLARREO PATHFINDER SIMULATOR
Barucq, Hélène	pg. 5697 TU2.R8.3 - OCEANIC SURFACE CURRENT APPROXIMATION FROM SPARSE DATA
Basilio, Ralph	pg. 6101 WE1.R7.1 - ESTABLISHING LAUNCH READINESS OF NASA ISS INSTRUMENT OCO-3
Bastos da Silva, José Carlos	pg. 700 TU1.R16.1 - FURTHER INSIGHTS ON THE EFFECTS OF SURFACTANTS ON INTERNAL WAVE SAR SIGNATURES BY MEANS OF THE CO-POLARIZED PHASE DIFFERENCE
Bauchet, Jean-Philippe	pg. 449 TU1.R5.4 - OPERATIONAL PIPELINE FOR LARGE-SCALE 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGES
Baum, Stephani	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Baumann, Peter	pg. 3192 TH2.R14.1 - THE EARTHSERVER GLOBAL DATACUBE FEDERATION pg. 3094 WE1.R14.1 - BIG DATA STANDARDS AND ANALYSIS-READINESS: STATUS AND EVOLUTION pg. 3151 WE2.R14.5 - HOW DATABASES NOSQL HELPS TEACHING DATABASES, GEOMETRY, AND REMOTE SENSING SIMULTANEOUSLY
Baumann, Sabine	pg. 312 MO2.R18.3 - POTENTIAL OF FOREST MONITORING WITH MULTI-TEMPORAL TANDEM-X HEIGHT MODELS
Bawden, Gerald	WE1.R1.7 - DEVELOPMENT OF NISAR SOIL MOISTURE PRODUCT

Bayat, Bagher	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Bazzi, Hassan	pg. 4711 TH1.R1.6 - IRRIGATION MAPPING USING SENTINEL-1 TIME SERIES pg. 3154 WE2.R14.6 - THE FRENCH LAND DATA AND SERVICES CENTER: THEIA
Bearden, David	pg. 6121) WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Beaudoin, Laurent	pg. 1572 WE2.R18.1 - UNDERWATER FIELD EQUIPMENT OF A NETWORK OF LANDMARKS OPTIMIZED FOR AUTOMATIC DETECTION BY AI pg. 1576 WE2.R18.2 - UNDERWATER CALIBRATION IN NEAR REAL TIME: FOCUS ON DETECTION OPTIMIZED BY AI AND SELECTION OF CALIBRATION PATTERNS pg. 3147 WE2.R14.4 - UNDERGRADUATE RESEARCH: INTERWEAVING EDUCATION AND RESEARCH THROUGH EXPLORATION ROBOTICS FOR CLOSE RANGE REMOTE SENSING
Beck, Hylke	pg. 3334 TU2.R1.5 - SATELLITE FLOOD ASSESSMENT AND FORECASTS FROM SMAP AND LANDSAT
Beck, Trevor	pg. 6258 WE1.R15.10 - LIFETIME PERFORMANCE ASSESSMENT OF SNPP OMPS NADIR MAPPER SDR DATA USING SIMULTANEOUS NADIR OVERPASS COLLOCATED OBSERVATIONS WITH GOME-2
Becker-Reshef, Inbal	pg. 3706 TH2.R11.2 - NASA HARVEST(ING) EARTH OBSERVATIONS FOR INFORMED AGRICULTURAL DECISIONS pg. 4175 MO2.R11.4 - CROP HARVEST MONITORING USING POLARIMETRIC SAR PARAMETERS
Bedrosian, Gasia	pg. 6101 WE1.R7.1 - ESTABLISHING LAUNCH READINESS OF NASA ISS INSTRUMENT OCO-3
Beierle, Peter	PROGRESS TOWARD EVALUATING PRELAUNCH THERMAL VACUUM TESTS OF THE JPSS-2 CRIS INSTRUMENT TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT
Bekaert, David	pg. 3139 WE2.R14.2 - SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS
Belenguer-Plomer, Miguel	pg. 4975 TH2.R10.1 - DEEP NEURAL NETWORKS FOR FOREST GROWING STOCK VOLUME RETRIEVAL: A COMPARATIVE ANALYSIS FOR L-BAND SAR DATA
Belenguer-Plomer, Miguel A.	pg. 4858 TH1.R10.10 - OPTIMUM SENTINEL-1 PIXEL SPACING FOR BURNED AREA MAPPING

Belhouchette, Hatem	pg. 4711 TH1.R1.6 - IRRIGATION MAPPING USING SENTINEL-1 TIME SERIES
Bell, Jordan	pg. 4179 MO2.R11.5 - A SATELLITE AGNOSTIC APPROACH TO QUANTIFYING HAIL DAMAGE SWATHS ACROSS THE CENTRAL UNITED STATES AND OTHER AGRICULTURAL REGIONS
Belliss, Stella	pg. 2751 FR2.R9.2 - CLASSIFICATION OF WINTER LAND COVER IN NEW ZEALAND HILL COUNTRY FOR RISKY PRACTICE IDENTIFICATION
Belloni, Valeria	pg. 2495 FR1.R16.7 - COSMO-SKYMED RANGE MEASUREMENTS FOR DISPLACEMENT MONITORING USING AMPLITUDE PERSISTENT SCATTERERS
Bellot, Hervé	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Bellucci Sessa, Eliana	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY)
Belviso, Pasquale	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY)
Bemelmans, Mark	pg. 6818 WE1.R2.1 - DETERMINING THE SOURCE LOCATION AND EVOLUTION OF THE MAY 2015 SUMMIT INFLATION EVENT AT KILAUEA VOLCANO HAWAI'I.
Ben Aissa, Nadhira	pg. 4910 TH2.R1.2 - CLAY CONTENT MAPPING USING SOIL MOISTURE PRODUCTS DERIVED FROM A SYNERGETIC USE OF SENTINEL-1 AND SENTINEL-2 DATA
Ben Rabah, Zouhaier	pg. 2823 FR2.R12.9 - SUB-PIXEL MAPPING METHOD BASED ON K-SVD DICTIONARY LEARNING AND TOTAL VARIATION MINIMIZATION
Bendig, Rudi	TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Bendini, Hugo	pg. 2061 TH2.R3.11 - STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO pg. 168 MO2.R14.11 - ASSESSING DIFFERENTIATION BETWEEN PASTURE AND CROPLANDS USING REMOTE SENSING IMAGE TIME SERIES METRICS
Benecki, Pawel	pg. 645 TU1.R11.9 - EVALUATING SUPER-RESOLUTION OF SATELLITE IMAGES: A PROBA-V CASE STUDY

Benjamin, Nold	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION
Bennett, Lauren T.	pg. 4630 WE2.R10.6 - ARE HIGH SEVERITY FIRES INCREASING IN SOUTHERN AUSTRALIA?
Bennett, Matthew	pg. 6101 WE1.R7.1 - ESTABLISHING LAUNCH READINESS OF NASA ISS INSTRUMENT OCO-3
Benson, Michael	pg. 36 MO2.R3.10 - QUANTIFYING THE EFFECT OF THE WIND ON FOREST CANOPY HEIGHT ESTIMATION USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR SYSTEMS
Bereta, Konstantina	pg. 2276 FR1.R5.9 - VESSEL DETECTION USING IMAGE PROCESSING AND NEURAL NETWORKS
Berg, Wes	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Berger, Christian	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1 pg. 4501 WE1.R10.7 - A MULTI-SCALE REMOTE SENSING APPROACH TO UNDERSTANDING VEGETATION DYNAMICS IN THE NAMA KAROO-GRASSLAND ECOTONE OF SOUTH AFRICA pg. 4323 TU2.R10.8 - ANNUAL GRASS BIOMASS MAPPING WITH LANDSAT-8 AND SENTINEL-2 DATA OVER KRUGER NATIONAL PARK, SOUTH AFRICA
Berk, Alexander	pg. 6678 TU1.R15.1 - MODTRAN®6 GENERATED SINGLE SCATTERING ADJACENCY FUNCTION pg. 3440 TU2.R17.3 - RECENT ADVANCES IN DEVELOPMENT OF POLARIMETRIC MODTRAN®6 pg. 3451 TU2.R17.7 - A FOUR-PARAMETER SPECTRALLY- UNIVERSAL LINE SHAPE FUNCTION
Bernardini Papalia, Lucio	pg. 3166 TH1.R14.1 - THE CORDINET PROJECT: ANALYSIS OF THE BARRIERS LIMITING A MORE DIFFUSE AND SYSTEMATIC USE OF EARTH OBSERVATION COPERNICUS-BASED SOLUTIONS
Berryhill, Jacob	pg. 6965 FR2.R2.3 - SPATIAL RESOLUTION ENHANCEMENT OF UNMANNED AIRCRAFT SYSTEM IMAGERY USING DEEP LEARNING-BASED SINGLE IMAGE SUPER-RESOLUTION
Bertschi, Sonja	pg. 6325 WE2.R17.8 - DETECTION OF SUB-PIXEL PLASTIC ABUNDANCE ON WATER SURFACES USING AIRBORNE IMAGING SPECTROSCOPY
Besson, Olivier	pg. 5851 TH2.R8.10 - IMPROVING THE ESTIMATION OF THE SEA LEVEL ANOMALY SLOPE
Best, Fred	pg. 3640 TH2.R4.1 - THE NEXT GENERATION US LEO HYPERSPECTRAL INFRARED SOUNDER pg. 3657 TH2.R4.6 - EXPEDITIOUS IMPLEMENTATION OF A HYPERSPECTRAL IMAGING INFRARED SOUNDER (HIIS) IN

	GEOSTATIONARY ORBIT
Betancourt, Franz	pg. 2093 TH2.R5.8 - AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI- SENSOR SATELLITE IMAGERY APPROACH
Beucler, Tom	pg. 3987 FR2.R7.3 - TOWARDS PHYSICALLY-CONSISTENT, DATA-DRIVEN MODELS OF CONVECTION
Bhatt, Jignesh	pg. 1512 WE2.R12.9 - A NOVEL APPROACH FOR HYPERSPECTRAL IMAGE SUPERRESOLUTION USING SPECTRAL UNMIXING AND TRANSFER LEARNING pg. 2189 TH2.R18.9 - DEEP LEARNING IN HYPERSPECTRAL UNMIXING: A REVIEW
Bhatt, Uma	pg. 1307) WE1.R20.11 - IMPROVED VEGETATION AND WILDFIRE FUEL TYPE MAPPING USING NASA AVIRIS-NG HYPERSPECTRAL DATA, INTERIOR AK
Bhattacharya, Avik	pg. 4696 TH1.R1.2 - SOIL MOISTURE RETRIEVAL USING SAR DERIVED VEGETATION DESCRIPTORS IN WATER CLOUD MODEL pg. 4870 TH1.R11.2 - VEGETATION MONITORING USING A NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND DATA pg. 7021 TU1.R20.5 - A NON-MODEL BASED THREE COMPONENT SCATTERING POWER DECOMPOSITION FOR FULL POLARIMETRIC SAR DATA
Bhogapurapu, NarayanaRao	pg. 4870 TH1.R11.2 - VEGETATION MONITORING USING A NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND DATA
Bhogapurapu, Narayanarao	pg. 4696 TH1.R1.2 - SOIL MOISTURE RETRIEVAL USING SAR DERIVED VEGETATION DESCRIPTORS IN WATER CLOUD MODEL
Bi, Fukun	pg. 956 TU2.R18.2 - REMOTE SENSING TARGET TRACKING FOR UAV AERIAL VIDEOS BASED ON MULTI-FREQUENCY FEATURE ENHANCEMENT
Bi, Haixia	pg. 712 TU1.R16.4 - POLSAR IMAGE CLASSIFICATION VIA ROBUST LOW-RANK FEATURE EXTRACTION AND MARKOV RANDOM FIELD
Biagiotti, Isabelle	pg. 3154) WE2.R14.6 - THE FRENCH LAND DATA AND SERVICES CENTER: THEIA
Bian, Zunjian	pg. 4854 TH1.R10.9 - EVALUATION OF FOUR THERMAL INFRARED KERNEL-DRIVEN MODELS USING LIMITED OBSERVATIONS
Bickerton, Steven	pg. 3501 WE2.R7.5 - EXPLORING THE RELATIONSHIPS BETWEEN SCATTERING PHYSICS AND AUTO-ENCODER LATENT- SPACE EMBEDDING

Bideaud, Helene	TH2.R16.1 - THE ENERGY SECTOR: AN OPPORTUNITY FOR ENVIRONMENT SOLUTIONS TO IDENTIFY AND TACKLE CHALLENGES ALL ALONG THE VALUE CHAIN TH2.R16.6 - AUTOMATIC OIL SLICK DETECTION FOR ENVIRONMENTAL DOMAIN USING SYNTHETIC APERTURE RADAR (SAR) IMAGES
Bie, Bowen	pg. 493 TU1.R6.5 - FEATURE SEPARATION BASED ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Bienert, Nicole	pg. 1420 WE2.R6.8 - PROCESSING-BASED SYNCHRONIZATION APPROACH FOR BISTATIC RADAR GLACIAL TOMOGRAPHY
Bienstock, Bernard	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Bier, Peter	pg. 5026 FR1.R1.3 - USE OF X-RAY FLUORESCENCE TO EXPEDITE SAMPLING TO EVALUATE AND VISUALIZE SOIL LEAD CONCENTRATIONS AT WEST POINT, NY
Bignami, Francesco	pg. 3537 WE2.R8.5 - SMALL-SCALE AND SUB-MESOSCALE PHENOMENA ASSOCIATED WITH UPWELLING STUDIED BY SAR
Bilik, Matthew	pg. 4407 TU2.R12.6 - URBAN HEAT ISLANDS AND REMOTE SENSING: CHARACTERIZING LAND SURFACE TEMPERATURE AT THE NEIGHBORHOOD SCALE
Bilokonska, Yulia	pg. 4971 TH2.R6.9 - ASSESSMENT OF LAND CONSUMPTION FOR SDG INDICATOR 11.3.1 USING GLOBAL AND LOCAL BUILT-UP AREA MAPS
Bin, Liu	pg. 996 WE1.R3.1 - APPLICATION OF L-BAND SCANSAR MODE IN MONITORING LAND SUBSIDENCE
Bindlish, Rajat	pg. 4692 TH1.R1.1 - PREDICTING SOIL MOISTURE RETRIEVAL PERFORMANCE FOR THE NISAR MISSION pg. 3323 TU2.R1.2 - ASSESSMENT OF THE IMPACTS OF NEAR REAL-TIME VEGETATION CORRECTION ON PASSIVE SOIL MOISTURE PRODUCT PERFORMANCE pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION WE1.R1.7 - DEVELOPMENT OF NISAR SOIL MOISTURE PRODUCT pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS
Binet, Renaud	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES
Bingham, Frederick	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT pg. 5631 MO2.R8.8 - SEA SURFACE SALINITY SUBFOOTPRINT VARIABILITY FROM A GLOBAL HIGH-RESOLUTION MODEL

Biondi, Riccardo	pg. 6834 WE1.R2.5 - THE 2015 CALBUCO VOLCANIC CLOUD DETECTION USING GNSS RADIO OCCULTATION AND SATELLITE LIDAR pg. 5372 TU2.R19.9 - UNDERSTANDING SEVERE WEATHER
	EVENTS AT AIRPORT SPATIAL SCALE
Bishop, Janice	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
Biswas, Sounak	pg. 5411 WE1.R19.7 - IMPROVING QUANTITATIVE PRECIPITATION ESTIMATION BY X-BAND DUAL-POLARIZATION RADARS IN COMPLEX TERRAIN OVER THE BAY AREA IN CALIFORNIA, USA
Bittner, Ksenia	pg. 5302 TU1.R19.3 - GAN-GENERATED ELEVATION MODELS IN COMPUTATIONAL FLUID DYNAMICS: A FEASIBILITY STUDY FOR COMPLEX URBAN TERRAIN TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1
	TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
	pg. 1829 TH1.R9.8 - MAP-REPAIR: DEEP CADASTRE MAPS ALIGNMENT AND TEMPORAL INCONSISTENCIES FIX IN SATELLITE IMAGES
Bivalkar, Mandar	pg. 1209 WE1.R17.10 - AN APPROACH FOR FAULT DETECTION IN METALLIC STRUCTURES USING MILLIMETER WAVE IMAGING
Björk, Sara	pg. 4327 TU2.R10.9 - GENERATION OF LIDAR-PREDICTED FOREST BIOMASS MAPS FROM RADAR BACKSCATTER WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
Bjørstorp, Jeppe Majlund	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Blackwell, William	pg. 3647 TH2.R4.3 - THE NASA TROPICS MISSION AS A PATHFINDER FOR FUTURE OPERATIONAL EARTH OBSERVING SYSTEMS
Blackwell, William J.	pg. 6441 FR1.R13.7 - PRE-LAUNCH CALIBRATION OF THE NASA TROPICS CONSTELLATION MISSION
Blake, Jonathan	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Blake, Reginald	pg. 2300 FR1.R6.3 - A GLOBAL ANALYSIS OF PASSIVE MICROWAVE BRIGHTNESS TEMPERATURE DIURNAL CYCLE pg. 3143 WE2.R14.3 - SERVICE-LEARNING: AN ENTRÉE TO INTRODUCE MINORITY STUDENTS TO REMOTE SENSING RESEARCH
	pg. 4407 TU2.R12.6 - URBAN HEAT ISLANDS AND REMOTE SENSING: CHARACTERIZING LAND SURFACE TEMPERATURE AT THE NEIGHBORHOOD SCALE
Blanton, Hunter	pg. 1110 WE1.R6.8 - SURFACE MODELING FOR AIRBORNE

	LIDAR pg. 1468 WE2.R9.9 - SINGLE IMAGE CLOUD DETECTION VIA MULTI-IMAGE FUSION
Blatrix, Rumais	pg. 5085 FR1.R4.6 - STUDY FLOOD REGIME USING HIGH TEMPORAL RESOLUTION SENTINEL-1 IMAGES
Blix, Katalin	pg. 5608 MO2.R8.2 - MACHINE LEARNING CLASSIFICATION, FEATURE RANKING AND REGRESSION FOR WATER QUALITY PARAMETERS RETRIEVAL IN VARIOUS OPTICAL WATER TYPES FROM HYPER-SPECTRAL OBSERVATIONS pg. 188 MO2.R15.5 - COMPARISON OF MACHINE LEARNING METHODS FOR PREDICTING QUAD-POLARIMETRIC PARAMETERS FROM DUAL-POLARIMETRIC SAR DATA
Bllawal, Abbasi	pg. 6714 TU1.R15.10 - ESTIMATION OF SURFACE ALBEDO BASED ON FY-3D MERSI-2 TOA DATA
Block, Bruce	pg. 6293 WE2.R13.8 - MONITORING GPS EIRP FOR CYGNSS LEVEL 1 CALIBRATION
Blondel, Enrique	pg. 5737 WE1.R8.3 - INSAR FOR TIDAL ESTIMATION IN SUPPORT OF CVD, VIRTUAL GAUGES AND DYNAMIC PRODUCTS
Blonski, Slawomir	pg. 6389 TH1.R15.3 - NOAA-20/S-NPP VIIRS SENSOR DATA RECORD ON-ORBIT PERFORMANCE UPDATES AND RECENT IMPROVEMENTS pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Blough, Neil	pg. 3629 TH2.R2.6 - SUPPORTING AQUACULTURE IN THE CHESAPEAKE BAY USING ARTIFICIAL INTELLIGENCE TO DETECT POOR WATER QUALITY WITH REMOTE SENSING
Blunt, Paul	WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION
Bobak, Justin	pg. 6547 FR2.R13.11 - MECHANICALLY-ACTUATED RECONFIGURABLE REFLECTARRAY (MARR) FOR MICROWAVE SINGLE PIXEL IMAGER (MSPI) pg. 6551 FR2.R13.12 - IMAGING ALGORITHM AND MEASUREMENT ERROR IMPACT ON RETRIEVALS FROM THE MICROWAVE SINGLE PIXEL IMAGER (MSPI)
Boccia, Valentina	pg. 6010 TU1.R14.6 - ON-ORBIT IMAGE SHARPNESS ASSESSMENT USING THE EDGE METHOD: METHODOLOGICAL IMPROVEMENTS FOR AUTOMATIC EDGE IDENTIFICATION AND SELECTION FROM NATURAL TARGETS
Bodin, Xavier	pg. 132 MO2.R14.2 - TEMPORAL CONSOLIDATION STRATEGY FOR GROUND BASED IMAGE DISPLACEMENT TIME SERIES
Boening, Carmen	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Boerkoel, James	pg. 3833 TH2.R17.1 - LEVERAGING SPACE AND GROUND

	ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE
Bogena, Heye	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Bohdan, Yailymov	pg. 2913 FR2.R18.10 - ACTIVE FIRE MONITORING SERVICE FOR UKRAINE BASED ON SATELLITE DATA
Bollian, Tobias	pg. 3781 TH2.R13.8 - AGENDA ITEMS OF THE WORLD RADIOCOMMUNICATION CONFERENCE 2023 RELEVANT TO REMOTE SENSING
Bollinger, Drew	pg. 2248 FR1.R5.2 - EMPLOYING DEEP LEARNING TO ENABLE VISUAL EXPLORATION OF EARTH SCIENCE EVENTS
Bolon, Philippe	pg. 1889 TH1.R16.1 - GAP-FILLING BASED ON EOF ANALYSIS OF SPATIO-TEMPORAL COVARIANCE OF SATELLITE IMAGE DERIVED DISPLACEMENT TIME SERIES
Bonanno, David	pg. 6547 FR2.R13.11 - MECHANICALLY-ACTUATED RECONFIGURABLE REFLECTARRAY (MARR) FOR MICROWAVE SINGLE PIXEL IMAGER (MSPI)
Bonano, Manuela	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR COSEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Bonney, Mitchell	FR2.R18.2 - RAPID MAPPING OF BUSHFIRE HAZARD USING LANDSAT IMAGES AND GOOGLE EARTH ENGINE
Book, Matthias	pg. 1058 WE1.R5.6 - SCALING UP A MULTISPECTRAL RESNET-50 TO 128 GPUS
Boopathi, Nithyapriya	Pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI- TEMPORAL STUDY Pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS
Booysen, René	pg. 4035 FR2.R14.3 - TOWARDS 4D VIRTUAL OUTCROPS WITH HYPERSPECTRAL IMAGING
Borba, Philipe	pg. 1540) WE2.R16.5 - METHODOLOGY FOR LAND MAPPING OF AMAPA STATE - A SPECIAL CASE OF AMAZON RADIOGRAPHY PROJECT
Bordbari, Reza	pg. 120 MO2.R6.10 - GEN-CAPON AND GEN-MUSIC DIFF-TOMO FOR NON-STATIONARY DISTRIBUTED MEDIA: EXPLORATION OF POTENTIAL FOR SUBCANOPY SUBSIDENCE MONITORING

Borde, Frank	pg. 3521 WE2.R8.1 - DETECTION OF INTERNAL SOLITARY
20.40, 114.110	WAVES WITH CONVENTIONAL AND ADVANCED SAR ALTIMETRY
	PROCESSING METHODS: PRELIMINARY RESULTS
Bordone Molini, Andrea	pg. 613 TU1.R11.1 - DEEPSUM++: NON-LOCAL DEEP NEURAL
	NETWORK FOR SUPER-RESOLUTION OF UNREGISTERED
	MULTITEMPORAL IMAGES
	pg. 2507 FR1.R16.10 - TOWARDS DEEP UNSUPERVISED SAR
	DESPECKLING WITH BLIND-SPOT CONVOLUTIONAL NEURAL
	NETWORKS
Borlaf, Ignacio	pg. 4975 TH2.R10.1 - DEEP NEURAL NETWORKS FOR FOREST
	GROWING STOCK VOLUME RETRIEVAL: A COMPARATIVE
	ANALYSIS FOR L-BAND SAR DATA
	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR
	SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Bosch Lluis, Xavier	FR1.R2.8 - THE SMART ICE CLOUD SENSING (SMICES)
	SMALLSAT CONCEPT
Bosch, Javier	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS
	FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Bosch-Lluis, Xavier	FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES)
	SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE
	STRATEGIES
Bosman, Julien	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE
	USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
Bossung, Christian	pg. 3251 MO2.R2.4 - SYSTEMATIC AND AUTOMATIC LARGE-
	SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR
	DATA
Bothale, Vinod M	pg. 6993 FR2.R2.10 - RTC-GAN: REAL-TIME CLASSIFICATION
	OF SATELLITE IMAGERY USING DEEP GENERATIVE
	ADVERSARIAL NETWORKS WITH INFUSED SPECTRAL
	INFORMATION
Bouaynaya, Nidhal	pg. 2917 FR2.R18.11 - SPATIO-TEMPORAL STATISTICAL
	SEQUENTIAL ANALYSIS FOR TEMPERATURE CHANGE
	DETECTION IN SATELLITE IMAGERY
Boudaren, Mohamed El Yazid	pg. 1460 WE2.R9.7 - HIGH-ORDER TRIPLET CRF-PCANET FOR
	UNSUPERVISED SEGMENTATION OF SAR IMAGE
Boufounos, Petros	pg. 441 TU1.R5.2 - ROBUST 3D TOMOGRAPHIC IMAGING OF
	THE IONOSPHERIC ELECTRON DENSITY
	pg. 1881 TH1.R12.10 - GRAPH-BASED ARRAY SIGNAL DENOISING FOR PERTURBED SYNTHETIC APERTURE RADAR
Boukir, Samia	pg. 668 TU1.R12.4 - CHANGE DETECTION IN WIND-STORM
	DAMAGED FOREST USING RANDOM FORESTS AND ENSEMBLE
	MARGIN
Bounds, William	pg. 6547 FR2.R13.11 - MECHANICALLY-ACTUATED
•	PS. 33-7

	RECONFIGURABLE REFLECTARRAY (MARR) FOR MICROWAVE SINGLE PIXEL IMAGER (MSPI)
	pg. 6551 FR2.R13.12 - IMAGING ALGORITHM AND
	MEASUREMENT ERROR IMPACT ON RETRIEVALS FROM THE
	MICROWAVE SINGLE PIXEL IMAGER (MSPI)
Bounoua, Lahouari	pg. 4403 TU2.R12.5 - COMPARISON OF MODIS LAND SURFACE TEMPERATURE AND AIR TEMPERATURE OVER GLOBAL IN 2015
Bourassa, Mark	pg. 5666 TU1.R8.6 - APPLICATION OF COINCIDENT SUB- FOOTPRINT SCALE WINDS TO DEVELOP METHODS FOR ESTIMATING SEA SURFACE VORTICITY FROM THE RAPIDSCAT SCATTEROMETER KU-BAND NRCS TH1.R8.8 - EXAMINING SCATTEROMETER CALIBRATION IN HIGH
	SEAS
Bourassa, Mark A.	pg. 5705 TU2.R8.5 - EFFECTS OF DIFFERENT WAVE SPECTRA ON WIND-WAVE INDUCED DOPPLER SHIFT ESTIMATES
Bourgeau-Chavez, Laura	pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
Bousbih, Safa	pg. 4910 TH2.R1.2 - CLAY CONTENT MAPPING USING SOIL MOISTURE PRODUCTS DERIVED FROM A SYNERGETIC USE OF SENTINEL-1 AND SENTINEL-2 DATA
Bousquet, Emma	pg. 4830 TH1.R10.3 - MONITORING THE GLOBAL BIOMASS THANKS TO 10 YEARS OF SMOS VEGETATION OPTICAL DEPTH
Boutin, Jacqueline	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Bovolo, Francesca	pg. 5960 TU1.R4.5 - ENVISION MISSION TO VENUS: SUBSURFACE RADAR SOUNDING
	pg. 692 TU1.R12.10 - A NOVEL APPROACH TO UNSUPERVISED SEGMENTATION OF MULTITEMPORAL VHR IMAGES BASED ON DEEP LEARNING
	pg. 2288 FR1.R5.12 - LARGE-SCALE PRECISE MAPPING OF AGRICULTURAL FIELDS IN SENTINEL-2 SATELLITE IMAGE TIME SERIES
Boy, Francois	pg. 3521 WE2.R8.1 - DETECTION OF INTERNAL SOLITARY WAVES WITH CONVENTIONAL AND ADVANCED SAR ALTIMETRY PROCESSING METHODS: PRELIMINARY RESULTS
Boyd, Dylan	pg. 4700 TH1.R1.3 - PRELIMINARY STUDY OF CRAMER-RAO LOWER BOUND FOR SUBSURFACE SOIL MOISTURE ESTIMATION USING SOOP REFLECTOMETRY pg. 4470 WE1.R1.10 - MACHINE-LEARNING BASED RETRIEVAL OF SOIL MOISTURE AT HIGH SPATIO-TEMPORAL SCALES USING CYGNSS AND SMAP OBSERVATIONS
Boyle, Carter	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT

Bradburn, John	pg. 6357 TH1.R13.4 - ACCURACY: ADAPTIVE CALIBRATION OF CUBESAT RADIOMETER CONSTELLATIONS
Bradbury, Kyle	pg. 2229 TH2.R20.9 - MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING pg. 1476 WE2.R9.11 - DO DEEP LEARNING MODELS GENERALIZE TO OVERHEAD IMAGERY FROM NOVEL GEOGRAPHIC LOCATIONS? THE XGD BENCHMARK PROBLEM pg. 948 TU2.R16.12 - DESIGNING SYNTHETIC OVERHEAD IMAGERY TO MATCH A TARGET GEOGRAPHIC REGION:
Bradley, Joshua	PRELIMINARY RESULTS TRAINING DEEP LEARNING MODELS (Pg. 6170) WE1.R12.7 - DEVELOPMENT AND RESULTS FOR A NEW SOFTWARE DEFINED RADAR: THE SLIMSDR
Brakenridge, G. Robert	pg. 3239 MO2.R2.1 - APPLYING REMOTE SENSING TO SUPPORT FLOOD RISK ASSESSMENT AND RELIEF AGENCIES: A GLOBAL TO LOCAL APPROACH
Brandt, Martin	pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION
Bravo Pérez-Villar, Juan Ignacio	pg. 252 MO2.R16.10 - SHIP DETECTION ON SINGLE-BAND GRAYSCALE IMAGERY USING DEEP LEARNING AND AIS SIGNAL MATCHING USING NON-RIGID TRANSFORMATIONS
Brcic, Ramon	pg. 1165 WE1.R16.11 - FIRST EXPERIENCES WITH ACTIVE C-BAND RADAR REFLECTORS AND SENTINEL-1
Breinbjerg, Olav	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Brekke, Camilla	pg. 5881 FR1.R8.7 - OCEAN COLOR NET (OCN) FOR THE BARENTS SEA pg. 2455 FR1.R14.8 - TOWARDS AUTOMATIC DETECTION OF DARK FEATURES IN THE BARENTS SEA USING SYNTHETIC APERTURE RADAR
Brenot, Hugues	pg. 6834 WE1.R2.5 - THE 2015 CALBUCO VOLCANIC CLOUD DETECTION USING GNSS RADIO OCCULTATION AND SATELLITE LIDAR pg. 6859 WE1.R2.12 - PROTOTYPING OF A MULTI-HAZARD EARLY WARNING SYSTEM FOR AVIATION AND DEVELOPMENT OF NRT ALERT PRODUCTS WITHIN THE EUNADICS-AV AND OPAS PROJECTS
Bretzke, Sofie	pg. 359 MO2.R19.5 - MODELING TEMPORAL DECORRELATION AT X-BAND BY COMBINING TANDEM-X AND PAZ INSAR DATA
Brewster, John	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Briceno-de-Urbaneja, Idania	pg. 5769 WE1.R8.11 - INTRA-ANNUAL COASTAL DYNAMICS THROUGH REMOTE SENSORS AND MORPHOSEDIMENTARY

	PATTERNS, REÑACA BEACH AND CONCON BAY, CENTRAL CHILE.
Briceño de Urbaneja, Idania	pg. 6604 TU1.R2.4 - LANDSLIDE SUSCEPTIBILITY USING REMOTE SENSING DATA & GIS IN A HIGH ANDEAN AREA OF CENTRAL CHILE
Brindle, Laura	pg. 5065 FR1.R4.1 - FIRST ASSESSMENT OF NOVASAR-1 S-BAND SAR BACKSCATTER CHARACTERISTICS OVER TROPICAL WETLANDS
	pg. 6154 WE1.R12.3 - INITIAL NOVASAR-1 DATA PROCESSING AND IMAGERY EVALUATION
	(pg. 5971) TU1.R4.8 - NEW INSIGHTS FROM AUSTRALIA'S SYNTHETIC APERTURE RADAR CAPABILITY, NOVASAR-1
Bringer, Alexandra	pg. 5434 TH1.R19.1 - MONITORING RAPID CHANGE IN THE ATMOSPHERE USING CYGNSS WIND SPEED MEASUREMENTS (pg. 4692) TH1.R1.1 - PREDICTING SOIL MOISTURE RETRIEVAL PERFORMANCE FOR THE NISAR MISSION
	pg. 3766 TH2.R13.3 - RETRIEVAL OF RFI CHARACTERISTICS USING L-BAND SATELLITE DATA
	pg. 6434 FR1.R13.5 - P-BAND RADIOMETRY: RFI AND CALIBRATION FOR UWBRAD
	FR1.R13.11 - MONITORING IN THE RFI ENVIRONMENT USING SMAP DATA FROM 2015-2020
Brinkhoff, James	pg. 4355 TU2.R11.4 - IMPACT OF UAV TIME-OF-FLIGHT ON RICE NITROGEN UPTAKE MODELS
Brinkman, Todd	pg. 4735 TH1.R4.1 - MAPPING OF SHALLOW-WATER SITES TO AID NAVIGATION ON THE COLVILLE RIVER, NORTH SLOPE OF ALASKA
Briottet, Xavier	pg. 5325 TU1.R19.9 - IMPROVEMENT OF A CIRRUS CORRECTION EMPIRICAL METHOD WITH SENTINEL-2 DATA
Brito, Thyago	pg. 4550 WE1.R11.9 - MONITORING OF OLIVE TREES TEMPERATURES UNDER DIFFERENT IRRIGATION STRATEGIES BY UAV THERMAL INFRARED IMAGERY
Broadwater, Joshua	pg. 1790 TH1.R7.9 - SPECTRAL INFORMATION CONTENT ALGORITHM FOR AUTOMATED SIGNATURE ASSESSMENT
Brogi, Cosimo	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Brogioni, Marco	pg. 6434 FR1.R13.5 - P-BAND RADIOMETRY: RFI AND CALIBRATION FOR UWBRAD
Broome, Anna	pg. 1428 WE2.R6.10 - A NARROWBAND MULTI-FREQUENCY RADAR SOUNDING ARCHITECTURE TO CORRECT SUBSURFACE INTERFACE ROUGHNESS EFFECTS
Brosnan, lan	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS

Brouard, Charles	pg. 5069 FR1.R4.2 - MINING EXPORTS AND CLIMATE VARIABILITY INFLUENCING GRACE-DERIVED WATER STORAGE
	TREND ESTIMATES IN AUSTRALIA
Brovelli, Maria Antonia	pg. 4779 TH1.R6.1 - LAND COVER AND SOIL CONSUMPTION MONITORING WITH A FOS GEOPORTAL IN FIVE ITALIAN BIG URBAN AREAS
Brown, Meredith	pg. 3723 TH2.R11.7 - CAPTURING CORN AND SOYBEAN YIELD VARIABILITY AT FIELD SCALE USING VERY HIGH SPATIAL RESOLUTION SATELLITE DATA
Brown, Shannon	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Brucker, Ludovic	pg. 6150 WE1.R12.2 - PERFORMANCE OF SWESARR'S MULTI- FREQUENCY DUAL-POLARIMETRY SYNTHETIC APERTURE RADAR DURING NASA'S SNOWEX AIRBORNE CAMPAIGN
Brum, Diego	Pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE-VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING Pg. 5207 FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA
Brunner, Kelsey	pg. 6202 WE1.R13.6 - INVESTIGATING THE IMPACT OF COHERENT AND INCOHERENT SCATTERING TERMS IN GNSS-R DELAY DOPPLER MAPS
Bruzzone, Lorenzo	TH2.R7.1 - THE ROLE OF PHYSICAL MODELS IN THE ARTIFICIAL INTELLIGENCE ERA pg. 5960 TU1.R4.5 - ENVISION MISSION TO VENUS: SUBSURFACE RADAR SOUNDING pg. 5967 TU1.R4.7 - AN AUTOMATIC PLANNING AND SCHEDULING METHOD BASED ON MULTI-OBJECTIVE GENETIC ALGORITHMS FOR PLANETARY RADAR SOUNDER OBSERVATIONS pg. 692 TU1.R12.10 - A NOVEL APPROACH TO UNSUPERVISED SEGMENTATION OF MULTITEMPORAL VHR IMAGES BASED ON DEEP LEARNING pg. 2288 FR1.R5.12 - LARGE-SCALE PRECISE MAPPING OF AGRICULTURAL FIELDS IN SENTINEL-2 SATELLITE IMAGE TIME SERIES
Buchaillot, Ma. Luisa	pg. 4359 TU2.R11.5 - OPEN-SOURCE SOFTWARE FOR CROP PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB IMAGES pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Buchhorn, Marcel	pg. 4251 TU1.R1.1 - ELASTIC MAPPING THROUGH THE

	COPERNICUS GLOBAL LAND COVER LAYERS
Buckley, Sean	pg. 1897 TH1.R16.3 - AN EFFICIENT AREA-BASED ALGORITHM FOR SAR RADIOMETRIC TERRAIN CORRECTION AND MAP PROJECTION
Buckreuss, Stefan	pg. 3403 TU2.R15.1 - TANDEM-X: 10 YEARS OF OPERATION
Buddhiraju, Krishna Mohan	pg. 2523 FR1.R17.3 - A GPU ACCELERATED CONTOURLET METHOD FOR DETECTING CHANGES DUE TO FIRE USING REMOTE SENSING
Budge, Jeffrey	pg. 6170 WE1.R12.7 - DEVELOPMENT AND RESULTS FOR A NEW SOFTWARE DEFINED RADAR: THE SLIMSDR
Budillon, Alessandra	pg. 108 MO2.R6.7 - REGULARIZED SAR TOMOGRAPHY APPROACHES
Bue, Brian	pg. 3955 FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS pg. 3247 MO2.R2.3 - FLOOD MAPPING USING UAVSAR AND CONVOLUTIONAL NEURAL NETWORKS
Buehner, Mark	pg. 3027 TU2.R9.7 - ESTIMATION OF ICE CONCENTRATION FROM SAR USING MULTISCALE ICE AND WATER RETRIEVALS
Bueso Bello, José Luis	pg. 359 MO2.R19.5 - MODELING TEMPORAL DECORRELATION AT X-BAND BY COMBINING TANDEM-X AND PAZ INSAR DATA
Buffe, Fabrice	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
Bugbee, Kaylin	pg. 3097 WE1.R14.2 - ADVANCING OPEN SCIENCE THROUGH INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM (MAAP)'S DATA ECOSYSTEM pg. 3131 WE1.R14.11 - STANDARDIZED ALGORITHM DOCUMENTATION FOR IMPROVED SCIENTIFIC DATA UNDERSTANDING: THE ALGORITHM PUBLICATION TOOL PROTOTYPE
Bulatov, Dimitri	pg. 1303 WE1.R20.10 - FEATURE CONCATENATION OF HYPERSPECTRAL AND DEM DATA FOR LAND COVER CLASSIFICATION
Bullard, Stevan	pg. 1121 WE1.R6.11 - ESTIMATING DISPLACED POPULATIONS FROM OVERHEAD
Buonanno, Sabatino	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN
Buongiorno, Maria Fabrizia	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY) pg. 6055 TU2.R4.6 - SCIENTIFIC REQUIREMENTS FOR A NEW

	EO MISSION IN THE MWIR-LWIR SPECTRAL RANGE
Buono, Andrea	pg. 4019 FR2.R8.4 - MONITORING HARSH COASTAL ENVIRONMENTS USING POLARIMETRIC SAR DATA: THE CASE OF SOLWAY FIRTH WETLANDS
Burch, Kara	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Burger, Christiaan	pg. 2244 FR1.R5.1 - UNSUPERVISED SEQUENTIAL CLASSIFICATION OF MODIS TIME-SERIES
Burkholder, Robert	pg. 3444 TU2.R17.4 - CHARACTERIZING THE COHERENT REFLECTED POWER DEPENDENCE ON ROUGH SURFACE HEIGHT AT LOW SIGNAL LEVELS
Burle, Dattu	pg. 1659 TH1.R2.12 - TOPOGRAPHICAL FEATURE EXTRACTION USING MACHINE LEARNING TECHNIQUES FROM SENTINEL-2A IMAGERY
Burnel, Jean-Christophe	pg. 1961 TH1.R17.8 - A CYCLE GAN APPROACH FOR HETEROGENEOUS DOMAIN ADAPTATION IN LAND USE CLASSIFICATION
Burns, Ryan	pg. 1897 TH1.R16.3 - AN EFFICIENT AREA-BASED ALGORITHM FOR SAR RADIOMETRIC TERRAIN CORRECTION AND MAP PROJECTION
Burr, Ralf	pg. 746 TU1.R18.2 - TRIPWIRE DETECTION IN SAR IMAGES USING A MODIFIED RADON TRANSFORM
Busche, Thomas	pg. 3403 TU2.R15.1 - TANDEM-X: 10 YEARS OF OPERATION
Bustos, Mariaelisa	pg. 2093 TH2.R5.8 - AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI- SENSOR SATELLITE IMAGERY APPROACH
Butler, Timothy	pg. 3353 TU2.R13.4 - NEXT GENERATION GNSS-R INSTRUMENT
Byambakhuu, Gantumur	pg. 4247 MO2.R12.11 - EXTENDED PATTERN OF URBAN SPRAWL ANALYSIS FROM REMOTE SENSING DATA IN ULAANBAATAR, MONGOLIA
Bylicki, Michal	pg. 3104) WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS
Bynum, Lucius	pg. 3684 TH2.R7.6 - ROTATIONAL EQUIVARIANCE FOR OBJECT CLASSIFICATION USING XVIEW
Böckmann, Christine	pg. 5584 FR2.R19.6 - RETRIEVAL OF ARCTIC PARTICLE MICROPHYSICS FROM AIR-BORNE LIDAR AND SUN- PHOTOMETER DATA
Böhler, Jonas	pg. 664 TU1.R12.3 - A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM

	DESIGN TO FIRST RESULTS
Böhnke, Christian	pg. 3243 MO2.R2.2 - AUTOMATIC NEAR-REAL TIME FLOOD EXTENT AND DURATION MAPPING BASED ON MULTI-SENSOR EARTH OBSERVATION DATA
С	
C. Lima, Gefersom	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Cabot, Francois	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Cabot, François	pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS
Caccetta, Peter	pg. 4914 TH2.R1.3 - SENTINEL-1 IMAGERY INCORPORATING MACHINE LEARNING FOR DRYLAND SALINITY MONITORING: A CASE STUDY IN ESPERANCE, WESTERN AUSTRALIA pg. 6154 WE1.R12.3 - INITIAL NOVASAR-1 DATA PROCESSING AND IMAGERY EVALUATION
Cachia, Ernest	pg. 2213 TH2.R20.5 - AUTOMATIC BENTHIC HABITAT MAPPING USING INEXPENSIVE UNDERWATER DRONES
Cacoveanu, Remus	pg. 3869 FR1.R3.3 - SPACEBORNE TRANSMITTER - STATIONARY RECEIVER BISTATIC SAR POLARIMETRY - EXPERIMENTAL RESULTS pg. 1913 TH1.R16.7 - TIME-DOMAIN SAR PROCESSOR FOR SENTINEL-1 TOPS DATA pg. 124 MO2.R6.11 - SINGLE-PASS SPACEBORNE TRANSMITTER-STATIONARY RECEIVER BISTATIC SAR TOMOGRAPHY - NOVEL SOLUTION WITH 3 IMAGING CHANNELS
Cai, Haojie	pg. 1275 WE1.R20.3 - MULTI-DIMENSION CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Cai, Zhanchuan	pg. 5131 FR1.R10.6 - RE-EVALUATING BASALTIC DEPOSITS IN MARE NUBIUM WITH CE-2 CELMS DATA
Cai, Zhihua	pg. 513 TU1.R6.10 - PARTICLE SWARM OPTIMIZATION BASED DEEP LEARNING ARCHITECTURE SEARCH FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Caicedo, Vanessa	pg. 3676 TH2.R7.4 - A DEEP MACHINE LEARNING APPROACH FOR LIDAR BASED BOUNDARY LAYER HEIGHT DETECTION
Cairns, Jill	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Calef, Matthew	pg. 6638 TU1.R13.1 - BUDD: MULTI-MODAL BAYESIAN UPDATING DEFORESTATION DETECTIONS

Calota, Iulia	pg. 3672 TH2.R7.3 - DNN-BASED SEMANTIC EXTRACTION: FAST LEARNING FROM MULTISPECTRAL SIGNATURES
Calveras, Anna	pg. 363 MO2.R19.6 - EVALUATION OF LORA FOR DATA RETRIEVAL OF OCEAN MONITORING SENSORS WITH LEO SATELLITES pg. 3574 WE2.R15.7 - DEMONSTRATION OF THE FEDERATED SATELLITE SYSTEMS CONCEPT FOR FUTURE EARTH OBSERVATION SATELLITE MISSIONS
Calvin, Wendy	pg. 4037 FR2.R14.4 - USING LONG WAVE INFRARED SPECTROSCOPY TO DETERMINE CHANGES IN THE MAFIC MINERALOGY OF DRILL CORE SAMPLES FROM THE HUMU'ULA GROUNDWATER RESEARCH PROJECT.
Cameron, lain	pg. 4894 TH1.R11.8 - USING C-BAND SAR AND TEMPERATURE TO MONITOR TROPICAL AGRICULTURAL FIELDS pg. 4554 WE1.R11.10 - AGRICULTURAL FIELDS MONITORING WITH MULTI-TEMPORAL POLARIMETRIC SAR (MT-POLSAR) CHANGE DETECTION
Camici, Stefania	pg. 3935 FR2.R1.4 - ANTECEDENT WETNESS CONDITIONS OF EUROPEAN FLOODS: A COMPREHENSIVE STUDY
Campanella, Paolo	pg. 3251 MO2.R2.4 - SYSTEMATIC AND AUTOMATIC LARGE-SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA pg. 1707 TH1.R3.12 - CNN-BASED BUILDING FOOTPRINT DETECTION FROM SENTINEL-1 SAR IMAGERY
Campbell, James	pg. 5042 FR1.R1.7 - SOILSCAPE WIRELESS IN SITU NETWORKS IN SUPPORT OF CYGNSS LAND APPLICATIONS
Campbell, Reed	pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Campos, Alexandre	pg. 332 MO2.R18.8 - UNSUPERVISED AUTOMATIC TARGET DETECTION FOR MULTITEMPORAL SAR IMAGES BASED ON ADAPTIVE K-MEANS ALGORITHM
Campos, Manuel	pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Camps, Adriano	pg. 3341 TU2.R13.1 - FFSCAT MISSION: PRELIMINARY RESULTS AND ICE PRODUCTS VALIDATION WITH MOSAIC CAMPAIGN DATA pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION pg. 5254 FR2.R11.2 - IMPROVING THE RICE YIELD ESTIMATION USING SMOS AND CYGNSS GNSS-R DATA pg. 6274 WE2.R13.3 - ANALYSIS ON THE FEASABILITY OF AIRBORNE GNSS-R RECEIVERS FOR WEATHER NOWCASTING AND TARGET DETECTION pg. 6977 FR2.R2.6 - RADIO-FREQUENCY INTERFERENCE

LOCATION, DETECTION AND CLASSIFICATION USING DEEP NEURAL NETWORKS

pg. 363 MO2.R19.6 - EVALUATION OF LORA FOR DATA RETRIEVAL OF OCEAN MONITORING SENSORS WITH LEO SATELLITES

pg. 5925 MO2.R13.6 - UNTANGLING THE GNSS-R COHERENT AND INCOHERENT COMPONENTS: EXPERIMENTAL EVIDENCES OVER THE OCEAN

pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS-REFLECTOMETRY

pg. 3574 WE2.R15.7 - DEMONSTRATION OF THE FEDERATED SATELLITE SYSTEMS CONCEPT FOR FUTURE EARTH OBSERVATION SATELLITE MISSIONS

pg. 3369 TU2.R13.8 - FIRST EXPERIMENTAL EVIDENCE OF WIND AND SWELL SIGNATURES IN L5 GPS AND E5A GALILEO GNSS-R WAVEFORMS

pg. 5937 MO2.R13.9 - IONOSPHERIC SCINTILLATION MODEL LIMITATIONS AND IMPACT IN GNSS-R MISSIONS

pg. 6539 FR2.R13.9 - SPATIAL RESOLUTION ENHANCEMENT
OF RADIOMETER MEASUREMENTS COLLECTED BY THE FUTURE
MICROWAVE CIMR MISSION

pg. 6065 TU2.R4.9 - CORRECTING IMAGE BLURRING INDUCED
BY THE ADCS. JITTER IN CUBESATS

Pg. 6588 FR2.R17.10 - SDR IMPLEMENTATION OF A TESTBED FOR SYNCHRONIZATION OF COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS

(Pg. 6543) FR2.R13.10 - AN ENHANCED PRODUCT FOR THE FSSCAT MICROWAVE RADIOMETER

Camps-Raga, Bruno

(pg. 2924) MO2.R9.2 - SNOW GRAIN SIZE ESTIMATES FROM AIRBORNE KA-BAND RADAR MEASUREMENTS

Camps-Valls, Gustau

pg. 3979 FR2.R7.1 - ADVANCING DEEP LEARNING FOR EARTH SCIENCES: FROM HYBRID MODELING TO INTERPRETABILITY

(pg. 1675) TH1.R3.4 - MANIFOLD LEARNING WITH HIGH DIMENSIONAL MODEL REPRESENTATIONS

(pg. 3991) FR2.R7.5 - INTERPRETABILITY OF RECURRENT NEURAL NETWORKS IN REMOTE SENSING

(pg. 3999) FR2.R7.7 - DISCOVERING DIFFERENTIAL EQUATIONS FROM EARTH OBSERVATION DATA

pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE

Cao, Biao

pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION

pg. 4854 TH1.R10.9 - EVALUATION OF FOUR THERMAL INFRARED KERNEL-DRIVEN MODELS USING LIMITED OBSERVATIONS

Cao, Changyong

(pg. 6389) TH1.R15.3 - NOAA-20/S-NPP VIIRS SENSOR DATA RECORD ON-ORBIT PERFORMANCE UPDATES AND RECENT IMPROVEMENTS

Pg. 6047 TU2.R4.4 - NOAA-20 VISIBLE INFRARED IMAGING RADIOMETER SUITE (VIIRS) DAY-NIGHT BAND CALIBRATION

	USING THE SCHEDULED LUNAR COLLECTIONS (pg. 6117) WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Cao, Hongju	pg. 2432 FR1.R14.2 - A FAST LOW RANK APPROXIMATION AND SPARSITY REPRESENTATION APPROACH TO HYPERSPECTRAL ANOMALY DETECTION
	pg. 481 TU1.R6.2 - HYPERSPECTRAL CLASSIFICATION USING LOW RANK AND SPARSITY MATRICES DECOMPOSITION pg. 2807 FR2.R12.5 - GO DECOMPOSITION (GODEC) APPROACH TO FINDING LOW RANK AND SPARSITY MATRICES FOR HYPERSPECTRAL TARGET DETECTION
Cao, Hui	pg. 465 TU1.R5.8 - DEM EXTRACTION FROM AIRBORNE LIDAR POINT CLOUD IN THICK-FORESTED AREAS VIA CONVOLUTIONAL NEURAL NETWORK
Cao, Jingyi	pg. 2531 FR1.R17.5 - CHANGE DETECTION NETWORK OF NEARSHORE SHIPS FOR MULTI-TEMPORAL OPTICAL REMOTE SENSING IMAGES pg. 2328 FR1.R6.11 - FUSION OF SAR AND OPTICAL REMOTE SENSING IMAGES BASED ON DEEP CONVOLUTION GENERATIVE ADVERSARIAL NETWORKS
Cao, Jiping	pg. 877 TU2.R7.2 - ESTIMATING MULTIPLE-SCALE GDP DISTRIBUTION USING NIGHTTIME LIGHT AND SPATIAL METHODS (pg. 1205) WE1.R17.9 - STREET VIEW IMAGE RETRIEVAL WITH AVERAGE POOLING FEATURES
Cao, Liqin	pg. 4092 MO2.R1.5 - DENSE GREENHOUSE EXTRACTION IN HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGERY
Cao, Qi	pg. 2197 TH2.R20.1 - RISK ASSESSMENT OF DRINKING WATER SOURCE BASED ON HIGH SPATIAL RESOLUTION REMOTE SENSING
Cao, Siyu	pg. 4391 TU2.R12.2 - DECISION FUSION OF PIXEL-BASED AND REGION-BASED SEGMENTATION FOR BUILDING DETECTION
Cao, Xuesong	pg. 4363 TU2.R11.6 - STUDY ON SPATIOTEMPORAL VARIATIONS OF EVAPOTRANSPIRATION IN ETUOKEQIANQI BASED ON MOD16 PRODUCTS AND PENMAN-MONTEITH MODEL
Cao, Ying	pg. 6981 FR2.R2.7 - UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA
Cao, Zhipeng	pg. 3127 WE1.R14.10 - GEOCUBE: TOWARDS THE MULTI- SOURCE GEOSPATIAL DATA CUBE IN BIG DATA ERA
Cao, Zongjie	pg. 1225 WE1.R18.2 - AN INTEGRATED METHOD OF SHIP DETECTION AND RECOGNITION IN SAR IMAGES BASED ON DEEP LEARNING pg. 1244 WE1.R18.7 - DENSE DOCKED SHIP DETECTION VIA

	SPATIAL GROUP-WISE ENHANCE ATTENTION IN SAR IMAGES [pg. 770] TU1.R18.8 - MICRO GESTURE RECOGNITION WITH TERAHERTZ RADAR BASED ON DIAGONAL PROFILE OF RANGE- DOPPLER MAP [pg. 1263] WE1.R18.12 - SHIP DETECTION IN LARGE SCALE SAR
Caporusso, Giacomo	IMAGES BASED ON BIAS CLASSIFICATION [pg. 3282] MO2.R4.5 - THE HYPERSPECTRAL PRISMA MISSION IN OPERATIONS
Caputo, Teresa	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY)
Carcereri, Daniel	pg. 2288 FR1.R5.12 - LARGE-SCALE PRECISE MAPPING OF AGRICULTURAL FIELDS IN SENTINEL-2 SATELLITE IMAGE TIME SERIES
Cardellach, Estel	pg. 3341 TU2.R13.1 - FFSCAT MISSION: PRELIMINARY RESULTS AND ICE PRODUCTS VALIDATION WITH MOSAIC CAMPAIGN DATA pg. 3345 TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION TU2.R13.6 - CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY? WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Cardenas, M. Bayani	pg. 4934 TH2.R1.8 - MONITORING SOILWATER AND ORGANIC CARBON STORAGE PATTERNS AT THE ARCTIC FOOTHILLS, ALASKA, USING INSAR
Cardoso-Fernandes, Joana	pg. 5226 FR2.R10.7 - MULTI-SCALE APPROACH USING REMOTE SENSING TECHNIQUES FOR LITHIUM PEGMATITE EXPLORATION: FIRST RESULTS pg. 561 TU1.R7.11 - LITHIUM (LI) PEGMATITE MAPPING USING ARTIFICIAL NEURAL NETWORKS (ANNS): PRELIMINARY RESULTS
Caris, Michael	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Carla Guillén Escribà, Carla	pg. 4842 TH1.R10.6 - GENETICALLY CONSTRAINED TEMPORAL TRAJECTORIES OF TEMPERATE FOREST AIRBORNE REFLECTANCE SPECTRA
Carmona, Emiliano	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Carney, Richard	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY pg. 6495 FR1.R15.10 - MULTI-AGENTS PATH PLANNING FOR A SWARM OF UNMANNED AERIAL VEHICLES
Carnicero Domínguez,	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING

Bernardo	RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Carr, James	pg. 3853 TH2.R17.6 - AN INNOVATIVE SPACECUBE APPLICATION FOR ATMOSPHERIC SCIENCE
Carreira, D.	pg. 4715 TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV
Carreno-Luengo, Hugo	pg. 6202 WE1.R13.6 - INVESTIGATING THE IMPACT OF COHERENT AND INCOHERENT SCATTERING TERMS IN GNSS-R DELAY DOPPLER MAPS pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Carrer, Leonardo	pg. 5960 TU1.R4.5 - ENVISION MISSION TO VENUS: SUBSURFACE RADAR SOUNDING
Carroll, Mark	pg. 3709 TH2.R11.3 - A MULTI-MODAL APPROACH FOR MONITORING CHANGES IN AGRICULTURE IN THE MEKONG RIVER DELTA pg. 2017 TH1.R18.11 - MERRAMAX: A MACHINE LEARNING APPROACH TO STOCHASTIC CONVERGENCE WITH A MULTI-VARIATE DATASET
Carrère, Véronique	pg. 4918 TH2.R1.4 - OMP-BASED ALGORITHM FOR MINERAL REFLECTANCE SPECTRA DECONVOLUTION FROM HYPERSPECTRAL IMAGES
Carter, Lynn	pg. 4073 FR2.R15.6 - P-BAND SYNTHETIC APERTURE RADAR FOR PLANETARY SUBSURFACE IMAGING APPLICATIONS
Cartus, Oliver	pg. 4987 TH2.R10.4 - ESTIMATION OF FOREST ABOVE- GROUND BIOMASS WITH C-BAND SCATTEROMETER BACKSCATTER OBSERVATIONS
Carvalho Júnior, Osmar Abilio	pg. 1596 WE2.R18.7 - CENTER PIVOT CLASSIFICATION WITH DEEP RESIDUAL U-NET
Carvalho, A.	pg. 4715 TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV
Carvalho, Lucas	pg. 2233 TH2.R20.10 - OIL TANK DETECTION IN SATELLITE IMAGES VIA A CONTRARIO CLUSTERING
Carvalho, Paulo	TH2.R11.6 - VIRTUAL ENVIRONMENTS & SUSTAINABLE AGRICULTURE: A CASE STUDY
Casa, Raffaele	pg. 4906 TH2.R1.1 - EFFECT OF SPATIAL RESOLUTION ON SOIL PROPERTIES RETRIEVAL FROM IMAGING SPECTROSCOPY: AN ASSESSMENT OF THE HYPERSPECTRAL CHIME MISSION POTENTIAL
Casaca, Wallace	pg. 533 TU1.R7.3 - COMPARING THE PERFORMANCE OF MATHEMATICAL MORPHOLOGY AND BHATTACHARYYA

	DISTANCE FOR AIRPORT EXTRACTION
Casalini, Emiliano	pg. 2117 TH2.R9.3 - FMCW SAR DATA INVERSION
Cassol, Henrique Luis	pg. 4263 TU1.R1.4 - FIRE OCCURRENCE IN THE BRAZILIAN SAVANNA CONSERVATION UNITS AND THEIR BUFFER ZONES
Castaings, William	pg. 132 MO2.R14.2 - TEMPORAL CONSOLIDATION STRATEGY FOR GROUND BASED IMAGE DISPLACEMENT TIME SERIES
Castel, Fabien	pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS
Castellazzi, Pascal	pg. 5069 FR1.R4.2 - MINING EXPORTS AND CLIMATE VARIABILITY INFLUENCING GRACE-DERIVED WATER STORAGE TREND ESTIMATES IN AUSTRALIA
Castelletti, Davide	pg. 3571 WE2.R15.6 - OPERATIONAL READINESS OF THE CAPELLA SPACE SAR SYSTEM
Casti, Marta	pg. 2272 FR1.R5.8 - DETECTION OF SOLAR CORONAL MASS EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
Castro Garcia, Lorena	FR1.R19.1 - DETECTION OF NIGHTTIME FIRE COMBUSTION EFFICIENCY FOR WILDFIRES FROM VIIRS
Casu, Francesco	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR CO-SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Catalan, Albert	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Catalano, Ester	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS
Cathcart, Wendell	pg. 2229 TH2.R20.9 - MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING
Cauduro, Guilherme	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Caujolle, Romain	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Caumont, Hervé	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016 HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM (GEP)

Cauzid, Jean	pg. 5226 FR2.R10.7 - MULTI-SCALE APPROACH USING REMOTE SENSING TECHNIQUES FOR LITHIUM PEGMATITE EXPLORATION: FIRST RESULTS
Cavallaro, Gabriele	pg. 621 TU1.R11.3 - SUPER-RESOLUTION OF LARGE VOLUMES OF SENTINEL-2 IMAGES WITH HIGH PERFORMANCE DISTRIBUTED DEEP LEARNING pg. 1058 WE1.R5.6 - SCALING UP A MULTISPECTRAL RESNET-50 TO 128 GPUS pg. 1973 TH1.R17.11 - APPROACHING REMOTE SENSING IMAGE CLASSIFICATION WITH ENSEMBLES OF SUPPORT VECTOR MACHINES ON THE D-WAVE QUANTUM ANNEALER
Cawse-Nicholson, Kerry	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Cazacu, Constantin	pg. 4271 TU1.R1.6 - INTEGRATED PLATFORM FOR ECOSYSTEMS MONITORING BASED ON REMOTE AND IN SITU MEASUREMENTS
Cazarin, Carol	pg. 2619 FR2.R3.4 - HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN REMOTE SENSING IMAGES?
Cazarin, Caroline	pg. 5207 FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA
Cazcarra-Bes, Victor	pg. 3413 TU2.R15.4 - FOREST HEIGHT ESTIMATION FROM TANDEM-X INSAR COHERENCE MAGNITUDE TOWARDS LARGE SCALE APPLICATIONS
Ceillier, Tugdual	pg. 280 MO2.R17.6 - CONCURRENT SEGMENTATION AND OBJECT DETECTION CNNS FOR AIRCRAFT DETECTION AND IDENTIFICATION IN SATELLITE IMAGES
Cen, Yuanjun	pg. 3219 TH2.R14.8 - OPTIMIZATION OF HIGH PRECISION SAR ADC USED IN THE REMOTE SENSING TECHNOLOGY
Cenci, Luca	pg. 6266 WE2.R13.1 - POTENTIAL OF GNSS REFLECTOMETRY FOR FREEZE-THAW MONITORING: A STUDY OF TECHDEMOSAT-1 DATA pg. 6010 TU1.R14.6 - ON-ORBIT IMAGE SHARPNESS ASSESSMENT USING THE EDGE METHOD: METHODOLOGICAL IMPROVEMENTS FOR AUTOMATIC EDGE IDENTIFICATION AND SELECTION FROM NATURAL TARGETS
Cerra, Daniele	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 pg. 2408 FR1.R12.7 - IMPROVING THE CLASSIFICATION IN SHADOWED AREAS USING NONLINEAR SPECTRAL UNMIXING TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2

Cerrai, Diego	pg. 3943 FR2.R1.6 - STORM POWER OUTAGE PREDICTION AND VERIFICATION USING NWP MODELS AND REMOTE SENSING DATA
Chaabane, Ferdaous	pg. 144 MO2.R14.5 - COMPARISON BETWEEN MULTITEMPORAL GRAPH BASED CLASSICAL LEARNING AND LSTM MODEL CLASSIFICATIONS FOR SITS ANALYSIS
Chaabani, Chayma	pg. 1003 WE1.R3.3 - POST-FLOOD SURFACE DEFORMATION ANALYSIS USING P-SBAS-DINSAR SENTINEL-1 PROCESSING IN THE NORTH OF TUNISIA
Chabaane Lili, Zohra	pg. 4910 TH2.R1.2 - CLAY CONTENT MAPPING USING SOIL MOISTURE PRODUCTS DERIVED FROM A SYNERGETIC USE OF SENTINEL-1 AND SENTINEL-2 DATA
Chabrillat, Sabine	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES
Chai, Xun	pg. 4566 WE2.R1.2 - SOIL MOISTURE MAPPING WITH POLARIMETRIC SAR IN HUANGHE DELTA OF CHINA
Chakrabarti, Subit	pg. 4351 TU2.R11.3 - MONITORING VEGETATION CONDITIONS OVER AGRICULTURAL REGIONS USING ACTIVE OBSERVATIONS
Chakraborty, Rupsa	pg. 5119 FR1.R10.3 - BIOGEOCHEMICAL EXPLORATION OF GOLD MINERALIZATION AND ITS PATHFINDER ELEMENTS USING HYPERSPECTRAL REMOTE SENSING
Chakravarty, Debashish	pg. 4084 MO2.R1.3 - A STUDY OF DETECTING COAL SEAM FIRES BY REMOVING OTHER HIGH TEMPERATURE LOCATIONS FROM LANDSAT 8 OLI/TIRS IMAGES
Chan, Steven	pg. 3323 TU2.R1.2 - ASSESSMENT OF THE IMPACTS OF NEAR REAL-TIME VEGETATION CORRECTION ON PASSIVE SOIL MOISTURE PRODUCT PERFORMANCE
Chandra, Ranveer	pg. 5049 FR1.R1.9 - TIME-OF-FLIGHT SOIL MOISTURE ESTIMATION USING RF BACKSCATTER TAGS
Chandrasekar, V	pg. 5392 WE1.R19.2 - STUDY OF ICE HYDROMETEORS USING D3R RADAR AND GROUND OBSERVATIONS DURING ICE-POP CAMPAIGN pg. 5364 TU2.R19.7 - ATTENUATION CORRECTION AT KU BAND FOR D3R RADAR pg. 6582 FR2.R17.8 - POLYPHASE CODING FOR WEATHER RADARS
Chandrasekar, V.	pg. 5352 TU2.R19.4 - CROSS VALIDATION OF GOES-R AND NOAA MULTI-RADAR MULTI-SENSOR (MRMS) QPE OVER THE CONTINENTAL UNITED STATES pg. 3604 WE2.R19.5 - EVALUATION OF GPM-DPR GRAUPEL AND HAIL IDENTIFICATION ALGORITHM ON A GLOBAL SCALE pg. 5411 WE1.R19.7 - IMPROVING QUANTITATIVE PRECIPITATION ESTIMATION BY X-BAND DUAL-POLARIZATION

	RADARS IN COMPLEX TERRAIN OVER THE BAY AREA IN CALIFORNIA, USA
	pg. 5415 WE1.R19.8 - RESOLVING THE PRECIPITATION MICROPHYSICAL VARIABILITY INDUCED BY OROGRAPHIC
	ENHANCEMENT IN COMPLEX TERRAIN OVER THE SAN FRANCISCO BAY AREA
	pg. 5376 TU2.R19.10 - A MACHINE LEARNING APPROACH TO DERIVE PRECIPITATION ESTIMATES AT GLOBAL SCALE USING SPACE RADAR AND GROUND-BASED OBSERVATIONS
Chandrasekar, Venkatachalam	pg. 6483 FR1.R15.7 - REMOTE SENSING SYSTEMS FOR URBAN-SCALE DRONE AND AIR TAXI OPERATIONS
Chang, Anjin	pg. 5199 FR1.R11.11 - COMBINING UAS AND SENTINEL-2 DATA TO ESTIMATE CANOPY PARAMETERS OF A COTTON CROP USING MACHINE LEARNING
Chang, Chein-I	pg. 2432 FR1.R14.2 - A FAST LOW RANK APPROXIMATION AND SPARSITY REPRESENTATION APPROACH TO HYPERSPECTRAL ANOMALY DETECTION
	pg. 481 TU1.R6.2 - HYPERSPECTRAL CLASSIFICATION USING LOW RANK AND SPARSITY MATRICES DECOMPOSITION
	pg. 2807 FR2.R12.5 - GO DECOMPOSITION (GODEC)
	APPROACH TO FINDING LOW RANK AND SPARSITY MATRICES FOR HYPERSPECTRAL TARGET DETECTION
	pg. 2324 FR1.R6.10 - HYPERSPECTRAL ANOMALY DETECTION VIA BAND FUSION
Chang, Chgein-I	pg. 2831 FR2.R12.11 - FUSARIUM WILT INSPECTION FOR PHALAENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL BAND SELECTION TECHNIQUES
Chang, Chien-I	pg. 2033 TH2.R3.4 - HYPERSPECTRAL TARGET DETECTION BASED ON TARGET-CONSTRAINED INTERFERENCE-MINIMIZED BAND SELECTION
Chang, Hsing-Chung	pg. 1114 WE1.R6.9 - BUSHFIRE SEVERITY MAPPING USING SENTINEL-1 AND -2 IMAGERY
Chang, Jae Young	pg. 968 TU2.R18.5 - SHIP DETECTION FOR KOMPSAT-3A OPTICAL IMAGES USING BINARY FEATURES AND ADABOOST CLASSIFICATION
Chang, Jae-Young	pg. 2851 FR2.R16.5 - DATA AUGMENTATION FOR SHIP DETECTION USING KOMPSAT-5 IMAGES AND DEEP LEARNING MODEL
Chang, Lena	pg. 4866 TH1.R11.1 - A NOVEL FEATURE FOR DETECTION OF RICE FIELD DISTRIBUTION USING TIME SERIES SAR DATA
	pg. 1548 WE2.R16.7 - RECURRENT DEEP LEARNING FOR RICE FIELDS DETECTION FROM SAR IMAGES
Chang, Li-Yu	pg. 3162 WE2.R14.8 - DEVELOPMENT OF OPEN DATA CUBE TO FACILITATE DISASTER RISK REDUCTION
Chang, Paul	pg. 5647 TU1.R8.1 - C-BAND CROSS-POLARIZATION AIRBORNE OCEAN SURFACE NRCS OBSERVATIONS IN

	HURRICANES: 20152019
	pg. 5658 TU1.R8.4 - AN OVERVIEW OF NOAA CYGNSS WIND PRODUCT VERSION 1.0
	pg. 5794 TH1.R8.6 - SCATSAT-1 HIGH WINDS GEOPHYSICAL MODEL FUNCTION AND ITS WINDS APPLICATION IN
	OPERATIONAL MARINE FORECASTING AND WARNING
	pg. 5982 TU1.R4.11 - AMSR-2 OBSERVATIONS OF HURRICANE DORIAN
Chang, Wen-Yen	pg. 1548 WE2.R16.7 - RECURRENT DEEP LEARNING FOR RICE FIELDS DETECTION FROM SAR IMAGES
Chang, Yang-Lang	pg. 4866 TH1.R11.1 - A NOVEL FEATURE FOR DETECTION OF RICE FIELD DISTRIBUTION USING TIME SERIES SAR DATA pg. 1548 WE2.R16.7 - RECURRENT DEEP LEARNING FOR RICE
	FIELDS DETECTION FROM SAR IMAGES
	pg. 826 TU2.R3.11 - THE STUDY OF PLATFORM FLUCTUATION EFFECT FOR HIGH SQUINT FMCW SAR AND ISAR
Chang, Yaxuan	pg. 3235 TH2.R14.12 - A METHOD TO IDENTIFY HIGH-QUALITY PURE SNOW DATA IN POLDER DATABASE
ChangChong, Lu	pg. 2344 FR1.R9.3 - SHIP CLASSIFICATION IN SAR IMAGES VIA SUPER-RESOLUTION GENERATIVE ADVERSARIAL NETWORK WITH SMALL TRAINING DATASET
Chanussot, Jocelyn	pg. 1488 WE2.R12.3 - LOCAL SPATIAL-SPECTRAL
	CORRELATION BASED MIXTURES OF FACTOR ANALYZERS FOR HYPERSPECTRAL DENOISING
	pg. 1731 TH1.R5.6 - POLSAR SCENE CLASSIFICATION VIA LOW-RANK TENSOR-BASED MULTI-VIEW SUBSPACE REPRESENTATION
	pg. 2049 TH2.R3.8 - UNSUPERVISED HYPERSPECTRAL EMBEDDING BY LEARNING A DEEP REGRESSION NETWORK
	pg. 2691 FR2.R5.10 - LOCALLY LINEAR RECONSTRUCTION FOR SPECTRAL ENHANCEMENT USING LIMITED PIXEL-TO-PIXEL MULTISPECTRAL AND HYPERSPECTRAL DATA
	pg. 1516 WE2.R12.10 - HYPERSPECTRAL IMAGES DENOISING BASED ON MIXTURES OF FACTOR ANALYZERS
Chaparro, David	pg. 5254 FR2.R11.2 - IMPROVING THE RICE YIELD ESTIMATION USING SMOS AND CYGNSS GNSS-R DATA
Chapman, Bruce	pg. 3861 FR1.R3.1 - ASSESSMENT OF POLSAR AND INSAR TIME-SERIES FROM THE 2019 NASA AM-PM CAMPAIGN FOR
	ABOVE-GROUND BIOMASS ESTIMATION
	pg. 5073 FR1.R4.3 - TRACKING CHANGES IN INUNDATION EXTENT OF A BOREAL WETLAND IN ALASKA USING L-BAND SAR
	pg. 96 MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION
Chapron, Bertrand	pg. 3490 WE2.R7.2 - PHYSICALLY INFORMED NEURAL NETWORKS FOR THE SIMULATION AND DATA-ASSIMILATION OF GEOPHYSICAL DYNAMICS pg. 3529 WE2.R8.3 - PRELIMINARY ANALYSIS OF TROPICAL

	CYCLONE OCEAN WAVES USING SENTINEL-1 SAR DATA. (pg. 3541) WE2.R8.6 - ALTIMETER AS AN IMAGER OF THE SEA SURFACE ROUGHNESS: COMPARISON OF SAR AND LRM MODES (pg. 5678) TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Chapsky, Lars	pg. 6381 TH1.R15.1 - OCO-2 CALIBRATION REFINEMENT ACROSS VERSIONS AND PLANS FOR OCO-3
Charan Teja, B.	pg. 1933 TH1.R17.1 - PATCH BASED LAND COVER CLASSIFICATION: A COMPARISON OF DEEP LEARNING, SVM AND NN CLASSIFIERS
Chartrand, Rick	pg. 6638 TU1.R13.1 - BUDD: MULTI-MODAL BAYESIAN UPDATING DEFORESTATION DETECTIONS
Chatelard, C.	pg. 4715] TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV
Chattanrassamee, Panyawat	pg. 5175 FR1.R11.5 - CROP EVAPOTRANSPIRATION ESTIMATES FOR SUGARCANE BASED ON REMOTE SENSING AND LAND SURFACE MODEL IN THAILAND pg. 4684 WE2.R11.9 - YIELD AND COMMERCIAL CANE SUGAR ESTIMATION FOR SUGARCANE IN THAILAND - A CASE STUDY
Chatterjee, Ankita	pg. 1719 TH1.R5.3 - UNSUPERVISED LAND COVER CLASSIFICATION OF HYBRID POLSAR IMAGES USING DEEP NETWORK
Chatterjee, Ayan	pg. 1315 WE2.R3.2 - RAPID ESTIMATION OF ORTHOGONAL MATCHING PURSUIT REPRESENTATION
Chatziantoniou, Andromachi	pg. 4023 FR2.R8.5 - IMPACT OF INTENSE AQUACULTURE ON COASTAL ENVIRONMENTS SEEN BY SAR
Chatzinotas, Symeon	pg. 6588 FR2.R17.10 - SDR IMPLEMENTATION OF A TESTBED FOR SYNCHRONIZATION OF COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS
Chaubell, Julian	TH2.R10.9 - VICARIOUS VALIDATION OF L-BAND VEGETATION OPTICAL DEPTH
Chaudhary, Namrata	pg. 569 TU1.R10.1 - STUDY OF ACADEMIC WRITING EVOLUTION IN GEOSPATIAL DOMAIN USING NATURAL LANGUAGE PROCESSING TECHNIQUES
Chauhan, Akshansha	pg. 5554 FR1.R19.9 - CHANGE IN LAND AND OCEAN PARAMETERS ALONG THE TRACK OF TROPICAL CYCLONE FANI
Chaurasia, Kuldeep	pg. 1659] TH1.R2.12 - TOPOGRAPHICAL FEATURE EXTRACTION USING MACHINE LEARNING TECHNIQUES FROM SENTINEL-2A IMAGERY
Chavanon, Eric	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE

	DART MODEL (pg. 3455) TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Che, Meiqin	pg. 160 MO2.R14.9 - TEMPORAL AND SPATIAL CHANGE PATTERN RECOGNITION BY MEANS OF SENTINEL-1 SAR TIME- SERIES
Che, Tao	pg. 4731 TH1.R1.11 - EVALUATION OF SMAP AND SMOS SOIL MOISTURE PRODUCTS USING DISTRIBUTED GROUND OBSERVATION NETWORK IN COLD AND ARID REGIONS IN THE NORTHWEST OF CHINA
Chea, Tea-Byeong	pg. 3552 WE2.R15.1 - STATUS OF THE KOMPSAT-5 SAR MISSION, UTILIZATION AND FUTURE PLANS
Chee, Sandric Yew Leong	pg. 5616 MO2.R8.4 - ESTIMATION OF COLORED DISSOLVED ORGANIC MATTER USING SENTINEL-2 DATA IN THE COASTAL WATERS OF SINGAPORE
Chelal, John	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Chelton, Dudley	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Chen, Bo	pg. 5945 TU1.R4.1 - YAW STEERING USING ADAPTIVE FILTERING FOR SPACEBORNE SAR SYSTEMS pg. 3162 WE2.R14.8 - DEVELOPMENT OF OPEN DATA CUBE TO FACILITATE DISASTER RISK REDUCTION pg. 2053 TH2.R3.9 - META NETWORK FOR RADAR HRRP NONCOOPERATIVE TARGET RECOGNITION WITH MISSING ASPECTS
Chen, Bo-Han	pg. 2831 FR2.R12.11 - FUSARIUM WILT INSPECTION FOR PHALAENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL BAND SELECTION TECHNIQUES
Chen, Chao	pg. 2436 FR1.R14.3 - HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK
Chen, Chen	pg. 2511 FR1.R16.11 - REMOTE SENSING DATA AUGMENTATION THROUGH ADVERSARIAL TRAINING
Chen, Chi-Chih	pg. 3353 TU2.R13.4 - NEXT GENERATION GNSS-R INSTRUMENT TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Chen, Dafan	TU2.R6.8 - WEAKLY SUPERVISED LAND COVER CLASSIFICATION METHOD FOR LARGE-SCALE MULTI-RESOLUTION LABELED SATELLITE IMAGES DATA SETS

Chen, Dingyuan	pg. 4092 MO2.R1.5 - DENSE GREENHOUSE EXTRACTION IN HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGERY
Chen, Fang	pg. 5566 FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT pg. 6694 TU1.R15.5 - HIGH-RESOLUTION BRDF AND ALBEDO PARAMETERS INVERSION FROM SENTINEL-2 MULTISPECTRAL INSTRUMENT DATA pg. 5501 TH2.R19.6 - PRELIMINARY EVALUATION OF HIMAWARI-8 HOURLY AEROSOL PRODUCTS OVER CHINA
Chen, Feiyu	pg. 5238 FR2.R10.10 - IDENTIFICATION OF LANDSLIDE SUSCEPTIBLE AREAS FOR THE PROPER SETTLEMENT PLANNING IN THE KALI GANDAKI ROAD CORRIDOR, NEPAL
Chen, Fen	pg. 268 MO2.R17.3 - AIRPLANE RECOGNITION FROM REMOTE SENSING IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORK
Chen, Feng	pg. 916 TU2.R16.4 - IMPROVED OMEGA-K ALGORITHM FOR HIGHLY SQUINTED TOPSAR WITH CURVED TRAJECTORY
Chen, Guangchen	pg. 1323 WE2.R3.4 - A NOVEL GENERAL SEMISUPERVISED DEEP LEARNING FRAMEWORK FOR CLASSIFICATION AND REGRESSION WITH REMOTE SENSING IMAGES
Chen, Hao	pg. 2260 FR1.R5.5 - IMPROVED CLOUD DETECTION MODEL USING S-NPP CRIS FSR DATA VIA MACHINE LEARNING pg. 148 MO2.R14.6 - FUZZY NEURAL NETWORK-BASED ASSESSMENT OF ROAD TRAFFIC SITUATIONS USING EXTRACTED INFORMATION OBTAINED FROM OPTICAL HIGH-RESOLUTION SATELLITE REMOTE SENSING IMAGES pg. 1643 TH1.R2.8 - BUILDING DETECTION BASED ON RECTANGLE APPROXIMATION AND REGION GROWING
Chen, Haonan	pg. 5294 TU1.R19.1 - AN INVESTIGATION OF A PROBABILISTIC NOWCAST SYSTEM FOR DUAL-POLARIZATION RADAR APPLICATIONS pg. 5352 TU2.R19.4 - CROSS VALIDATION OF GOES-R AND NOAA MULTI-RADAR MULTI-SENSOR (MRMS) QPE OVER THE CONTINENTAL UNITED STATES pg. 5415 WE1.R19.8 - RESOLVING THE PRECIPITATION MICROPHYSICAL VARIABILITY INDUCED BY OROGRAPHIC ENHANCEMENT IN COMPLEX TERRAIN OVER THE SAN FRANCISCO BAY AREA pg. 5376 TU2.R19.10 - A MACHINE LEARNING APPROACH TO DERIVE PRECIPITATION ESTIMATES AT GLOBAL SCALE USING SPACE RADAR AND GROUND-BASED OBSERVATIONS pg. 5333 TU1.R19.11 - DESIGN AND DEVELOPMENT OF GROUND-BASED MICROWAVE RADIOMETER FOR METEOROLOGICAL AND CLIMATE APPLICATIONS pg. 5337 TU1.R19.12 - POLARIMETRIC RADAR MEASUREMENTS AND RAINFALL PERFORMANCE DURING A SEVERE RAINFALL EVENT IN COMPLEX TERRAIN OVER EASTERN CHINA

Chen, He	pg. 1639 TH1.R2.7 - FEATURE ENHANCED CENTERNET FOR OBJECT DETECTION IN REMOTE SENSING IMAGES pg. 944 TU2.R16.11 - SEMANTIC SEGMENTATION KNOWLEDGE BASED MMRF OPTIMAL METHOD FOR FINE- GRAINED URBAN INFRASTRUCTURE CLASSIFICATION MAPPING FROM OPTICAL VHR AERIAL IMAGERY
Chen, Hsian-Min	pg. 2831) FR2.R12.11 - FUSARIUM WILT INSPECTION FOR PHALAENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL BAND SELECTION TECHNIQUES
Chen, Huijun	TU2.R6.5 - LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS - IEEE DATA FUSION CONTEST 2020 TRACK 1 TU2.R6.6 - LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS WITH MULTI-RESOLUTION LABEL - IEEE DATA FUSION CONTEST 2020 TRACK 2
Chen, Huilin	pg. 2663 FR2.R5.3 - DEEP INTRA FUSION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
Chen, Huiyuan	pg. 2855] FR2.R16.6 - ELLIPSE-FCN: OIL TANKS DETECTION FROM REMOTE SENSING IMAGES WITH FULLY CONVOLUTION NETWORK
Chen, Jeffrey	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Chen, Jia	pg. 641 TU1.R11.8 - MULTI-LEVEL STRATEGY-BASED SPATIAL INFORMATION PREDICTION FOR SPATIOTEMPORAL REMOTE SENSING IMAGERY FUSION
Chen, Jia-Wei	pg. 316 MO2.R18.4 - SAR IMAGE CHANGE DETECTION METHOD VIA A PYRAMID POOLING CONVOLUTIONAL NEURAL NETWORK pg. 2575 FR1.R18.5 - SHIP SEGMENTATION ON HIGH- RESOLUTION SAR IMAGE BY A 3D DILATED MULTISCALE U-NET pg. 2547 FR1.R17.10 - A DEEP GENERALIZED CORRELATION NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION pg. 2551 FR1.R17.11 - A LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION
Chen, Jiale	pg. 1197 WE1.R17.7 - URBAN SCENES CHANGE DETECTION BASED ON MULTI-SCALE IRREGULAR BAG OF VISUAL FEATURES FOR HIGH SPATIAL RESOLUTION IMAGERY
Chen, Jie	pg. 2795 FR2.R12.2 - A WEAK MOVING POINT TARGET DETECTION METHOD BASED ON HIGH FRAME RATE SAR IMAGE SEQUENCES AND MACHINE LEARNING pg. 2432 FR1.R14.2 - A FAST LOW RANK APPROXIMATION AND SPARSITY REPRESENTATION APPROACH TO HYPERSPECTRAL ANOMALY DETECTION pg. 1229 WE1.R18.3 - SHIP DETECTION IN RADAR IMAGE

	SERIES BASED ON THE LONG SHORT-TERM MEMORY NETWORK [pg. 2819] FR2.R12.8 - EXPERIMENTAL RESULTS FOR GNSS-R
	BASED MOVING TARGET INDICATION
	pg. 1556 WE2.R16.9 - AN IMAGING COMPENSATION SCHEME FOR CORRECTING IONOSPHERIC EFFECT ON HIGH-
	RESOLUTION SPACEBORNE P-BAND SAR
	(pg. 2149) TH2.R9.11 - AN ANTENNA BEAM STEERING STRATEGY FOR SAR ECHO SIMULATION IN HIGHLY ELLIPTICAL
	ORBIT
Chen, Jing	(pg. 5566) FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT
	pg. 6694 TU1.R15.5 - HIGH-RESOLUTION BRDF AND ALBEDO PARAMETERS INVERSION FROM SENTINEL-2 MULTISPECTRAL INSTRUMENT DATA
	(pg. 5501) TH2.R19.6 - PRELIMINARY EVALUATION OF HIMAWARI-8 HOURLY AEROSOL PRODUCTS OVER CHINA
Chen, Jingyi	pg. 1000 WE1.R3.2 - MAPPING THE RATE OF CARBON MINERALIZATION IN OMAN OPHIOLITES USING SENTINEL-1 INSAR TIME SERIES
	pg. 6790 TU2.R2.6 - ACCURATE INSAR SURFACE DEFORMATION MAPPING OVER THE OIL-PRODUCING PERMIAN
	BASIN WITH AUTOMATED TROPOSPHERIC OUTLIER REMOVAL
	(pg. 4934) TH2.R1.8 - MONITORING SOILWATER AND ORGANIC CARBON STORAGE PATTERNS AT THE ARCTIC FOOTHILLS, ALASKA, USING INSAR
	pg. 6674 TU1.R13.10 - A NEW ALGORITHM FOR ESTIMATING
	SURFACE ROUGHNESS USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) DATA
Chen, Jingzhou	pg. 525 TU1.R7.1 - MULTI-LABEL REMOTE SENSING IMAGE
	CLASSIFICATION WITH DEFORMABLE CONVOLUTIONS AND GRAPH NEURAL NETWORKS
Chen, Jiyi	TU2.R4.8 - GYROSCOPE DATA DE-NOISING BASED ON INHERENT FREQUENCY FOR EARTH OBSERVATION SATELLITE
Chen, Jun	pg. 1845 TH1.R12.1 - UAV IMAGE MOSAICING BASED MULTI- REGION LOCAL PROJECTION DEFORMATION
	pg. 1849 TH1.R12.2 - DRONE IMAGE STITCHING USING LOCAL LEAST SQUARE ALIGNMENT
	pg. 228 MO2.R16.4 - MULTISCALE INFRARED AND VISIBLE IMAGE FUSION BASED ON PHASE CONGRUENCY AND SALIENCY
Chen, Junye	pg. 6527 FR2.R13.6 - POST-LAUNCH PERFORMANCE
	ASSESSMENT OF METOP-C ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) INSTRUMENT NOISE AND ANTENNA TEMPERATURE DATA
Chen, Kai	pg. 2894) FR2.R18.5 - CHANGE OF IMPERVIOUS SURFACE OF CHENGDU CITY, CHINA
	pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK

Chen, Kun-shan	pg. 3039 TU2.R9.10 - ASSESSMENT OF FOUR PASSIVE MICROWAVE SEA ICE CONCENTRATIONS BY USING AUTOMATIC MODIS SEA ICE CLASSIFICATION
Chen, Lajiao	pg. 236 MO2.R16.6 - SPATIO-TEMPORAL FUSION OF NIGHT-TIME LIGHT IMAGES WITH DEEP LEARNING
Chen, Liang	pg. 1639 TH1.R2.7 - FEATURE ENHANCED CENTERNET FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Chen, Liuliang	(pg. 152) MO2.R14.7 - PHOTOVOLTAIC PANEL CONSTRUCTION CHANGE MONITORING BASED ON LSTM MODELS
Chen, Longyong	pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR
Chen, Maolin	pg. 1632 TH1.R2.5 - USING POLAR GRID FOR BUILDING EXTRACTION IN TERRESTRIAL LASER SCANNING DATA pg. 889 TU2.R7.5 - RESEARCH ON 3D REAL SCENE PLANNING METHOD FOR MINE REFORESTATION
Chen, Mengqian	(pg. 1731) TH1.R5.6 - POLSAR SCENE CLASSIFICATION VIA LOW-RANK TENSOR-BASED MULTI-VIEW SUBSPACE REPRESENTATION
Chen, Min	pg. 2723 FR2.R6.7 - SUBPIXEL-LEVEL EDGE FEATURE MATCHING FOR SAR AND OPTICAL IMAGES BASED ON ZERNIKE MOMENTS
Chen, Nengcheng	pg. 6642 TU1.R13.2 - A RISK ASSESSMENT FRAMEWORK OF CYANOBACTERIA BLOOM USING LANDSAT DATA: A CASE STUDY OF LAKE LONGGAN (CHINA) pg. 5030 FR1.R1.4 - ASSESSMENT OF MODEL-BASED SURFACE SOIL TEMPERATURE PRODUCTS UNSING GLOBAL DENSE INSITU OBSERVATIONS
Chen, Qi	pg. 1592 WE2.R18.6 - ACCURATE DETECTION OF HISTORICAL BUILDINGS USING AERIAL PHOTOGRAPHS AND DEEP TRANSFER LEARNING
Chen, Qianfu	pg. 4723 TH1.R1.9 - SOIL MOISTURE ESTIMATION BASED ON THE AIEM FOR BARE AGRICULTURAL AREA
Chen, Richard	pg. 4136 MO2.R10.5 - MAPPING TREE CANOPY COVER AND CANOPY HEIGHT WITH L-BAND SAR USING LIDAR DATA AND RANDOM FORESTS (pg. 4930 TH2.R1.7 - ELECTROMAGNETIC SCATTERING BEHAVIOR OF A NEW ORGANIC SOIL DIELECTRIC MODEL FOR LONG-WAVELENGTH RADAR RETRIEVAL OF PERMAFROST ACTIVE LAYER SOIL PROPERTIES (pg. 5042 FR1.R1.7 - SOILSCAPE WIRELESS IN SITU NETWORKS IN SUPPORT OF CYGNSS LAND APPLICATIONS (pg. 4606 WE2.R1.12 - JOINT RETRIEVAL OF SOIL MOISTURE AND PERMAFROST ACTIVE LAYER THICKNESS USING L-BAND INSAR AND P-BAND POLSAR

Chen, Ruixian	pg. 1353 WE2.R5.2 - A CNN-GCN FRAMEWORK FOR MULTI- LABEL AERIAL IMAGE SCENE CLASSIFICATION
Chen, Ruonan	pg. 1841 TH1.R9.11 - SPATIAL ATTENTION NETWORK FOR ROAD EXTRACTION
Chen, Shaoyuan	pg. 4826 TH1.R10.2 - LEAF AGING AFFECTS THE VARIABILITY OF CANOPY REFLECTANCE WITH STAND DEVELOPMENT IN EVERGREEN CHINESE FIR PLANTATION
Chen, Shengbo	pg. 5203 FR2.R10.1 - MICROWAVE THERMAL EMISSION FEATURES OF MARE TRANQUILLITATIS AND MARE SERENITATIS INDICATED BY CE2 CELMS DATA
Chen, Shuailin	pg. 340 MO2.R18.10 - CHANGE DETECTION OF POLARIMETRIC SAR IMAGES USING MINKOWSKI LOG-RATIO DISTANCE
Chen, Shuhan	pg. 2432 FR1.R14.2 - A FAST LOW RANK APPROXIMATION AND SPARSITY REPRESENTATION APPROACH TO HYPERSPECTRAL ANOMALY DETECTION pg. 2807 FR2.R12.5 - GO DECOMPOSITION (GODEC). APPROACH TO FINDING LOW RANK AND SPARSITY MATRICES FOR HYPERSPECTRAL TARGET DETECTION
Chen, Shujie	pg. 4746 TH1.R4.4 - AUTOMATIC EXTRACTION OF FLOOD COVERAGE BASED ON DYNAMIC SURFACE WATER EXTENT AND SAR DATA
Chen, Shuxuan	pg. 2292 FR1.R6.1 - A ROBUST MATCHING METHOD FOR OPTICAL AND SAR IMAGES BASED ON COARSE-TO-FINE MECHANISM
Chen, Shuyi	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE
Chen, Si-Wei	pg. 762 TU1.R18.6 - AN INTEGRATED SAR SPECKLE REDUCTION AND TARGET DETECTION APPROACH pg. 208 MO2.R15.10 - COMPARISON STUDY OF MULTITEMPORAL POLSAR CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS
Chen, Siheng	pg. 1881 TH1.R12.10 - GRAPH-BASED ARRAY SIGNAL DENOISING FOR PERTURBED SYNTHETIC APERTURE RADAR
Chen, Siying	pg. 6981 FR2.R2.7 - UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA
Chen, Song	pg. 2827 FR2.R12.10 - ESTIMATION METHOD OF MICRO- DOPPLER PARAMETERS BASED ON CONCENTRATION OF TIME- FREQUENCY ROTATION DOMAIN
Chen, Tao	pg. 5945 TU1.R4.1 - YAW STEERING USING ADAPTIVE FILTERING FOR SPACEBORNE SAR SYSTEMS pg. 1275 WE1.R20.3 - MULTI-DIMENSION CNN FOR

	HYPERSPECTRAL IMAGE CLASSIFICATON pg. 2571 FR1.R18.4 - SEGMENTATION OF HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGE BASED ON U-NET CONVOLUTIONAL NETWORKS pg. 2424 FR1.R12.11 - JOINT SPARSE REPRESENTATION AND MULTITASK LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
Chen, Tianfu	pg. 2153 TH2.R9.12 - EFFICIENT TIME DOMAIN ECHO SIMULATION OF BISTATIC SAR CONSIDERING TOPOGRAPHY VARIATION
Chen, Tingting	pg. 5317 TU1.R19.7 - GENERATION, APPLICATION AND EVALUATION OF GF-1 WFV CLOUD DETECTION METHOD BASED CDAG ALGORITHM
Chen, Tsung-Hau	pg. 826 TU2.R3.11 - THE STUDY OF PLATFORM FLUCTUATION EFFECT FOR HIGH SQUINT FMCW SAR AND ISAR
Chen, Wang	pg. 6738 TU1.R17.4 - VISUAL LOCALIZATION BASED ON REMOTE SENSING SCENE MATCHING WITH SIAMESE FEATURE AGGREGATION NETWORK
Chen, Wei	pg. 1385 WE2.R5.10 - UNSUPERVISED STYLE TRANSFER VIA DUALGAN FOR CROSS-DOMAIN AERIAL IMAGE CLASSIFICATION pg. 1612 WE2.R18.11 - DEEP NETWORKS UNDER BLOCK- LEVEL SUPERVISION FOR PIXEL-LEVEL CLOUD DETECTION IN MULTI-SPECTRAL SATELLITE IMAGERY
Chen, Wen	pg. 1643 TH1.R2.8 - BUILDING DETECTION BASED ON RECTANGLE APPROXIMATION AND REGION GROWING
Chen, Wenchao	pg. 1393 WE2.R6.1 - SEMI-SUPERVISED DEEP LEARNING SEISMIC IMPEDANCE INVERSION USING GENERATIVE ADVERSARIAL NETWORK
Chen, Wenjiao	pg. 1169 WE1.R16.12 - THE EFFECTS OF NOISE, SPARSITY AND PHASE ON PSEUDO-RANDOM TIME-SPACE MODULATION SAR PERFORMANCE
Chen, Xi	pg. 2519 FR1.R17.2 - FLOOD MAPPING WITH SAR AND MULTI- SPECTRAL REMOTE SENSING IMAGES BASED ON WEIGHTED EVIDENTIAL FUSION (pg. 4574) WE2.R1.4 - IMPROVING SOIL MOISTURE SPATIO- TEMPORAL RESOLUTION USING MACHINE LEARNING METHOD (pg. 3066) WE1.R9.6 - SHIP NAVIGATION ROUTE PLANNING USING TOPOLOGY OF SEA ICE CHANNELS EXTRACTED FROM HIGH RESOLUTION SATELLITE IMAGES (pg. 5588) FR2.R19.7 - DETECTING LAYER HEIGHT OF SMOKE AND DUST AEROSOLS OVER VEGETATED LAND AND WATER SURFACES VIA OXYGEN ABSORPTION BANDS
Chen, Xiaoqiang	pg. 228 MO2.R16.4 - MULTISCALE INFRARED AND VISIBLE IMAGE FUSION BASED ON PHASE CONGRUENCY AND SALIENCY
Chen, Xiaoxiang	pg. 2360 FR1.R9.7 - A SIDELOBE REDUCTION ALGORITHM FOR

	SAR IMAGERY FORMED BY FAST BACK PROJECTION ALGORITHM BASED ON SPECTRUM COMPRESSION
Chen, Xiaoying	pg. 2436 FR1.R14.3 - HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK
Chen, Xinliang	pg. 905 TU2.R16.1 - SAR PARAMETRIC IMAGING FOR CIRCULAR-PLATE TARGET
Chen, Yan	pg. 2886 FR2.R18.3 - LANDSLIDE MONITORING AND DETECTION FOR MOUNTAINOUS AREAS USING SBAS COMBINED WITH GLCM
	(pg. 1989) TH1.R18.4 - LANDSLIDE DETECTION BASED ON GLCM USING SAR IMAGES
	pg. 1007 WE1.R3.4 - ATMOSPHERIC CORRECTION OF SAR IMAGES BASED ON PS-INSAR
	pg. 453 TU1.R5.5 - PERSISTENT SCATTERER DETECTION AND 3-D RECONSTRUCTION OF TRANSMISSION TOWER IN MOUNTAIN AREA BASED ON SAR TOMOGRAPHY
	Pg. 585 TU1.R10.5 - SAR IMAGE ENHANCEMENT BASED ON P-M NOLINEAR DIFFUSION AND COHERENT ENHANCEMENT DIFFUSION
	pg. 5592 FR2.R19.8 - A HIGH-SPATIAL-RESOLUTION AEROSOL RETRIEVAL ALGORITHM FOR SENTINEL-2 IMAGES OVER BRIGHT URBAN SURFACES
	pg. 1153 WE1.R16.8 - SAR IMAGE REGISTRATION BASED ON OPTIMIZED RANSAC ALGORITHM WITH MIXED FEATURE EXTRACTION
	pg. 4466) WE1.R1.9 - AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA
	pg. 5596 FR2.R19.9 - HIGH RESOLUTION AEROSOL RETRIEVAL
	OVER URBAN SURFACES USING LANDSAT 8 OLI (pg. 940) TU2.R16.10 - DEEP LEARNING FOR VEGETATION
	IMAGE SEGMENTATION IN LAI MEASUREMENT
	pg. 2956 MO2.R9.11 - ESTIMATING EFFECTIVE SNOW GRAIN SIZE USING NORMALIZED CHANNEL RATIOS OF MODIS 0.86 AND 1.64 MICRON BANDS
Chen, Yi-Ting	pg. 4866 TH1.R11.1 - A NOVEL FEATURE FOR DETECTION OF RICE FIELD DISTRIBUTION USING TIME SERIES SAR DATA
Chen, Yi-ting	pg. 6886 WE2.R2.7 - INTRODUCTION OF SPATIAL AND TEMPORAL DISTRIBUTION OF TYPHOONS FROM 1989 TO 2018
	AND TYPICAL CASES OF DISASTER IMPACT ANALYSIS
Chen, Yifei	pg. 413 TU1.R3.7 - A DEM FUSION METHOD OF MULTI- BASELINE INSAR BASED ON PRIOR TERRAIN AND GUIDED
	FILTER (pg. 112) MO2.R6.8 - 3D HIGH-RESOLUTION IMAGING OF MB- TOMOSAR BASED ON SBRIM ALGORITHM
Chen, Ying-Yu	pg. 826 TU2.R3.11 - THE STUDY OF PLATFORM FLUCTUATION EFFECT FOR HIGH SQUINT FMCW SAR AND ISAR

Chen, Yinjie	pg. 244 MO2.R16.8 - OPTIMIZATION OF DSM PRODUCT GENERATION OF ZY-3 SATELLITE IMAGES BASED ON IMAGE FREQUENCY-DOMAIN FUSION AND FILTERING
Chen, Yiping	pg. 2771 FR2.R9.7 - A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR 3D POINT CLOUDS
Chen, Yong	pg. 6043 TU2.R4.3 - DERIVATION OF JPSS-2 CRIS PRE-LAUNCH SPECTRAL CALIBRATION PARAMETERS FROM THE THERMAL VACUUM TEST DATA pg. 6022 TU1.R14.9 - PROGRESS TOWARD EVALUATING PRELAUNCH THERMAL VACUUM TESTS OF THE JPSS-2 CRIS INSTRUMENT TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT
Chen, Yonghang	pg. 1323 WE2.R3.4 - A NOVEL GENERAL SEMISUPERVISED DEEP LEARNING FRAMEWORK FOR CLASSIFICATION AND REGRESSION WITH REMOTE SENSING IMAGES
Chen, Yuanbo	pg. 2575 FR1.R18.5 - SHIP SEGMENTATION ON HIGH- RESOLUTION SAR IMAGE BY A 3D DILATED MULTISCALE U-NET
Chen, Yuerong	pg. 696 TU1.R12.11 - SPARSE REPRESENTATION-BASED IMAGE FUSION FOR MULTI-SOURCE NDVI CHANGE DETECTION
Chen, Yumin	pg. 877 TU2.R7.2 - ESTIMATING MULTIPLE-SCALE GDP DISTRIBUTION USING NIGHTTIME LIGHT AND SPATIAL METHODS pg. 4746 TH1.R4.4 - AUTOMATIC EXTRACTION OF FLOOD COVERAGE BASED ON DYNAMIC SURFACE WATER EXTENT AND SAR DATA pg. 1205 WE1.R17.9 - STREET VIEW IMAGE RETRIEVAL WITH AVERAGE POOLING FEATURES
Chen, Yunping	pg. 2886 FR2.R18.3 - LANDSLIDE MONITORING AND DETECTION FOR MOUNTAINOUS AREAS USING SBAS COMBINED WITH GLCM pg. 1989 TH1.R18.4 - LANDSLIDE DETECTION BASED ON GLCM USING SAR IMAGES pg. 1007 WE1.R3.4 - ATMOSPHERIC CORRECTION OF SAR IMAGES BASED ON PS-INSAR pg. 453 TU1.R5.5 - PERSISTENT SCATTERER DETECTION AND 3-D RECONSTRUCTION OF TRANSMISSION TOWER IN MOUNTAIN AREA BASED ON SAR TOMOGRAPHY pg. 585 TU1.R10.5 - SAR IMAGE ENHANCEMENT BASED ON P-M NOLINEAR DIFFUSION AND COHERENT ENHANCEMENT DIFFUSION pg. 5592 FR2.R19.8 - A HIGH-SPATIAL-RESOLUTION AEROSOL RETRIEVAL ALGORITHM FOR SENTINEL-2 IMAGES OVER BRIGHT URBAN SURFACES pg. 1153 WE1.R16.8 - SAR IMAGE REGISTRATION BASED ON OPTIMIZED RANSAC ALGORITHM WITH MIXED FEATURE EXTRACTION

	pg. 4466 WE1.R1.9 - AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA pg. 5596 FR2.R19.9 - HIGH RESOLUTION AEROSOL RETRIEVAL OVER URBAN SURFACES USING LANDSAT 8 OLI
	[pg. 940] TU2.R16.10 - DEEP LEARNING FOR VEGETATION IMAGE SEGMENTATION IN LAI MEASUREMENT
Chen, Zetao	pg. 1735 TH1.R5.7 - POLSAR IMAGE CLASSIFICATION BASED ON OPTIMAL FEATURE AND CONVOLUTION NEURAL NETWORK
Chen, Zhanye	pg. 2352 FR1.R9.5 - A NOVEL SAR IMAGE DOMAIN-GROUND MOVING TARGET IMAGING METHOD pg. 2141 TH2.R9.9 - GROUND MOVING TARGET IMAGING BASED ON MSOKT AND KT FOR SYNTHETIC APERTURE RADAR
Chen, Zhao	pg. 2161 TH2.R18.2 - AN IMPROVED BILINEAR MIXTURE MODEL CONSIDERING ADJACENCY AND SHADE EFFECTS pg. 1090 WE1.R6.3 - A REGULARIZED TENSOR NETWORK FOR CYCLONE WIND SPEED ESTIMATION pg. 2527 FR1.R17.4 - HYPERSPECTRAL IMAGE CHANGE DETECTION BY SELF-SUPERVISED TENSOR NETWORK pg. 1323 WE2.R3.4 - A NOVEL GENERAL SEMISUPERVISED DEEP LEARNING FRAMEWORK FOR CLASSIFICATION AND REGRESSION WITH REMOTE SENSING IMAGES
Chen, Zhengchao	pg. 6254 WE1.R15.9 - ANALYSIS OF RADIANCE ERROR CAUSED BY THE CHANNEL CENTER WAVELENGTH SHIFT OF IMAGING SPECTROMETER
Chen, Zhikun	pg. 774 TU1.R18.9 - SHIP DETECTION BASED ON SUPERPIXELWISE LOCAL CONTRAST MEASUREMENT FOR POLSAR IMAGES
Chen, Zihan	pg. 5053 FR1.R1.10 - DESIGN AND EXPERIMENT OF MICROWAVE SOIL MOISTURE SENSOR
Chen, Ziqiang	pg. 2463 FR1.R14.10 - MULTI-SCALE REMOTE SENSING TARGETS DETECTION WITH ROTATED FEATURE PYRAMID
Cheng, Bowen	pg. 1628 TH1.R2.4 - A TARGET DETECTION ALGORITHM OF NEURAL NETWORK BASED ON HISTOGRAM STATISTICS
Cheng, Chengqi	pg. 2535 FR1.R17.6 - GEOSOT GRID REMOTE SENSING INTELLIGENT INTERPRETATION MODEL BASED ON FINE-TUNING RESNET-18: A CASE STUDY OF CONSTRUCTION LAND pg. 3111 WE1.R14.6 - A MANAGEMENT SYSTEM FOR FORESTRY REMOTE SENSING IMAGES BASED ON THE GLOBAL SUBDIVISION MODEL
Cheng, Feng	pg. 6611 TU1.R2.6 - TECTONIC DIFFERENCE BETWEEN THE QAIDAM BASIN AND THE EASTERN KUNLUN SHAN: INSIGHT FROM BUFFER ANALYSIS OF THE EARTHQUAKES AND FAULTS IN THE NORTH TIBET
Cheng, Jian	pg. 2595 FR1.R18.10 - LIGHT-WEIGHT ATTENTION SEMANTIC SEGMENTATION NETWORK FOR HIGH-RESOLUTION REMOTE

	SENSING IMAGES
Cheng, Lin	pg. 2651 FR2.R3.12 - DEEP ADAPTIVE PROPOSAL NETWORK IN OPTICAL REMOTE SENSING IMAGES OBJECTIVE DETECTION
Cheng, Luxiao	pg. 4275 TU1.R1.7 - FRACTAL CHARACTERISTICS AND EVOLUTION OF URBAN LAND-USE: A CASE STUDY IN THE SHENZHEN CITY (1988-2015)
Cheng, Ming-Chih	pg. 3162 WE2.R14.8 - DEVELOPMENT OF OPEN DATA CUBE TO FACILITATE DISASTER RISK REDUCTION
Cheng, Tao	FR1.R11.9 - EXPLOITING THE TEXTURAL INDICES OF UAV MULTISPECTRAL IMAGERY TO PREDICT RICE GRAIN YIELD
Cheng, Wensheng	pg. 1809 TH1.R9.3 - LOOK AT THE BIG PICTURE: BUILDING AREA EXTRACTION WITH GLOBAL DENSITY MAP
Cheng, Xinwen	pg. 557 TU1.R7.10 - GREENHOUSE EXTRACTION FROM HIGH- RESOLUTION REMOTE SENSING IMAGERY WITH IMPROVED RANDOM FOREST
Cheng, Yongcun	pg. 5811 TH1.R8.11 - CNN-BASED TROPICAL CYCLONE TRACK FORECASTING FROM SATELLITE INFRARED IMAGES
Cheng, Yuan	pg. 6226 WE1.R15.2 - RECONSTRUCTING MODIS LST PRODUCTS OVER TIBETAN PLATEAU BASED ON RANDOM FOREST pg. 4634 WE2.R10.7 - A FUEL MOISTURE CONTENT MONITORING METHODOLOGY BASED ON OPTICAL REMOTE SENSING pg. 1885 TH1.R12.11 - SOIL MOISTURE RETRIEVAL USING STACKED GENERALIZATION: AN ENSEMBLE MACHINE LEARNING METHOD
Cheng, Zheng	pg. 1735 TH1.R5.7 - POLSAR IMAGE CLASSIFICATION BASED ON OPTIMAL FEATURE AND CONVOLUTION NEURAL NETWORK
Cheng, Zhi	pg. 6750 TU1.R17.7 - REMOTE SENSING IMAGE SEGMENTATION METHOD BASED ON HRNET
Chenu, Karine	pg. 5274 FR2.R11.7 - SENTINEL-2 AND PLANETSCOPE DATA FUSION INTO DAILY 3 M IMAGES FOR LEAF AREA INDEX MONITORING
Cheong, Joon Wayn	pg. 5929 MO2.R13.7 - VALIDATION OF SUPER-RESOLUTION GNSS-R USING AN AIRBORNE FIELD TRIAL
Cherry, Andrew	pg. 3387 TU2.R14.5 - A NOVEL ARCHITECTURE OF JUPYTERHUB ON AMAZON ELASTIC KUBERNETES SERVICE FOR OPEN DATA CUBE SANDBOX pg. 3399 TU2.R14.8 - DATA CUBE APPLICATION ALGORITHMS FOR THE UNITED NATION SUSTAINABLE DEVELOPMENT GOALS (UN-SDGS)
Chiang, Cheng-Yen	pg. 826 TU2.R3.11 - THE STUDY OF PLATFORM FLUCTUATION EFFECT FOR HIGH SQUINT FMCW SAR AND ISAR

Chiang, Kwofu	pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Chibiao, Ding	pg. 2827 FR2.R12.10 - ESTIMATION METHOD OF MICRO- DOPPLER PARAMETERS BASED ON CONCENTRATION OF TIME- FREQUENCY ROTATION DOMAIN
Chien, Steve	pg. 3833 TH2.R17.1 - LEVERAGING SPACE AND GROUND ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE
Chin, Mian	pg. 5574 FR2.R19.3 - SATELLITE REMOTE SENSING OBSERVATIONS OF TRANS-ATLANTIC DUST TRANSPORT AND DEPOSITION: A MULTI-SENSOR ANALYSIS
Chindea, Stefan	pg. 5462) TH1.R19.8 - FMCW RADAR IN THE DIGITAL AGE: A SYNTHESISER BASED RADAR WIND PROFILER SIGNAL GENERATION
Chini, Marco	pg. 4061 FR2.R15.3 - ENHANCED LAND COVER AND FLOOD MAPPING AT C- AND L-BAND pg. 3251 MO2.R2.4 - SYSTEMATIC AND AUTOMATIC LARGE-SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA pg. 3255 MO2.R2.5 - THE ROLE OF CO- AND CROSS-POLARIZATIONS INSAR COHERENCES IN MAPPING FLOODED URBAN AREAS pg. 6666 TU1.R13.8 - MONITORING CHANGES IN THE COASTAL ENVIRONMENT BASED ON SAR SENTINEL-1 TIME-SERIES pg. 1707 TH1.R3.12 - CNN-BASED BUILDING FOOTPRINT DETECTION FROM SENTINEL-1 SAR IMAGERY
Chirayath, Ved	pg. 3633 TH2.R2.7 - NASA NEMO-NET - A NEURAL MULTIMODAL OBSERVATION & TRAINING NETWORK FOR MARINE ECOSYSTEM MAPPING AT DIVERSE SPATIOTEMPORAL SCALES
Chirima, George	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
Chitwood, Daniel	pg. 1117 WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Chivulescu, Serban	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Chlaily, Saloua	pg. 3896 FR1.R7.2 - ADDRESSING RELIABILITY OF MULTIMODAL REMOTE SENSING TO ENHANCE MULTISENSOR DATA FUSION AND TRANSFER LEARNING
Cho, Peter	pg. 6353) TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON

	THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2).
Cho, Yang-Ki	pg. 6670 TU1.R13.9 - MEASUREMENT OF COASTAL LAND MOTION OF TIDE GAUGES AT KOREAN PENINSULA USING SEQUENTIAL SBAS-INSAR TECHNIQUE
Choi, Changhyun	pg. 3413 TU2.R15.4 - FOREST HEIGHT ESTIMATION FROM TANDEM-X INSAR COHERENCE MAGNITUDE TOWARDS LARGE SCALE APPLICATIONS
Choi, Jeongho	TU2.R19.8 - UNIT AREA AVERAGE RAINFALL ESTIMATION USING AN ELECTROMAGNETIC WAVE RAIN GAUGE SYSTEM WE1.R19.9 - STUDY ON THE K-BAND EWRG SIGNAL PROCESSING FOR HIGH-RESOLUTION RAINFALL OBSERVATION
Choi, Taeyoung	pg. 6389 TH1.R15.3 - NOAA-20/S-NPP VIIRS SENSOR DATA RECORD ON-ORBIT PERFORMANCE UPDATES AND RECENT IMPROVEMENTS pg. 6047 TU2.R4.4 - NOAA-20 VISIBLE INFRARED IMAGING RADIOMETER SUITE (VIIRS) DAY-NIGHT BAND CALIBRATION USING THE SCHEDULED LUNAR COLLECTIONS pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Choi, Yeonju	pg. 224 MO2.R16.3 - A NO-REFERENCE SUPER RESOLUTION FOR SATELLITE IMAGE QUALITY ENHANCEMENT FOR KOMPSAT-3
Chopping, Richard	(pg. 5069) FR1.R4.2 - MINING EXPORTS AND CLIMATE VARIABILITY INFLUENCING GRACE-DERIVED WATER STORAGE TREND ESTIMATES IN AUSTRALIA
Chormański, Jarosław	pg. 5096 FR1.R4.9 - COMPREHENSIVE ANALYSIS OF CO2 FLUXES AND REFLECTANCE CORRELATIONS IN THE WETLAND ECOSYSTEM pg. 4430 TU2.R12.12 - ALGORITHM FOR URBAN SPONTANEOUS GREEN SPACE DETECTION BASED ON OPTICAL SATELLITE REMOTE SENSING
Chowdhury, Labib	pg. 1331 WE2.R3.6 - A DEEP GAUSSIAN PROCESS FOR FORECASTING CROP YIELD AND TIME SERIES ANALYSIS OF PRECIPITATION BASED IN MUNSHIGANJ, BANGLADESH
Christie, Gordon	pg. 1121 WE1.R6.11 - ESTIMATING DISPLACED POPULATIONS FROM OVERHEAD
Chrone, Jonathan	(pg. 6121) WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Chrysoulakis, Nektarios	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT [pg. 3455] TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Chu, Chih-Yuan	pg. 826 TU2.R3.11 - THE STUDY OF PLATFORM FLUCTUATION

	EFFECT FOR HIGH SQUINT FMCW SAR AND ISAR
Chu, Tianxing	pg. 5870 FR1.R8.4 - MOBILE AND AIRBORNE LIDAR SCANNING OF BEACH ELEVATION CHANGE DUE TO HURRICANE HARVEY
Chu, Tianyou	pg. 1205 WE1.R17.9 - STREET VIEW IMAGE RETRIEVAL WITH AVERAGE POOLING FEATURES
Chukkapalli, Sai Sree Laya	pg. 2073 TH2.R5.3 - SATELLITE DATA FUSION OF MULTIPLE OBSERVED XCO2 USING COMPRESSIVE SENSING AND DEEP LEARNING
Chuvieco, Emilio	pg. 4858 TH1.R10.10 - OPTIMUM SENTINEL-1 PIXEL SPACING FOR BURNED AREA MAPPING
Chyba, Monique	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY pg. 5697 TU2.R8.3 - OCEANIC SURFACE CURRENT APPROXIMATION FROM SPARSE DATA pg. 6495 FR1.R15.10 - MULTI-AGENTS PATH PLANNING FOR A SWARM OF UNMANNED AERIAL VEHICLES
Chénier, René	pg. 5737 WE1.R8.3 - INSAR FOR TIDAL ESTIMATION IN SUPPORT OF CVD, VIRTUAL GAUGES AND DYNAMIC PRODUCTS
Ciais, Philippe	pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION
Ciampa, Elena	pg. 4235 MO2.R12.8 - APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC INFRASTRUCTURE MONITORING
Cicala, Luca	pg. 6770 TU2.R2.1 - POST-FIRE ASSESSMENT OF BURNED AREAS WITH LANDSAT-8 AND SENTINEL-2 IMAGERY TOGETHER WITH MODIS AND VIIRS ACTIVE FIRE PRODUCTS
Ciceu, Albert	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Cifelli, Rob	pg. 5415 WE1.R19.8 - RESOLVING THE PRECIPITATION MICROPHYSICAL VARIABILITY INDUCED BY OROGRAPHIC ENHANCEMENT IN COMPLEX TERRAIN OVER THE SAN FRANCISCO BAY AREA
Cifelli, Robert	pg. 5411 WE1.R19.7 - IMPROVING QUANTITATIVE PRECIPITATION ESTIMATION BY X-BAND DUAL-POLARIZATION RADARS IN COMPLEX TERRAIN OVER THE BAY AREA IN CALIFORNIA, USA
Cigala, Valeria	pg. 6834 WE1.R2.5 - THE 2015 CALBUCO VOLCANIC CLOUD DETECTION USING GNSS RADIO OCCULTATION AND SATELLITE LIDAR
Cigna, Francesca	pg. 4163 MO2.R11.1 - APPLICATION OF DEEP LEARNING TO OPTICAL AND SAR IMAGES FOR THE CLASSIFICATION OF AGRICULTURAL AREAS IN ITALY

	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016 HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM (GEP) pg. 4215 MO2.R12.3 - SENTINEL-1 INSAR ASSESSMENT OF PRESENT-DAY LAND SUBSIDENCE DUE TO EXPLOITATION OF GROUNDWATER RESOURCES IN CENTRAL MEXICO pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES
Cilia, Martina	pg. 6230 WE1.R15.3 - ONBOARD DATA REDUCTION FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGES VIA CLOUD SCREENING
Ciochina, Silviu	pg. 3869 FR1.R3.3 - SPACEBORNE TRANSMITTER - STATIONARY RECEIVER BISTATIC SAR POLARIMETRY - EXPERIMENTAL RESULTS pg. 124 MO2.R6.11 - SINGLE-PASS SPACEBORNE TRANSMITTER-STATIONARY RECEIVER BISTATIC SAR TOMOGRAPHY - NOVEL SOLUTION WITH 3 IMAGING CHANNELS
Ciotir, Ioana	pg. 445 TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV DRONE REMOTE SENSING USING PYTHON MODELLING ELECTRICAL RESISTIVITY IMAGING (PYMERI)
Cirone, Richard	pg. 4347 TU2.R11.2 - MEASUREMENT OF CROP WATER BY ON SITE RADIOMETRY TH2.R10.9 - VICARIOUS VALIDATION OF L-BAND VEGETATION OPTICAL DEPTH
Ciuca, Madalina	pg. 3869 FR1.R3.3 - SPACEBORNE TRANSMITTER - STATIONARY RECEIVER BISTATIC SAR POLARIMETRY - EXPERIMENTAL RESULTS pg. 124 MO2.R6.11 - SINGLE-PASS SPACEBORNE TRANSMITTER-STATIONARY RECEIVER BISTATIC SAR TOMOGRAPHY - NOVEL SOLUTION WITH 3 IMAGING CHANNELS
Civerolo, Kevin	pg. 5537 FR1.R19.4 - ANALYZING METEOROLOGICAL AND CHEMICAL CONDITIONS FOR TWO HIGH OZONE EVENTS OVER THE NEW YORK CITY AND LONG ISLAND REGION
Ciężkowski, Wojciech	pg. 5096 FR1.R4.9 - COMPREHENSIVE ANALYSIS OF CO2 FLUXES AND REFLECTANCE CORRELATIONS IN THE WETLAND ECOSYSTEM pg. 4430 TU2.R12.12 - ALGORITHM FOR URBAN SPONTANEOUS GREEN SPACE DETECTION BASED ON OPTICAL SATELLITE REMOTE SENSING
Clanton, Christian	pg. 3501) WE2.R7.5 - EXPLORING THE RELATIONSHIPS BETWEEN SCATTERING PHYSICS AND AUTO-ENCODER LATENT- SPACE EMBEDDING
Clarisse, Lieven	pg. 6834) WE1.R2.5 - THE 2015 CALBUCO VOLCANIC CLOUD DETECTION USING GNSS RADIO OCCULTATION AND SATELLITE LIDAR pg. 6859) WE1.R2.12 - PROTOTYPING OF A MULTI-HAZARD

	EARLY WARNING SYSTEM FOR AVIATION AND DEVELOPMENT OF NRT ALERT PRODUCTS WITHIN THE EUNADICS-AV AND OPAS PROJECTS
Clarizia, Maria Paola	pg. 5905 MO2.R13.1 - SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL ON A GLOBAL SCALE BY USING CYGNSS DATA AND ARTIFICIAL NEURAL NETWORKS pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Clark, James S.	pg. 3637 TH2.R2.8 - COMMUNITY REORGANIZATION RESPONSE TO CLIMATE CHANGE: SPECIES INTERACTIONS, STATE-SPACE MODELING AND FOOD WEBS
Clarkson, Rory	pg. 6859 WE1.R2.12 - PROTOTYPING OF A MULTI-HAZARD EARLY WARNING SYSTEM FOR AVIATION AND DEVELOPMENT OF NRT ALERT PRODUCTS WITHIN THE EUNADICS-AV AND OPAS PROJECTS
Clausi, David	pg. 6158 WE1.R12.4 - RECALIBRATING SENTINEL-1 ADDITIVE NOISE-GAIN WITH LINEAR PROGRAMMING
Clausi, David A.	pg. 1456 WE2.R9.6 - UNSUPERVISED SEGMENTATION OF MULTILOOK COMPACT POLARIMETRIC SAR DATA BASED ON COMPLEX WISHART DISTRIBUTION
Clavero, Jorge	pg. 6604 TU1.R2.4 - LANDSLIDE SUSCEPTIBILITY USING REMOTE SENSING DATA & GIS IN A HIGH ANDEAN AREA OF CENTRAL CHILE
Clinton, Nicholas	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS (pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Closa, Josep	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
	pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS
Clune, Thomas	pg. 3608 WE2.R19.6 - RECENT ADVANCES TO THE OPENSSP PARTICLE AND SCATTERING DATABASE
Coca, Mihai	pg. 3688 TH2.R7.7 - PHYSICALLY MEANINGFUL DICTIONARIES FOR EO CROWDSOURCING: A ML FOR BLOCKCHAIN ARCHITECTURE
Coccia, Alex	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Cochrane, Corey	pg. 5466 TH1.R19.9 - SUBMILLIMETER WAVE DIFFERENTIAL ABSORPTION RADAR FOR WATER VAPOR SOUNDING IN THE MARTIAN ATMOSPHERE

Cody, Devin	pg. 3357 TU2.R13.5 - DIGITAL BACK END FOR P-BAND REFLECTIONS CONCEPTS
Cofield, Richard	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Coiro, E.	pg. 4715 TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV
Colecchia, Salvatore Antonio	pg. 4534) WE1.R11.5 - A EUROPEAN TEST SITE FOR GROUND DATA MEASUREMENT AND EARTH OBSERVATION SERVICES VALIDATION
Collard, Fabrice	pg. 3490 WE2.R7.2 - PHYSICALLY INFORMED NEURAL NETWORKS FOR THE SIMULATION AND DATA-ASSIMILATION OF GEOPHYSICAL DYNAMICS pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Collet, Agwilh	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016 HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM (GEP)
Collett, lan	pg. 6206 WE1.R13.7 - GPS SIGNAL LAND REFLECTION COHERENCE DEPENDENCE ON WATER EXTENT AND SURFACE TOPOGRAPHY USING CYGNSS MEASUREMENTS
Colliander, AndreaS	pg. 6266) WE2.R13.1 - POTENTIAL OF GNSS REFLECTOMETRY FOR FREEZE-THAW MONITORING: A STUDY OF TECHDEMOSAT-1 DATA
Colliander, Andreas	pg. 2972 TU1.R9.3 - MELT DETECTION OVER GREENLAND USING SMAP RADIOMETER OBSERVATIONS pg. 4704 TH1.R1.4 - FULL-WAVE SIMULATIONS OF SCATTERING IN VEGETATION FOR MICROWAVE REMOTE SENSING OF SOIL MOISTURE pg. 4707 TH1.R1.5 - ESTIMATING GLOBAL EVAPOTRANSPIRATION USING SMAP SURFACE AND ROOT-ZONE MOISTURE CONTENT pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY TH2.R10.9 - VICARIOUS VALIDATION OF L-BAND VEGETATION OPTICAL DEPTH
Collins, Leslie	pg. 2229 TH2.R20.9 - MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING pg. 1476 WE2.R9.11 - DO DEEP LEARNING MODELS GENERALIZE TO OVERHEAD IMAGERY FROM NOVEL GEOGRAPHIC LOCATIONS? THE XGD BENCHMARK PROBLEM
Colnago, Marilaine	pg. 533 TU1.R7.3 - COMPARING THE PERFORMANCE OF MATHEMATICAL MORPHOLOGY AND BHATTACHARYYA

	DISTANCE FOR AIRPORT EXTRACTION
Colom, Miguel	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Comite, Davide	pg. 6266 WE2.R13.1 - POTENTIAL OF GNSS REFLECTOMETRY FOR FREEZE-THAW MONITORING: A STUDY OF TECHDEMOSAT-1 DATA pg. 5905 MO2.R13.1 - SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL ON A GLOBAL SCALE BY USING CYGNSS DATA AND
	ARTIFICIAL NEURAL NETWORKS [pg. 3447] TU2.R17.5 - ELECTROMAGNETIC MODELING OF SCATTERED GNSS SIGNALS
Comparot, Catherine	pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS pg. 3115 WE1.R14.7 - AN APPROACH FOR INTEGRATING EARTH OBSERVATION, CHANGE DETECTION AND CONTEXTUAL DATA FOR SEMANTIC SEARCH
Conche, Bruno	TH2.R16.6 - AUTOMATIC OIL SLICK DETECTION FOR ENVIRONMENTAL DOMAIN USING SYNTHETIC APERTURE RADAR (SAR) IMAGES
Conrad, Alex	pg. 5847 TH2.R8.9 - IMPROVED ORBIT DETERMINATION OF THE CYGNSS SATELLITES AND ITS APPLICATION TO GNSS-R OCEAN ALTIMETRY
Constantino Recillas, Daniel Enrique	pg. 5250 FR2.R11.1 - CALIBRATION OF A SVAT MODEL IN THE CENTRAL ZONE OF MEXICO WITH IN-SITU DATA OVER A CORN FIELD REGION pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Contenta, Filippo	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY
Cook, Bruce	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Cooke, Caitlyn	FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE STRATEGIES
Cooper, Ken	pg. 5466 TH1.R19.9 - SUBMILLIMETER WAVE DIFFERENTIAL ABSORPTION RADAR FOR WATER VAPOR SOUNDING IN THE MARTIAN ATMOSPHERE
Cooperrider, Joelle	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS

	FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Corbella, Ignasi	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
	pg. 6431 FR1.R13.4 - CHARACTERIZING SYSTEMATIC ERRORS IN THE FARADAY ROTATION RETRIEVAL FROM SMOS MEASUREMENTS
Cordova Gallardo, Omar Alejandro	pg. 3223 TH2.R14.9 - GEONOTE: A FIELD NOTEBOOK AND DATABASE FOR GEOLOGY
Corsini, Giovanni	pg. 3959 FR2.R4.3 - IMPROVING PHYSICAL AND STATISTICAL MODELS FOR DETECTING DIFFICULT TARGETS WITH LRT DETECTORS IN CLOSED-FORM pg. 3743 TH2.R12.5 - A FLUORESCENCE LIDAR SIMULATOR FOR THE DESIGN OF ADVANCED WATER QUALITY ASSESSMENT METHODOLOGIES
Coscetta, Agnese	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS
Cosh, Michael H.	pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
Cosme, Emmanuel	pg. 3904 FR1.R7.4 - FILTERING INTERNAL TIDES FROM WIDE- SWATH ALTIMETER DATA USING CONVOLUTIONAL NEURAL NETWORKS
Costa, Stéphane	pg. 445 TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV DRONE REMOTE SENSING USING PYTHON MODELLING ELECTRICAL RESISTIVITY IMAGING (PYMERI)
Costantini, Mario	pg. 2225 TH2.R20.8 - OIL SPILL DETECTION FROM SAR IMAGES BY DEEP LEARNING
Costeraste, Josiane	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR).
Cournet, Myriam	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
Courtrai, Luc	pg. 264 MO2.R17.2 - SMALL OBJECT DETECTION FROM REMOTE SENSING IMAGES WITH THE HELP OF OBJECT-FOCUSED SUPER-RESOLUTION USING WASSERSTEIN GANS
Courty, Nicolas	pg. 1961 TH1.R17.8 - A CYCLE GAN APPROACH FOR HETEROGENEOUS DOMAIN ADAPTATION IN LAND USE CLASSIFICATION
Courville, Zoe	pg. 2972 TU1.R9.3 - MELT DETECTION OVER GREENLAND USING SMAP RADIOMETER OBSERVATIONS
Cousins, Peter	pg. 1117 WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING

	AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Coviello, Roberto	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS
Coyle, Barry	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Craigie, Matthew	pg. 5167 FR1.R11.3 - A SATELLITE-BASED METHODOLOGY FOR HARVEST DATE DETECTION AND YIELD PREDICTION IN SUGARCANE
Crandall, David	pg. 2960 MO2.R9.12 - SNOW RADAR LAYER TRACKING USING ITERATIVE NEURAL NETWORK APPROACH
Crawford, Melba	pg. 3912 FR1.R7.6 - PREDICTION OF SORGHUM BIOMASS USING TIME SERIES UAV-BASED HYPERSPECTRAL AND LIDAR DATA
Credoz, Anthony	pg. 4045 FR2.R14.6 - REMOTE SENSING OF OIL IN VEGETATED REGIONS: AN OVERVIEW OF RECENT ADVANCES AND FUTURE CHALLENGES TOWARD OPERATIONAL APPLICATIONS
Crespi, Mattia	pg. 4779 TH1.R6.1 - LAND COVER AND SOIL CONSUMPTION MONITORING WITH A FOS GEOPORTAL IN FIVE ITALIAN BIG URBAN AREAS pg. 897 TU2.R7.7 - FIRST TEST OF AGISOFT METASHAPE SATELLITE IMAGE PROCESSING FOR DSM GENERATION: A CASE STUDY IN TRENTO WITH PLÉIADES IMAGERY pg. 2495 FR1.R16.7 - COSMO-SKYMED RANGE MEASUREMENTS FOR DISPLACEMENT MONITORING USING AMPLITUDE PERSISTENT SCATTERES pg. 6846 WE1.R2.8 - TIDS DETECTION FROM SHIP-BASED GNSS RECEIVER: FIRST TEST ON 2010 MAULE TSUNAMI pg. 5242 FR2.R10.11 - LARGE SCALE ASSESSMENT OF FREE GLOBAL DEMS THROUGH THE GOOGLE EARTH ENGINE PLATFORM
Cressman, Keith	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Crisp, David	pg. 6381 TH1.R15.1 - OCO-2 CALIBRATION REFINEMENT ACROSS VERSIONS AND PLANS FOR OCO-3
Crispim-Junior, Carlos	pg. 1813 TH1.R9.4 - SEMANTIC SEGMENTATION REFINEMENT WITH DEEP EDGE SUPERPIXELS TO ENHANCE HISTORICAL LAND COVER
Cristea, Anca	pg. 2455 FR1.R14.8 - TOWARDS AUTOMATIC DETECTION OF DARK FEATURES IN THE BARENTS SEA USING SYNTHETIC APERTURE RADAR
Crocker, Dylan	pg. 1405 WE2.R6.4 - AN UNBALANCED SINUOUS ANTENNA FOR ULTRA-WIDEBAND POLARIMETRIC GROUND-PENETRATING RADAR

Crow, Wade	(pg. 3928) FR2.R1.2 - IMPACT OF MODEL COUPLING BIAS ON WATER FLUX ESTIMATES ACQUIRED FROM A LAND DATA ASSIMILATION SYSTEM
Cruz, Christian	pg. 4882 TH1.R11.5 - ESTIMATION OF VISUAL RATING OF TAR SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS (UAS) DATA AND MACHINE LEARNING TECHNIQUES
Cruz-Sancan, Andres	pg. 4882 TH1.R11.5 - ESTIMATION OF VISUAL RATING OF TAR SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS (UAS) DATA AND MACHINE LEARNING TECHNIQUES
Cuccu, Roberto	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016 HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM (GEP)
Cui, Chang	pg. 6559) FR2.R17.2 - PERFORMANCE ANALYSIS AND CONFIGURATION DESIGN OF GEOSYNCHRONOUS SPACEBORNE-AIRBORNE BISTATIC MOVING TARGET INDICATION SYSTEM
Cui, Hongbin	(pg. 5819) TH2.R8.2 - IN-ORBIT CALIBRATION AND VALIDATION OF HY-2B ALTIMETER USING AN IMPROVED TRANSPONDER
Cui, Huizhen	pg. 4450 WE1.R1.5 - EVALUATION OF SOIL MOISTURE RETRIEVALS FROM ALOS-2, SENTINEL-1 DATA IN GENHE, CHINA
Cui, Lei	pg. 3235 TH2.R14.12 - A METHOD TO IDENTIFY HIGH-QUALITY PURE SNOW DATA IN POLDER DATABASE
Cui, Wenqian	pg. 2443 FR1.R14.5 - SIMPLE, FAST, ACCURATE OBJECT DETECTION BASED ON ANCHOR-FREE METHOD FOR HIGH RESOLUTION REMOTE SENSING IMAGES
Cui, Xing-Chao	pg. 762 TU1.R18.6 - AN INTEGRATED SAR SPECKLE REDUCTION AND TARGET DETECTION APPROACH
Cui, Yaokui	pg. 2519 FR1.R17.2 - FLOOD MAPPING WITH SAR AND MULTI-SPECTRAL REMOTE SENSING IMAGES BASED ON WEIGHTED EVIDENTIAL FUSION pg. 4574 WE2.R1.4 - IMPROVING SOIL MOISTURE SPATIO-TEMPORAL RESOLUTION USING MACHINE LEARNING METHOD pg. 3066 WE1.R9.6 - SHIP NAVIGATION ROUTE PLANNING USING TOPOLOGY OF SEA ICE CHANNELS EXTRACTED FROM HIGH RESOLUTION SATELLITE IMAGES
Cui, Yueju	pg. 6615 TU1.R2.7 - THREE-DIMENSIONAL VARIATIONS OF CARBON MONOXIDE CONCENTRATION ASSOCIATED WITH WENCHUAN EARTHQUAKE BASED ON AIRS DATA
Cui, Ziteng	pg. 2855 FR2.R16.6 - ELLIPSE-FCN: OIL TANKS DETECTION FROM REMOTE SENSING IMAGES WITH FULLY CONVOLUTION NETWORK

Cui, Zongyong	pg. 1225 WE1.R18.2 - AN INTEGRATED METHOD OF SHIP DETECTION AND RECOGNITION IN SAR IMAGES BASED ON
	DEEP LEARNING
	pg. 1244 WE1.R18.7 - DENSE DOCKED SHIP DETECTION VIA
	SPATIAL GROUP-WISE ENHANCE ATTENTION IN SAR IMAGES
	pg. 770 TU1.R18.8 - MICRO GESTURE RECOGNITION WITH
	TERAHERTZ RADAR BASED ON DIAGONAL PROFILE OF RANGE- DOPPLER MAP
	pg. 1263 WE1.R18.12 - SHIP DETECTION IN LARGE SCALE SAF
	IMAGES BASED ON BIAS CLASSIFICATION
Culberg, Riley	pg. 7033 TU2.R20.3 - STRONG POTENTIAL FOR THE
	DETECTION OF REFROZEN ICE LAYERS IN GREENLAND'S FIRN
	BY AIRBORNE RADAR SOUNDING
Cummings, Sol	pg. 676 TU1.R12.6 - BUILDING CHANGE DETECTION USING
	MODIFIED SIAMESE NEURAL NETWORKS
Cunha, António	TU2.R3.6 - PS-INSAR TARGET CLASSIFICATION USING DEEP
	LEARNING
Cunningham, Andrew	pg. 6441 FR1.R13.7 - PRE-LAUNCH CALIBRATION OF THE
	NASA TROPICS CONSTELLATION MISSION
Cuozzo, Giovanni	pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR
	SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE
	LEARNING APPROACHES
Currey, Jon	pg. 6385 TH1.R15.2 - DEVELOPMENT OF A HIGH-FIDELITY
	CLARREO PATHFINDER SIMULATOR
Czaja, Wojciech	pg. 3680 TH2.R7.5 - ANALYSIS OF HYPERSPECTRAL DATA BY
	MEANS OF TRANSPORT MODELS AND MACHINE LEARNING
Czapla-Myers, Jeffrey	pg. 6413 TH1.R15.9 - RAILROAD VALLEY RADIOMETRIC
	CALIBRATION TEST SITE (RADCATS) AS PART OF A GLOBAL
	RADIOMETRIC CALIBRATION NETWORK (RADCALNET)
Czech, Erin	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN
	DYNAMICS EXPERIMENT
Czyż, Ewa A.	pg. 4842 TH1.R10.6 - GENETICALLY CONSTRAINED TEMPORAL
	TRAJECTORIES OF TEMPERATE FOREST AIRBORNE
	REFLECTANCE SPECTRA
Cézard, Nicolas	pg. 3825 TH2.R16.5 - VALIDATION OF INNOVATIVE SYSTEMS
Cézard, Nicolas	OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION
D	OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION
	OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION REDUCING EMISSIONS AND INCREASING SAFETY pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN
D	OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION REDUCING EMISSIONS AND INCREASING SAFETY

D'Angelo, Caroline	pg. 5570 FR2.R19.2 - REVIEW OF GLOBAL NEAR REAL TIME PM2.5 ESTIMATES AND MODEL FORECASTS
D'Angelo, Milena	pg. 3700 TH2.R7.10 - QUANTUM IMAGING FOR SPACE OBJECTS
D'Asaro, Eric	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
D'Hondt, Olivier	pg. 3908 FR1.R7.5 - REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK
D'Odorico, Petra	pg. 4132 MO2.R10.4 - A FUZZY APPROACH TO INDIVIDUAL TREE CROWN DELINEATION IN UAV BASED PHOTOGRAMMETRIC MULTISPECTRAL DATA
D'Ottavi, Alessandro	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Da Silva, Arlindo	FR1.R19.1 - DETECTION OF NIGHTTIME FIRE COMBUSTION EFFICIENCY FOR WILDFIRES FROM VIIRS
Dado, Walter	pg. 5179 FR1.R11.6 - LANDSAT-BASED RECONSTRUCTION OF CORN AND SOYBEAN YIELD HISTORIES IN THE UNITED STATES SINCE 1999
Daehn, Matt	FR1.R13.11 - MONITORING IN THE RFI ENVIRONMENT USING SMAP DATA FROM 2015-2020
Daganzo-Eusebio, Elena	pg. 3762 TH2.R13.2 - GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS
Dahl-Jensen, Dorthe	pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Dahlgren, Robert	pg. 4375 TU2.R11.9 - REFLECTANCE PRI DOES NOT EQUAL TRANSMITTANCE PRI
Dai, Eryan	pg. 4474 WE1.R1.11 - L-BAND HIGH SPATIAL RESOLUTION SOIL MOISTURE MAPPING USING A SMALL UNMANNED AERIAL SYSTEM
Dai, Hailun	pg. 5057 FR1.R1.11 - EVALUATION OF THE EFFECTS OF HETEROGENEOUS SOIL MOISTURE ON MEASURED BRIGHTNESS TEMPERATURE BY A MICROWAVE RADIOMETER
Dai, Liyun	(pg. 4731) TH1.R1.11 - EVALUATION OF SMAP AND SMOS SOIL MOISTURE PRODUCTS USING DISTRIBUTED GROUND OBSERVATION NETWORK IN COLD AND ARID REGIONS IN THE NORTHWEST OF CHINA
Dai, Muchen	(pg. 1129) WE1.R16.2 - AN EFFICIENT WATER SEGMENTATION METHOD FOR SAR IMAGES

Dai, Rongfan	pg. 6018 TU1.R14.8 - ON-ORBIT GEOMETRIC CALIBRATION AND ACCURACY VERIFICATION OF HY-1C CZI
Dalila, Maëva	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Dall, Jørgen	pg. 2975 TU1.R9.4 - ESTIMATION OF CRYSTAL ORIENTATION FABRIC FROM AIRBORNE POLARIMETRIC ICE SOUNDING RADAR DATA
Dalla Mura, Mauro	pg. 5195 FR1.R11.10 - ESTIMATION OF LEAF ANGLE DISTRIBUTION BASED ON STATISTICAL PROPERTIES OF LEAF SHADING DISTRIBUTION
Dalla mura, Mauro	pg. 2823] FR2.R12.9 - SUB-PIXEL MAPPING METHOD BASED ON K-SVD DICTIONARY LEARNING AND TOTAL VARIATION MINIMIZATION
Dalphinet, Alice	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Dambreville, Romain	pg. 260 MO2.R17.1 - VEHICLE DETECTION AND COUNTING FROM VHR SATELLITE IMAGES: EFFORTS AND OPEN ISSUES
Dan, Lei	pg. 1361 WE2.R5.4 - RELATIONSHIPS EXCAVATING OF AUGMENTED FEATURE FOR REMOTE SENSING SCENE CLASSIFICATION
Dana, Kristin	pg. 6746 TU1.R17.6 - ANGULAR LUMINANCE FOR MATERIAL SEGMENTATION
Dang, Sihang	pg. 1244 WE1.R18.7 - DENSE DOCKED SHIP DETECTION VIA SPATIAL GROUP-WISE ENHANCE ATTENTION IN SAR IMAGES
Danielsen, Jacob	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
Danilicheva, Olga	pg. 3545 WE2.R8.7 - FILM SLICKS ON THE SEA SURFACE: THEIR DYNAMICS AND REMOTE SENSING
Danilov, Yuri	pg. 3082 WE1.R9.10 - REMOTE SENSING OF MOUNTAIN PERMAFROST LANDSCAPE BY MULTI-FUSION DATA MODELING. EXAMPLE OF VERKHOYANSK RIDGE (RUSSIA)
Danzeglocke, Jens	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016 HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM (GEP)
Daqing, Ge	pg. 996 WE1.R3.1 - APPLICATION OF L-BAND SCANSAR MODE IN MONITORING LAND SUBSIDENCE
Daraio, Maria Girolamo	pg. 3282 MO2.R4.5 - THE HYPERSPECTRAL PRISMA MISSION IN OPERATIONS

Das, Anup	pg. 3884 FR1.R3.7 - THE EFFECT OF HYBRID POLARIMETRIC
	DESCRIPTORS ON CLASSIFICATION ACCURACY OF VARIOUS LAND COVER TYPES
Das, Bhaskar	pg. 5889 FR1.R8.9 - NUMERICAL SIMULATION OF PLANKTON DYNAMICS AND ITS SENSITIVITY TO SEASONAL VARIATIONS IN FRESHWATER FORCING
Das, Kamal	pg. 5175 FR1.R11.5 - CROP EVAPOTRANSPIRATION ESTIMATES FOR SUGARCANE BASED ON REMOTE SENSING AND LAND SURFACE MODEL IN THAILAND pg. 1102 WE1.R6.6 - HIGH RESOLUTION SPATIAL MAPPING OF SOIL NUTRIENTS USING K - NEAREST NEIGHBOR BASED CNN APPROACH pg. 4677 WE2.R11.7 - SOIL NUTRIENTS PREDICTION USING REMOTE SENSING DATA IN WESTERN INDIA: AN EVALUATION OF MACHINE LEARNING MODELS
Das, Monidipa	pg. 1496 WE2.R12.5 - ONLINE PREDICTION OF DERIVED REMOTE SENSING IMAGE TIME SERIES: AN AUTONOMOUS MACHINE LEARNING APPROACH
Das, Narendra	WE1.R1.7 - DEVELOPMENT OF NISAR SOIL MOISTURE PRODUCT
Das, Soumya K	pg. 1500 WE2.R12.6 - URBAN SURFACE SIMULATION THROUGH IMAGE-TO-IMAGE TRANSLATION DEEP LEARNING ALGORITHM USING OPTICAL AERIAL IMAGERY
Dasaundhi, Girjesh	pg. 2999 TU1.R9.10 - SURGING GLACIER DYNAMICS IN TARIM BASIN USING SAR DATA
Dasgupta, Kalyan	pg. 4684 WE2.R11.9 - YIELD AND COMMERCIAL CANE SUGAR ESTIMATION FOR SUGARCANE IN THAILAND - A CASE STUDY
Dash, Prasanjit	pg. 5554 FR1.R19.9 - CHANGE IN LAND AND OCEAN PARAMETERS ALONG THE TRACK OF TROPICAL CYCLONE FANI
Dasondhi, Girjesh	pg. 3002 TU1.R9.11 - ESTIMATING DYNAMIC PARAMETERS OF BARA SHIGRI GLACIER AND DERIVATION OF MASS BALANCE FROM VELOCITY
Datcu, Mihai	pg. 6918 FR1.R2.3 - A FAST SEARCH SYSTEM FOR REMOTE SENSING IMAGERY BASED ON BAG OF VISUAL WORDS AND LATENT DIRICHLET ALLOCATION pg. 3672 TH2.R7.3 - DNN-BASED SEMANTIC EXTRACTION: FAST LEARNING FROM MULTISPECTRAL SIGNATURES pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS pg. 1727 TH1.R5.5 - A HYBRID AND EXPLAINABLE DEEP LEARNING FRAMEWORK FOR SAR IMAGES pg. 2719 FR2.R6.6 - DR-KNN: A HYBRID APPROACH FOR DIMENSIONALITY REDUCTION OF EO IMAGE DATASETS pg. 1913 TH1.R16.7 - TIME-DOMAIN SAR PROCESSOR FOR SENTINEL-1 TOPS DATA pg. 3688 TH2.R7.7 - PHYSICALLY MEANINGFUL DICTIONARIES

	FOR EO CROWDSOURCING: A ML FOR BLOCKCHAIN ARCHITECTURE
	pg. 3692 TH2.R7.8 - QUANTUM ANNEALING APPROACH: FEATURE EXTRACTION AND SEGMENTATION OF SYNTHETIC APERTURE RADAR IMAGE
	pg. 6945] FR1.R2.10 - DATA MINING ON THE CANDELA CLOUD PLATFORM
	pg. 2376 FR1.R9.11 - SYNTHETIC APERTURE RADAR FOCUSING BASED ON BACK-PROJECTION AND COMPRESSIVE SENSING
Daughtry, Craig	pg. 4375 TU2.R11.9 - REFLECTANCE PRI DOES NOT EQUAL TRANSMITTANCE PRI
Dauphin, Gabriel	pg. 830 TU2.R5.1 - TWO-STEP ENSEMBLE BASED CLASS NOISE CLEANING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 489 TU1.R6.4 - SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 493 TU1.R6.5 - FEATURE SEPARATION BASED ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Dave, Bindi	pg. 734 TU1.R16.10 - SYNERGETIC USE OF MORPHOLOGICAL AND RADAR PARAMETER FOR LUNAR WATER ICE DETECTION
David, Eli	pg. 6754 TU1.R17.8 - MULTI SEASONAL DEEP LEARNING CLASSIFICATION OF VENUS IMAGES
Davidson, Malcolm	pg. 4055 FR2.R15.1 - COPERNICUS SENTINEL MISSION AT C- AND L-BAND: CURRENT STATUS AND FUTURE PERSPECTIVES
	pg. 4059 FR2.R15.2 - ENHANCED SEA ICE MONITORING AT L- AND C-BANDS USING ROSE-L AND SENTINEL-1
	pg. 4069 FR2.R15.5 - OPERATIONAL SOIL MOISTURE MAPPING AT C-BAND AND PERSPECTIVES FOR L-BAND
Davies, Ashley Gerard	pg. 3833 TH2.R17.1 - LEVERAGING SPACE AND GROUND ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE
Davis, Hilarie	pg. 3139 WE2.R14.2 - SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS
Davis, Timothy	pg. 3908 FR1.R7.5 - REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK
Dawson, Clint	pg. 6674 TU1.R13.10 - A NEW ALGORITHM FOR ESTIMATING SURFACE ROUGHNESS USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) DATA
Daya Sagar, B S	pg. 881 TU2.R7.3 - QUANTITATIVE ANALYSIS OF WATERSHEDS PARTITIONED FROM CARTOSAT DEM OF LOWER INDUS SUB- BASIN VIA MULTIFRACTAL SPECTRA
De Carolis, Giacomo	pg. 5721 TU2.R8.9 - ON THE ANALYSIS OF SAR DERIVED WIND AND SEA SURFACE CURRENTS

De Corso, Tony	pg. 4235 MO2.R12.8 - APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC INFRASTRUCTURE MONITORING
De Gregorio, Ludovica	pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES
De La Rosa Montero, Iván Edmundo	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
De Lannoy, Gabrielle	pg. 3924 FR2.R1.1 - ADAPTIVE FILTERING FOR (SOIL MOISTURE) DATA ASSIMILATION
De Laurentiis, Leonardo	pg. 2085 TH2.R5.6 - MULTI-POL SAR DATA FUSION FOR COASTLINE EXTRACTION BY NEURAL NETWORKS CHAINING
De Luca, Claudio	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR CO-SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
De Novellis, Vincenzo	pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR CO- SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
De Roo, Roger	pg. 6438 FR1.R13.6 - ERROR ESTIMATION OF THE MEASURED TIME DELAY USING WIDEBAND AUTOCORRELATION RADIOMETRY pg. 6369 TH1.R13.7 - RFI MITIGATION USING A NEW COMB FILTER FOR WIDEBAND AUTOCORRELATION RADIOMETRY
De Sanctis, Valeria	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
De Santi, Francesca	pg. 5721 TU2.R8.9 - ON THE ANALYSIS OF SAR DERIVED WIND AND SEA SURFACE CURRENTS
De Smedt, Isabelle	pg. 6039 TU2.R4.2 - TOTAL COLUMN RETRIEVAL OF SO2 AND HCHO FROM SENTINEL-4 MEASUREMENTS
De, Shaunak	pg. 3501) WE2.R7.5 - EXPLORING THE RELATIONSHIPS BETWEEN SCATTERING PHYSICS AND AUTO-ENCODER LATENT- SPACE EMBEDDING pg. 3884 FR1.R3.7 - THE EFFECT OF HYBRID POLARIMETRIC DESCRIPTORS ON CLASSIFICATION ACCURACY OF VARIOUS LAND COVER TYPES
De-la-Torre, Miguel	pg. 3223 TH2.R14.9 - GEONOTE: A FIELD NOTEBOOK AND DATABASE FOR GEOLOGY
DeCastro, Amy	pg. 3626 TH2.R2.5 - ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING

DeGuchy, Omar	pg. 2867 FR2.R16.9 - IMAGE CLASSIFICATION IN SYNTHETIC APERTURE RADAR USING RECONSTRUCTION FROM LEARNED INVERSE SCATTERING
DeLong, Jakob	pg. 6579 FR2.R17.7 - AN ALGORITHM FOR ADAPTIVE DETERMINATION OF RADAR COHERENT INTEGRATION TIME
Deal, William	FR1.R2.8 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT CONCEPT FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE STRATEGIES
Dean, Cayla	pg. 5753 WE1.R8.7 - HIGH-RESOLUTION REMOTE SENSING, IN-SITU OBSERVATIONS, AND MODELING OF LOW-SALINITY LENSES IN THE PRESENCE OF OIL SLICK
Deb, Saswati	pg. 5745 WE1.R8.5 - STORM SURGE INUNDATION MODELING OF FIVE WINTER STORMS IN SACO-CASCO BAYS: A FVCOM BASED NUMERICAL STUDY pg. 5889 FR1.R8.9 - NUMERICAL SIMULATION OF PLANKTON DYNAMICS AND ITS SENSITIVITY TO SEASONAL VARIATIONS IN FRESHWATER FORCING
Deborah, Hilda	pg. 2045 TH2.R3.7 - CREATING RGB IMAGES FROM HYPERSPECTRAL IMAGES USING A COLOR MATCHING FUNCTION
Deborgies, François	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Dech, Stefan	pg. 4799 TH1.R6.6 - STABILITY CHARACTERIZATION OF THE RESPONSE OF WHITE STORKS' FORAGING BEHAVIOR TO VEGETATION DYNAMICS RETRIEVED FROM LANDSAT TIME SERIES
Decoopman, Thibaut	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Dedieu, Gerard	pg. 5159 FR1.R11.1 - ASSESSING CROP PRODUCTIVITY IN DECONTAMINATED FARMLAND IN FUKUSHIMA USING MICROSATELLITE VENMS AND HYPERSPECTRAL SENSING
Dedieu, Gérard	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES
Defaflia, Nabil	pg. 1034 WE1.R3.11 - INSAR INVESTIGATION ON DRAA- DOUAMIS SINKHOLES IN CHERIA NORTHEASTERN OF ALGERIA
Defilippi, Marco	pg. 814 TU2.R3.8 - MONITORING COMPLEX SURFACE STRUCTURE BY SEVERAL INTERFEROMETRIC STACKING TEQUNIQUES WITH PALSAR-1 DATA
Dehghanpoor, Golnoosh	pg. 1679 TH1.R3.5 - A TENSOR DECOMPOSITION METHOD FOR UNSUPERVISED FEATURE LEARNING ON SATELLITE

	IMAGERY
Deidun, Alan	pg. 2213 TH2.R20.5 - AUTOMATIC BENTHIC HABITAT MAPPING USING INEXPENSIVE UNDERWATER DRONES
Deines, Jillian	pg. 5179 FR1.R11.6 - LANDSAT-BASED RECONSTRUCTION OF CORN AND SOYBEAN YIELD HISTORIES IN THE UNITED STATES SINCE 1999
Dejus, Michel	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES
Del Frate, Fabio	pg. 2085 TH2.R5.6 - MULTI-POL SAR DATA FUSION FOR COASTLINE EXTRACTION BY NEURAL NETWORKS CHAINING
Del Rosso, Maria Pia	pg. 4235 MO2.R12.8 - APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC INFRASTRUCTURE MONITORING
Delavois, Antony	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL
Delbert, Franck	(pg. 2952) MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Delgado, J. Manuel	pg. 1026] WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)
Delgado, Ruben	pg. 3676 TH2.R7.4 - A DEEP MACHINE LEARNING APPROACH FOR LIDAR BASED BOUNDARY LAYER HEIGHT DETECTION
Deliot, Philippe	pg. 2165 TH2.R18.3 - HAZARDOUS NOXIOUS SUBSTANCE DETECTION BASED ON HYPERSPECTRAL REMOTE SENSING TECHNIQUE
Deliot, Yannick	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Dell'Aglio, Domenico Antonio Giuseppe	pg. 6806) TU2.R2.10 - FIRE RISK ANALYSIS BY USING SENTINEL-2 DATA: THE CASE STUDY OF THE VESUVIUS IN CAMPANIA, ITALY
Dellomo, John	pg. 6405 TH1.R15.7 - SEASONAL VARIATION IN THE MEASUREMENT OF GOES-16 ABI CHANNEL-TO-CHANNEL REGISTRATION
Delvit, Jean-Marc	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
Demir, Begüm	pg. 1687 TH1.R3.7 - BAND-WISE MULTI-SCALE CNN ARCHITECTURE FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION
Demir, Begüm	pg. 1349 WE2.R5.1 - A COMPARATIVE STUDY OF DEEP LEARNING LOSS FUNCTIONS FOR MULTI-LABEL REMOTE

	SENSING IMAGE CLASSIFICATION [pg. 2515] FR1.R17.1 - S2-CGAN: SELF-SUPERVISED ADVERSARIAL REPRESENTATION LEARNING FOR BINARY CHANGE DETECTION IN MULTISPECTRAL IMAGES
Demir, Oguz	pg. 3010 TU2.R9.2 - ULTRA WIDEBAND RADIOMETER SIGNATURES OF ARCTIC SEA ICE: PRELIMINARY RESULTS FROM THE MOSAIC CAMPAIGN
Demoz, Belay	pg. 3676 TH2.R7.4 - A DEEP MACHINE LEARNING APPROACH FOR LIDAR BASED BOUNDARY LAYER HEIGHT DETECTION
Dempster, Andrew G.	[pg. 5929] MO2.R13.7 - VALIDATION OF SUPER-RESOLUTION GNSS-R USING AN AIRBORNE FIELD TRIAL
Denbina, Michael	TU2.R15.2 - GLOBAL MAPPING OF MANGROVE FORESTS WITH TANDEM-X pg. 3247 MO2.R2.3 - FLOOD MAPPING USING UAVSAR AND CONVOLUTIONAL NEURAL NETWORKS pg. 4991 TH2.R10.5 - A REGIONAL L-BAND HIGH BIOMASS ESTIMATION FRAMEWORK LEVERAGING SPACEBORNE LIDAR AND INTERFEROMETRIC DATA TO OVERCOME BACKSCATTER SATURATION pg. 4766 TH1.R4.9 - MANGROVE MAPPING WITH THE FREEMAN-DURDEN POLARIMETRIC DECOMPOSITION AND INSAR COHERENCE FROM ALOS-2
Deng, Chengzhi	pg. 2169 TH2.R18.4 - SPECTRAL-SPATIAL HYPERSPECTRAL UNMIXING IN TRANSFORMED DOMAINS pg. 2177 TH2.R18.6 - SPECTRAL-SPATIAL WEIGHTED SPARSE NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
Deng, Weishi	pg. 521 TU1.R6.12 - MULTI-GPU PARALLEL IMPLEMENTATION OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Deng, Xiaoli	pg. 5843 TH2.R8.8 - ANALYSIS OF SENTINEL-3A SYNTHETIC APERTURE RADAR (SAR) ALTIMETRY WAVEFORMS OVER THE SOUTHEAST ASIA REGION
Deng, Yuchuan	pg. 4653 WE2.R11.1 - MAPPING RICE PLANTING AREA USING MULTI-TEMPORAL QUAD-POL RADARSAT-2 DATASETS AND RANDOM FOREST ALGORITHM
Deng, Yunkai	pg. 716 TU1.R16.5 - COMPARISON OF TARGET DETECTION RESULTS IN A FOREST WHETHER THE BRANCHES ARE COVERED WITH SNOW BASED ON P-BAND AIRBORNE SAR QUAD-POL IMAGES pg. 1141 WE1.R16.5 - CHALLENGES AND OPPORTUNITIES FOR STAGGERED SAR WITH LOW OVERSAMPLING FACTORS pg. 1925 TH1.R16.10 - MULTICHANNEL SLIDING SPOTLIGHT SAR IMAGING: FIRST RESULT OF GF-3 SATELLITE
Denis, Loıc	pg. 108 MO2.R6.7 - REGULARIZED SAR TOMOGRAPHY APPROACHES

Decele Mali	
Dennie, Matt	pg. 6802 TU2.R2.9 - A MACHINE LEARNING SOLUTION FOR OPERATIONAL REMOTE SENSING OF ACTIVE WILDFIRES
Dennison, Philip	pg. 3955 FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS
Dente, Laura	pg. 6266] WE2.R13.1 - POTENTIAL OF GNSS REFLECTOMETRY FOR FREEZE-THAW MONITORING: A STUDY OF TECHDEMOSAT-1 DATA pg. 5905 MO2.R13.1 - SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL ON A GLOBAL SCALE BY USING CYGNSS DATA AND
	ARTIFICIAL NEURAL NETWORKS (pg. 3447) TU2.R17.5 - ELECTROMAGNETIC MODELING OF SCATTERED GNSS SIGNALS
Deo, Rinki	pg. 3884] FR1.R3.7 - THE EFFECT OF HYBRID POLARIMETRIC DESCRIPTORS ON CLASSIFICATION ACCURACY OF VARIOUS LAND COVER TYPES
Derkacz Weihermann, Jessica	pg. 5115 FR1.R10.2 - USING UNSUPERVISED CLUSTERING FOR ANALYZING AIRBORNE GAMMA-RAY SPECTROMETRY DATA
Deroin, Jean-Paul	pg. 5733) WE1.R8.2 - POTENTIAL OF SENTINEL 1 SATELLITES FOR MAPPING TIDAL FLATS. CASE STUDY OF THE BAIE DES VEYS (NORMANDY, FRANCE)
Desai, Uday	pg. 1588 WE2.R18.5 - UAV BASED REMOTE SENSING FOR TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF MAIZE CROP USING MULTISPECTRAL IMAGES
Deschamps, Adrien	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Desmond, Durell	pg. 3031 TU2.R9.8 - MODELING BACKSCATTER FROM OIL- CONTAMINATED SEA ICE USING A MULTI-LAYERED SCATTERING MODEL
Devara, Meghanadh	pg. 6883 WE2.R2.6 - RAPID FLOOD MAPPING USING SENTINEL-1A IMAGES: A CASE STUDY OF FLOOD IN PANAMARAM, KERALA
Devi, UmaMaheswari	pg. 4657 WE2.R11.2 - SCOPE, EXTENT, AND CHALLENGES OF AN AUTOMATED GLOBAL CROP CLASSIFICATION MODEL
Dey, Abhishek	pg. 2025 TH2.R3.2 - BAND ELIMINATION FOR DIMENSIONALITY REDUCTION OF HYPERSPECTRAL IMAGES USING MUTUAL INFORMATION
Dey, Subhadip	pg. 4870 TH1.R11.2 - VEGETATION MONITORING USING A NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND DATA pg. 7021 TU1.R20.5 - A NON-MODEL BASED THREE COMPONENT SCATTERING POWER DECOMPOSITION FOR FULL

	POLARIMETRIC SAR DATA
Dhifallah, Oussama	pg. 441 TU1.R5.2 - ROBUST 3D TOMOGRAPHIC IMAGING OF THE IONOSPHERIC ELECTRON DENSITY
Di Donna, Mauro	pg. 2225 TH2.R20.8 - OIL SPILL DETECTION FROM SAR IMAGES BY DEEP LEARNING
Di Girolamo Neto, Cesare	pg. 4263 TU1.R1.4 - FIRE OCCURRENCE IN THE BRAZILIAN SAVANNA CONSERVATION UNITS AND THEIR BUFFER ZONES
Di Maio, Caterina	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS
Di Martino, Gerardo	pg. 352 MO2.R19.3 - POLARIMETRIC TWO-SCALE MODEL FOR THE EVALUATION OF BISTATIC SCATTERING FROM ANISOTROPIC SEA SURFACES pg. 1536 WE2.R16.4 - ASSESSING PERFORMANCE OF MULTITEMPORAL SAR IMAGE DESPECKLING FILTERS VIA A BENCHMARKING TOOL
Di Simone, Alessio	pg. 352 MO2.R19.3 - POLARIMETRIC TWO-SCALE MODEL FOR THE EVALUATION OF BISTATIC SCATTERING FROM ANISOTROPIC SEA SURFACES pg. 1536 WE2.R16.4 - ASSESSING PERFORMANCE OF MULTITEMPORAL SAR IMAGE DESPECKLING FILTERS VIA A BENCHMARKING TOOL
Di Tullio, Marco	pg. 2495 FR1.R16.7 - COSMO-SKYMED RANGE MEASUREMENTS FOR DISPLACEMENT MONITORING USING AMPLITUDE PERSISTENT SCATTERERS
DiLiberto, Michael	pg. 6441 FR1.R13.7 - PRE-LAUNCH CALIBRATION OF THE NASA TROPICS CONSTELLATION MISSION
Dian, Renwei	pg. 637 TU1.R11.7 - UNSUPERVISED BLUR KERNEL LEARNING FOR PANSHARPENING
Diani, Marco	pg. 3959 FR2.R4.3 - IMPROVING PHYSICAL AND STATISTICAL MODELS FOR DETECTING DIFFICULT TARGETS WITH LRT DETECTORS IN CLOSED-FORM pg. 3743 TH2.R12.5 - A FLUORESCENCE LIDAR SIMULATOR FOR THE DESIGN OF ADVANCED WATER QUALITY ASSESSMENT METHODOLOGIES
Diao, Yingyu	pg. 525 TU1.R7.1 - MULTI-LABEL REMOTE SENSING IMAGE CLASSIFICATION WITH DEFORMABLE CONVOLUTIONS AND GRAPH NEURAL NETWORKS
Dias, Julia	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Dick, Arthur	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES

Dielacher, Andreas	pg. 3345 TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Dierking, Wolfgang	pg. 4059 FR2.R15.2 - ENHANCED SEA ICE MONITORING AT L- AND C-BANDS USING ROSE-L AND SENTINEL-1
Dietrich, Daniele	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Dilkina, Bistra	TU2.R6.2 - WEAKLY SUPERVISED SEMANTIC SEGMENTATION IN THE 2020 IEEE GRSS DATA FUSION CONTEST
Dimech, Sean	pg. 2213 TH2.R20.5 - AUTOMATIC BENTHIC HABITAT MAPPING USING INEXPENSIVE UNDERWATER DRONES
Ding, Chibiao	pg. 84 MO2.R6.1 - CHANNEL IMBALANCE CALIBRATION METHOD FOR AIRBORNE TOMOSAR SYSTEM
Ding, Fan	pg. 316 MO2.R18.4 - SAR IMAGE CHANGE DETECTION METHOD VIA A PYRAMID POOLING CONVOLUTIONAL NEURAL NETWORK pg. 2551 FR1.R17.11 - A LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION
Ding, Jian	pg. 988 TU2.R18.10 - INSTANCE SEGMENTATION WITH ORIENTED PROPOSALS FOR AERIAL IMAGES
Ding, Ling	pg. 2013 TH1.R18.10 - EVALUATION OF SPATIAL-TEMPORAL VARIATION OF VEGETATION RESTORATION IN DEXING COPPER MINE AREA USING REMOTE SENSING DATA
Ding, Yongfei	pg. 5945 TU1.R4.1 - YAW STEERING USING ADAPTIVE FILTERING FOR SPACEBORNE SAR SYSTEMS
Ding, Zegang	pg. 905 TU2.R16.1 - SAR PARAMETRIC IMAGING FOR CIRCULAR-PLATE TARGET pg. 1901 TH1.R16.4 - PRELIMINARY RESULT OF MIMO SAR TOMOGRAPHY VIA 3D FFBP pg. 100 MO2.R6.5 - HIGH-RESOLUTION SAR TOMOGRAPHY VIA SEGMENTED DECHIRPING
Dinnat, Emmanuel	pg. 3330 TU2.R1.4 - SMAP MICROWAVE RADIOMETER CALIBRATION REVISIT APPROACHES AND PERFORMAMNCE pg. 5628 MO2.R8.7 - DEBYE DIELECTRIC MODEL FUNCTION FOR SEAWATER BASED ON EXPANDED L-BAND MEASUREMENT DATA SET
Dismer, Amber	pg. 1121 WE1.R6.11 - ESTIMATING DISPLACED POPULATIONS FROM OVERHEAD
Divakarla, Murty	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG

Dkhala, Belgacem	pg. 1861 TH1.R12.5 - PLSR METHOD FOR CONTAMINATING MINERAL CONTENT PREDICTION FROM FIELD HYPERSPECTRAL REFLECTANCE: A CASE STUDY OF HAMMAM ZRIBA MINING AREA
Dlugokencky, Ed	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Dobre, Alexandru	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Doelling, David	pg. 6690 TU1.R15.4 - RADIATIVE TRANSFER MODELS FOR DERIVING GEOSTATIONARY BROADBAND SHORTWAVE RADIANCES DIRECTLY FROM VISIBLE CHANNELS FOR THE CERES SYN1DEG PRODUCT
Dohr, Mario	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT
Doi, Kento	pg. 2069 TH2.R5.2 - GAN-BASED SAR-TO-OPTICAL IMAGE TRANSLATION WITH REGION INFORMATION
Dokoozlian, Nick	(pg. 1117) WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Dong, Dong	pg. 3680 TH2.R7.5 - ANALYSIS OF HYPERSPECTRAL DATA BY MEANS OF TRANSPORT MODELS AND MACHINE LEARNING
Dong, Guoshuai	pg. 4967 TH2.R6.8 - MULTI-SCALE DEEP RESIDUAL LEARNING FOR CLOUD REMOVAL
Dong, Han	pg. 2827] FR2.R12.10 - ESTIMATION METHOD OF MICRO- DOPPLER PARAMETERS BASED ON CONCENTRATION OF TIME- FREQUENCY ROTATION DOMAIN
Dong, Hongwei	pg. 204 MO2.R15.9 - POLSAR IMAGE CLASSIFICATION VIA COMPLEX-VALUED MULTI-SCALE CONVOLUTIONAL NEURAL NETWORK
Dong, Jiaji	(pg. 5505) TH2.R19.7 - AEROSOL OPTICAL DEPTH ESTIMATE USING GROUND-MEASURED SPECTRAL SKYLIGHT RATIO METHOD
Dong, Jun	pg. 5345 TU2.R19.2 - AN OPERATIONAL SATELLITE SNOWFALL RATE PRODUCT AT NOAA
Dong, Kesong	pg. 5426 WE1.R19.11 - CHARACTERISTIC ANALYSIS OF TYPHOON MUFIA FROM FY-3B MWRI OBSERVATIONS
Dong, Longkai	pg. 1015 WE1.R3.6 - PERMOFROST OBERVATION USING ALOS-2 PALSAR-2 DATA IN THE NORTHREN QINGHAI-TIBET PLATEAU
Dong, Mengna	pg. 5131 FR1.R10.6 - RE-EVALUATING BASALTIC DEPOSITS IN

	MARE NUBIUM WITH CE-2 CELMS DATA
Dong, Peiming	pg. 5298 TU1.R19.2 - ASSIMATION OF FY3D COMBINED MICROWAVE SOUNDER OBSERVATION IN ATMS ALIKE ONE DATA STREAM
Dong, Runmin	pg. 1381 WE2.R5.9 - UNSUPERVISED MIXED MULTI-TARGET DOMAIN ADAPTATION FOR REMOTE SENSING IMAGES CLASSIFICATION
Dong, Shan	pg. 944 TU2.R16.11 - SEMANTIC SEGMENTATION KNOWLEDGE BASED MMRF OPTIMAL METHOD FOR FINE- GRAINED URBAN INFRASTRUCTURE CLASSIFICATION MAPPING FROM OPTICAL VHR AERIAL IMAGERY
Dong, Shuxian	pg. 489 TU1.R6.4 - SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Dong, Wentong	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY
Dong, Xiaolong	pg. 2968 TU1.R9.2 - A STUDY OF COMBINED ACTIVE PASSIVE MICROWAVE SOUNDING OF ICE SHEET INTERNAL TEMPERATURE PROFILING (pg. 5701) TU2.R8.4 - EFFECTS OF WIND ESTIMATION ERRORS
	ON OCEAN SURFACE CURRENT RETRIEVAL FOR A DOPPLER SCATTEROMETER Pg. 5787 TH1.R8.4 - GENERALIZATION OF KU-BAND FALSE-ALARM REDUCTION METHOD AND APPLICATION TO CSCAT Pg. 5705 TU2.R8.5 - EFFECTS OF DIFFERENT WAVE SPECTRA ON WIND-WAVE INDUCED DOPPLER SHIFT ESTIMATES Pg. 5798 TH1.R8.7 - A STUDY ON COMBINED C- AND KU-BAND RAIN EFFECTS FOR WIND SCATTEROMETRY QUALITY CONTROL Pg. 5458 TH1.R19.7 - THE RETRIEVAL OF SURFACE ATMOSPHERIC PRESSURE OVER THE OCEANS USING 50-60
Dong, Xiaoyu	pg. 1480 WE2.R12.1 - REMOTE SENSING IMAGE SUPER- RESOLUTION VIA ENHANCED BACK-PROJECTION NETWORKS pg. 3063 WE1.R9.5 - A DISTRIBUTION CONTROLLABLE SIMULATION METHOD OF REMOTE SENSING SEA-ICE IMAGES
Dong, Xichao	pg. 6559 FR2.R17.2 - PERFORMANCE ANALYSIS AND CONFIGURATION DESIGN OF GEOSYNCHRONOUS SPACEBORNE-AIRBORNE BISTATIC MOVING TARGET INDICATION SYSTEM pg. 5306 TU1.R19.4 - A SIMULATING METHOD OF AIRSHIP-BORNE POLARIMETRIC WEATHER RADAR FOR TYPHOON OBSERVATION
Dong, Yadong	pg. 4303 TU2.R10.3 - A METHOD FOR IMPROVING THE ACCURACY OF THE MODERATE RESOLUTION LAI PRODUCT BASED ON THE MIXED-PIXEL CLUMPING INDEX pg. 5014 TH2.R10.11 - A HIGHLY CHLOROPHYLL-SENSITIVE AND LAI-INSENSITIVE INDEX BASED ON THE RED-EDGE BAND: CSI

Dong, Yanni	pg. 2424 FR1.R12.11 - JOINT SPARSE REPRESENTATION AND MULTITASK LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
Dong, Yifan	pg. 2447 FR1.R14.6 - IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE ON SAR IMAGE SHIP DETECTION BASED ON DEEP LEARNING pg. 1560 WE2.R16.10 - AMPLITUDE AND PHASE ERROR CORRECTION METHOD FOR ARRAY SAR PROCESSED IN TIME DOMAIN
Dong, Yingying	pg. 4371 TU2.R11.8 - MONITORING OF VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT BY MULTIANGULAR CANOPY REFLECTANCE SPECTRA IN MAIZE
Dong, Zheng	pg. 4669 WE2.R11.5 - AUTUMN CROP MAPPING BASED ON DEEP LEARNING METHOD DRIVEN BY HISTORICAL LABELLED DATASET
Donini, Elena	pg. 5960 TU1.R4.5 - ENVISION MISSION TO VENUS: SUBSURFACE RADAR SOUNDING
Donlon, Craig	pg. 3521 WE2.R8.1 - DETECTION OF INTERNAL SOLITARY WAVES WITH CONVENTIONAL AND ADVANCED SAR ALTIMETRY PROCESSING METHODS: PRELIMINARY RESULTS
Donlon, Craig James	pg. 6535] FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES
Donnellan, Andrea	pg. 3615 TH2.R2.1 - THE QUAKES ANALYTIC CENTER FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL SCALES OF TECTONIC AND EARTHQUAKE PROCESSES (pg. 3139) WE2.R14.2 - SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS
Dorji, Passang	pg. 3383 TU2.R14.4 - ANALYSIS READY DATA FOR INSAR APPLICATIONS
Doster, Timothy	pg. 3684 TH2.R7.6 - ROTATIONAL EQUIVARIANCE FOR OBJECT CLASSIFICATION USING XVIEW
Dou, Changyong	pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA
Dou, Hongkun	pg. 2463 FR1.R14.10 - MULTI-SCALE REMOTE SENSING TARGETS DETECTION WITH ROTATED FEATURE PYRAMID
Dou, Xianhui	TU2.R4.8 - GYROSCOPE DATA DE-NOISING BASED ON INHERENT FREQUENCY FOR EARTH OBSERVATION SATELLITE
Dou, Zeyang	pg. 1759 TH1.R7.1 - DEEP LEARNING-BASED HYPERSPECTRAL TARGET DETECTION WITHOUT EXTRA LABELED DATA
Douglas, Thomas	pg. 6460 FR1.R15.1 - DETECTION OF SEASONAL ARCTIC

	TERRAIN CHANGE USING A SMALL UNMANNED AIRCRAFT SYSTEM (SUAS) ON THE ALASKAN NORTH SLOPE (pg. 3070) WE1.R9.7 - MAPPING VEGETATION AND SEASONAL THAW DEPTH IN CENTRAL ALASKA USING AIRBORNE HYPERSPECTRAL AND LIDAR DATA
Doulgeris, Anthony P.	pg. 2455 FR1.R14.8 - TOWARDS AUTOMATIC DETECTION OF DARK FEATURES IN THE BARENTS SEA USING SYNTHETIC APERTURE RADAR
Downs, Brandi	pg. 5913 MO2.R13.3 - SIMULATION STUDY OF CYGNSS OBSERVABILITY OF DYNAMIC INUNDATION EVENTS pg. 5917 MO2.R13.4 - INVESTIGATION OF COHERENT AND INCOHERENT SCATTERING FROM LAKES USING CYGNSS OBSERVATIONS
Drewry, John	(pg. 2751) FR2.R9.2 - CLASSIFICATION OF WINTER LAND COVER IN NEW ZEALAND HILL COUNTRY FOR RISKY PRACTICE IDENTIFICATION
Droguett, Bárbara	pg. 6604 TU1.R2.4 - LANDSLIDE SUSCEPTIBILITY USING REMOTE SENSING DATA & GIS IN A HIGH ANDEAN AREA OF CENTRAL CHILE
Drouin, Brian	pg. 5466 TH1.R19.9 - SUBMILLIMETER WAVE DIFFERENTIAL ABSORPTION RADAR FOR WATER VAPOR SOUNDING IN THE MARTIAN ATMOSPHERE
Drouyer, Sebastien	pg. 272 MO2.R17.4 - VEHSAT: A LARGE-SCALE DATASET FOR VEHICLE DETECTION IN SATELLITE IMAGES pg. 1098 WE1.R6.5 - PARKING OCCUPANCY ESTIMATION ON PLANETSCOPE SATELLITE IMAGES
Drouyer, Sébastien	pg. 2233 TH2.R20.10 - OIL TANK DETECTION IN SATELLITE IMAGES VIA A CONTRARIO CLUSTERING
Drumetz, Lucas	pg. 3490 WE2.R7.2 - PHYSICALLY INFORMED NEURAL NETWORKS FOR THE SIMULATION AND DATA-ASSIMILATION OF GEOPHYSICAL DYNAMICS pg. 3904 FR1.R7.4 - FILTERING INTERNAL TIDES FROM WIDE- SWATH ALTIMETER DATA USING CONVOLUTIONAL NEURAL NETWORKS
Drusch, Matthias	pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS
Drzewiecki, Wojciech	pg. 485 TU1.R6.3 - MULTIFRACTAL PARAMETERS FOR CLASSIFICATION OF HYPERSPECTRAL DATA pg. 1691 TH1.R3.8 - MULTIFRACTAL FEATURES FOR LAND USE CLASSIFICATION
Du Toit, Cornelis	pg. 4073 FR2.R15.6 - P-BAND SYNTHETIC APERTURE RADAR FOR PLANETARY SUBSURFACE IMAGING APPLICATIONS
Du, Chuan	pg. 2053 TH2.R3.9 - META NETWORK FOR RADAR HRRP NONCOOPERATIVE TARGET RECOGNITION WITH MISSING

	<u>ASPECTS</u>
Du, Jianbo	pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR
Du, Jianguo	pg. 6615 TU1.R2.7 - THREE-DIMENSIONAL VARIATIONS OF CARBON MONOXIDE CONCENTRATION ASSOCIARED WITH WENCHUAN EARTHQUAKE BASED ON AIRS DATA
Du, Jinyang	pg. 3334 TU2.R1.5 - SATELLITE FLOOD ASSESSMENT AND FORECASTS FROM SMAP AND LANDSAT
Du, Ke	pg. 924 TU2.R16.6 - A PRECISE ONE-STEP MOTION COMPENSATION FOR SYNTHETIC APERTURE RADAR
Du, Min	pg. 2886 FR2.R18.3 - LANDSLIDE MONITORING AND DETECTION FOR MOUNTAINOUS AREAS USING SBAS COMBINED WITH GLCM pg. 453 TU1.R5.5 - PERSISTENT SCATTERER DETECTION AND 3-D RECONSTRUCTION OF TRANSMISSION TOWER IN MOUNTAIN AREA BASED ON SAR TOMOGRAPHY
	(pg. 4466) WE1.R1.9 - AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA
Du, Mingyi	pg. 2205 TH2.R20.3 - INVESTIGATION ON THE METHOD OF ESTABLISHING CONSTRUCTION WASTE TRAINING SAMPLE DATABASE AND ITS APPLICATIONS
Du, Qian	pg. 1038 WE1.R5.1 - L0-MOTIVATED LOW RANK SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGERY pg. 2675 FR2.R5.6 - PROBABILITY FUSION FOR
	HYPERSPECTRAL AND LIDAR DATA (pg. 858) TU2.R5.8 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON TENSOR-TRAIN CONVOLUTIONAL LONG SHORT- TERM MEMORY
	pg. 2420 FR1.R12.10 - DISCRIMINATIVE SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL ANOMALY DETECTION
Du, Wenhui	pg. 6714 TU1.R15.10 - ESTIMATION OF SURFACE ALBEDO BASED ON FY-3D MERSI-2 TOA DATA pg. 5430 WE1.R19.12 - EFFECTS OF CLOUD ON LAND SURFACE TEMPERATURE (LST) CHANGE IN THERMAL INFRARED REMOTE SENSING IMAGES: A CASE STUDY OF LANDSAT 8 DATA
Du, Wenrui	pg. 288 MO2.R17.8 - IMPROVING SAR TARGET RECOGNITION WITH MULTI-TASK LEARNING
Du, Wenying	pg. 6642 TU1.R13.2 - A RISK ASSESSMENT FRAMEWORK OF CYANOBACTERIA BLOOM USING LANDSAT DATA: A CASE STUDY OF LAKE LONGGAN (CHINA)

Du, Yankai	pg. 6608 TU1.R2.5 - EARTHQUAKE-INDUCED BUILDING DAMAGE ASSESSMENT ON SAR MULTI- TEXTURE FEATURE
	FUSION
Du, Yanlei	pg. 5690 TU2.R8.1 - A MLSD-SMCG METHOD FOR SCATTERING AND EMISSION FROM OCEAN-SURFACES WITH FULL OCEAN SPECTRUM AND LARGE RMS HEIGHTS pg. 356 MO2.R19.4 - EFFECTS OF ROUGHNESS SCALE ON OCEAN RADAR SCATTERING USING NUMERICAL SIMULATIONS pg. 6006 TU1.R14.5 - A COLOR RESTORATION ALGORITHM
	FOR THIN-FILM CAMERA IMAGES (pg. 5725) TU2.R8.10 - A NUMERICAL STUDY OF SST EFFECTS ON OCEAN RADAR BACKSCATTERING
Du, Yi	(pg. 5874) FR1.R8.5 - FEASIBILITY ANALYSIS AND SUITABLE ANTENNA DIRECTIONS OF IGNSS-R ALTIMETRY MEASUREMENT FOR AVOIDING THE INTERSATELLITE INTERFERENCE
Du, Yongming	pg. 4854 TH1.R10.9 - EVALUATION OF FOUR THERMAL INFRARED KERNEL-DRIVEN MODELS USING LIMITED OBSERVATIONS
Du, Zheyuan	pg. 1019 WE1.R3.7 - MONITORING DAM STABILITY USING NEW SAR INTERFEROMETRY TIME SERIES pg. 5139 FR1.R10.8 - DETECTION OF PRE-FAILURE DEFORMATION OF THE 2017 MAOXIAN LANDSLIDE WITH TIME-SERIES INSAR AND MULTI-TEMPORAL OPTICAL DATASETS pg. 421 TU1.R3.9 - A NEW FOREST HEIGHT INVERSION METHOD BASED ON L-BAND REPEAT-PASS SPACEBORNE POL-INSAR DATA
Duan, Keqing	pg. 932 TU2.R16.8 - CIRCULAR EXPERIMENT WITH P-BAND ULTRA-WIDEBAND SYNTHETIC APERTURE RADAR SYSTEM
Duan, Liuyun	pg. 449 TU1.R5.4 - OPERATIONAL PIPELINE FOR LARGE-SCALE 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGES
Duan, Puhong	pg. 7005 TU1.R20.1 - SUN GLINT REMOVAL OF HYPERSPECTRAL IMAGES VIA TEXTURE-AWARE TOTAL VARIATION pg. 4112 MO2.R1.10 - INTRINSIC IMAGE DECOMPOSITION- BASED RESOLUTION ENHANCEMENT FOR MINERAL MAPPING
Duan, Shangqi	pg. 6997 FR2.R2.11 - A METHOD TO CREATE TRAINING DATASET FOR DEHAZING WITH CYCLEGAN
Duan, Sibo	pg. 240 MO2.R16.7 - EVALUATION OF SPATIOTEMPORAL FUSION MODELS IN LAND SURFACE TEMPERATURE USING POLAR-ORBITING AND GEOSTATIONARY SATELLITE DATA
Duan, Xueyang	(pg. 4136) MO2.R10.5 - MAPPING TREE CANOPY COVER AND CANOPY HEIGHT WITH L-BAND SAR USING LIDAR DATA AND RANDOM FORESTS

Duan, Yani	pg. 960 TU2.R18.3 - AN END-TO-END SCALABLE OBJECT DETECTION NETWORK FOR REMOTE SENSING IMAGES
Duan, Yiping	pg. 200 MO2.R15.8 - DEEP LEARNING BASED CLASSIFICATION USING SEMANTIC INFORMATION FOR POLSAR IMAGE
Duarte, Lia	pg. 4255 TU1.R1.2 - MODELLING TERRESTRIAL TORTOISES RESPONSE TO FIRE EVENTS pg. 5218 FR2.R10.5 - EVALUATION OF TEMPERATURE IN A SELF-BURNING COAL WASTE PILE CONSIDERING UAV DATA AND IN SITU MEASUREMENTS
Duarte, Valdete	pg. 4263 TU1.R1.4 - FIRE OCCURRENCE IN THE BRAZILIAN SAVANNA CONSERVATION UNITS AND THEIR BUFFER ZONES pg. 4291 TU1.R1.11 - LAND USE AND LAND COVER MAPPING USING FRACTION IMAGES DERIVED FROM ANNUAL VIIRS-NPP DATASET
Dubayah, Ralph	TU2.R15.3 - TOWARDS PANTROPICAL STRUCTURE AND BIOMASS MAPPING FROM FUSION OF GEDI AND TANDEM-X DATA
Dube, Nothabo	pg. 5199 FR1.R11.11 - COMBINING UAS AND SENTINEL-2 DATA TO ESTIMATE CANOPY PARAMETERS OF A COTTON CROP USING MACHINE LEARNING
Dubovyk, Olena	pg. 5163 FR1.R11.2 - CROP YIELD ESTIMATION USING MULTI- SOURCE SATELLITE IMAGE SERIES AND DEEP LEARNING
Dubucq, Dominique	pg. 4045 FR2.R14.6 - REMOTE SENSING OF OIL IN VEGETATED REGIONS: AN OVERVIEW OF RECENT ADVANCES AND FUTURE CHALLENGES TOWARD OPERATIONAL APPLICATIONS
Dudley, Bruce	pg. 4626 WE2.R10.5 - FOREST FLOWS - REAL TIME MONITORING OF WATER QUANTITY AND QUALITY SPATIO- TEMPORAL DYNAMICS IN PLANTED FORESTS
Duffo, Nuria	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION pg. 6431 FR1.R13.4 - CHARACTERIZING SYSTEMATIC ERRORS IN THE FARADAY ROTATION RETRIEVAL FROM SMOS MEASUREMENTS
Duffy, Emmett	pg. 6317 WE2.R17.6 - HIGH-RESOLUTION UAV MAPPING FOR INVESTIGATING EELGRASS BEDS ALONG THE WEST COAST OF NORTH AMERICA
Dufour, Christophe	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Duguay, Claude	pg. 2964 TU1.R9.1 - LAKE ICE CLASSIFICATION FROM MODIS TOA REFLECTANCE IMAGERY USING A CONVOLUTIONAL NEURAL NETWORK: A CASE STUDY OF GREAT SLAVE LAKE, CANADA
Dumitru, Corneliu Octavian	pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR

	COPERNICUS EARTH OBSERVATION DATA ANALYTICS
Dumitru, Octavian	pg. 6945 FR1.R2.10 - DATA MINING ON THE CANDELA CLOUD PLATFORM
Duncanson, Laura	pg. 4991 TH2.R10.5 - A REGIONAL L-BAND HIGH BIOMASS ESTIMATION FRAMEWORK LEVERAGING SPACEBORNE LIDAR AND INTERFEROMETRIC DATA TO OVERCOME BACKSCATTER SATURATION
Dunkerley, David	pg. 5274 FR2.R11.7 - SENTINEL-2 AND PLANETSCOPE DATA FUSION INTO DAILY 3 M IMAGES FOR LEAF AREA INDEX MONITORING
Dunn, Brian	pg. 4355 TU2.R11.4 - IMPACT OF UAV TIME-OF-FLIGHT ON RICE NITROGEN UPTAKE MODELS
Dunn, Tina	pg. 4355 TU2.R11.4 - IMPACT OF UAV TIME-OF-FLIGHT ON RICE NITROGEN UPTAKE MODELS
Dupont, Paco	pg. 3817 TH2.R16.3 - USE OF SAR IMAGERY AND ARTIFICIAL INTELLIGENCE FOR A MULTI-COMPONENTS OCEAN MONITORING pg. 5380 TU2.R19.11 - COMBINATION OF GEOSTATIONARY AND POLAR SATELLITE SENSORS TO MONITOR CUMULONIMBUS AND THEIR WINDS AT THE OCEAN SURFACE
Duran Gomes, Nuria	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL
Durance, Patricia	pg. 5119 FR1.R10.3 - BIOGEOCHEMICAL EXPLORATION OF GOLD MINERALIZATION AND ITS PATHFINDER ELEMENTS USING HYPERSPECTRAL REMOTE SENSING
Durand, Michael	pg. 3939 FR2.R1.5 - THE POTENTIAL OF SWOT RIVER DISCHARGE ESTIMATES TO CONSTRAIN HYDROLOGICAL PROCESSES GLOBALLY IN UNGAGED BASINS
Durbha, Surya	pg. 581 TU1.R10.4 - TOWARDS NATURAL LANGUAGE QUESTION ANSWERING OVER EARTH OBSERVATION LINKED DATA USING ATTENTION-BASED NEURAL MACHINE TRANSLATION pg. 893 TU2.R7.6 - EDGE ANALYTICS AND COMPLEX EVENT PROCESSING FOR REAL TIME AIR POLLUTION MONITORING AND CONTROL pg. 6890 WE2.R2.8 - MULTI-AGENT DEEP REINFORCEMENT LEARNING BASED INTERDEPENDENT CRITICAL INFRASTRUCTURE SIMULATION MODEL FOR SITUATIONAL AWARENESS DURING A FLOOD EVENT pg. 4414 TU2.R12.8 - ONLINE POINT CLOUD SUPER RESOLUTION USING DICTIONARY LEARNING FOR 3D URBAN PERCEPTION
Durell, Chris	pg. 3158 WE2.R14.7 - ERROR AND UNCERTAINTY IN EARTH OBSERVATION VALUE CHAINS

Durell, Christopher	pg. 6032 TU1.R14.12 - IEEE P4001 HYPERSPECTRAL STANDARD IN 2019-2020: PROGRESS AND COOPERATION
Duren, Riley	pg. 3955 FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS
Durieux, Alice	pg. 6638 TU1.R13.1 - BUDD: MULTI-MODAL BAYESIAN UPDATING DEFORESTATION DETECTIONS
Durán, Israel	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Dutcher, Steve	WE1.R19.6 - EXTENDING NASA'S MODIS/VIIRS CLOUD CLIMATE DATA RECORD TO THE ADVANCED GEOSTATIONARY IMAGERS
Dutra, Andeise	pg. 4263 TU1.R1.4 - FIRE OCCURRENCE IN THE BRAZILIAN SAVANNA CONSERVATION UNITS AND THEIR BUFFER ZONES
Dutra, Andeise Cerqueira	pg. 4291 TU1.R1.11 - LAND USE AND LAND COVER MAPPING USING FRACTION IMAGES DERIVED FROM ANNUAL VIIRS-NPP DATASET
Dwivedi, Arun Kant	pg. 4191 MO2.R11.8 - AN ADAPTIVE NEURO-FUZZY APPROACH FOR DECOMPOSITION OF MIXED PIXELS TO IMPROVE CROP AREA ESTIMATION USING SATELLITE IMAGES
Dwivedi, Ramji	pg. 6883 WE2.R2.6 - RAPID FLOOD MAPPING USING SENTINEL-1A IMAGES: A CASE STUDY OF FLOOD IN PANAMARAM, KERALA
Dyk, Andrew	pg. 653 TU1.R11.11 - OPTIMIZING WORKFLOW-EFFICIENCY OF MULTI-SOURCE CLOUD FREE OPTICAL IMAGE MOSAICS USING QUANTITATIVE TECHNIQUES
Dyke, George	pg. 3373 TU2.R14.1 - ADVANCEMENTS IN THE OPEN DATA CUBE AND ANALYSIS READY DATA - PAST, PRESENT AND FUTURE
Dymond, John	pg. 2751 FR2.R9.2 - CLASSIFICATION OF WINTER LAND COVER IN NEW ZEALAND HILL COUNTRY FOR RISKY PRACTICE IDENTIFICATION
Díaz, Emiliano	pg. 3991 FR2.R7.5 - INTERPRETABILITY OF RECURRENT NEURAL NETWORKS IN REMOTE SENSING
Е	
Ebel, Patrick	pg. 2065 TH2.R5.1 - CLOUD REMOVAL IN UNPAIRED SENTINEL-2 IMAGERY USING CYCLE-CONSISTENT GAN AND SAR-OPTICAL DATA FUSION
Ebuchi, Naoto	pg. 5777 TH1.R8.1 - COMPARISON OF SPATIAL DISTRIBUTION OF HIGH WIND SPEED AROUND TYPHOONS DERIVED FROM AMSR2 ALL-WEATHER SEA SURFACE WIND SPEED PRODUCT WITH JMA BEST-TRACK DATA

Eck, Riley	pg. 6460 FR1.R15.1 - DETECTION OF SEASONAL ARCTIC TERRAIN CHANGE USING A SMALL UNMANNED AIRCRAFT SYSTEM (SUAS) ON THE ALASKAN NORTH SLOPE
Eckstein, Nathan	pg. 3313 MO2.R7.7 - TAILORING NATIONAL WEATHER SERVICE TRAINING TO SERVE THE PACIFIC'S MOST REMOTE LOCATIONS
Eddy, Andrew	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016 HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM (GEP)
Eddy, Duncan	pg. 3571 WE2.R15.6 - OPERATIONAL READINESS OF THE CAPELLA SPACE SAR SYSTEM
Ederli, Daniel	pg. 533 TU1.R7.3 - COMPARING THE PERFORMANCE OF MATHEMATICAL MORPHOLOGY AND BHATTACHARYYA DISTANCE FOR AIRPORT EXTRACTION
Edson, Roger	pg. 3298 MO2.R7.3 - USING SATELLITE CAPABILITIES TO HANDLE THE PACIFIC'S STRONGEST TYPHOONS
Egberth, Mikael	pg. 4822 TH1.R10.1 - NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING
Eggers, Philippe	pg. 6535 FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES
Eineder, Michael	pg. 1165 WE1.R16.11 - FIRST EXPERIENCES WITH ACTIVE C-BAND RADAR REFLECTORS AND SENTINEL-1
Eisen, Olaf	pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Eisinger, Michael	pg. 3459 WE2.R4.2 - STATUS OF ESA'S EARTHCARE MISSION PREPARATION
El Moussawi, Ibrahim	pg. 5085 FR1.R4.6 - STUDY FLOOD REGIME USING HIGH TEMPORAL RESOLUTION SENTINEL-1 IMAGES
El-Askary, Hesham	[pg. 5620] MO2.R8.5 - OCEAN COLOR MODELING IN THE CENTRAL RED SEA USING OCEANOGRAPHICAL OBSERVATION AND SIMULATED PARAMETERS
El-Askary, Hesham Elaskary	pg. 4642 WE2.R10.9 - FORECASTING VEGETATION HEALTH IN THE MENA REGION BY PREDICTING VEGETATION INDICATORS WITH MACHINE LEARNING MODELS
El-Ghmari, Abderrahman	[pg. 6105] WE1.R7.2 - CAPABILITIES OF THE NEW MOROCCAN SATELLITE MOHAMMED-VI FOR PLANIMETRIC AND ALTIMETRIC MAPPING
El-Haddad, Georges	pg. 4359 TU2.R11.5 - OPEN-SOURCE SOFTWARE FOR CROP PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB

	<u>IMAGES</u>
El-Harti, Abderrazak	pg. 6105 WE1.R7.2 - CAPABILITIES OF THE NEW MOROCCAN SATELLITE MOHAMMED-VI FOR PLANIMETRIC AND ALTIMETRIC MAPPING
Elachi, Charles	pg. 1424 WE2.R6.9 - A PSEUDOSPECTRAL TIME-DOMAIN SIMULATOR FOR LARGE-SCALE HALF-SPACE ELECTROMAGNETIC SCATTERING AND RADAR SOUNDING APPLICATIONS
Elder, Clayton	pg. 3955 FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS
Eldering, Annmarie	pg. 6381 TH1.R15.1 - OCO-2 CALIBRATION REFINEMENT ACROSS VERSIONS AND PLANS FOR OCO-3
Elisa, Trasatti	pg. 810 TU2.R3.7 - SUBSIDENCE MONITORING ALONG RAVENNA COASTAL AREA (NORTHERN ITALY) BY INSAR AND GPS DATA
Ellis-Felege, Susan	pg. 6321 WE2.R17.7 - DUCK NEST DETECTION THROUGH REMOTE SENSING
Ellsworth, William	pg. 1030 WE1.R3.10 - HIGH-PASS FILTERS TO REDUCE THE EFFECTS OF BROAD ATMOSPHERIC CONTRIBUTIONS IN SBAS INVERSIONS: A CASE STUDY IN THE DELAWARE BASIN
Elluru, Deepak	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Elmahdy, Samy	pg. 1327 WE2.R3.5 - INFINITE NUMBER OF LOOKS PREDICTION IN POLSAR FILTERING BY LINEAR REGRESSION
Elmer, Nicholas	pg. 5077 FR1.R4.4 - SWOT APPLICATIONS FOR WRF-HYDRO MODELING IN ALASKA pg. 4179 MO2.R11.5 - A SATELLITE AGNOSTIC APPROACH TO QUANTIFYING HAIL DAMAGE SWATHS ACROSS THE CENTRAL UNITED STATES AND OTHER AGRICULTURAL REGIONS
Elston, Jack	pg. 4474 WE1.R1.11 - L-BAND HIGH SPATIAL RESOLUTION SOIL MOISTURE MAPPING USING A SMALL UNMANNED AERIAL SYSTEM
Eltoft, Torbjørn	pg. 188 MO2.R15.5 - COMPARISON OF MACHINE LEARNING METHODS FOR PREDICTING QUAD-POLARIMETRIC PARAMETERS FROM DUAL-POLARIMETRIC SAR DATA (pg. 5881) FR1.R8.7 - OCEAN COLOR NET (OCN) FOR THE BARENTS SEA
Emang, Grace Puyang	pg. 6794 TU2.R2.7 - EVALUATING TREES CROWNS DAMAGE FOR THE 2017 LARGEST WILDFIRE IN JAPAN USING SENTINEL-2A NDMI

Emerson, Tegan	pg. 3684 TH2.R7.6 - ROTATIONAL EQUIVARIANCE FOR OBJECT CLASSIFICATION USING XVIEW
Emery, William J.	pg. 858 TU2.R5.8 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON TENSOR-TRAIN CONVOLUTIONAL LONG SHORT- TERM MEMORY
Emilien, Aurélie	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
England, Anthony	pg. 6438 FR1.R13.6 - ERROR ESTIMATION OF THE MEASURED TIME DELAY USING WIDEBAND AUTOCORRELATION RADIOMETRY
English, Stephen	pg. 3762 TH2.R13.2 - GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS
Enkhtuvshin, Zoljarga	pg. 2799 FR2.R12.3 - REMOTELY SENSED METHOD FOR DETECTION OF SPATIAL DISTRIBUTION PATTERN OF DRYLAND PLANTS IN WATER LIMITED ECOSYSTEM
Enkhtuya, Nergui	pg. 4247 MO2.R12.11 - EXTENDED PATTERN OF URBAN SPRAWL ANALYSIS FROM REMOTE SENSING DATA IN ULAANBAATAR, MONGOLIA
Enriquez, Jhonatan	pg. 2093 TH2.R5.8 - AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI- SENSOR SATELLITE IMAGERY APPROACH
Ensminger, Ingo	pg. 4132 MO2.R10.4 - A FUZZY APPROACH TO INDIVIDUAL TREE CROWN DELINEATION IN UAV BASED PHOTOGRAMMETRIC MULTISPECTRAL DATA
Entekhabi, Dara	pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN pg. 2972 TU1.R9.3 - MELT DETECTION OVER GREENLAND USING SMAP RADIOMETER OBSERVATIONS pg. 3327 TU2.R1.3 - SMAP ESTIMATES AND SCIENCE APPLICATIONS OF VEGETATION OPTICAL DEPTH FOR GLOBAL ECOLOGY AND AGROECOSYSTEMS MONITORING pg. 4570 WE2.R1.3 - IDENTIFYING TERRESTRIAL VEGETATION- SOIL MOISTURE OSCILLATION FROM SATELLITE OBSERVATIONS pg. 3845 TH2.R17.4 - SPCTOR: SENSING POLICY CONTROLLER AND OPTIMIZER pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY pg. 3947 FR2.R1.7 - OBSERVATION-DRIVEN ESTIMATION OF SURFACE WATER BALANCE COMPONENTS FROM SMAP MEASUREMENTS pg. 5042 FR1.R1.7 - SOILSCAPE WIRELESS IN SITU NETWORKS IN SUPPORT OF CYGNSS LAND APPLICATIONS pg. 4586 WE2.R1.7 - SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS

Entin, Jared	pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN
Eppinga, Maarten B.	pg. 4842 TH1.R10.6 - GENETICALLY CONSTRAINED TEMPORAL TRAJECTORIES OF TEMPERATE FOREST AIRBORNE REFLECTANCE SPECTRA
Ermakov, Stanislav	pg. 3545 WE2.R8.7 - FILM SLICKS ON THE SEA SURFACE: THEIR DYNAMICS AND REMOTE SENSING
Escobar, Jonathan G	pg. 5093 FR1.R4.8 - CHANGES IN WATER SURFACE AREA DURING THE PAST 30 YEARS IN A RAMSAR WETLAND IN DURANGO, MEXICO USING LANDSAT DATA
Escobar-Flores, Jonathan G.	pg. 6313 WE2.R17.5 - IMAGE ANALYSIS OF A SEA TURTLE NESTING BEACH USING UNMANNED AERIAL VEHICLES (UAVS)
Escorihuela, Maria Jose	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Escorihuela, Maria-José	pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS
Eshbaugh, James	pg. 6441 FR1.R13.7 - PRE-LAUNCH CALIBRATION OF THE NASA TROPICS CONSTELLATION MISSION
Esmaili, Rebekah	pg. 3316 MO2.R7.8 - APPLYING THE NOAA UNIQUE COMBINED ATMOSPHERIC PROCESSING SYSTEM (NUCAPS) TO SUPPORT FORECASTERS AT THE US NAVY AND US AIR FORCE IN MONITORING IMPACTFUL PACIFIC WEATHER EVENTS
Evans, Fiona H.	pg. 5258 FR2.R11.3 - EMPIRICAL COMBINATION OF LANDSAT 7 AND 8 IMAGERY TO DETECT THE PHENOLOGICAL CHANGES IN RAINFED CROPLAND VEGETATION
Evans, Kristine	pg. 6662 TU1.R13.7 - STRATEGIC CONSERVATION OF GULF COAST LANDSCAPES USING MULTI-CRITERIA DECISION ANALYSIS AND OPEN SOURCE REMOTE SENSING AND GIS DATA
Eyshi Rezaei, Ehsan	pg. 5163 FR1.R11.2 - CROP YIELD ESTIMATION USING MULTI- SOURCE SATELLITE IMAGE SERIES AND DEEP LEARNING
F	
Fabbro, Vincent	pg. 5446 TH1.R19.4 - DETECTION AND CHARACTERIZATION OF IONOSPHERIC ACTIVITY AT HIGH LATITUDE FROM SAR MEASUREMENTS
Fablet, Ronan	pg. 3490 WE2.R7.2 - PHYSICALLY INFORMED NEURAL NETWORKS FOR THE SIMULATION AND DATA-ASSIMILATION OF GEOPHYSICAL DYNAMICS pg. 3904 FR1.R7.4 - FILTERING INTERNAL TIDES FROM WIDE- SWATH ALTIMETER DATA USING CONVOLUTIONAL NEURAL NETWORKS
Fabre, Sophie	pg. 4045 FR2.R14.6 - REMOTE SENSING OF OIL IN VEGETATED

	REGIONS: AN OVERVIEW OF RECENT ADVANCES AND FUTURE CHALLENGES TOWARD OPERATIONAL APPLICATIONS
Fabregat, Pau	pg. 5986 TU1.R4.12 - RITA: REQUIREMENTS AND PRELIMINARY DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT
Fagir, Julian	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Fahey, Molly	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Falabella, Francesco	pg. 798 TU2.R3.4 - A GENERALIZED-SVD-BASED TECHNIQUE FOR ENHANCING PERFORMANCE OF MULTI-TEMPORAL DINSAR ANALYSES: THE WEIGHTED ADAPTIVE VARIABLE-LENGTH (WAVE) TECHNIQUE pg. 32 MO2.R3.9 - AN ADAPTIVE STATISTICAL MULTI-GRID DINSAR TECHNIQUE FOR STUDYING MULTI-SCALE EARTH SURFACE DEFORMATION PHENOMENA
Fan, Chenqing	pg. 5858 FR1.R8.1 - EVALUATION OF HY-2B ALTIMETER PRODUCTS OVER OCEAN
Fan, Hua	pg. 3180 TH1.R14.5 - IMPROVING STUDENT LEARNING OF SENSOR RELATED COURSES USING INNOVATIVE PROJECTS pg. 3211 TH2.R14.6 - THE TRANSMISSION INTERFACE DESIGN OF HALL-EFFECT SENSOR pg. 3215 TH2.R14.7 - FPGA BASED DIGITAL MAGNETIC FIELD DETECTION SYSTEM pg. 3219 TH2.R14.8 - OPTIMIZATION OF HIGH PRECISION SAR ADC USED IN THE REMOTE SENSING TECHNOLOGY
Fan, Huaitao	pg. 1925 TH1.R16.10 - MULTICHANNEL SLIDING SPOTLIGHT SAR IMAGING: FIRST RESULT OF GF-3 SATELLITE
Fan, Jianping	pg. 960 TU2.R18.3 - AN END-TO-END SCALABLE OBJECT DETECTION NETWORK FOR REMOTE SENSING IMAGES
Fan, Jinlong	pg. 6714 TU1.R15.10 - ESTIMATION OF SURFACE ALBEDO BASED ON FY-3D MERSI-2 TOA DATA pg. 5430 WE1.R19.12 - EFFECTS OF CLOUD ON LAND SURFACE TEMPERATURE (LST) CHANGE IN THERMAL INFRARED REMOTE SENSING IMAGES: A CASE STUDY OF LANDSAT 8 DATA
Fan, Kunlong	pg. 3199 TH2.R14.3 - ROAD VECTORIZATION BASED ON IMAGE PIXEL TRACKING AND ATTRIBUTE MATCHING METHOD pg. 2268 FR1.R5.7 - NEW NETWORK BASED ON UNET++ AND DENSENET FOR BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGERY pg. 2599 FR1.R18.11 - NEW NETWORK BASED ON D-LINKNET AND RESNEXT FOR HIGH RESOLUTION SATELLITE IMAGERY ROAD EXTRACTION
Fan, Lei	pg. 4434 WE1.R1.1 - DEVELOPMENT AND VALIDATION OF THE

	SMOS-IC VERSION 2 (V2) SOIL MOISTURE PRODUCT (pg. 5003) TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION (pg. 5011) TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
Fan, Weiwei	[pg. 6926] FR1.R2.5 - A DECEPTIVE JAMMING TEMPLATE SYNTHESIS METHOD FOR SAR USING GENERATIVE ADVERSARIAL NETS
Fan, Wenjie	pg. 4128 MO2.R10.3 - STUDY ON UAV SENSED CANOPY LEAF DISTRIBUTION USING COMPUTER SIMULATION pg. 5266 FR2.R11.5 - PREDICTION OF GRAIN PROTEIN CONTENT OF WINTER WHEAT USING UAV BASED HYPERSPECTRAL DATA
Fan, Xiaotian	pg. 842 TU2.R5.4 - IMPROVING HYPERSPECTRAL IMAGE CLASSIFICATION USING GRAPH WAVELETS
Fan, Xin	pg. 577 TU1.R10.3 - SUPER RESOLUTION GENERATIVE ADVERSARIAL NETWORK BASED IMAGE AUGMENTATION FOR SCENE CLASSIFICATION OF REMOTE SENSING IMAGES
Fan, Xiwei	pg. 1193 WE1.R17.6 - CLASSIFICATION OF BUILDING STRUCTURE TYPES USING UAV OPTICAL IMAGES
Fan, Yifei	pg. 3774 TH2.R13.6 - WIDEBAND INTERFERENCE SUPPRESSION FOR SAR BY TIME-FREQUENCY-PULSE JOINT DOMAIN PROCESSING
Fan, Zhaohao	pg. 1723 TH1.R5.4 - COMPLEX-VALUED SPATIAL-SCATTERING SEPARATED ATTENTION NETWORK FOR POLSAR IMAGE CLASSIFICATION
Fang, Feng	pg. 774 TU1.R18.9 - SHIP DETECTION BASED ON SUPERPIXELWISE LOCAL CONTRAST MEASUREMENT FOR POLSAR IMAGES
Fang, Hongliang	pg. 4120 MO2.R10.1 - THE RELATIONSHIP BETWEEN CANOPY CLUMPING INDEX (CI), FRACTIONAL VEGETATION COVER (FVC), AND LEAF AREA INDEX (LAI): AN ANALYSIS OF GLOBAL SATELLITE PRODUCTS pg. 2890 FR2.R18.4 - LONG-TERM VARIATION OF GLOBAL LAI AND THE UNCERTAINTY: ANALYSIS OF THE GEOV2 AND MODIS LAI PRODUCTS
Fang, Leyuan	pg. 80 MO2.R5.11 - MULTISCALE FEATURE EXTRACTION WITH GAUSSIAN CURVATURE FILTER FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Fang, Tao	(pg. 2587) FR1.R18.8 - BILATERAL SIAMESE NETWORK FOR CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES
Fang, Tingzhu	pg. 1544 WE2.R16.6 - A MODIFIED EXTENDED WAVENUMBER- DOMAIN ALGORITHM FOR ULTRA-HIGH RESOLUTION

	SPACEBORNE SPOTLIGHT SAR DATA PROCESSING (pg. 1925) TH1.R16.10 - MULTICHANNEL SLIDING SPOTLIGHT SAR IMAGING: FIRST RESULT OF GF-3 SATELLITE
Fang, Zhe	pg. 3127) WE1.R14.10 - GEOCUBE: TOWARDS THE MULTI-SOURCE GEOSPATIAL DATA CUBE IN BIG DATA ERA pg. 6810) TU2.R2.11 - AUTOMATIC GENERATION OF DECISION SUPPORT REPORT FOR DISASTER RESPONSE USING REMOTE SENSING AND SDI
Farah, Imed Riadh	pg. 2823 FR2.R12.9 - SUB-PIXEL MAPPING METHOD BASED ON K-SVD DICTIONARY LEARNING AND TOTAL VARIATION MINIMIZATION
Faran, Ido	pg. 6754 TU1.R17.8 - MULTI SEASONAL DEEP LEARNING CLASSIFICATION OF VENUS IMAGES
Fargier, Yannick	pg. 445 TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV DRONE REMOTE SENSING USING PYTHON MODELLING ELECTRICAL RESISTIVITY IMAGING (PYMERI)
Farhad, Md. Mehedi	pg. 6278 WE2.R13.4 - GNSS REFLECTOMETRY FROM SMARTPHONES: TESTING PERFORMANCE OF IN-BUILT ANTENNAS AND GNSS CHIPS
Farquharson, Gordon	pg. 3571 WE2.R15.6 - OPERATIONAL READINESS OF THE CAPELLA SPACE SAR SYSTEM
Farrar, J. Thomas	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Fathy, Aly E.	pg. 1409 WE2.R6.5 - STOLT MIGRATION IMAGING FOR SHORT- PULSE GROUND-PENETRATING RADAR BASED ON COMPRESSIVE SENSING
Fatoyinbo, Lola	TU2.R15.2 - GLOBAL MAPPING OF MANGROVE FORESTS WITH TANDEM-X TU2.R15.3 - TOWARDS PANTROPICAL STRUCTURE AND BIOMASS MAPPING FROM FUSION OF GEDI AND TANDEM-X DATA
Fatoyinbo, Temilola	pg. 5964 TU1.R4.6 - EVALUATING CURRENT AND FUTURE SENSOR-SPECIFIC BIOMASS CALIBRATION IN THE TALLEST MANGROVE FOREST ON EARTH
Fatras, Christophe	pg. 5089 FR1.R4.7 - GLOBAL WEEKLY INLAND SURFACE WATER DYNAMICS FROM L-BAND MICROWAVE
Fattahi, Heresh	pg. 3139) WE2.R14.2 - SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS pg. 1897) TH1.R16.3 - AN EFFICIENT AREA-BASED ALGORITHM FOR SAR RADIOMETRIC TERRAIN CORRECTION AND MAP PROJECTION
Fauchard, Cyrille	pg. 445 _TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV DRONE REMOTE SENSING USING PYTHON MODELLING ELECTRICAL RESISTIVITY IMAGING (PYMERI).

Faur, Daniela	pg. 3672 TH2.R7.3 - DNN-BASED SEMANTIC EXTRACTION: FAST LEARNING FROM MULTISPECTRAL SIGNATURES
	pg. 4271 TU1.R1.6 - INTEGRATED PLATFORM FOR
	ECOSYSTEMS MONITORING BASED ON REMOTE AND IN SITU
	MEASUREMENTS
	pg. 2719 FR2.R6.6 - DR-KNN: A HYBRID APPROACH FOR
	DIMENSIONALITY REDUCTION OF EO IMAGE DATASETS
	DIFFERSIONALITY REDUCTION OF EO IFFIAGE DATASETS
Faure, Elodie	pg. 1813 TH1.R9.4 - SEMANTIC SEGMENTATION REFINEMENT
	WITH DEEP EDGE SUPERPIXELS TO ENHANCE HISTORICAL
	LAND COVER
Faarna Datar	
Fearns, Peter	pg. 6417 TH1.R15.10 - AUSTRALIA, A HUB FOR SPACEBORNE
	IMAGING SPECTROSCOPY CALIBRATION AND VALIDATION
Fehdi, Chemssedine	pg. 1034 WE1.R3.11 - INSAR INVESTIGATION ON DRAA-
•	DOUAMIS SINKHOLES IN CHERIA NORTHEASTERN OF ALGERIA
	BOOKING SINGIOLES IN CITEMPONION INC.
Feigenwinter, Christian	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE:
	THE CURE PROJECT
Feldman, Andrew	TH2.R10.9 - VICARIOUS VALIDATION OF L-BAND VEGETATION
	OPTICAL DEPTH
Feng, Chenyang	THE DOO 1. DICK ACCECSMENT OF DRINKING WATER
reng, energang	pg. 2197 TH2.R20.1 - RISK ASSESSMENT OF DRINKING WATER
	SOURCE BASED ON HIGH SPATIAL RESOLUTION REMOTE SENSING
	<u>SENSINO</u>
Feng, Chunjie	pg. 6686 TU1.R15.3 - EVALUATION OF DOWNWARD
	SHORTWAVE RADIATION ESTIMATIONS OVER TROPICAL OCEAN
	SURFACE BASED ON BAYESIAN MODEL AVERAGING METHOD
	pg. 6710 TU1.R15.9 - LONG-TERM TRENDS OF ESTIMATED
	SURFACE INCIDENT SHORTWAVE RADIATION IN CHINA DURING
	<u>1970-2015</u>
F F	
Feng, Fan	pg. 905 TU2.R16.1 - SAR PARAMETRIC IMAGING FOR
	<u>CIRCULAR-PLATE TARGET</u>
Feng, Jia	pg. 1770 TH1.R7.4 - SPECTRAL-SPATIAL JOINT TARGET
3. 1	DETECTION OF HYPERSPECTRAL IMAGE BASED ON TRANSFER
	LEARNING
	pg. 1291 WE1.R20.7 - UNSUPERVISED FEATURE EXTRACTION
	IN HYPERSPECTRAL IMAGE BASED ON IMPROVED
	NEIGHBORHOOD PRESERVING EMBEDDING
	pg. 517 TU1.R6.11 - SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE USING PCA AND GABOR FILTERING
Feng, Jianing	pg. 5306 TU1.R19.4 - A SIMULATING METHOD OF AIRSHIP-
	BORNE POLARIMETRIC WEATHER RADAR FOR TYPHOON
	OBSERVATION

Feng, Jie	(pg. 1267) WE1.R20.1 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON SEMI-SUPERVISED DUAL-BRANCH
	CONVOLUTIONAL AUTOENCODER WITH SELF-ATTENTION
	pg. 276 MO2.R17.5 - SMALL OBJECT DETECTION IN OPTICAL
	REMOTE SENSING VIDEO WITH MOTION GUIDED R-CNN
Feng, Pengming	pg. 4231 MO2.R12.7 - A DYNAMIC END-TO-END FUSION FILTER
	FOR LOCAL CLIMATE ZONE CLASSIFICATION USING SAR AND
	MULTI-SPECTRUM REMOTE SENSING DATA
Feng, Quanyuan	pg. 3180 TH1.R14.5 - IMPROVING STUDENT LEARNING OF
	SENSOR RELATED COURSES USING INNOVATIVE PROJECTS
	pg. 3215 TH2.R14.7 - FPGA BASED DIGITAL MAGNETIC FIELD DETECTION SYSTEM
	pg. 3219 TH2.R14.8 - OPTIMIZATION OF HIGH PRECISION SAR
	ADC USED IN THE REMOTE SENSING TECHNOLOGY
Feng, Ruyi	pg. 4076 MO2.R1.1 - A MULTI-STAGE NETWORK FOR
	IMPROVING THE SAMPLE QUALITY IN AERIAL IMAGE OBJECT DETECTION
	pg. 2392 FR1.R12.3 - SUPERPIXEL-BASED SPATIAL
	CONSTRAINTS SPARSE UNMIXING FOR HYPERSPECTRAL
	REMOTE SENSING IMAGERY
	pg. 2400 FR1.R12.5 - SEMI-SUPERVISED HYPERSPECTRAL
	UNMIXING WITH VERY DEEP CONVOLUTIONAL NEURAL
	<u>NETWORKS</u>
	pg. 1369 WE2.R5.6 - RSSM-NET: REMOTE SENSING IMAGE
	SCENE CLASSIFICATION BASED ON MULTI-OBJECTIVE NEURAL ARCHITECTURE SEARCH
	pg. 4275 TU1.R1.7 - FRACTAL CHARACTERISTICS AND
	EVOLUTION OF URBAN LAND-USE: A CASE STUDY IN THE
	<u>SHENZHEN CITY (1988-2015)</u>
	pg. 641 TU1.R11.8 - MULTI-LEVEL STRATEGY-BASED SPATIAL
	INFORMATION PREDICTION FOR SPATIOTEMPORAL REMOTE
	SENSING IMAGERY FUSION
Feng, Shanshan	pg. 782 TU1.R18.11 - MULTI-ANGULAR SAR STATISTICAL
	PROPERTIES ANALYSIS AND MAN-MADE TARGET DETECTION
Feng, Shou	pg. 1763 TH1.R7.2 - DICTIONARY LEARNING HYPERSPECTRAL
	TARGET DETECTION ALGORITHM BASED ON TUCKER TENSOR
	DECOMPOSITION
	pg. 2209 TH2.R20.4 - SPECTRAL-SPATIAL STACKED
	AUTOENCODERS BASED ON THE BILATERAL FILTER FOR
	HYPERSPECTRAL ANOMALY DETECTION
Feng, Tianjing	pg. 557 TU1.R7.10 - GREENHOUSE EXTRACTION FROM HIGH-
	RESOLUTION REMOTE SENSING IMAGERY WITH IMPROVED RANDOM FOREST
Fana Wai	
Feng, Wei	pg. 830 TU2.R5.1 - TWO-STEP ENSEMBLE BASED CLASS
	NOISE CLEANING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 668 TU1.R12.4 - CHANGE DETECTION IN WIND-STORM
	DAMAGED FOREST USING RANDOM FORESTS AND ENSEMBLE

	MARGIN
	pg. 489 TU1.R6.4 - SPECTRAL-SPATIAL FEATURE EXTRACTION
	BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 493 TU1.R6.5 - FEATURE SEPARATION BASED ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Feng, Yi	pg. 1137 WE1.R16.4 - A NOVEL ISAR IMAGING ALGORITHM
	FOR NONUNIFORMLY ROTATING TARGET
Feng, Zhenyuan	pg. 1770 TH1.R7.4 - SPECTRAL-SPATIAL JOINT TARGET
, , , , , , , , , , , , , , , , , , ,	DETECTION OF HYPERSPECTRAL IMAGE BASED ON TRANSFER
	LEARNING
Fensholt, Rasmus	
renshoit, Rasinus	pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB
	INVERSION
Ferencz, Stephen	pg. 4934 TH2.R1.8 - MONITORING SOILWATER AND ORGANIC
	CARBON STORAGE PATTERNS AT THE ARCTIC FOOTHILLS,
	ALASKA, USING INSAR
Fernandes, João	pg. 5218 FR2.R10.5 - EVALUATION OF TEMPERATURE IN A
	SELF-BURNING COAL WASTE PILE CONSIDERING UAV DATA
	AND IN SITU MEASUREMENTS
Fernandes-Silva. Anabela	WEI DII O MONITODING OF OLIVE TREES
remandes silva, maseid	pg. 4550 WE1.R11.9 - MONITORING OF OLIVE TREES TEMPERATURES UNDER DIFFERENT IRRIGATION STRATEGIES
	BY UAV THERMAL INFRARED IMAGERY
Fernandez, Lara	pg. 363 MO2.R19.6 - EVALUATION OF LORA FOR DATA
	RETRIEVAL OF OCEAN MONITORING SENSORS WITH LEO
	SATELLITES WERE DATE TO DEMONSTRATION OF THE FEDERATED
	pg. 3574 WE2.R15.7 - DEMONSTRATION OF THE FEDERATED SATELLITE SYSTEMS CONCEPT FOR FUTURE EARTH
	OBSERVATION SATELLITE MISSIONS
	pg. 5986 TU1.R4.12 - RITA: REQUIREMENTS AND PRELIMINARY
	DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL
	IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT
Fernandez, Mariela	pg. 4882 TH1.R11.5 - ESTIMATION OF VISUAL RATING OF TAR
	SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS
	(UAS) DATA AND MACHINE LEARNING TECHNIQUES
Fernandez, Rafael	WES DAS Z. INTED CENCOD DEMOTE CENCING
remandez, Naraei	pg. 1504 WE2.R12.7 - INTER-SENSOR REMOTE SENSING IMAGE ENHANCEMENT FOR OPERATIONAL SENTINEL-2 AND
	SENTINEL-3 DATA PRODUCTS
Fernandez-Beltran, Ruben	pg. 4259 TU1.R1.3 - SENTINEL-2 MULTI-TEMPORAL DATA FOR
	RICE CROP CLASSIFICATION IN NEPAL
	pg. 1504 WE2.R12.7 - INTER-SENSOR REMOTE SENSING IMAGE ENHANCEMENT FOR OPERATIONAL SENTINEL-2 AND
	SENTINEL-3 DATA PRODUCTS
Fernandez-Gallego, Jose A.	pg. 4359 TU2.R11.5 - OPEN-SOURCE SOFTWARE FOR CROP
	PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB
	<u>IMAGES</u>

Ferraioli, Giampaolo	pg. 6922 FR1.R2.4 - COMPLEXITY ANALYSIS OF AN EDGE PRESERVING CNN SAR DESPECKLING ALGORITHM
Ferral, Anabella	pg. 3755 TH2.R12.8 - HIGH SPECTRAL AND TEMPORAL RESOLUTION IMAGING ANALYSIS FOR MONITORING ALGAL BLOOM IN WATER RESERVOIR IN THE WARM SEASON
Ferraro, Ralph	pg. 5345 TU2.R19.2 - AN OPERATIONAL SATELLITE SNOWFALL RATE PRODUCT AT NOAA
Ferreira de Carvalho, Osmar Luiz	pg. 1596 WE2.R18.7 - CENTER PIVOT CLASSIFICATION WITH DEEP RESIDUAL U-NET
Ferreira, Nuno	pg. 2503 FR1.R16.9 - SHIP DETECTION IN SAR IMAGES USING CONVOLUTIONAL VARIATIONAL AUTOENCODERS
Ferrentino, Emanuele	pg. 4019 FR2.R8.4 - MONITORING HARSH COASTAL ENVIRONMENTS USING POLARIMETRIC SAR DATA: THE CASE OF SOLWAY FIRTH WETLANDS
Ferro-Famil, Laurent	pg. 3865 FR1.R3.2 - POLSAR ANALYSIS OF COHERENT AND DIFFUSE DOUBLE-BOUNCE SCATTERING OCCURING WITHIN A VEGETATED MEDIUM pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Fervers, Béatrice	pg. 1813 TH1.R9.4 - SEMANTIC SEGMENTATION REFINEMENT WITH DEEP EDGE SUPERPIXELS TO ENHANCE HISTORICAL LAND COVER
Feuntes, James	pg. 6449 FR1.R13.9 - ON STUDY OF ERROR SOURCES IN MICROWAVE THERMAL VACUUM NON-LINEARITY TEST AND ON-ORBIT VERIFICATION
Filho, Antonio	pg. 1540 WE2.R16.5 - METHODOLOGY FOR LAND MAPPING OF AMAPA STATE - A SPECIAL CASE OF AMAZON RADIOGRAPHY PROJECT
Filimonova, Natalya A.	pg. 2455 FR1.R14.8 - TOWARDS AUTOMATIC DETECTION OF DARK FEATURES IN THE BARENTS SEA USING SYNTHETIC APERTURE RADAR
Filippi, Anthony M.	pg. 72 MO2.R5.9 - HYPERSPECTRAL IMAGE CLASSIFICATION VIA OBJECT-ORIENTED SEGMENTATION-BASED SEQUENTIAL FEATURE EXTRACTION AND RECURRENT NEURAL NETWORK
Finin, Tim	pg. 3517 WE2.R7.9 - AN ENSEMBLE APPROACH FOR COMPRESSIVE SENSING WITH QUANTUM ANNEALERS
Fiorelli, Bendetta	pg. 6535 FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES
Fiscante, Nicomino	pg. 6770 TU2.R2.1 - POST-FIRE ASSESSMENT OF BURNED AREAS WITH LANDSAT-8 AND SENTINEL-2 IMAGERY TOGETHER

	WITH MODIS AND VIIRS ACTIVE FIRE PRODUCTS
Fischer, Sebastian	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES
Fisher, Colby	pg. 3334 TU2.R1.5 - SATELLITE FLOOD ASSESSMENT AND FORECASTS FROM SMAP AND LANDSAT
Flach, Dominic	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY
Flach, Peter	(pg. 712) TU1.R16.4 - POLSAR IMAGE CLASSIFICATION VIA ROBUST LOW-RANK FEATURE EXTRACTION AND MARKOV RANDOM FIELD
Flagg, Timothy	pg. 5026 FR1.R1.3 - USE OF X-RAY FLUORESCENCE TO EXPEDITE SAMPLING TO EVALUATE AND VISUALIZE SOIL LEAD CONCENTRATIONS AT WEST POINT, NY
Flahaut, Jessica	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
Flanagin, Maik	pg. 976 TU2.R18.7 - LEVEE-CRACK DETECTION FROM SATELLITE OR DRONE IMAGERY USING MACHINE LEARNING APPROACHES
Fleming, Gary	pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS
Florea, Bogdan Cristian	pg. 4271 TU1.R1.6 - INTEGRATED PLATFORM FOR ECOSYSTEMS MONITORING BASED ON REMOTE AND IN SITU MEASUREMENTS
Flores, Deolinda	pg. 5218 FR2.R10.5 - EVALUATION OF TEMPERATURE IN A SELF-BURNING COAL WASTE PILE CONSIDERING UAV DATA AND IN SITU MEASUREMENTS
Flouri, Nicolas	pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Fluhrer, Anke	(pg. 2137) TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Flynn, Christopher	pg. 6028 TU1.R14.11 - LIGHTGUIDE, INTEGRAL FIELD SNAPSHOT IMAGING SPECTROMETER FOR ENVIRONMENTAL IMAGING AND EARTH OBSERVATIONS
Flynn, Eric	pg. 3975 FR2.R4.7 - TEMPORAL ANOMALY DETECTION IN MULTISPECTRAL IMAGERY

Flynn, Lawrence	Pg. 6258 WE1.R15.10 - LIFETIME PERFORMANCE ASSESSMENT OF SNPP OMPS NADIR MAPPER SDR DATA USING SIMULTANEOUS NADIR OVERPASS COLLOCATED OBSERVATIONS WITH GOME-2
Focareta, Mariano	pg. 992 TU2.R18.11 - SEMI-AUTOMATIC CLASSIFICATION OF BUILDING FROM LOW-DENSITY LIDAR DATA AND WORLDVIEW-2 IMAGES THROUGH OBIA TECHNIQUE
Focsa, Adrian	pg. 4227 MO2.R12.6 - DEFORMATION PROFILE ANALYSIS USING UNIFORM MANIFOLD APPROXIMATION AND PROJECTION pg. 2376 FR1.R9.11 - SYNTHETIC APERTURE RADAR FOCUSING BASED ON BACK-PROJECTION AND COMPRESSIVE SENSING
Foelsch, Marcel	pg. 4874 TH1.R11.3 - RADAR-CROP-MONITOR - MAPPING AGRICULTURAL CONDITIONS WITH SENTINEL-1 TIME SERIES
Foerster, Saskia	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE MAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES
Fonseca Ferreira, Francisco José	pg. 5115 FR1.R10.2 - USING UNSUPERVISED CLUSTERING FOR ANALYZING AIRBORNE GAMMA-RAY SPECTROMETRY DATA
Fonseca, Leila	pg. 2061 TH2.R3.11 - STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO pg. 168 MO2.R14.11 - ASSESSING DIFFERENTIATION BETWEEN PASTURE AND CROPLANDS USING REMOTE
Fonseca, Leila Maria Garcia	pg. 1345 WE2.R3.10 - LAND COVER CLASSIFICATION OF AN AREA SUSCEPTIBLE TO LANDSLIDES USING RANDOM FOREST AND NDVI TIME SERIES DATA pg. 1389 WE2.R5.11 - MAPPING DEFORESTED AREAS IN THE CERRADO BIOME THROUGH RECURRENT NEURAL NETWORKS
Fontanelli, Giacomo	pg. 4163 MO2.R11.1 - APPLICATION OF DEEP LEARNING TO OPTICAL AND SAR IMAGES FOR THE CLASSIFICATION OF AGRICULTURAL AREAS IN ITALY
Fore, Alexander	pg. 5639 MO2.R8.10 - AN EMPIRICAL SEA ICE CORRECTION ALGORITHM FOR SMAP SSS RETRIEVAL IN THE ARCTIC OCEAN
Forman, Barton	pg. 2942 MO2.R9.7 - DIAGNOSTIC ANALYSIS OF A DATA ASSIMILATION FRAMEWORK FOR IMPROVING SNOW MASS ESTIMATION IN COMPLEX TERRAIN
Fornaro, Gianfranco	pg. 5721 TU2.R8.9 - ON THE ANALYSIS OF SAR DERIVED WIND AND SEA SURFACE CURRENTS pg. 116 MO2.R6.9 - A MULTI-RESOLUTION GLRT TEST FOR THE DETECTION OF PERSISTENT SCATTERERS IN SAR

	TOMOGRAPHY
Foroozandeh Shahraki, Farideh	pg. 4003 FR2.R7.8 - JOINT SPATIAL AND GRAPH CONVOLUTIONAL NEURAL NETWORKS - A HYBRID MODEL FOR SPATIAL-SPECTRAL GEOSPATIAL IMAGE ANALYSIS
Forsberg, René	pg. 3019 TU2.R9.5 - AIRBORNE ALTIMETRY MEASUREMENTS IN THE ARCTIC USING A COMPACT MULTI-BAND RADAR SYSTEM: INITIAL RESULTS
Foster, James	pg. 6846 WE1.R2.8 - TIDS DETECTION FROM SHIP-BASED GNSS RECEIVER: FIRST TEST ON 2010 MAULE TSUNAMI
Foti, Giuseppe	WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION
	pg. 6289 <u>WE2.R13.7 - THE GRSS STANDARD FOR GNSS-REFLECTOMETRY</u>
	pg. 5941 MO2.R13.10 - NOC GNSS-R GLOBAL OCEAN WIND SPEED AND SEA-ICE PRODUCTS USING DATA FROM THE TECHDEMOSAT-1 MISSION
Foucher, Pierre-Yves	pg. 2165 TH2.R18.3 - HAZARDOUS NOXIOUS SUBSTANCE DETECTION BASED ON HYPERSPECTRAL REMOTE SENSING TECHNIQUE pg. 3825 TH2.R16.5 - VALIDATION OF INNOVATIVE SYSTEMS
	OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION REDUCING EMISSIONS AND INCREASING SAFETY
Foucras, Myriam	pg. 4454 WE1.R1.6 - SOIL MOISTURE ESTIMATION AT 500M USING SENTINEL-1: APPLICATION TO TUNISIAN SITES
Fournier, Severine	pg. 5631 MO2.R8.8 - SEA SURFACE SALINITY SUBFOOTPRINT VARIABILITY FROM A GLOBAL HIGH-RESOLUTION MODEL
Fracastoro, Giulia	pg. 613 TU1.R11.1 - DEEPSUM++: NON-LOCAL DEEP NEURAL NETWORK FOR SUPER-RESOLUTION OF UNREGISTERED MULTITEMPORAL IMAGES pg. 2507 FR1.R16.10 - TOWARDS DEEP UNSUPERVISED SAR DESPECKLING WITH BLIND-SPOT CONVOLUTIONAL NEURAL
	<u>NETWORKS</u>
Frachetti, Michael	(pg. 1679)_TH1.R3.5 - A TENSOR DECOMPOSITION METHOD FOR UNSUPERVISED FEATURE LEARNING ON SATELLITE IMAGERY
Fragner, Heinrich	(pg. 3345) TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION
Frame, Jonathan	(pg. 3668) TH2.R7.2 - COMBINING PARAMETRIC LAND SURFACE MODELS WITH MACHINE LEARNING
Frank, Jeremy	(pg. 3841) TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS

pg. 3955 FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS
pg. 3357 TU2.R13.5 - DIGITAL BACK END FOR P-BAND REFLECTIONS CONCEPTS
pg. 6137 WE1.R7.10 - THE NEW LANDSAT GLOBAL LAND SURVEY (GLS) DEM
pg. 4478 WE1.R10.1 - COMBINING TANDEM-X, SENTINEL-2 AND FIELD DATA FOR PREDICTION OF SPECIES-WISE STEM VOLUMES
(pg. 4822) TH1.R10.1 - NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING
pg. 4152 MO2.R10.9 - ESTIMATION OF STEM DENSITY IN HEMI-BOREAL FORESTS USING AIRBORNE LOW-FREQUENCY SYNTHETIC APERTURE RADAR
pg. 4434) WE1.R1.1 - DEVELOPMENT AND VALIDATION OF THE SMOS-IC VERSION 2 (V2) SOIL MOISTURE PRODUCT
pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION
pg. 5011 TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
pg. 5647 TU1.R8.1 - C-BAND CROSS-POLARIZATION AIRBORNE OCEAN SURFACE NRCS OBSERVATIONS IN HURRICANES: 20152019
pg. 2495 FR1.R16.7 - COSMO-SKYMED RANGE MEASUREMENTS FOR DISPLACEMENT MONITORING USING AMPLITUDE PERSISTENT SCATTERERS
pg. 1829 TH1.R9.8 - MAP-REPAIR: DEEP CADASTRE MAPS ALIGNMENT AND TEMPORAL INCONSISTENCIES FIX IN SATELLITE IMAGES
pg. 4715 TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV
pg. 1121 WE1.R6.11 - ESTIMATING DISPLACED POPULATIONS FROM OVERHEAD
pg. 5135 FR1.R10.7 - LWIR HYPERSPECTRAL MAPPING OF THE GAMSBERG DEPOSIT, AGGENEYS , SOUTH AFRICA
pg. 2248 FR1.R5.2 - EMPLOYING DEEP LEARNING TO ENABLE VISUAL EXPLORATION OF EARTH SCIENCE EVENTS
pg. 3849 TH2.R17.5 - EMULATING AND VERIFYING SENSING, COMPUTATION, AND COMMUNICATION IN DISTRIBUTED REMOTE SENSING SYSTEMS

	APPLICATION FOR ATMOSPHERIC SCIENCE
French, Nancy	pg. 5073 FR1.R4.3 - TRACKING CHANGES IN INUNDATION EXTENT OF A BOREAL WETLAND IN ALASKA USING L-BAND SAR
Frery, Alejandro C.	(pg. 7021) TU1.R20.5 - A NON-MODEL BASED THREE COMPONENT SCATTERING POWER DECOMPOSITION FOR FULL POLARIMETRIC SAR DATA
Frew, James	pg. 901 TU2.R7.8 - STARE TOWARDS INTEGRATIVE ANALYSIS WITH MINIMIZED DATA WRANGLING HASSLE
Friberg, Tapio	TU1.R4.3 - POTENTIAL OF MULTITEMPORAL ICEYE SAR DATA IN LAND COVER MAPPING APPLICATIONS
Friguet, Chloé	pg. 264 MO2.R17.2 - SMALL OBJECT DETECTION FROM REMOTE SENSING IMAGES WITH THE HELP OF OBJECT-FOCUSED SUPER-RESOLUTION USING WASSERSTEIN GANS
Fritsche, Liv	pg. 6166) WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Fritts, Matthew	WE1.R19.1 - FIRST YEAR OF COSMIR OBSERVATIONS OF EAST COAST WINTER STORMS FROM THE IMPACTS CAMPAIGN (pg. 5341) TU2.R19.1 - RECONFIGURING COSSIR FOR THE NEXT GENERATION OF CLOUD AND PRECIPITATION SCIENCE
Fritz, Thomas	pg. 3416 TU2.R15.5 - AN ADAPTIVE FILTERING APPROACH FOR THE NEW TANDEM-X CHANGE DEM
Froger, Jean-Luc	pg. 328 MO2.R18.7 - VOLCANIC ERUPTION MONITORING USING COHERENCE CHANGE DETECTION MATRIX
Froidevaux, Alice	pg. 260 MO2.R17.1 - VEHICLE DETECTION AND COUNTING FROM VHR SATELLITE IMAGES: EFFORTS AND OPEN ISSUES
Fryjoff-Hung, Anna	pg. 4598) WE2.R1.10 - MACHINE LEARNING BASED SOIL MOISTURE RETRIEVAL FROM UNMANNED AIRCRAFT SYSTEM MULTISPECTRAL REMOTE SENSING
Fu, Chenqin	pg. 2587 FR1.R18.8 - BILATERAL SIAMESE NETWORK FOR CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES
Fu, Daocai	pg. 6750 TU1.R17.7 - REMOTE SENSING IMAGE SEGMENTATION METHOD BASED ON HRNET
Fu, Haiqiang	pg. 4148 MO2.R10.8 - INITIAL TESTS FOR THE GENERATION OF A SPANISH NATIONAL MAP OF FOREST HEIGHT FROM TANDEM-X DATA
Fu, Hang	pg. 76 MO2.R5.10 - 2D-SSA BASED MULTISCALE FEATURE FUSION FOR FEATURE EXTRACTION AND DATA CLASSIFICATION IN HYPERSPECTRAL IMAGERY
Fu, Haohuan	pg. 1381 WE2.R5.9 - UNSUPERVISED MIXED MULTI-TARGET

	DOMAIN ADAPTATION FOR REMOTE SENSING IMAGES CLASSIFICATION
Fu, Jixiang	pg. 7013 TU1.R20.3 - NEW ALGORITHM FOR NEAR-FIELD ISAR IMAGING pg. 405 TU1.R3.5 - AN INFINITY-NORM-BASED PHASE UNWRAPPING METHOD WITH TSPA FRAMEWORK FOR MULTI-BASELINE SAR INTERFEROGRAMS
Fu, Liyong	pg. 4649 WE2.R10.11 - DOMINANT TREES ANALYSIS USING UAV LIDAR AND PHOTOGRAMMETRY
Fu, Peng	pg. 6423 FR1.R13.2 - ARTIFACT-FREE RFI LOCALIZATION BASED ON SPATIAL SMOOTHING MUSIC IN SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETERS pg. 834 TU2.R5.2 - A SUPERPIXEL-BASED FRAMEWORK FOR NOISY HYPERSPECTRAL IMAGE CLASSIFICATION pg. 6511 FR2.R13.2 - A WAVENUMBER DOMAIN IMAGING ALGORITHM FOR SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETRY IN NEAR-FIELD pg. 1723 TH1.R5.4 - COMPLEX-VALUED SPATIAL-SCATTERING SEPARATED ATTENTION NETWORK FOR POLSAR IMAGE CLASSIFICATION
Fu, Wenxue	pg. 4762 TH1.R4.8 - WATER BODY EXTRACTION USING GF-3 POLSAR DATA A CASE STUDY IN POYANG LAKE
Fu, Xikai	pg. 2380 FR1.R9.12 - TWO-STEP BISTATIC SPACEBORNE SLIDING-SPOTLIGHT SAR IMAGING AGORITHM BASED ON ACCURATE RANGE MODEL
Fu, Xinshu	pg. 5450 TH1.R19.5 - APPLICATIONS OF QUALITY CONTROL PROCEDURES FOR TEMPERATURE AND HUMIDITY PROFILES RETRIEVED FROM GROUND-BASED MICROWAVE RADIOMETER
Fu, Zanhao	pg. 2863 FR2.R16.8 - SAR IMAGE SHIP DETECTION BASED ON SCENE INTERPRETATION
Fu, Zhe	pg. 1023 WE1.R3.8 - SURFACE DEFORMATION OF HIGH-SPEED RAILWAY BETWEEN CHANGCHUN AND HARBIN BASED ON TIME-SERIES INSAR TECHNIQUE
Fuentes, James	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2).
Fuhrmann, Thomas	pg. 3383 TU2.R14.4 - ANALYSIS READY DATA FOR INSAR APPLICATIONS
Fujita, Shinya	pg. 6222 WE1.R15.1 - INFLIGHT RADIOMETRIC CALIBRATION FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON
Fujito, Toshiyuki	pg. 5489 TH2.R19.3 - DETECTION OF AEROSOLS ABOVE CLOUDS BASED ON GCOM-C/SGLI MEASUREMENTS
Fujiyama, Kaho	pg. 3803 TH2.R15.6 - DETECTION OF SLOW MOVEMENT

	AREAS IN THE FOREST AREA USING THE TIME SERIES L-BAND SAR INTERFEROMETRY
Fukui, Hiromichi	pg. 1508 WE2.R12.8 - CORRECTION OF SEASONAL EFFECTS ON VIIRS DNB MONTHLY COMPOSITES BY USING STABLE LIT DATA AND REGRESSION CONVOLUTIONAL NEURAL NETWORK
Fulbright, Jon	pg. 6051 TU2.R4.5 - GOES-17 ABI L1B PRODUCT PERFORMANCE WITH PREDICTIVE CALIBRATION
Fuller, Mark Christopher	pg. 3043 TU2.R9.11 - COMPARISON OF ASCAT ESTIMATED SNOW THICKNESS ON FIRST-YEAR SEA ICE IN THE CANADIAN ARCTIC WITH MODELED AND PASSIVE MICROWAVE DATA
Funning, Gareth	pg. 3139 WE2.R14.2 - SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS
Furrer, Reinhard	pg. 2735 FR2.R6.10 - ADVANCING TEXTURE METRICS TO MODEL LANDSCAPE HETEROGENEITY
Fusco, Adele	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN
G	
G. Hadjimitsis, Diofantos	pg. 1181 WE1.R17.3 - DETECTION UNDERGROUND STRUCTURES IN CYPRUS USING LANDSAT-8 BANDS
G., Nimish	pg. 4387 TU2.R12.1 - FORECASTING LAND SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORK
Gadal, Sebastien	pg. 3082 WE1.R9.10 - REMOTE SENSING OF MOUNTAIN PERMAFROST LANDSCAPE BY MULTI-FUSION DATA MODELING. EXAMPLE OF VERKHOYANSK RIDGE (RUSSIA)
Gaddes, Matthew	pg. 6857 WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING
Gade, Martin	pg. 4007 FR2.R8.1 - SAR MONITORING OF COASTAL CHANGES IN INTERTIDAL AREAS pg. 5749 WE1.R8.6 - STATISTICAL ANALYSES OF MARINE OIL POLLUTION IN A SEA REGION OF HIGH ECONOMIC USE: THE WESTERN JAVA SEA pg. 1604 WE2.R18.9 - SAR EDDY DETECTION USING MASK- RCNN AND EDGE ENHANCEMENT
Gaier, Todd	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Gal, Yarin	pg. 7025 TU2.R20.1 - MODEL AND DATA UNCERTAINTY FOR SATELLITE TIME SERIES FORECASTING WITH DEEP RECURRENT MODELS
Galdi, Carmela	pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS-REFLECTOMETRY pg. 6214 WE1.R13.9 - WAVE COHERENCE IN GNSS

	REFLECTOMETRY: A SIGNAL PROCESSING POINT OF VIEW
Galeazzi, Claudio	pg. 6535 FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES
Gallagher, James	pg. 901 TU2.R7.8 - STARE TOWARDS INTEGRATIVE ANALYSIS WITH MINIMIZED DATA WRANGLING HASSLE
Gallaher, Shawn	pg. 6460 FR1.R15.1 - DETECTION OF SEASONAL ARCTIC TERRAIN CHANGE USING A SMALL UNMANNED AIRCRAFT SYSTEM (SUAS) ON THE ALASKAN NORTH SLOPE
Gamba, Paolo	pg. 4791 TH1.R6.4 - GLOBAL VEGETATION MAPPING FOR ESA CLIMATE CHANGE INITIATIVE PROJECT LEVERAGING MULTITEMPORAL HIGH RESOLUTION SENTINEL-1 SAR DATA pg. 3505 WE2.R7.6 - ON THE OPTIMAL DESIGN OF CONVOLUTIONAL NEURAL NETWORKS FOR EARTH OBSERVATION DATA ANALYSIS BY MAXIMIZATION OF INFORMATION EXTRACTION pg. 160 MO2.R14.9 - TEMPORAL AND SPATIAL CHANGE PATTERN RECOGNITION BY MEANS OF SENTINEL-1 SAR TIME-SERIES
Gan, Fuping	pg. 2013 TH1.R18.10 - EVALUATION OF SPATIAL-TEMPORAL VARIATION OF VEGETATION RESTORATION IN DEXING COPPER MINE AREA USING REMOTE SENSING DATA
Gan, Wenxia	pg. 2316 FR1.R6.7 - EFFECTS OF UNBALANCED DATA ON RADIOMETRIC TRANSFORMING MODEL FITTING FOR RELATIVE RADIOMETRIC NORMALIZATION
Gan, Yu Hang	pg. 728 TU1.R16.8 - STUDY ON POLARIMETRIC SCATTERING CHARACTERISTICS BASED ON DIFFERNENT BAND SAR IMAGES
Gan, Yuhang	pg. 6658 TU1.R13.6 - MONITORING MANGROVE CHANGES IN TONGMING BAY OF CHINA USING MULTI- TEMPORAL SATELLITE REMOTE SENSING IMAGERY
Gandikota, Rohit	pg. 6993 FR2.R2.10 - RTC-GAN: REAL-TIME CLASSIFICATION OF SATELLITE IMAGERY USING DEEP GENERATIVE ADVERSARIAL NETWORKS WITH INFUSED SPECTRAL INFORMATION
Gandini, Alessandra	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT
Gao, Anqi	pg. 1161 WE1.R16.10 - ISAR IMAGING OF SPACE STATION BASED ON EPHEMERIS DATA ERROR COMPENSATION
Gao, Bo	pg. 6515 FR2.R13.3 - A NOVEL IF RECEIVER STRUCTURE IN HYPERSPECTRAL RADIOMETER (pg. 6519 FR2.R13.4 - STUDY ON THE IMPROVEMENT OF THE HYPERSPECTRUM RADIOMETER DIGITAL INTERMEDIATE FREQUENCY MODULE (pg. 4311 TU2.R10.5 - THE RESEARCH OF LEAF AREA INDEX ANALYZER BASED ON EMBEDDED PLATFORM

	pg. 4319 TU2.R10.7 - RESEARCH ON THE OPTICAL METHOD OF LEAF AREA INDEX MEASUREMENT BASE ON THE HEMISPHERICAL IMAGE
	pg. 5053 FR1.R1.10 - DESIGN AND EXPERIMENT OF MICROWAVE SOIL MOISTURE SENSOR
	pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE
	pg. 6722 TU1.R15.12 - 3D FDTD INVESTIGATION ON BISTATIC SCATTERING FROM 2D ROUGH SURFACE WITH CPML APPORPING CONDITION
Gao, Caixia	ABSORBING CONDITION (pg. 6250) WE1.R15.8 - BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION
Gao, Chengzhi	pg. 6694 TU1.R15.5 - HIGH-RESOLUTION BRDF AND ALBEDO PARAMETERS INVERSION FROM SENTINEL-2 MULTISPECTRAL INSTRUMENT DATA
Gao, Chenqiang	pg. 2843 FR2.R16.3 - ADAPTIVE FUSION AND MASK REFINEMENT INSTANCE SEGMENTATION NETWORK FOR HIGH RESOLUTION REMOTE SENSING IMAGES
Gao, Fan	pg. 3127 WE1.R14.10 - GEOCUBE: TOWARDS THE MULTI- SOURCE GEOSPATIAL DATA CUBE IN BIG DATA ERA
Gao, Guoming	pg. 296 MO2.R17.10 - WEAK TARGET DETECTION IN HIGH- RESOLUTION REMOTE SENSING IMAGES BY COMBINING SUPER-RESOLUTION AND DEFORMABLE FPN
Gao, Huijuan	pg. 4307 TU2.R10.4 - AN FPAR RETRIEVAL ALGORITHM BASED ON DEEP LEARNING FOR MODIS VISIBLE BAND SURFACE REFLECTANCE
	pg. 4315 TU2.R10.6 - LAI INVERSION FROM MODIS DATA USING DEEP BELIEF NETWORK (DBN)
Gao, Kun	pg. 1759 TH1.R7.1 - DEEP LEARNING-BASED HYPERSPECTRAL TARGET DETECTION WITHOUT EXTRA LABELED DATA
Gao, Li	pg. 1937 TH1.R17.2 - A LEARNABLE BLUR KERNEL FOR REMOTE SENSING IMAGE RETRIEVAL
	pg. 1635 TH1.R2.6 - ADAPTIVE FEATURE AGGREGATION NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Gao, Lianru	pg. 56 MO2.R5.5 - SUPERPIXEL-LEVEL CONSTRAINT REPRESENTATION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION pg. 2412 FR1.R12.8 - A BACKGROUND REFINEMENT COLLABORATIVE REPRESENTATION METHOD WITH SALIENCY
Gao, Peng	Pg. 1173 WE1.R17.1 - VEHICLE DETECTION WITH BOTTOM ENHANCED RETINANET IN AERIAL IMAGES
	(pg. 972) TU2.R18.6 - INSHORE SHIP DETECTION BASED ON

	MULTI-INFORMATION FUSION NETWORK AND INSTANCE SEGMENTATION
	pg. 2859 FR2.R16.7 - SHIP DETECTION AND FINE-GRAINED RECOGNITION IN LARGE-FORMAT REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORK
Gao, Qian	pg. 1173 WE1.R17.1 - VEHICLE DETECTION WITH BOTTOM ENHANCED RETINANET IN AERIAL IMAGES
Gao, Ting	pg. 2205 TH2.R20.3 - INVESTIGATION ON THE METHOD OF ESTABLISHING CONSTRUCTION WASTE TRAINING SAMPLE DATABASE AND ITS APPLICATIONS
Gao, Tong	pg. 1643 TH1.R2.8 - BUILDING DETECTION BASED ON RECTANGLE APPROXIMATION AND REGION GROWING
Gao, Xiaoming	pg. 4723 TH1.R1.9 - SOIL MOISTURE ESTIMATION BASED ON THE AIEM FOR BARE AGRICULTURAL AREA
Gao, Xinbo	pg. 2396 FR1.R12.4 - SPATIAL-SPECTRAL AUTOENCODER NETWORKS FOR HYPERSPECTRAL UNMIXING pg. 2173 TH2.R18.5 - HYPERSPECTRAL UNMIXING VIA RECURRENT NEURAL NETWORK WITH CHAIN CLASSIFIER
Gao, Xinran	Pg. 4383 TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Gao, Xinyi	pg. 6519 FR2.R13.4 - STUDY ON THE IMPROVEMENT OF THE HYPERSPECTRUM RADIOMETER DIGITAL INTERMEDIATE FREQUENCY MODULE pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE
Gao, Xuyang	PICKING NETWORKS: TRANSFER LEARNING FROM SEISMIC P-WAVE TO ULTRASONIC LOGGING IMAGING
Gao, Yao	pg. 1544 WE2.R16.6 - A MODIFIED EXTENDED WAVENUMBER- DOMAIN ALGORITHM FOR ULTRA-HIGH RESOLUTION SPACEBORNE SPOTLIGHT SAR DATA PROCESSING
Gao, Yesheng	pg. 1620 TH1.R2.2 - COMPUTER VISION AIDED OPTICAL CORRELATOR FOR SAR TARGET RECOGNITION pg. 1413 WE2.R6.6 - INVERSION OF UNDERGROUND STRUCTURE BASED ON GA_RLPSO TIME-DOMAIN FULL WAVEFORM CONJUGATE GRADIENT METHOD pg. 1335 WE2.R3.7 - AZIMUTH VELOCITY ESTIMATION IN MULTI-CHANNEL SAR BASED ON VARIABLE-BORESIGHT MODE
Gao, Yuan	pg. 2519 FR1.R17.2 - FLOOD MAPPING WITH SAR AND MULTI- SPECTRAL REMOTE SENSING IMAGES BASED ON WEIGHTED EVIDENTIAL FUSION

Gao, Zhiyi	pg. 5831 TH2.R8.5 - AN ESTIMATE OF THE DECAY RATE OF SWELLS USING ALTIMETER DATA
Gaona, Elvis	pg. 5111 FR1.R10.1 - DEVELOPMENT OF LOW-COST GROUND CONTROL SYSTEM FOR UAV-BASED MAPPING pg. 6627 TU1.R2.10 - SEISMIC ANALYSIS ON HISTORICAL BRIDGE USING PHOTOGRAMMETRY AND FINITE ELEMENTS pg. 4902 TH1.R11.10 - A SUPERVOXEL-BASED APPROACH FOR LEAVES SEGMENTATION OF POTATO PLANTS FROM POINT CLOUDS
Garcia, Isabel	pg. 5870 FR1.R8.4 - MOBILE AND AIRBORNE LIDAR SCANNING OF BEACH ELEVATION CHANGE DUE TO HURRICANE HARVEY
Garcia, Mark	pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN
Garcia, Oscar	pg. 4027 FR2.R8.6 - COMPARISON OF RADARSAT-2 AND RCM SIMULATED DATA FOR THE DETECTION OF ACTIONABLE OCEAN SURFACE OIL
Garcia-Huerta, Raul A.	pg. 6471 FR1.R15.4 - KALMAN FILTER-BASED TRAJECTORY ESTIMATION USING A LOW-COST SENSOR AND AERIAL IMAGES
García-Haro, Javier	pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Gardner, Alex	pg. 2743 FR2.R6.12 - A FAST DENSE FEATURE TRACKING ROUTINE WITH ITS APPLICATION IN CRYOSPHERE REMOTE SENSING USING SENTINEL-1 AND LANDSAT-8 DATA
Gargiulo, Massimiliano	pg. 6806 TU2.R2.10 - FIRE RISK ANALYSIS BY USING SENTINEL-2 DATA: THE CASE STUDY OF THE VESUVIUS IN CAMPANIA, ITALY
Garrison, James	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION pg. 5313 TU1.R19.6 - ASSIMILATION OF GNSS-R DELAY- DOPPLER MAPS INTO WEATHER MODELS
Garrison, James L.	pg. 5933 MO2.R13.8 - DEVELOPMENT OF AN END-TO-END MISSION SIMULATOR FOR LAND REMOTE SENSING WITH SIGNALS OF OPPORTUNITY
Garthwaite, Matthew	pg. 3383 TU2.R14.4 - ANALYSIS READY DATA FOR INSAR APPLICATIONS
Garuccio, Augusto	(pg. 3700) TH2.R7.10 - QUANTUM IMAGING FOR SPACE OBJECTS
Garzaniti, Nicola	pg. 3574 WE2.R15.7 - DEMONSTRATION OF THE FEDERATED SATELLITE SYSTEMS CONCEPT FOR FUTURE EARTH OBSERVATION SATELLITE MISSIONS

Garzelli, Andrea	pg. 232 MO2.R16.5 - AUTOMATIC FINE ALIGNMENT OF MULTISPECTRAL AND PANCHROMATIC IMAGES
Gascoin, Simon	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES
Gasiewski, Albin	pg. 6523 FR2.R13.5 - HIGH SPECTRAL RESOLUTION V-BAND DIGITAL CORRELATING SPECTROMETER FOR CLIMATE MONITORING
	pg. 5686 TU1.R8.11 - DEVELOPMENT OF A TWO-SCALE OCEAN SURFACE EMISSIVITY MODEL APPLICABLE OVER A WIDE RANGE OF MICROWAVE FREQUENCIES
	pg. 4474 WE1.R1.11 - L-BAND HIGH SPATIAL RESOLUTION SOIL MOISTURE MAPPING USING A SMALL UNMANNED AERIAL SYSTEM
Gastellu-Etchegorry, Jean Philippe	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL
	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Gastellu-Etchegorry, Jean- Philippe	pg. 136 MO2.R14.3 - PREDICTION OF PLANT GROWTH BASED ON STATISTICAL MEASUREMENTS USING SATELLITE IMAGE TIME SERIES
Gauci, Adam	pg. 2213 TH2.R20.5 - AUTOMATIC BENTHIC HABITAT MAPPING USING INEXPENSIVE UNDERWATER DRONES
Gaultier, Lucile	pg. 3490 WE2.R7.2 - PHYSICALLY INFORMED NEURAL NETWORKS FOR THE SIMULATION AND DATA-ASSIMILATION OF GEOPHYSICAL DYNAMICS
Gauthier, Jean-Francois	pg. 3813 TH2.R16.2 - MONITORING METHANE EMISSIONS AT INDIVIDUAL OIL AND GAS SITES WITH SATELLITES: A NEW TOOL AT THE DAWN OF GLOBAL TRANSPARENCY
Gawlikowski, Jakob	pg. 2081 TH2.R5.5 - ON THE FUSION STRATEGIES OF SENTINEL-1 AND SENTINEL-2 DATA FOR LOCAL CLIMATE ZONE CLASSIFICATION
Gawron, Piotr	pg. 3513 WE2.R7.8 - MULTI-SPECTRAL IMAGE CLASSIFICATION WITH QUANTUM NEURAL NETWORK
Gay, Michel	pg. 3869 FR1.R3.3 - SPACEBORNE TRANSMITTER - STATIONARY RECEIVER BISTATIC SAR POLARIMETRY - EXPERIMENTAL RESULTS
Ge, Chiru	pg. 2675 FR2.R5.6 - PROBABILITY FUSION FOR HYPERSPECTRAL AND LIDAR DATA
Ge, Linlin	pg. 6238 WE1.R15.5 - CORRECTION OF CAMERA INTERIOR ORIENTATION ELEMENTS BASED ON MULTI-FRAME STAR MAP pg. 1019 WE1.R3.7 - MONITORING DAM STABILITY USING NEW SAR INTERFEROMETRY TIME SERIES

	pg. 5139 FR1.R10.8 - DETECTION OF PRE-FAILURE DEFORMATION OF THE 2017 MAOXIAN LANDSLIDE WITH TIME- SERIES INSAR AND MULTI-TEMPORAL OPTICAL DATASETS pg. 421 TU1.R3.9 - A NEW FOREST HEIGHT INVERSION METHOD BASED ON L-BAND REPEAT-PASS SPACEBORNE POL- INSAR DATA
Ge, Shaojia	pg. 4509 WE1.R10.9 - PREDICTING GROWING STOCK VOLUME OF BOREAL FORESTS USING VERY LONG TIME SERIES OF SENTINEL-1 DATA
Gebrehiwot, Asmamaw	pg. 3265 MO2.R2.8 - AUTOMATED INDUNATION MAPPING: COMPARISON OF METHODS pg. 4199 MO2.R11.10 - WEED AND CROP DISCRIMINATION USING U-NET LEARNING
Geiger, Alain	pg. 461 TU1.R5.7 - TOTAL REFRACTIVITY FIELDS FROM GNSS TROPOSPHERIC DELAYS RECONSTRUCTED WITH COLLOCATION METHODS
Geiß, Christian	pg. 4219 MO2.R12.4 - DERIVING URBAN MASS CONCENTRATIONS USING TANDEM-X AND SENTINEL-2 DATA FOR THE ASSESSMENT OF MORPHOLOGICAL POLYCENTRICITY pg. 4799 TH1.R6.6 - STABILITY CHARACTERIZATION OF THE RESPONSE OF WHITE STORKS' FORAGING BEHAVIOR TO VEGETATION DYNAMICS RETRIEVED FROM LANDSAT TIME SERIES
Geldsetzer, Torsten	pg. 3043 TU2.R9.11 - COMPARISON OF ASCAT ESTIMATED SNOW THICKNESS ON FIRST-YEAR SEA ICE IN THE CANADIAN ARCTIC WITH MODELED AND PASSIVE MICROWAVE DATA
Generie, Joseph	pg. 4073 FR2.R15.6 - P-BAND SYNTHETIC APERTURE RADAR FOR PLANETARY SUBSURFACE IMAGING APPLICATIONS
Geng, Danyang	pg. 2906 FR2.R18.8 - RESEARCH ON THE DETECTION METHOD OF BUILDING SEISMIC DAMAGE CHANGE
Geng, Jing	pg. 2316 FR1.R6.7 - EFFECTS OF UNBALANCED DATA ON RADIOMETRIC TRANSFORMING MODEL FITTING FOR RELATIVE RADIOMETRIC NORMALIZATION
Geng, Jiwen	pg. 1169 WE1.R16.12 - THE EFFECTS OF NOISE, SPARSITY AND PHASE ON PSEUDO-RANDOM TIME-SPACE MODULATION SAR PERFORMANCE
Geng, Leilei	pg. 834 TU2.R5.2 - A SUPERPIXEL-BASED FRAMEWORK FOR NOISY HYPERSPECTRAL IMAGE CLASSIFICATION
Geng, Xiurui	pg. 2181 TH2.R18.7 - A GEOMETRIC VIEW OF FAST GRAM DETERMINANT-BASED ENDMEMBER EXTRACTION ALGORITHM FOR HYPERSPECTRAL IMAGERY
Gentine, Pierre	pg. 3987] FR2.R7.3 - TOWARDS PHYSICALLY-CONSISTENT, DATA-DRIVEN MODELS OF CONVECTION
Georgiou, George	pg. 3821 TH2.R16.4 - TIMELY UPDATE OF EMISSION FLUXES

	WITH SATELLITE INFORMATION
Gerekos, Christopher	pg. 5960 TU1.R4.5 - ENVISION MISSION TO VENUS: SUBSURFACE RADAR SOUNDING
Gerg, Isaac	pg. 2835 FR2.R16.1 - DATA ADAPTIVE IMAGE ENHANCEMENT AND CLASSIFICATION FOR SYNTHETIC APERTURE SONAR
German, Alba	pg. 3755 TH2.R12.8 - HIGH SPECTRAL AND TEMPORAL RESOLUTION IMAGING ANALYSIS FOR MONITORING ALGAL BLOOM IN WATER RESERVOIR IN THE WARM SEASON
Gero, P. Jonathan	pg. 3657 TH2.R4.6 - EXPEDITIOUS IMPLEMENTATION OF A HYPERSPECTRAL IMAGING INFRARED SOUNDER (HIIS) IN GEOSTATIONARY ORBIT
Gerth, Jordan	pg. 3313 MO2.R7.7 - TAILORING NATIONAL WEATHER SERVICE TRAINING TO SERVE THE PACIFIC'S MOST REMOTE LOCATIONS
Gessner, Ursula	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
Geudtner, Dirk	pg. 4055 FR2.R15.1 - COPERNICUS SENTINEL MISSION AT C- AND L-BAND: CURRENT STATUS AND FUTURE PERSPECTIVES
Ghamisi, Pedram	pg. 7005 TU1.R20.1 - SUN GLINT REMOVAL OF HYPERSPECTRAL IMAGES VIA TEXTURE-AWARE TOTAL VARIATION pg. 2659 FR2.R5.2 - FUSION OF MULTISPECTRAL LIDAR AND HYPERSPECTRAL IMAGERY pg. 4035 FR2.R14.3 - TOWARDS 4D VIRTUAL OUTCROPS WITH HYPERSPECTRAL IMAGING pg. 3739 TH2.R12.4 - REMOTE SENSING AND DEEP LEARNING FOR SUSTAINABLE MINING pg. 4112 MO2.R1.10 - INTRINSIC IMAGE DECOMPOSITION- BASED RESOLUTION ENHANCEMENT FOR MINERAL MAPPING
Ghanbari, Mohsen	pg. 1456 WE2.R9.6 - UNSUPERVISED SEGMENTATION OF MULTILOOK COMPACT POLARIMETRIC SAR DATA BASED ON COMPLEX WISHART DISTRIBUTION
Ghazaryan, Gohar	pg. 5163 FR1.R11.2 - CROP YIELD ESTIMATION USING MULTI- SOURCE SATELLITE IMAGE SERIES AND DEEP LEARNING
Ghezzehei, Teamrat	pg. 4598 WE2.R1.10 - MACHINE LEARNING BASED SOIL MOISTURE RETRIEVAL FROM UNMANNED AIRCRAFT SYSTEM MULTISPECTRAL REMOTE SENSING
Ghosh, Ashish	pg. 2025 TH2.R3.2 - BAND ELIMINATION FOR DIMENSIONALITY REDUCTION OF HYPERSPECTRAL IMAGES USING MUTUAL INFORMATION

Ghosh, Susmita	pg. 2025 TH2.R3.2 - BAND ELIMINATION FOR DIMENSIONALITY REDUCTION OF HYPERSPECTRAL IMAGES USING MUTUAL INFORMATION
Gianotti, Daniel	pg. 3947 FR2.R1.7 - OBSERVATION-DRIVEN ESTIMATION OF SURFACE WATER BALANCE COMPONENTS FROM SMAP MEASUREMENTS pg. 4586 WE2.R1.7 - SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
Gibson, Matthew	pg. 1683 TH1.R3.6 - SELF-SUPERVISED REMOTE SENSING IMAGE RETRIEVAL
Gierach, Michelle	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Gierull, Christoph	pg. 1) MO2.R3.1 - GULF STREAM DETECTION AND ESTIMATION WITH RADARSAT-2 ALONG-TRACK INTERFEROMETRY
Giglio, Louis	TH1.R6.8 - DEVELOPMENT OF A HARMONIZED MULTI-SENSOR GLOBAL ACTIVE FIRE DATA SET: CURRENT STATUS AND MULTI- PRODUCT VALIDATION RESULTS
Gil, Antonio J.	pg. 1026 WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)
Gil, Emmanuel	pg. 2300 FR1.R6.3 - A GLOBAL ANALYSIS OF PASSIVE MICROWAVE BRIGHTNESS TEMPERATURE DIURNAL CYCLE
Gill, Roger	pg. 2017) TH1.R18.11 - MERRAMAX: A MACHINE LEARNING APPROACH TO STOCHASTIC CONVERGENCE WITH A MULTI-VARIATE DATASET
Girard, Nicolas	pg. 1805 TH1.R9.2 - REGULARIZED BUILDING SEGMENTATION BY FRAME FIELD LEARNING
Gisinger, Christoph	pg. 1165 WE1.R16.11 - FIRST EXPERIENCES WITH ACTIVE C-BAND RADAR REFLECTORS AND SENTINEL-1
Giuca, Relu Constantin	pg. 4271 TU1.R1.6 - INTEGRATED PLATFORM FOR ECOSYSTEMS MONITORING BASED ON REMOTE AND IN SITU MEASUREMENTS
Glasscoe, Margaret	pg. 3615 TH2.R2.1 - THE QUAKES ANALYTIC CENTER FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL SCALES OF TECTONIC AND EARTHQUAKE PROCESSES
Gleason, Colin	pg. 3939] FR2.R1.5 - THE POTENTIAL OF SWOT RIVER DISCHARGE ESTIMATES TO CONSTRAIN HYDROLOGICAL PROCESSES GLOBALLY IN UNGAGED BASINS
Gleason, Scott	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE pg. 3353 TU2.R13.4 - NEXT GENERATION GNSS-R INSTRUMENT

	WE1.R13.5 - LAND AND OCEAN COHERENCE DETECTION USING THE CYCLONE GLOBAL NAVIGATION SATELLITE SYSTEM (CYGNSS) MISSION LEVEL-1 DELAY-DOPPLER MAPS [pg. 6293] WE2.R13.8 - MONITORING GPS EIRP FOR CYGNSS LEVEL 1 CALIBRATION
Gleich, Dušan	pg. 2875 FR2.R16.11 - VIZUALIZATION OF SAR CATEGORIES USING COMPLEX VALUED DEEP LEARNING
Glenn, Nancy	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Glennie, Craig	pg. 2555 FR1.R17.12 - PROPAGATED UNCERTAINTY FOR HORIZONTAL GROUND MOTION DERIVED FROM MULTI-TEMPORAL DIGITAL ELEVATION MODELS
Glidden, John	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Gloaguen, Richard	pg. 2659 FR2.R5.2 - FUSION OF MULTISPECTRAL LIDAR AND HYPERSPECTRAL IMAGERY pg. 4035 FR2.R14.3 - TOWARDS 4D VIRTUAL OUTCROPS WITH HYPERSPECTRAL IMAGING pg. 3739 TH2.R12.4 - REMOTE SENSING AND DEEP LEARNING FOR SUSTAINABLE MINING pg. 4112 MO2.R1.10 - INTRINSIC IMAGE DECOMPOSITION-BASED RESOLUTION ENHANCEMENT FOR MINERAL MAPPING
Glumb, Ronald	pg. 3657] TH2.R4.6 - EXPEDITIOUS IMPLEMENTATION OF A HYPERSPECTRAL IMAGING INFRARED SOUNDER (HIIS) IN GEOSTATIONARY ORBIT
Gobakken, Terje	pg. 4327 TU2.R10.9 - GENERATION OF LIDAR-PREDICTED FOREST BIOMASS MAPS FROM RADAR BACKSCATTER WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
Gochis, David	pg. 5077] FR1.R4.4 - SWOT APPLICATIONS FOR WRF-HYDRO MODELING IN ALASKA
Gocho, Masato	pg. 308 MO2.R18.2 - EFFICIENT GPU-BASED LOCAL HISTOGRAM ANALYZER FOR CHANGE DETECTION IN SATELLITE SAR IMAGES
Godoy, Thamires	pg. 533 TU1.R7.3 - COMPARING THE PERFORMANCE OF MATHEMATICAL MORPHOLOGY AND BHATTACHARYYA DISTANCE FOR AIRPORT EXTRACTION
Gogineni, Prasad	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS

Gogineni, Siva	pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND
	DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Goldberg, Mitch	pg. 3294 MO2.R7.2 - NOAA SATELLITES: PROVIDING CRITICAL GLOBAL DATA FOR LOCAL ENVIRONMENTAL CHALLENGES TH1.R15.8 - SNPP AND NOAA-20 GLOBAL INTER-SENSOR BIAS ASSESSMENTS WITHIN ICVS FRAMEWORK USING 32-DAY
	AVERAGED DIFFERENCE METHOD
Goldberg, Mitchell	pg. 3290 MO2.R7.1 - THE JOINT POLAR SATELLITE SYSTEM AND THE INTERNATIONAL CONSTELLATION: SUPPORTING ENVIRONMENTAL APPLICATIONS ACROSS THE GLOBE
Goldin, Daniel	pg. 6385 TH1.R15.2 - DEVELOPMENT OF A HIGH-FIDELITY CLARREO PATHFINDER SIMULATOR
Golkar, Alessandro	pg. 3574 WE2.R15.7 - DEMONSTRATION OF THE FEDERATED SATELLITE SYSTEMS CONCEPT FOR FUTURE EARTH OBSERVATION SATELLITE MISSIONS
Gollor, Matthias	pg. 3459 WE2.R4.2 - STATUS OF ESA'S EARTHCARE MISSION PREPARATION
Gomes, Anael	TH2.R16.6 - AUTOMATIC OIL SLICK DETECTION FOR ENVIRONMENTAL DOMAIN USING SYNTHETIC APERTURE RADAR (SAR) IMAGES
Gomes, Roberto Arnaldo Trancoso	pg. 1596 WE2.R18.7 - CENTER PIVOT CLASSIFICATION WITH DEEP RESIDUAL U-NET
Gomez, Cristina	pg. 4148 MO2.R10.8 - INITIAL TESTS FOR THE GENERATION OF A SPANISH NATIONAL MAP OF FOREST HEIGHT FROM TANDEM-X DATA
Gomez, Cécile	pg. 1861 TH1.R12.5 - PLSR METHOD FOR CONTAMINATING MINERAL CONTENT PREDICTION FROM FIELD HYPERSPECTRAL REFLECTANCE: A CASE STUDY OF HAMMAM ZRIBA MINING AREA
Gomez-Garcia, Daniel	pg. 2924 MO2.R9.2 - SNOW GRAIN SIZE ESTIMATES FROM AIRBORNE KA-BAND RADAR MEASUREMENTS
Gomez-Trevino, Enrique	pg. 377 MO2.R19.10 - NON CONVEX OPERATORS FOR ELECTROMAGNETIC GEOSOUNDING NOISE
Gommenginger, Christine	pg. 5941 MO2.R13.10 - NOC GNSS-R GLOBAL OCEAN WIND SPEED AND SEA-ICE PRODUCTS USING DATA FROM THE TECHDEMOSAT-1 MISSION
Gong, Cheng	pg. 5945 TU1.R4.1 - YAW STEERING USING ADAPTIVE FILTERING FOR SPACEBORNE SAR SYSTEMS
Gong, Lixia	pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK

	pg. 6608 TU1.R2.5 - EARTHQUAKE-INDUCED BUILDING DAMAGE ASSESSMENT ON SAR MULTI- TEXTURE FEATURE FUSION
	pg. 1201 WE1.R17.8 - INCORPORATING MULTI-SOURCE REMOTE SENSING IN THE DETECTION OF EARTHQUAKE- DAMAGED BUILDINGS BASED ON LOGISTIC REGRESSION MODELLING
Gong, Wenping	pg. 1845 TH1.R12.1 - UAV IMAGE MOSAICING BASED MULTI- REGION LOCAL PROJECTION DEFORMATION
Gong, Xiaodong	pg. 2615] FR2.R3.3 - SATELLITE ATTITUDE CHANGE RECOGNITION BASED ON MULTI-FRAME IMAGE BY 3D CONVOLUTIONAL NEURAL NETWORKS
Gong, Xun	pg. 6519 FR2.R13.4 - STUDY ON THE IMPROVEMENT OF THE HYPERSPECTRUM RADIOMETER DIGITAL INTERMEDIATE FREQUENCY MODULE pg. 4311 TU2.R10.5 - THE RESEARCH OF LEAF AREA INDEX ANALYZER BASED ON EMBEDDED PLATFORM pg. 4319 TU2.R10.7 - RESEARCH ON THE OPTICAL METHOD
	OF LEAF AREA INDEX MEASUREMENT BASE ON THE HEMISPHERICAL IMAGE (pg. 5053) FR1.R1.10 - DESIGN AND EXPERIMENT OF MICROWAVE SOIL MOISTURE SENSOR (pg. 6453) FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE
Gongora-Canul, Carlos	pg. 4882 TH1.R11.5 - ESTIMATION OF VISUAL RATING OF TAR SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS (UAS) DATA AND MACHINE LEARNING TECHNIQUES
Gonzaga Jr, Luiz	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Gonzaga Junior, Luiz	pg. 5207 FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA
Gonzalez-Casado, Guillermo	pg. 5937 MO2.R13.9 - IONOSPHERIC SCINTILLATION MODEL LIMITATIONS AND IMPACT IN GNSS-R MISSIONS
Gonzáles Bonilla, María José	pg. 359 MO2.R19.5 - MODELING TEMPORAL DECORRELATION AT X-BAND BY COMBINING TANDEM-X AND PAZ INSAR DATA
González-Gambau, Verónica	pg. 6431 FR1.R13.4 - CHARACTERIZING SYSTEMATIC ERRORS IN THE FARADAY ROTATION RETRIEVAL FROM SMOS MEASUREMENTS
González-Jiménez, Luis E.	pg. 6471 FR1.R15.4 - KALMAN FILTER-BASED TRAJECTORY ESTIMATION USING A LOW-COST SENSOR AND AERIAL IMAGES
González-Rodrigo, Beatriz	[pg. 1026] WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)

Gonçalves, Fabio	pg. 4979 TH2.R10.2 - TROPICAL FOREST HEIGHT AND UNDERLYING TOPOGRAPHY FROM TANDEM-X SAR INTERFEROMETRY
Goodman, Steven	pg. 5422 WE1.R19.10 - SUPPORTING LIGHTNING SAFETY AND DECISION SUPPORT AT THE NASA GLOBAL HYDROLOGY RESOURCE CENTER DISTRIBUTED ACTIVE ARCHIVE CENTER
Gorrab, Azza	pg. 4910 TH2.R1.2 - CLAY CONTENT MAPPING USING SOIL MOISTURE PRODUCTS DERIVED FROM A SYNERGETIC USE OF SENTINEL-1 AND SENTINEL-2 DATA
Goryl, Philippe	pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS
Gou, Shuiping	pg. 2436 FR1.R14.3 - HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK pg. 2575 FR1.R18.5 - SHIP SEGMENTATION ON HIGH- RESOLUTION SAR IMAGE BY A 3D DILATED MULTISCALE U-NET
Gou, Yabin	pg. 5450 TH1.R19.5 - APPLICATIONS OF QUALITY CONTROL PROCEDURES FOR TEMPERATURE AND HUMIDITY PROFILES RETRIEVED FROM GROUND-BASED MICROWAVE RADIOMETER pg. 5337 TU1.R19.12 - POLARIMETRIC RADAR MEASUREMENTS AND RAINFALL PERFORMANCE DURING A SEVERE RAINFALL EVENT IN COMPLEX TERRAIN OVER EASTERN CHINA
Gouillon, Flavien	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Goulden, Tristan	pg. 6341 WE2.R17.12 - CURRENT STATUS OF NEON'S AOP
Goupilleau, Alex	pg. 280 MO2.R17.6 - CONCURRENT SEGMENTATION AND OBJECT DETECTION CNNS FOR AIRCRAFT DETECTION AND IDENTIFICATION IN SATELLITE IMAGES
Gout, Christian	pg. 5697 TU2.R8.3 - OCEANIC SURFACE CURRENT APPROXIMATION FROM SPARSE DATA pg. 445 TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV DRONE REMOTE SENSING USING PYTHON MODELLING ELECTRICAL RESISTIVITY IMAGING (PYMERI)
Gouttevin, Isabelle	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Gowda, Sanjay	pg. 3387 TU2.R14.5 - A NOVEL ARCHITECTURE OF JUPYTERHUB ON AMAZON ELASTIC KUBERNETES SERVICE FOR OPEN DATA CUBE SANDBOX pg. 3395 TU2.R14.7 - OPEN DATA CUBE (ODC). VISUALIZATION: BRIDGING THE GAP BETWEEN DATA, DECISIONS, AND DEVELOPMENT GOALS pg. 3399 TU2.R14.8 - DATA CUBE APPLICATION ALGORITHMS FOR THE UNITED NATION SUSTAINABLE DEVELOPMENT GOALS

	(UN-SDGS)
Gracia Romero, Adrian	pg. 4359 TU2.R11.5 - OPEN-SOURCE SOFTWARE FOR CROP PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB IMAGES
Graf, Verena	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Granat, Robert	pg. 3615 TH2.R2.1 - THE QUAKES ANALYTIC CENTER FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL SCALES OF TECTONIC AND EARTHQUAKE PROCESSES
Grannas, Amanda	pg. 3023 TU2.R9.6 - OBSERVATIONS OF ARCTIC SEA ICE LEADS AND OPEN WATER DURING THE MICROBIOLOGICAL-OCEAN-CLOUD COUPLING IN THE HIGH ARCTIC CAMPAIGN
Grant Ludwig, Lisa	pg. 3615 TH2.R2.1 - THE QUAKES ANALYTIC CENTER FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL SCALES OF TECTONIC AND EARTHQUAKE PROCESSES
Grasso, Raffaele	pg. 2276 FR1.R5.9 - VESSEL DETECTION USING IMAGE PROCESSING AND NEURAL NETWORKS
Grate, Sean	pg. 1110 WE1.R6.8 - SURFACE MODELING FOR AIRBORNE LIDAR
Grathwohl, Alexander	pg. 746 TU1.R18.2 - TRIPWIRE DETECTION IN SAR IMAGES USING A MODIFIED RADON TRANSFORM
Gray, Chris	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY pg. 6495 FR1.R15.10 - MULTI-AGENTS PATH PLANNING FOR A SWARM OF UNMANNED AERIAL VEHICLES
Gray, Kyle	pg. 750 TU1.R18.3 - CASE STUDIES WITH SAR DATA FOR ASSESSING THE UTILITY OF MANUAL FEATURE SELECTION IN MACHINE LEARNING
Green, Robert	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS pg. 3955 FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS pg. 6262 WE1.R15.11 - AN EARTH SCIENCE IMAGING SPECTROSCOPY MISSION: THE EARTH SURFACE MINERAL DUST SOURCE INVESTIGATION (EMIT)
Greenwell, Connor	pg. 1468 WE2.R9.9 - SINGLE IMAGE CLOUD DETECTION VIA MULTI-IMAGE FUSION
Gregg, Patricia	pg. 3622 TH2.R2.3 - DISTINGUISHING INFLATION DRIVERS AT SHALLOW MAGMATIC SYSTEMS USING ENSEMBLE-BASED DATA ASSIMILATION
Gregg, Patricia M.	pg. 3618 TH2.R2.2 - GEODETIC DATA ASSIMILATION FOR

	EVALUATING VOLCANIC UNREST
Gregory, Matthew	pg. 4516 WE1.R10.11 - EFFECTS OF TROPICAL FOREST DEGRADATION ON AMAZON FOREST PHENOLOGY
Greiner, Ashley	pg. 1121 WE1.R6.11 - ESTIMATING DISPLACED POPULATIONS FROM OVERHEAD
Grieco, Giuseppe	pg. 5313 TU1.R19.6 - ASSIMILATION OF GNSS-R DELAY- DOPPLER MAPS INTO WEATHER MODELS
Griessbaum, Niklas	pg. 901 TU2.R7.8 - STARE TOWARDS INTEGRATIVE ANALYSIS WITH MINIMIZED DATA WRANGLING HASSLE
Grigorian, Michael	pg. 3585 WE2.R15.10 - THE SAR-XL MULTI-APERTURE X AND L BAND SAR SYSTEM WITH DIGITAL BEAMFORMING AND ITS CORRESPONDING DUAL-BAND APPLICATIONS
Griparis, Andreea	pg. 4271 TU1.R1.6 - INTEGRATED PLATFORM FOR ECOSYSTEMS MONITORING BASED ON REMOTE AND IN SITU MEASUREMENTS pg. 2719 FR2.R6.6 - DR-KNN: A HYBRID APPROACH FOR DIMENSIONALITY REDUCTION OF EO IMAGE DATASETS
Grippi, Andrea	pg. 2272 FR1.R5.8 - DETECTION OF SOLAR CORONAL MASS EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
Grobler, Trienko	pg. 2244 FR1.R5.1 - UNSUPERVISED SEQUENTIAL CLASSIFICATION OF MODIS TIME-SERIES
Groeneveld, David	pg. 1929 TH1.R16.11 - AN IMPROVED SPECKLE FILTER FOR SENTINEL-1 SAR IMAGE PROCESSING
Grogan, Paul	pg. 3837 TH2.R17.2 - COORDINATING OBSERVATION AT GLOBAL AND LOCAL SCALES: SERVICE-ORIENTED PLATFORM TO EVALUATE MISSION ARCHITECTURES
Grompone von Gioi, Rafael	pg. 2233 TH2.R20.10 - OIL TANK DETECTION IN SATELLITE IMAGES VIA A CONTRARIO CLUSTERING
Grosgeorge, Damien	pg. 280 MO2.R17.6 - CONCURRENT SEGMENTATION AND OBJECT DETECTION CNNS FOR AIRCRAFT DETECTION AND IDENTIFICATION IN SATELLITE IMAGES
Gross, Christoph	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
Gross, Wolfgang	pg. 664 TU1.R12.3 - A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM DESIGN TO FIRST RESULTS pg. 52 MO2.R5.4 - HYPERSPECTRAL BAND SELECTION WITHIN A DEEP REINFORCEMENT LEARNING FRAMEWORK pg. 1303 WE1.R20.10 - FEATURE CONCATENATION OF HYPERSPECTRAL AND DEM DATA FOR LAND COVER CLASSIFICATION

Grosso, Elena	pg. 1259 WE1.R18.11 - A NEW AUTOMATIC SHIP WAKE DETECTION FOR SENTINEL-1 IMAGERY
Gruber, Alexander	pg. 3924 FR2.R1.1 - ADAPTIVE FILTERING FOR (SOIL MOISTURE) DATA ASSIMILATION
Gruber, Thomas	pg. 1165 WE1.R16.11 - FIRST EXPERIENCES WITH ACTIVE C-BAND RADAR REFLECTORS AND SENTINEL-1
Gu, Haiyan	pg. 656 TU1.R12.1 - AN END-TO-END DEEP LEARNING CHANGE DETECTION FRAMEWORK FOR REMOTE SENSING IMAGES pg. 1945 TH1.R17.4 - END-TO-END DEEP LEARNING SEMANTIC CLASSIFICATION ARCHITECTURE FOR REMOTE SENSING IMAGERY
Gu, Hong	pg. 4509 WE1.R10.9 - PREDICTING GROWING STOCK VOLUME OF BOREAL FORESTS USING VERY LONG TIME SERIES OF SENTINEL-1 DATA
Gu, Tong	pg. 1145 WE1.R16.6 - EXPEDITING PHASE GRADIENT AUTOFOCUS ALGORITHM FOR SAR IMAGING
Gu, Weihui	pg. 4704 TH1.R1.4 - FULL-WAVE SIMULATIONS OF SCATTERING IN VEGETATION FOR MICROWAVE REMOTE SENSING OF SOIL MOISTURE
Gu, Xingfa	pg. 4311 TU2.R10.5 - THE RESEARCH OF LEAF AREA INDEX ANALYZER BASED ON EMBEDDED PLATFORM pg. 4319 TU2.R10.7 - RESEARCH ON THE OPTICAL METHOD OF LEAF AREA INDEX MEASUREMENT BASE ON THE HEMISPHERICAL IMAGE pg. 5592 FR2.R19.8 - A HIGH-SPATIAL-RESOLUTION AEROSOL RETRIEVAL ALGORITHM FOR SENTINEL-2 IMAGES OVER BRIGHT URBAN SURFACES pg. 5596 FR2.R19.9 - HIGH RESOLUTION AEROSOL RETRIEVAL OVER URBAN SURFACES USING LANDSAT 8 OLI pg. 940 TU2.R16.10 - DEEP LEARNING FOR VEGETATION IMAGE SEGMENTATION IN LAI MEASUREMENT
Gu, Yalong	pg. 6389 TH1.R15.3 - NOAA-20/S-NPP VIIRS SENSOR DATA RECORD ON-ORBIT PERFORMANCE UPDATES AND RECENT IMPROVEMENTS pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Gu, Yanfeng	pg. 1062) WE1.R5.7 - SPATIAL-SPECTRAL SMOOTH GRAPH CONVOLUTIONAL NETWORK FOR MULTISPECTRAL POINT CLOUD CLASSIFICATION pg. 296) MO2.R17.10 - WEAK TARGET DETECTION IN HIGH- RESOLUTION REMOTE SENSING IMAGES BY COMBINING SUPER-RESOLUTION AND DEFORMABLE FPN
Gu, Yu	pg. 6989 FR2.R2.9 - CORRELATION ATTENTION FOR REMOTE SENSING IMAGE CAPTIONING

Gu, Yue	pg. 228 MO2.R16.4 - MULTISCALE INFRARED AND VISIBLE IMAGE FUSION BASED ON PHASE CONGRUENCY AND SALIENCY
Gu, Zhoubo	pg. 585 TU1.R10.5 - SAR IMAGE ENHANCEMENT BASED ON P-M NOLINEAR DIFFUSION AND COHERENT ENHANCEMENT DIFFUSION
Guan, Jian	pg. 4231 MO2.R12.7 - A DYNAMIC END-TO-END FUSION FILTER FOR LOCAL CLIMATE ZONE CLASSIFICATION USING SAR AND MULTI-SPECTRUM REMOTE SENSING DATA
Guan, Lei	pg. 5885 FR1.R8.8 - VALIDATION OF SEA SURFACE TEMPERATURE FROM FY-3C VIRR pg. 5897 FR1.R8.11 - EVALUATION OF SEA SURFACE TEMPERATURE FROM HY-1C DATA
Guan, Qingfeng	pg. 2388 FR1.R12.2 - SEMI-AUTOMATIC FULLY SPARSE SEMANTIC MODELING FRAMEWORK FOR HYPERSPECTRAL UNMIXING pg. 577 TU1.R10.3 - SUPER RESOLUTION GENERATIVE ADVERSARIAL NETWORK BASED IMAGE AUGMENTATION FOR SCENE CLASSIFICATION OF REMOTE SENSING IMAGES pg. 1817 TH1.R9.5 - A MODIFIED D-LINKNET WITH TRANSFER LEARNING FOR ROAD EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING pg. 1373 WE2.R5.7 - TOPIC MODEL FOR REMOTE SENSING DATA: A COMPREHENSIVE REVIEW pg. 1197 WE1.R17.7 - URBAN SCENES CHANGE DETECTION BASED ON MULTI-SCALE IRREGULAR BAG OF VISUAL FEATURES FOR HIGH SPATIAL RESOLUTION IMAGERY pg. 553 TU1.R7.8 - REMOTE SENSING SCENE CLASSIFICATION USING SPATIAL TRANSFORMER FUSING NETWORK
Guan, Xudong	pg. 216 MO2.R16.1 - INTEGRATING TIME-SERIES AND HIGH- SPATIAL REMOTE SENSING DATA BASED ON MULTILEVEL DECISION FUSION
Guan, Zhichao	pg. 6238 WE1.R15.5 - CORRECTION OF CAMERA INTERIOR ORIENTATION ELEMENTS BASED ON MULTI-FRAME STAR MAP
Guanter, Luis	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES
Guarini, Rocchina	pg. 3282 MO2.R4.5 - THE HYPERSPECTRAL PRISMA MISSION IN OPERATIONS
Guerriero, Leila	pg. 6266 WE2.R13.1 - POTENTIAL OF GNSS REFLECTOMETRY FOR FREEZE-THAW MONITORING: A STUDY OF TECHDEMOSAT-1 DATA pg. 5905 MO2.R13.1 - SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL ON A GLOBAL SCALE BY USING CYGNSS DATA AND ARTIFICIAL NEURAL NETWORKS pg. 3447 TU2.R17.5 - ELECTROMAGNETIC MODELING OF SCATTERED GNSS SIGNALS

	WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION
Guglieri, Valerio	pg. 5372 TU2.R19.9 - UNDERSTANDING SEVERE WEATHER EVENTS AT AIRPORT SPATIAL SCALE
Gui, Ronghua	(pg. 1094) WE1.R6.4 - JOINT RANGE-ANGLE-DOPPLER RESOLUTION CAPABILITY ANALYSIS FOR FDA RADAR SIGNAL VIA GENERALIZED AMBIGUITY FUNCTION
Guida, Raffaella	pg. 1977 TH1.R18.1 - A SAR-BASED FEASIBILITY STUDY ON DETECTION OF OIL SEEPAGE FROM BURIED PIPELINES (pg. 2077 TH2.R5.4 - SAR AND AIS DATA FUSION FOR DENSE SHIPPING ENVIRONMENTS
	(pg. 6194) WE1.R13.4 - A TOPOGRAPHICALLY-ACCURATE GNSS-R REFLECTION POINT PREDICTOR FOR ON-BOARD OPERATIONAL PROCESSING (pg. 1259) WE1.R18.11 - A NEW AUTOMATIC SHIP WAKE DETECTION FOR SENTINEL-1 IMAGERY
Guild, Liane	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Guilleux, Jordan	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL
Guillot, Amandine	(pg. 5851) TH2.R8.10 - IMPROVING THE ESTIMATION OF THE SEA LEVEL ANOMALY SLOPE
Guimarães Ferreira, Pedro Henrique	pg. 1596 WE2.R18.7 - CENTER PIVOT CLASSIFICATION WITH DEEP RESIDUAL U-NET
Guimarães, Nathalie	pg. 6309 WE2.R17.4 - VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY pg. 4195 MO2.R11.9 - MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE
Guimarães, Renato Fontes	pg. 1596 WE2.R18.7 - CENTER PIVOT CLASSIFICATION WITH DEEP RESIDUAL U-NET
Guimarães, Tainá	pg. 5207 FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA
Guinvarc'h, Régis	pg. 1767 TH1.R7.3 - INTEREST OF TEMPORAL METHODS OVER SPATIAL METHODS IN ORDER TO DETECT SMALL TARGETS pg. 3880 FR1.R3.6 - A NEW WAY FOR DETECTING MAN-MADE TARGETS AND STRUCTURES WITHIN FORESTS USING TIME SERIES OF POLARIMETRIC SAR IMAGES.
Guitton, Gilles	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Gula, Jonathan	(pg. 3904) FR1.R7.4 - FILTERING INTERNAL TIDES FROM WIDE-

	SWATH ALTIMETER DATA USING CONVOLUTIONAL NEURAL NETWORKS
Guliaev, Roman	pg. 3413 TU2.R15.4 - FOREST HEIGHT ESTIMATION FROM TANDEM-X INSAR COHERENCE MAGNITUDE TOWARDS LARGE SCALE APPLICATIONS
Gungarjav, Dabuxile	pg. 4247 MO2.R12.11 - EXTENDED PATTERN OF URBAN SPRAWL ANALYSIS FROM REMOTE SENSING DATA IN ULAANBAATAR, MONGOLIA
Guo, Anjing	pg. 637 TU1.R11.7 - UNSUPERVISED BLUR KERNEL LEARNING FOR PANSHARPENING
Guo, Baofeng	pg. 774 TU1.R18.9 - SHIP DETECTION BASED ON SUPERPIXELWISE LOCAL CONTRAST MEASUREMENT FOR POLSAR IMAGES
Guo, Chubing	pg. 2436 FR1.R14.3 - HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK pg. 2575 FR1.R18.5 - SHIP SEGMENTATION ON HIGH- RESOLUTION SAR IMAGE BY A 3D DILATED MULTISCALE U-NET
Guo, Donghai	pg. 1845 TH1.R12.1 - UAV IMAGE MOSAICING BASED MULTI- REGION LOCAL PROJECTION DEFORMATION pg. 1849 TH1.R12.2 - DRONE IMAGE STITCHING USING LOCAL LEAST SQUARE ALIGNMENT
Guo, Haowen	pg. 1809 TH1.R9.3 - LOOK AT THE BIG PICTURE: BUILDING AREA EXTRACTION WITH GLOBAL DENSITY MAP
Guo, HongMei	pg. 1311 WE2.R3.1 - A SPATIALIZATION METHOD OF POPULATION DATA CONSIDERING SPATIAL HETEROGENEITY
Guo, Hongyan	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY pg. 1287 WE1.R20.6 - SPECTRAL PROPERTIES ANALYSIS OF WASTEWATER IN OIL FIELD AND ITS REMOTE SENSING DETECTION WITH GF-2
Guo, Horng-Yuh	pg. 2831 FR2.R12.11 - FUSARIUM WILT INSPECTION FOR PHALAENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL BAND SELECTION TECHNIQUES
Guo, Huadong	pg. 6682 TU1.R15.2 - MOON-BASED EARTH RADIATION BUDGET EXPERIMENT SITE SELECTION ANALYSIS BASED ON EARTH OBSERVATION GEOMETRY
Guo, Jiayi	pg. 84 MO2,R6.1 - CHANNEL IMBALANCE CALIBRATION METHOD FOR AIRBORNE TOMOSAR SYSTEM
Guo, Jie	pg. 6586 FR2.R17.9 - THE RELATIONSHIP BETWEEN EMULSION FILM THICKNESS AND NORMALIZED RADAR CROSS SECTION CONSTRUCTED BY EXPERIMENT

Guo, Jing	pg. 3235 TH2.R14.12 - A METHOD TO IDENTIFY HIGH-QUALITY PURE SNOW DATA IN POLDER DATABASE	
Guo, Jinxin	pg. 5505 TH2.R19.7 - AEROSOL OPTICAL DEPTH ESTIMATE USING GROUND-MEASURED SPECTRAL SKYLIGHT RATIO METHOD	
Guo, Liang	pg. 6567 FR2.R17.4 - AN IMAGE-DOMAIN BASELINE ERROR ESTIMATION METHOD FOR AZIMUTH MULTI-CHANNEL SAR pg. 928 TU2.R16.7 - LONG SYNTHETIC APERTURE PASSIVE LOCALIZATION USING AZIMUTH CHIRP-RATE CONTOUR MAP pg. 1251 WE1.R18.9 - A SVA BASED SIDELOBE SUPPRESSION METHOD FOR SEA-LAND SEGMENTATION AND SHIP DETECTION IN SAR IMAGES	
Guo, Peng	pg. 5282 FR2.R11.9 - IMPROVED DROUGHT MONITORING METHOD BASED ON MULTISOURCE REMOTE SENSING DATA	
Guo, Sheng	pg. 601 TU1.R10.9 - CONSTRUCTION OF AN INDOOR KNOWLEDGE GRAPH FOR POSITIONING	
Guo, Shipeng	pg. 1993 TH1.R18.5 - DEFORMATION VELOCITY MONITORING IN KUNMING CITY USING ASCENDING AND DESCENDING SENTINEL-1A DATA WITH SBAS-INSAR TECHNIQUE	
Guo, Wei	pg. 5862 FR1.R8.2 - DEVELOPMENT AND INTEGRATION TEST OF AN IMPROVED TRANSPONDER FOR HY-2B ALTIMETER pg. 5819 TH2.R8.2 - IN-ORBIT CALIBRATION AND VALIDATION OF HY-2B ALTIMETER USING AN IMPROVED TRANSPONDER pg. 1588 WE2.R18.5 - UAV BASED REMOTE SENSING FOR TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF MAIZE CROP USING MULTISPECTRAL IMAGES	
Guo, Weiwei	pg. 2855 FR2.R16.6 - ELLIPSE-FCN: OIL TANKS DETECTION FROM REMOTE SENSING IMAGES WITH FULLY CONVOLUTION NETWORK pg. 152 MO2.R14.7 - PHOTOVOLTAIC PANEL CONSTRUCTION CHANGE MONITORING BASED ON LSTM MODELS	
Guo, Xiansheng	pg. 778 TU1.R18.10 - MULTI-VIEW FUSION BASED ON EXPECTATION MAXIMIZATION FOR SAR TARGET RECOGNITION	
Guo, Xiaohui	pg. 2651 FR2.R3.12 - DEEP ADAPTIVE PROPOSAL NETWORK IN OPTICAL REMOTE SENSING IMAGES OBJECTIVE DETECTION	
Guo, Yanan	pg. 2149 TH2.R9.11 - AN ANTENNA BEAM STEERING STRATEGY FOR SAR ECHO SIMULATION IN HIGHLY ELLIPTICAL ORBIT	
Guo, Yang	pg. 6377 TH1.R13.9 - EVALUATION AND ASSIMILATION OF FY-3C MWHTS FOR RAMMASUN	
Guo, Yanhe	pg. 4391 TU2.R12.2 - DECISION FUSION OF PIXEL-BASED AND REGION-BASED SEGMENTATION FOR BUILDING DETECTION	
Guo, Yiyou	pg. 549 TU1.R7.7 - GRAPH EMBEDDING FOR REMOTE SCENE	

	IMAGE CLASSIFICATION BASED ON ATTENTION MODEL [pg. 284] MO2.R17.7 - GEOSPATIAL OBJECT DETECTION WITH SINGLE SHOT ANCHOR-FREE NETWORK	
Guo, Yuan	pg. 708 TU1.R16.3 - ANALYSIS OF POLARIZATION ORIENTATION ANGLE ESTIMATION OF X-BAND POLSAR DATA AND EXPERIMENT INVESTIGATION	
Guo, Yuhua	pg. 344 MO2.R19.1 - RESEARCH ON COMPOSITE ELECTROMAGNETIC SCATTERING COMPUTATION OF SEA SURFACE AND SHIP TARGET	
Guo, Yukun	pg. 1161 WE1.R16.10 - ISAR IMAGING OF SPACE STATION BASED ON EPHEMERIS DATA ERROR COMPENSATION	
Gupta, Sharad Kumar	[pg. 5234] FR2.R10.9 - DATA IMBALANCE IN LANDSLIDE SUSCEPTIBILITY ZONATION: A CASE STUDY OF MANDAKINI RIVER BASIN, UTTARAKHAND, INDIA	
Gupta, Tanu	pg. 1699 TH1.R3.10 - A HYBRID MODEL BASED ON FUSED FEATURES FOR DETECTION OF NATURAL DISASTERS FROM SATELLITE IMAGES	
Gurbuz, Ali	pg. 4700 TH1.R1.3 - PRELIMINARY STUDY OF CRAMER-RAO LOWER BOUND FOR SUBSURFACE SOIL MOISTURE ESTIMATION USING SOOP REFLECTOMETRY pg. 6278 WE2.R13.4 - GNSS REFLECTOMETRY FROM SMARTPHONES: TESTING PERFORMANCE OF IN-BUILT ANTENNAS AND GNSS CHIPS pg. 4470 WE1.R1.10 - MACHINE-LEARNING BASED RETRIEVAL OF SOIL MOISTURE AT HIGH SPATIO-TEMPORAL SCALES USING CYGNSS AND SMAP OBSERVATIONS	
Gurbuz, Sevgi	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT	
Gurung, Iksha	pg. 2248 FR1.R5.2 - EMPLOYING DEEP LEARNING TO ENABLE VISUAL EXPLORATION OF EARTH SCIENCE EVENTS	
Guruprasad, Ranjini B	pg. 4684 WE2.R11.9 - YIELD AND COMMERCIAL CANE SUGAR ESTIMATION FOR SUGARCANE IN THAILAND - A CASE STUDY	
Gutierrez-Antunano, Miguel Angel	pg. 6077 WE1.R4.2 - FLOATING DOPPLER WIND LIDAR MEASUREMENT OF WIND TURBULENCE: A CLUSTER ANALYSIS pg. 6081 WE1.R4.3 - OFFSHORE DOPPLER WIND LIDAR ASSESSMENT OF ATMOSPHERIC STABILITY pg. 5682 TU1.R8.10 - MOTIONAL BEHAVIOR ESTIMATION USING SIMPLE SPECTRAL ESTIMATION: APPLICATION TO THE OFF-SHORE WIND LIDAR.	
Н		
H A, Bharath	pg. 1500 WE2.R12.6 - URBAN SURFACE SIMULATION THROUGH IMAGE-TO-IMAGE TRANSLATION DEEP LEARNING ALGORITHM USING OPTICAL AERIAL IMAGERY pg. 4287 TU1.R1.10 - INTEGRATION OF GENETIC ALGORITHM AND AGENT BASED MODEL TO VISUALIZE NEAR REALISTIC	

	SUSTAINABLE URBAN GROWTH: A COMPARATIVE STUDY
H Aithal, Bharath	pg. 4239 MO2.R12.9 - ASSESSMENT OF URBAN BUILT-UP VOLUME USING GEOSPATIAL METHODS: A CASE STUDY OF BANGALORE
H.A., Bharath	pg. 4387 TU2.R12.1 - FORECASTING LAND SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORK
Ha, Rui	pg. 2451 FR1.R14.7 - OBJECT DETECTION FOR REMOTE SENSING IMAGE BASED ON DEEP LEARNING
Haan, Robert	pg. 1307) WE1.R20.11 - IMPROVED VEGETATION AND WILDFIRE FUEL TYPE MAPPING USING NASA AVIRIS-NG HYPERSPECTRAL DATA, INTERIOR AK
Haan, Sebastian	TU1.R17.1 - MULTI-OBJECTIVE OPTIMIZATION FOR ACTIVE SENSOR FUSION
Hachicha, Marwa	pg. 136 MO2.R14.3 - PREDICTION OF PLANT GROWTH BASED ON STATISTICAL MEASUREMENTS USING SATELLITE IMAGE TIME SERIES
Hadland, Anneley	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY (pg. 252) MO2.R16.10 - SHIP DETECTION ON SINGLE-BAND GRAYSCALE IMAGERY USING DEEP LEARNING AND AIS SIGNAL MATCHING USING NON-RIGID TRANSFORMATIONS
Hadzic, Armin	pg. 1121 WE1.R6.11 - ESTIMATING DISPLACED POPULATIONS FROM OVERHEAD
Haglund, Leif	(pg. 1070) WE1.R5.9 - GLOBAL SEMANTIC LAND USE/LAND COVER BASED ON HIGH RESOLUTION SATELLITE IMAGERY USING ENSEMBLE NETWORKS
Hagolle, Olivier	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES
Hain, Christopher	pg. 5077 FR1.R4.4 - SWOT APPLICATIONS FOR WRF-HYDRO MODELING IN ALASKA pg. 4179 MO2.R11.5 - A SATELLITE AGNOSTIC APPROACH TO QUANTIFYING HAIL DAMAGE SWATHS ACROSS THE CENTRAL UNITED STATES AND OTHER AGRICULTURAL REGIONS
Haines, Bruce	pg. 5847 TH2.R8.9 - IMPROVED ORBIT DETERMINATION OF THE CYGNSS SATELLITES AND ITS APPLICATION TO GNSS-R OCEAN ALTIMETRY
Haitao, Zhu	pg. 5624) MO2.R8.6 - MONITORING OF TIANWAN NUCLEAR POWER PLANT THERMAL POLLUTION BASED ON REMOTELY SENSED LANDSAT DATA
Hajnsek, Irena	pg. 3403 TU2.R15.1 - TANDEM-X: 10 YEARS OF OPERATION pg. 3428 TU2.R15.8 - POLARIMETRIC CHARACTERISTICS FOR SEA-ICE SURFACE TOPOGRAPHIC DERIVATION USING

	TANDEM-X INTERFEROMETRY DATA
Hakala, Teemu	pg. 4379 TU2.R11.10 - ON THE ESTIMATION OF THE LEAF ANGLE DISTRIBUTION FROM DRONE BASED PHOTOGRAMMETRY
Halem, Milton	pg. 2073 TH2.R5.3 - SATELLITE DATA FUSION OF MULTIPLE OBSERVED XCO2 USING COMPRESSIVE SENSING AND DEEP LEARNING pg. 3676 TH2.R7.4 - A DEEP MACHINE LEARNING APPROACH FOR LIDAR BASED BOUNDARY LAYER HEIGHT DETECTION pg. 3517 WE2.R7.9 - AN ENSEMBLE APPROACH FOR COMPRESSIVE SENSING WITH QUANTUM ANNEALERS
Hall, Joanne	TH1.R6.8 - DEVELOPMENT OF A HARMONIZED MULTI-SENSOR GLOBAL ACTIVE FIRE DATA SET: CURRENT STATUS AND MULTI- PRODUCT VALIDATION RESULTS
Hallas, Matt	pg. 3727 TH2.R12.1 - ACCELERATING SUSTAINABLE DEVELOPMENT WITH EARTH INTELLIGENCE
Hamada, Atsushi	pg. 5384 TU2.R19.12 - BRIGHTNESS TEMPERATURE OBTAINED FROM GLOBAL PRECIPITATION MEASUREMENT MISSION'S DUAL-FREQUENCY PRECIPITATION RADAR
Hamadziripi, Esnath	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Hamdi, Loubna	pg. 1034 WE1.R3.11 - INSAR INVESTIGATION ON DRAA- DOUAMIS SINKHOLES IN CHERIA NORTHEASTERN OF ALGERIA
Hammond, Matthew	pg. 5941 MO2.R13.10 - NOC GNSS-R GLOBAL OCEAN WIND SPEED AND SEA-ICE PRODUCTS USING DATA FROM THE TECHDEMOSAT-1 MISSION
Han, Binbin	pg. 2201 TH2.R20.2 - AIRCRAFT TARGET DETECTION IN POLSAR IMAGE BASED ON REGION SEGMENTATION AND MULTI-FEATURE DECISION
Han, Bing	pg. 3111 WE1.R14.6 - A MANAGEMENT SYSTEM FOR FORESTRY REMOTE SENSING IMAGES BASED ON THE GLOBAL SUBDIVISION MODEL
Han, Congzheng	pg. 5513 TH2.R19.9 - IMPACT OF PRECIPITATION ON MILLIMETER-WAVE BACKHAUL LINKS FOR 5G CELLULAR NETWORKS pg. 5329 TU1.R19.10 - COMPARISON OF MODIS CLOUD MASK PRODUCTS WITH GROUND-BASED MILLIMETER-WAVE RADAR
Han, Dong	pg. 84 MO2.R6.1 - CHANNEL IMBALANCE CALIBRATION METHOD FOR AIRBORNE TOMOSAR SYSTEM pg. 2368 FR1.R9.9 - A FAST 3-D IMAGING METHOD FOR CIRCULAR SAR BASED ON 3-D BACK-PROJECTION ALGORITHM
Han, Haijiao	pg. 5155 FR1.R10.12 - QUALITY ASSESSMENT OF THREE DIGITAL ELEVATION MODELS WITH 30 M RESOLUTION BY

	TAKING 12 M TANDEM-X DEM AS REFERENCE	
Han, Jiangping	pg. 3074 WE1.R9.8 - RETRIEVING SURFACE DEFORMATION OF THE QINGHAI-TIBET RAILWAY ACROSS PERMAFROST AREAS FROM INSAR	
Han, Jingyu	pg. 6018 TU1.R14.8 - ON-ORBIT GEOMETRIC CALIBRATION AND ACCURACY VERIFICATION OF HY-1C CZI	
Han, Lei	pg. 5294 TU1.R19.1 - AN INVESTIGATION OF A PROBABILISTIC NOWCAST SYSTEM FOR DUAL-POLARIZATION RADAR APPLICATIONS pg. 5352 TU2.R19.4 - CROSS VALIDATION OF GOES-R AND NOAA MULTI-RADAR MULTI-SENSOR (MRMS) QPE OVER THE CONTINENTAL UNITED STATES	
Han, Lijuan	pg. 2909 FR2.R18.9 - MONITORING AND RISK ASSESSMENT OF HIGH-TEMPERATURE HEAT DAMAGE FOR SUMMER MAIZE BASED ON REMOTE SENSING DATA	
Han, Lirong	pg. 60 MO2.R5.6 - SELF-PACED LEARNING WITH SUPERPIXELWISE FEATURES FOR HYPERSPECTRAL IMAGE CLASSIFICATION	
Han, Myeongsun	WE1.R19.9 - STUDY ON THE K-BAND EWRG SIGNAL PROCESSING FOR HIGH-RESOLUTION RAINFALL OBSERVATION	
Han, Ping	pg. 2201 TH2.R20.2 - AIRCRAFT TARGET DETECTION IN POLSAR IMAGE BASED ON REGION SEGMENTATION AND MULTI-FEATURE DECISION pg. 1735 TH1.R5.7 - POLSAR IMAGE CLASSIFICATION BASED ON OPTIMAL FEATURE AND CONVOLUTION NEURAL NETWORK	
Han, Qianqian	(pg. 4754) TH1.R4.6 - RELIABILITY EVALUATION OF WETLAND SAMPLES BASED ON HISTORICAL THEMATIC MAPS	
Han, Shanshan	pg. 2416 FR1.R12.9 - HYPERSPECTRAL ANOMALY DETECTION BASED ON ISOLATION FOREST WITH BAND CLUSTERING	
Han, Wei	pg. 4076 MO2.R1.1 - A MULTI-STAGE NETWORK FOR IMPROVING THE SAMPLE QUALITY IN AERIAL IMAGE OBJECT DETECTION (pg. 641) TU1.R11.8 - MULTI-LEVEL STRATEGY-BASED SPATIAL INFORMATION PREDICTION FOR SPATIOTEMPORAL REMOTE SENSING IMAGERY FUSION	
Han, Weiguo	(pg. 3101) WE1.R14.3 - A MACHINE LEARNING APPROACH FOR DATA QUALITY CONTROL OF EARTH OBSERVATION DATA MANAGEMENT SYSTEM	
Han, Weihong	pg. 5562 FR1.R19.11 - LONG-TERM SPATIOTEMPORAL TREND ANALYSIS (1998-2016) OF PM2.5 IN CHINA USING SATELLITE PRODUCT	
Han, Xiaoqing	pg. 6973 FR2.R2.5 - MINERAL DETECTION FROM HYPERSPECTRAL IMAGES USING A SPATIAL-SPECTRAL RESIDUAL CONVOLUTIONAL NEURAL NETWORK	

Han, Xiuzhen	pg. 4943 TH2.R6.2 - VEGETATION INDICES DERIVED FROM FENGYUN-3D MERSI-II DATA pg. 5581 FR2.R19.5 - MONITORING PM2.5 DISTRIBUTIONS OVER CHINA FROM GEOSTATIONARY SATELLITE OBSERVATIONS	
Han, Yang	pg. 4943 TH2.R6.2 - VEGETATION INDICES DERIVED FROM FENGYUN-3D MERSI-II DATA	
Han, Yanshun	pg. 656 TU1.R12.1 - AN END-TO-END DEEP LEARNING CHANGE DETECTION FRAMEWORK FOR REMOTE SENSING IMAGES pg. 1945 TH1.R17.4 - END-TO-END DEEP LEARNING SEMANTIC CLASSIFICATION ARCHITECTURE FOR REMOTE SENSING IMAGERY	
Hang, Renlong	pg. 2691 FR2.R5.10 - LOCALLY LINEAR RECONSTRUCTION FOR SPECTRAL ENHANCEMENT USING LIMITED PIXEL-TO-PIXEL MULTISPECTRAL AND HYPERSPECTRAL DATA	
Hansen, Anders H	pg. 3483 WE2.R4.8 - DEVELOPMENT OF A FLASH-LIDAR ELEGANT BREADBOARD MODEL FOR RENDEZVOUS APPLICATIONS	
Hansen, Johannes N.	TH1.R5.8 - ASSESSING FOREST/NON-FOREST SEPARABILITY USING SENTINEL-1 C-BAND SAR	
Hansen, Mads Adrian	pg. 684 TU1.R12.8 - HETEROGENEOUS CHANGE DETECTION WITH SELF-SUPERVISED DEEP CANONICALLY CORRELATED AUTOENCODERS	
Hanssen, Ramon	pg. 786 TU2.R3.1 - INSAR PHASE REDUCTION USING THE REMOVE-COMPUTE-RESTORE METHOD	
Hao, Hairui	pg. 3012 TU2.R9.3 - RETRIEVAL OF ARCTIC SEA ICE SURFACE MELT ONSET IN 2016 FROM FY-3B/MWRI DATA	
Hao, Hongxia	pg. 2547 FR1.R17.10 - A DEEP GENERALIZED CORRELATION NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION	
Hao, Qiaobo	pg. 80 MO2.R5.11 - MULTISCALE FEATURE EXTRACTION WITH GAUSSIAN CURVATURE FILTER FOR HYPERSPECTRAL IMAGE CLASSIFICATION	
Hao, Winston	pg. 5537 FR1.R19.4 - ANALYZING METEOROLOGICAL AND CHEMICAL CONDITIONS FOR TWO HIGH OZONE EVENTS OVER THE NEW YORK CITY AND LONG ISLAND REGION	
Hao, XiaoLong	pg. 1643 TH1.R2.8 - BUILDING DETECTION BASED ON RECTANGLE APPROXIMATION AND REGION GROWING	
Hao, Xiaolong	pg. 148 MO2.R14.6 - FUZZY NEURAL NETWORK-BASED ASSESSMENT OF ROAD TRAFFIC SITUATIONS USING EXTRACTED INFORMATION OBTAINED FROM OPTICAL HIGH- RESOLUTION SATELLITE REMOTE SENSING IMAGES (pg. 1612) WE2.R18.11 - DEEP NETWORKS UNDER BLOCK-	

	LEVEL SUPERVISION FOR PIXEL-LEVEL CLOUD DETECTION IN MULTI-SPECTRAL SATELLITE IMAGERY
Happy, S L	pg. 1837 TH1.R9.10 - SEMI2I: SEMANTICALLY CONSISTENT IMAGE-TO-IMAGE TRANSLATION FOR DOMAIN ADAPTATION OF REMOTE SENSING DATA
Haq, Saad	pg. 1528 WE2.R16.2 - COMPARATIVE ANALYSIS BETWEEN OPTICAL AND FUSED IMAGE WITH SAR
Haque, Saad	pg. 4773 TH1.R4.11 - VALIDATION OF SENTINEL 3A ALTIMETRY DATA FOR RIVER LEVEL MONITORING AT TWO LOCATIONS ALONG THE LOWER INDUS RIVER
Haque, Saad ul	pg. 4770 TH1.R4.10 - WATER BALANCE STUDY OF MANCHAR LAKE (SINDH, PAKISTAN) USING LANDSAT AND SENTINEL 3A
Harikumar, Aravind	pg. 4132 MO2.R10.4 - A FUZZY APPROACH TO INDIVIDUAL TREE CROWN DELINEATION IN UAV BASED PHOTOGRAMMETRIC MULTISPECTRAL DATA
Harkati, Lekhmissi	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Harkins, Sean	pg. 3131) WE1.R14.11 - STANDARDIZED ALGORITHM DOCUMENTATION FOR IMPROVED SCIENTIFIC DATA UNDERSTANDING: THE ALGORITHM PUBLICATION TOOL PROTOTYPE
Harris, Alyssa	pg. 3131 WE1.R14.11 - STANDARDIZED ALGORITHM DOCUMENTATION FOR IMPROVED SCIENTIFIC DATA UNDERSTANDING: THE ALGORITHM PUBLICATION TOOL PROTOTYPE
Harris, Garry	pg. 3169 TH1.R14.2 - CONTINUING EDUCATION UNITS (CEUS) FOR NASA'S GLOBAL LEARNING AND OBSERVATIONS TO BENEFIT THE ENVIRONMENT (GLOBE) WORLD WIDE PROGRAM
Harrison, Sherry	pg. 5422 WE1.R19.10 - SUPPORTING LIGHTNING SAFETY AND DECISION SUPPORT AT THE NASA GLOBAL HYDROLOGY RESOURCE CENTER DISTRIBUTED ACTIVE ARCHIVE CENTER
Hart, Josh	pg. 4355 TU2.R11.4 - IMPACT OF UAV TIME-OF-FLIGHT ON RICE NITROGEN UPTAKE MODELS
Hartzell, Preston	pg. 2555 FR1.R17.12 - PROPAGATED UNCERTAINTY FOR HORIZONTAL GROUND MOTION DERIVED FROM MULTI-TEMPORAL DIGITAL ELEVATION MODELS
Hashemi-Beni, Leila	pg. 3265 MO2.R2.8 - AUTOMATED INDUNATION MAPPING: COMPARISON OF METHODS pg. 4199 MO2.R11.10 - WEED AND CROP DISCRIMINATION USING U-NET LEARNING
Hashimoto, Hirofumi	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE

TH1.R6.9 - AN INTRODUCTION TO THE GEONEX LEVEL-1G PRODUCTS: TOP-OF-ATMOSPHERE REFLECTANCE AND BRIGHTNESS TEMPERATURE

	BRIGHTNESS TEMPERATURE
	pg. 4513 WE1.R10.10 - HOURLY GPP ESTIMATION IN
	AUSTRALIA USING HIMAWARI-8 AHI PRODUCTS
Hass, Bridget	pg. 6341 WE2.R17.12 - CURRENT STATUS OF NEON'S AOP
Hassanzadeh, Amirhossein	(pg. 5278) FR2.R11.8 - TOWARD MATURITY ASSESSMENT OF
	SNAP BEAN CROPS: A BEST-CASE GREENHOUSE SCENARIO
	(pg. 469) TU1.R5.9 - TOWARD A STRUCTURAL DESCRIPTION OF ROW CROPS USING UAS-BASED LIDAR POINT CLOUDS
Hata, Teruhito	pg. 4339 TU2.R10.12 - TREE SPECIES CLASSIFICATION USING
	LEAF AND TREE TRUNK IMAGES
Hathaway, Jessica	pg. 3169 TH1.R14.2 - CONTINUING EDUCATION UNITS (CEUS)
	FOR NASA'S GLOBAL LEARNING AND OBSERVATIONS TO
	BENEFIT THE ENVIRONMENT (GLOBE) WORLD WIDE PROGRAM
Hathaway, Wanda	pg. 3169 TH1.R14.2 - CONTINUING EDUCATION UNITS (CEUS)
	FOR NASA'S GLOBAL LEARNING AND OBSERVATIONS TO
	BENEFIT THE ENVIRONMENT (GLOBE) WORLD WIDE PROGRAM
Haugholt, Karl Henrik	pg. 3483 WE2.R4.8 - DEVELOPMENT OF A FLASH-LIDAR
	ELEGANT BREADBOARD MODEL FOR RENDEZVOUS
	APPLICATIONS
Haugommard, Anne	pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR
	COPERNICUS EARTH OBSERVATION DATA ANALYTICS
Haupt, Sue Ellen	pg. 3626 TH2.R2.5 - ESTIMATION OF FUEL MOISTURE
	CONTENT BY INTEGRATING SURFACE AND SATELLITE
	OBSERVATIONS USING MACHINE LEARNING
Hauser, Danièle	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM
	INSTRUMENT ONBOARD CFOSAT
Haut, Juan M	pg. 40 MO2.R5.1 - TRAINING CAPSNETS VIA ACTIVE
	LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Hawes, Fred	pg. 3440 TU2.R17.3 - RECENT ADVANCES IN DEVELOPMENT
	OF POLARIMETRIC MODTRAN®6
Hawkins, Brian	pg. 3615 TH2.R2.1 - THE QUAKES ANALYTIC CENTER
	FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL
	SCALES OF TECTONIC AND EARTHQUAKE PROCESSES
	pg. 96 MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION
	(pg. 6162) WE1.R12.5 - RESIDUAL MOTION ESTIMATION FOR
	MULTI-SQUINT AIRBORNE SAR
Hawkins, David	pg. 7037 TU2.R20.4 - ARBITRARY NONLINEAR FM WAVEFORM
	CONSTRUCTION AND ULTRA-WIDEBAND SYNTHESIS

Hawthorne, Timothy	pg. 6317 WE2.R17.6 - HIGH-RESOLUTION UAV MAPPING FOR INVESTIGATING EELGRASS BEDS ALONG THE WEST COAST OF
	NORTH AMERICA
	pg. 6337 WE2.R17.11 - IMPLEMENTING DRONE MAPPING
	ALONG THE US WEST COAST FOR EELGRASS MEADOW
	EXTENT AND DYNAMICS
Hayakawa, Yuichi	pg. 5230 FR2.R10.8 - VOLUME MEASUREMENT OF COASTAL
	BEDROCK EROSION USING UAV AND TLS
Hayashi, Akiko	pg. 5639 MO2.R8.10 - AN EMPIRICAL SEA ICE CORRECTION
	ALGORITHM FOR SMAP SSS RETRIEVAL IN THE ARCTIC OCEAN
Hayashi, Masato	pg. 3784 TH2.R15.1 - TRIAL OF DEFORESTATION DETECTION
	BY USING 25M RESOLUTION PALSAR-2/SCANSAR DATA
	pg. 3799 TH2.R15.5 - RAINFALL-INDUCED CHANGES IN
	L-BAND BACKSCATTER OVER TROPICAL FORESTS AND THEIR
	IMPACT ON DEFORESTATION MONITORING
	pg. 3807 TH2.R15.7 - SEASONAL CHANGE ANALYSIS FOR
	ALOS-2 PALSAR-2 DEFORESTATION DETECTION
Hayashi, Takumi	pg. 2336 FR1.R9.1 - BI-DIRECTIONAL PROCESSING
	ALGORITHM WITH RPM AND WKD BASED DOPPLER VELOCITY
	ESTIMATOR FOR 3-D DOPPLER-RADAR IMAGING
Hayden, Linda	pg. 3169 TH1.R14.2 - CONTINUING EDUCATION UNITS (CEUS)
	FOR NASA'S GLOBAL LEARNING AND OBSERVATIONS TO
	BENEFIT THE ENVIRONMENT (GLOBE) WORLD WIDE PROGRAM
Haynes, Mark	pg. 1424 WE2.R6.9 - A PSEUDOSPECTRAL TIME-DOMAIN
	SIMULATOR FOR LARGE-SCALE HALF-SPACE
	ELECTROMAGNETIC SCATTERING AND RADAR SOUNDING
	<u>APPLICATIONS</u>
Hazra, Jagabondhu	pg. 4677 WE2.R11.7 - SOIL NUTRIENTS PREDICTION USING
	REMOTE SENSING DATA IN WESTERN INDIA: AN EVALUATION
	OF MACHINE LEARNING MODELS
He, Binbin	pg. 6778 TU2.R2.3 - ASSESSMENT OF THE EFFECT OF
	PROSAILH FOR OPEN AND CLOSED SHRUBLANDS LIVE FUEL
	MOISTURE CONTENT RETRIEVAL
	pg. 5270 FR2.R11.6 - ESTIMATING CHLOROPHYLL CONTENT
	OF RICE BASED ON UAV-BASED HYPERSPECTRAL IMAGERY
	AND CONTINUOUS WAVELET TRANSFORM
	pg. 6798 TU2.R2.8 - A REMOTE SENSING AND
	METEOROLOGICAL DATA-BASED METHODOLOGY FOR WILDFIRE DANGER ASSESSMENT FOR CHINA
	WIEDTINE DANGER ASSESSMENT FOR CHINA
He, Changtao	pg. 2595 FR1.R18.10 - LIGHT-WEIGHT ATTENTION SEMANTIC
	SEGMENTATION NETWORK FOR HIGH-RESOLUTION REMOTE
	SENSING IMAGES
He, Chaoqi	pg. 1949 TH1.R17.5 - PYRAMID CONVOLUTIONAL NEURAL
	NETWORKS AND BOTTLENECK RESIDUAL MODULES FOR
	CLASSIFICATION OF MULTISPECTRAL IMAGES

He, Congcong	pg. 2205 TH2.R20.3 - INVESTIGATION ON THE METHOD OF
	ESTABLISHING CONSTRUCTION WASTE TRAINING SAMPLE DATABASE AND ITS APPLICATIONS
	DATABLE THE TIETH LIGHTON
He, Di	pg. 2623 FR2.R3.5 - REDUCING THE RECEIVING ARRAY
	COMPLEXITY BY USING THE PARALLEL STOCHASTIC
	RESONANCE SYSTEM
He, Guangjun	pg. 4231 MO2.R12.7 - A DYNAMIC END-TO-END FUSION FILTER
	FOR LOCAL CLIMATE ZONE CLASSIFICATION USING SAR AND
	MULTI-SPECTRUM REMOTE SENSING DATA
He, Jiang	pg. 2687 FR2.R5.9 - DATA-DRIVEN AND MODEL-DRIVEN
	SPECTRAL SUPERRESOLUTION ALGORITHMS: COMBINATION,
	ANALYSIS AND APPLICATION FOR CLASSIFICATION
He, Jianghaomiao	pg. 766 TU1.R18.7 - HUMAN BODY RECOGNITION METHOD
	USING DIFFRACTION SIGNAL IN NLOS SCENARIO FOR
	MILLIMETER WAVE RADAR
He, Jieying	pg. 5352 TU2.R19.4 - CROSS VALIDATION OF GOES-R AND
	NOAA MULTI-RADAR MULTI-SENSOR (MRMS) QPE OVER THE
	CONTINENTAL UNITED STATES
	pg. 6361 TH1.R13.5 - ANALYSIS OF SYSTEM LINEARITY
	CAUSED BY GAIN VARIATION FOR MICROSATBASED
	MICROWAVE RADIOMETER
	pg. 6377 TH1.R13.9 - EVALUATION AND ASSIMILATION OF FY-3C MWHTS FOR RAMMASUN
	pg. 5333 TU1.R19.11 - DESIGN AND DEVELOPMENT OF
	GROUND-BASED MICROWAVE RADIOMETER FOR
	METEOROLOGICAL AND CLIMATE APPLICATIONS
	pg. 5337 TU1.R19.12 - POLARIMETRIC RADAR
	MEASUREMENTS AND RAINFALL PERFORMANCE DURING A
	SEVERE RAINFALL EVENT IN COMPLEX TERRAIN OVER
	EASTERN CHINA
He, Jing	(pg. 1957) TH1.R17.7 - SIMILAR REGION RECOMMENDATION
	BASED ON HISTOGRAM FEATURES
He, Kai	pg. 2424 FR1.R12.11 - JOINT SPARSE REPRESENTATION AND
	MULTITASK LEARNING FOR HYPERSPECTRAL ANOMALY
	DETECTION
He. Lei	WEI DIE 2 DECONSTRUCTING MODIS LST
, ==:	(pg. 6226) WE1.R15.2 - RECONSTRUCTING MODIS LST PRODUCTS OVER TIBETAN PLATEAU BASED ON RANDOM
	FOREST
	(pg. 4530) WE1.R11.4 - ANALYSIS OF THE RELATION BETWEEN S-BAND BACKSCATTER AND RANKS DISTRIBUTION OF WHEAT
	pg. 4634 WE2.R10.7 - A FUEL MOISTURE CONTENT
	MONITORING METHODOLOGY BASED ON OPTICAL REMOTE
	SENSING
	pg. 2268 FR1.R5.7 - NEW NETWORK BASED ON UNET++ AND
	DENSENET FOR BUILDING EXTRACTION FROM HIGH
	RESOLUTION SATELLITE IMAGERY
	pg. 1885 TH1.R12.11 - SOIL MOISTURE RETRIEVAL USING
	STACKED GENERALIZATION: AN ENSEMBLE MACHINE
	STACKED SEREIMERATION, AN ENSEMBLE PINCHINE

	LEARNING METHOD (pg. 2599) FR1.R18.11 - NEW NETWORK BASED ON D-LINKNET AND RESNEXT FOR HIGH RESOLUTION SATELLITE IMAGERY ROAD EXTRACTION
He, Pei	pg. 4391 TU2.R12.2 - DECISION FUSION OF PIXEL-BASED AND REGION-BASED SEGMENTATION FOR BUILDING DETECTION
He, Qing	pg. 4570 WE2.R1.3 - IDENTIFYING TERRESTRIAL VEGETATION- SOIL MOISTURE OSCILLATION FROM SATELLITE OBSERVATIONS
He, Qiurui	pg. 5426 WE1.R19.11 - CHARACTERISTIC ANALYSIS OF TYPHOON MUFIA FROM FY-3B MWRI OBSERVATIONS (pg. 5643) MO2.R8.11 - SEA SURFACE SALINITY RETRIEVAL FROM AQUARIUS IN THE SOUTH CHINA SEA USING MACHINE LEARNING ALGORITHM
He, Wenjie	pg. 4148 MO2.R10.8 - INITIAL TESTS FOR THE GENERATION OF A SPANISH NATIONAL MAP OF FOREST HEIGHT FROM TANDEM-X DATA
He, Wenjing	pg. 1440 WE2.R9.2 - MAPPING OF URBAN AREAS FROM SAR IMAGES VIA SEMANTIC SEGMENTATION
He, Yijun	TH1.R8.2 - MLE ANALYSIS FROM THE COMBINED SCATTEROMETER AND ALTIMETER MEASUREMENTS OF THE HY-2B SATELLITE [pg. 1133] WE1.R16.3 - CURRENT DIRECTION RETRIEVAL ON THE GULF STREAM SURFACE LAYER [pg. 5741] WE1.R8.4 - INVESTIGATION OF SUBMESOSCALE EDDIES FROM MODIS COLOR INDEX PRODUCTS IN COASTAL REGIONS: A CASE STUDY IN SUBEI SHOAL
He, Yong	pg. 6879 WE2.R2.5 - WARNING OF RAINFALL-INDUCED LANDSLIDE IN BAZHOU DISTRICT pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK pg. 1647 TH1.R2.9 - SHIP DETECTION WITH SAR BASED ON YOLO pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB- SAHARA AFRICA
He, Yue	pg. 2894 FR2.R18.5 - CHANGE OF IMPERVIOUS SURFACE OF CHENGDU CITY, CHINA
He, Yuhong	FR2.R18.2 - RAPID MAPPING OF BUSHFIRE HAZARD USING LANDSAT IMAGES AND GOOGLE EARTH ENGINE
He, Yun	pg. 6654 TU1.R13.5 - REMOTE SENSING MONITORING OF MANGROVE VARIATION IN JIULONG RIVER ESTUARY OF FUJIAN FROM 1978 TO 2018 pg. 6658 TU1.R13.6 - MONITORING MANGROVE CHANGES IN TONGMING BAY OF CHINA USING MULTI- TEMPORAL SATELLITE REMOTE SENSING IMAGERY pg. 728 TU1.R16.8 - STUDY ON POLARIMETRIC SCATTERING CHARACTERISTICS BASED ON DIFFERNENT BAND SAR IMAGES

	pg. 6631 TU1.R2.11 - CONSTRUCTION AND APPLICATION OF A POST-QUAKE HOUSE DAMAGE MODEL BASED ON MULTISCALE SELF-ADAPTIVE FUSION OF SPECTRAL TEXTURES IMAGES
He, Ze	pg. 4653 WE2.R11.1 - MAPPING RICE PLANTING AREA USING MULTI-TEMPORAL QUAD-POL RADARSAT-2 DATASETS AND RANDOM FOREST ALGORITHM
	pg. 4395 TU2.R12.3 - AN ACCURATE EXTRACTION ALGORITHM OF THE INDOOR BOUNDARY FEATURES BASED ON POINT CLOUD DATA
	pg. 2787 FR2.R9.11 - TREE SPECIES CLASSIFICATION BASED ON AIRBORNE LIDAR AND HYPERSPECTRAL DATA
He, Zhanyong	pg. 6879 WE2.R2.5 - WARNING OF RAINFALL-INDUCED LANDSLIDE IN BAZHOU DISTRICT
	pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB- SAHARA AFRICA
He, Zheng	pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE
He, Zhi	pg. 2105 TH2.R5.11 - PYSRRESNET: SUPER RESOLUTION FOR VIDEO SATELLITE IMAGERY VIA PYRAMID RESIDUAL NETWORK
He, Zishu	pg. 3203 TH2.R14.4 - JOINT NODE SELECTION AND SPACE- TIME RESOURCE ALLOCATION STRATEGY FOR MULTIPLE TARGETS TRACKING IN NETTED RADAR SYSTEM
Heggy, Essam	pg. 5143 FR1.R10.9 - RESOLVING GROUNDWATER CONDUITS IN HYPER-ARID ERODED KARSTS USING HIGH-RESOLUTION L-BAND SAR AND OPTICAL IMAGES
Heiden, Uta	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Heider, Bastian	pg. 4219 MO2.R12.4 - DERIVING URBAN MASS CONCENTRATIONS USING TANDEM-X AND SENTINEL-2 DATA FOR THE ASSESSMENT OF MORPHOLOGICAL POLYCENTRICITY
Heidinger, Andrew	WE1.R19.6 - EXTENDING NASA'S MODIS/VIIRS CLOUD CLIMATE DATA RECORD TO THE ADVANCED GEOSTATIONARY IMAGERS
Heincke, Bjoern	FR2.R14.7 - GEOLOGICAL CHARACTERIZATION OF NIAQORNARSSUIT COMPLEX BASED ON AIRBORNE HYPERSPECTRAL AND MAGNETIC DATA FUSION
Heinze, Markus	pg. 1165 WE1.R16.11 - FIRST EXPERIENCES WITH ACTIVE C-BAND RADAR REFLECTORS AND SENTINEL-1
Heiskanen, Janne	pg. 1319 WE2.R3.3 - PRODUCING A GAP-FREE LANDSAT TIME SERIES FOR THE TAITA HILLS, SOUTHEASTERN KENYA
Held, Alex	pg. 5065 FR1.R4.1 - FIRST ASSESSMENT OF NOVASAR-1 S-BAND SAR BACKSCATTER CHARACTERISTICS OVER TROPICAL WETLANDS pg. 6154 WE1.R12.3 - INITIAL NOVASAR-1 DATA PROCESSING

	AND IMAGERY EVALUATION (pg. 5971) TU1.R4.8 - NEW INSIGHTS FROM AUSTRALIA'S SYNTHETIC APERTURE RADAR CAPABILITY, NOVASAR-1
Hellwich, Olaf	pg. 3908 FR1.R7.5 - REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK
Helvey, Matthew	pg. 6321 WE2.R17.7 - DUCK NEST DETECTION THROUGH REMOTE SENSING
Henke, Daniel	pg. 2117 TH2.R9.3 - FMCW SAR DATA INVERSION pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Henn, Christopher	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Henry, Corentin	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Hensley, Scott	pg. 3139 WE2.R14.2 - SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS pg. 96 MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION pg. 6162 WE1.R12.5 - RESIDUAL MOTION ESTIMATION FOR MULTI-SQUINT AIRBORNE SAR
Herber, Andreas	pg. 5584] FR2.R19.6 - RETRIEVAL OF ARCTIC PARTICLE MICROPHYSICS FROM AIR-BORNE LIDAR AND SUN- PHOTOMETER DATA
Hermozo, Laura	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Hernandez-Sanchez, Juan Carlos	pg. 4727 TH1.R1.10 - COMPARISON OF SMAP RETRIEVAL SOIL MOISTURE LEVEL 2 PRODUCT WITH IN SITU MEASUREMENTS OVER CORN FIELDS IN CENTRAL MEXICO.
Hernquist, Mark	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2)
Hernández Sánchez, Juan Carlos	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Herold, Martin	pg. 704 TU1.R16.2 - DUAL POLARIMETRIC SAR COVARIANCE MATRIX ESTIMATION USING DEEP LEARNING
Hesse, Marc	pg. 1000 WE1.R3.2 - MAPPING THE RATE OF CARBON MINERALIZATION IN OMAN OPHIOLITES USING SENTINEL-1 INSAR TIME SERIES

Heuff, Floris	pg. 786 TU2.R3.1 - INSAR PHASE REDUCTION USING THE REMOVE-COMPUTE-RESTORE METHOD
Hicks, Brian	pg. 6547 FR2.R13.11 - MECHANICALLY-ACTUATED RECONFIGURABLE REFLECTARRAY (MARR) FOR MICROWAVE SINGLE PIXEL IMAGER (MSPI)
Hidalgo-Silva, Hugo	pg. 377 MO2.R19.10 - NON CONVEX OPERATORS FOR ELECTROMAGNETIC GEOSOUNDING NOISE
Higgs, MacKenzie	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Higuchi, Atsushi	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS TH1.R6.9 - AN INTRODUCTION TO THE GEONEX LEVEL-1G PRODUCTS: TOP-OF-ATMOSPHERE REFLECTANCE AND BRIGHTNESS TEMPERATURE
Himani, Tanish	pg. 6551 FR2.R13.12 - IMAGING ALGORITHM AND MEASUREMENT ERROR IMPACT ON RETRIEVALS FROM THE MICROWAVE SINGLE PIXEL IMAGER (MSPI)
Hinostroza, Israel	pg. 1797 TH1.R7.11 - CHARACTERIZATION OF THE WALKING ACTIVITY WITHIN THE FOREST BY USING A DOPPLER ANALYSIS IN THE UHF-BAND
Hippert-Ferrer, Alexandre	pg. 1889 TH1.R16.1 - GAP-FILLING BASED ON EOF ANALYSIS OF SPATIO-TEMPORAL COVARIANCE OF SATELLITE IMAGE DERIVED DISPLACEMENT TIME SERIES
Hirahara, Daichi	pg. 5957 TU1.R4.4 - CONCEPT STUDY OF FUTURE LAND OBSERVATION SATELLITE TECHNIQUES WHEN UTILIZING KHATRI-RAO (KR) PRODUCT ARRAY PROCESSING
Hirakawa, Tsubasa	pg. 1508) WE2.R12.8 - CORRECTION OF SEASONAL EFFECTS ON VIIRS DNB MONTHLY COMPOSITES BY USING STABLE LIT DATA AND REGRESSION CONVOLUTIONAL NEURAL NETWORK
Hirata, Takafumi	pg. 6222 WE1.R15.1 - INFLIGHT RADIOMETRIC CALIBRATION FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON
Hirner, Andreas	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
Hirose, Akira	pg. 429 TU1.R3.11 - COMPLEX-VALUED CONVOLUTIONAL NEURAL NETWORKS IN INTERFEROMETRIC SYNTHETIC APERTURE RADAR AND THEIR TEACHER-IMAGE POLLUTION INFLUENCE ON THE PERFORMANCE
Hiyama, Tetsuya	pg. 5108 FR1.R4.12 - INVESTIGATION OF THE ABILITY OF A

	PASSIVE MICROWAVE SENSOR TO MONITOR SURFACE WATER OVER COMPLEX LANDSCAPE IN EASTERN SIBERIA
Ho Tong Minh, Dinh	pg. 389 TU1.R3.1 - MEKONG SAR INTERFEROMETRY BIG DATA: PRELIMINARY RESULTS
	pg. 5085 FR1.R4.6 - STUDY FLOOD REGIME USING HIGH
	TEMPORAL RESOLUTION SENTINEL-1 IMAGES (pg. 328) MO2.R18.7 - VOLCANIC ERUPTION MONITORING
	USING COHERENCE CHANGE DETECTION MATRIX
Ho, Le-Thu	pg. 4959 TH2.R6.6 - EVALUATIING THE NDLI'S PERFORMANCE FOR IDENTIFYING WATER SURFACE USING SENTINEL-2 MSI DATA
Hodges, Erik	pg. 5042 FR1.R1.7 - SOILSCAPE WIRELESS IN SITU NETWORKS IN SUPPORT OF CYGNSS LAND APPLICATIONS
Hodges, Richard	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Hoefen, Todd	pg. 4031 FR2.R14.1 - IMAGING SPECTROSCOPY APPLIED TO
	MINERAL MAPPING OVER LARGE AREAS: USGS ANALYSIS OF AVIRIS-CLASSIC DATA COVERING CALIFORNIA AND NEVADA
Hoeg, Per	pg. 3345 TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION
Hoffman, Ross	(pg. 5313) TU1.R19.6 - ASSIMILATION OF GNSS-R DELAY- DOPPLER MAPS INTO WEATHER MODELS
Hoffmann, Tânia Beatriz	pg. 4263 TU1.R1.4 - FIRE OCCURRENCE IN THE BRAZILIAN
	SAVANNA CONSERVATION UNITS AND THEIR BUFFER ZONES
Hogan, Daniel	pg. 3920 FR1.R7.8 - ROAD NETWORK AND TRAVEL TIME EXTRACTION FROM MULTIPLE LOOK ANGLES WITH SPACENET DATA
Holgado Alvarez, Jose Luis	pg. 2515 FR1.R17.1 - S2-CGAN: SELF-SUPERVISED
	ADVERSARIAL REPRESENTATION LEARNING FOR BINARY
	CHANGE DETECTION IN MULTISPECTRAL IMAGES
Hollibaugh-Baker, David	pg. 4073 FR2.R15.6 - P-BAND SYNTHETIC APERTURE RADAR
	FOR PLANETARY SUBSURFACE IMAGING APPLICATIONS
Holt Andersen, Birgitte	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT
Holt, Benjamin	pg. 1921 TH1.R16.9 - DERIVING VELOCITY FIELDS OF
	SUBMESOSCALE EDDIES USING MULTI-SENSOR IMAGERY
Holtzman, Natan	pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT
	2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
Holz, Robert	WE1.R19.6 - EXTENDING NASA'S MODIS/VIIRS CLOUD CLIMATE DATA RECORD TO THE ADVANCED GEOSTATIONARY IMAGERS
Hong, Danfeng	pg. 2049 TH2.R3.8 - UNSUPERVISED HYPERSPECTRAL
	EMBEDDING BY LEARNING A DEEP REGRESSION NETWORK

	pg. 2691 FR2.R5.10 - LOCALLY LINEAR RECONSTRUCTION FOR SPECTRAL ENHANCEMENT USING LIMITED PIXEL-TO-PIXEL MULTISPECTRAL AND HYPERSPECTRAL DATA
Hong, Gang	pg. 2956 MO2.R9.11 - ESTIMATING EFFECTIVE SNOW GRAIN SIZE USING NORMALIZED CHANNEL RATIOS OF MODIS 0.86 AND 1.64 MICRON BANDS
Hong, Wen	pg. 782 TU1.R18.11 - MULTI-ANGULAR SAR STATISTICAL PROPERTIES ANALYSIS AND MAN-MADE TARGET DETECTION
Hong, Yang-Ki	pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS
Honggen, Xu	pg. 5624 MO2.R8.6 - MONITORING OF TIANWAN NUCLEAR POWER PLANT THERMAL POLLUTION BASED ON REMOTELY SENSED LANDSAT DATA
Honkavaara, Eija	pg. 4379 TU2.R11.10 - ON THE ESTIMATION OF THE LEAF ANGLE DISTRIBUTION FROM DRONE BASED PHOTOGRAMMETRY
Honnorat, Marc	pg. 3817 TH2.R16.3 - USE OF SAR IMAGERY AND ARTIFICIAL INTELLIGENCE FOR A MULTI-COMPONENTS OCEAN MONITORING pg. 5380 TU2.R19.11 - COMBINATION OF GEOSTATIONARY AND POLAR SATELLITE SENSORS TO MONITOR CUMULONIMBUS AND THEIR WINDS AT THE OCEAN SURFACE
Honold, Hans-Peter	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES
Hook, Simon	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS pg. 3955 FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS
Hooper, Andrew	pg. 6857 WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING
Hopkin, Alison	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY
Hoque, Md Tamjidul	pg. 1853 TH1.R12.3 - FLIGHT DATA OF AIRPLANE FOR WIND FORECASTING pg. 976 TU2.R18.7 - LEVEE-CRACK DETECTION FROM SATELLITE OR DRONE IMAGERY USING MACHINE LEARNING APPROACHES
Horgan, Kevin	TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Horn, Ralf	pg. 3059 WE1.R9.4 - UNSUPERVISED CLUSTERING OF C-BAND

	POLSAR DATA OVER SEA ICE (pg. 6166) WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Hornbuckle, Brian	pg. 4347 TU2.R11.2 - MEASUREMENT OF CROP WATER BY ON SITE RADIOMETRY TH2.R10.9 - VICARIOUS VALIDATION OF L-BAND VEGETATION OPTICAL DEPTH
Horner, Scott	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Horota, Rafael	pg. 2619 FR2.R3.4 - HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN REMOTE SENSING IMAGES?
Hoshino, Buho	pg. 2799 FR2.R12.3 - REMOTELY SENSED METHOD FOR DETECTION OF SPATIAL DISTRIBUTION PATTERN OF DRYLAND PLANTS IN WATER LIMITED ECOSYSTEM
Hosoi, Fumiki	pg. 4339 TU2.R10.12 - TREE SPECIES CLASSIFICATION USING LEAF AND TREE TRUNK IMAGES
Hosseini, Mehdi	pg. 4175 MO2.R11.4 - CROP HARVEST MONITORING USING POLARIMETRIC SAR PARAMETERS
Hostache, Renaud	pg. 3251 MO2.R2.4 - SYSTEMATIC AND AUTOMATIC LARGE-SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA pg. 3255 MO2.R2.5 - THE ROLE OF CO- AND CROSS-POLARIZATIONS INSAR COHERENCES IN MAPPING FLOODED URBAN AREAS pg. 6666 TU1.R13.8 - MONITORING CHANGES IN THE COASTAL ENVIRONMENT BASED ON SAR SENTINEL-1 TIME-SERIES
Hostert, Patrick	pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO
Hou, Ankai	pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK pg. 4279 TU1.R1.8 - LAND USE AND LAND COVER CHANGE OF GHANA
Hou, Biao	pg. 4391 TU2.R12.2 - DECISION FUSION OF PIXEL-BASED AND REGION-BASED SEGMENTATION FOR BUILDING DETECTION pg. 1731 TH1.R5.6 - POLSAR SCENE CLASSIFICATION VIA LOW-RANK TENSOR-BASED MULTI-VIEW SUBSPACE REPRESENTATION pg. 6989 FR2.R2.9 - CORRELATION ATTENTION FOR REMOTE SENSING IMAGE CAPTIONING pg. 1472 WE2.R9.10 - PANCHROMATIC IMAGE LAND COVER CLASSIFICATION VIA DCNN WITH UPDATING ITERATION

	STRATEGY
Hou, Chao	[pg. 2759] FR2.R9.4 - HIGHLY CONTAMINATED WORK MODE IDENTIFICATION OF PHASED ARRAY RADAR USING DEEP LEARNING METHOD
Hou, Chen Guang	pg. 3788 TH2.R15.2 - CHANGE DETECTION IN BI-TEMPORAL ALOS-2 PALSAR-2 POLARIMETRIC DATA
Hou, Kaihua	pg. 6611) TU1.R2.6 - TECTONIC DIFFERENCE BETWEEN THE QAIDAM BASIN AND THE EASTERN KUNLUN SHAN: INSIGHT FROM BUFFER ANALYSIS OF THE EARTHQUAKES AND FAULTS IN THE NORTH TIBET
Hou, Lei	pg. 5592 FR2.R19.8 - A HIGH-SPATIAL-RESOLUTION AEROSOL RETRIEVAL ALGORITHM FOR SENTINEL-2 IMAGES OVER BRIGHT URBAN SURFACES pg. 5596 FR2.R19.9 - HIGH RESOLUTION AEROSOL RETRIEVAL OVER URBAN SURFACES USING LANDSAT 8 OLI pg. 940 TU2.R16.10 - DEEP LEARNING FOR VEGETATION IMAGE SEGMENTATION IN LAI MEASUREMENT
Hou, Ning	pg. 6686 TU1.R15.3 - EVALUATION OF DOWNWARD SHORTWAVE RADIATION ESTIMATIONS OVER TROPICAL OCEAN SURFACE BASED ON BAYESIAN MODEL AVERAGING METHOD pg. 6710 TU1.R15.9 - LONG-TERM TRENDS OF ESTIMATED SURFACE INCIDENT SHORTWAVE RADIATION IN CHINA DURING 1970-2015
Hou, Shilong	pg. 2863 FR2.R16.8 - SAR IMAGE SHIP DETECTION BASED ON SCENE INTERPRETATION
Hou, Xin	pg. 936 TU2.R16.9 - FEATURE CORRELATION ANALYSIS OF TWO-BRANCH CONVOLUTIONAL NETWORKS FOR MULTI-SOURCE IMAGE CLASSIFICATION
Hou, Zengfu	(pg. 2412) FR1.R12.8 - A BACKGROUND REFINEMENT COLLABORATIVE REPRESENTATION METHOD WITH SALIENCY WEIGHT FOR HYPERSPECTRAL ANOMALY DETECTION
Hou, Zesheng	pg. 1225 WE1.R18.2 - AN INTEGRATED METHOD OF SHIP DETECTION AND RECOGNITION IN SAR IMAGES BASED ON DEEP LEARNING
Houlsby, Neil	pg. 6730 TU1.R17.2 - TRAINING GENERAL REPRESENTATIONS FOR REMOTE SENSING USING IN-DOMAIN KNOWLEDGE
Houts, Jacquelynne	pg. 3778 TH2.R13.7 - THE SPECTRUM OUTLOOK FOR EARTH REMOTE SENSING POST WRC-19
Houtz, Derek	pg. 2983 TU1.R9.6 - COMPARISON OF PASSIVE MICROWAVE MELT DETECTION OF GREENLAND: L-BAND AND XPGR pg. 6531 FR2.R13.7 - A COST-EFFECTIVE PORTABLE L-BAND RADIOMETER FOR DRONE AND GROUND-BASED APPLICATIONS
Hoxha, Genc	pg. 6734 TU1.R17.3 - REMOTE SENSING IMAGE CAPTIONING WITH SVM-BASED DECODING

Hruska, Jonas	pg. 6309 WE2.R17.4 - VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY pg. 6487 FR1.R15.8 - TARGET INFLUENCE ON GROUND CONTROL POINTS (GCPS) IDENTIFICATION IN AERIAL IMAGES
Hsiung, Pao-Ann	pg. 3119 WE1.R14.8 - DEEP NEURAL NETWORK-BASED DATA RECONSTRUCTION FOR LANDSLIDE DETECTION
Hu, Atsushi	pg. 2229 TH2.R20.9 - MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING
Hu, Baoxin	pg. 5018 FR1.R1.1 - IMPROVEMENT OF SOIL TEXTURE CLASSIFICATION WITH LIDAR DATA pg. 2679 FR2.R5.7 - CNN-BASED TREE SPECIES CLASSIFICATION USING AIRBORNE LIDAR DATA AND HIGH- RESOLUTION SATELLITE IMAGE
Hu, Cheng	pg. 6559) FR2.R17.2 - PERFORMANCE ANALYSIS AND CONFIGURATION DESIGN OF GEOSYNCHRONOUS SPACEBORNE-AIRBORNE BISTATIC MOVING TARGET INDICATION SYSTEM pg. 5306) TU1.R19.4 - A SIMULATING METHOD OF AIRSHIP-BORNE POLARIMETRIC WEATHER RADAR FOR TYPHOON OBSERVATION
Hu, Chuanmin	pg. 5741 WE1.R8.4 - INVESTIGATION OF SUBMESOSCALE EDDIES FROM MODIS COLOR INDEX PRODUCTS IN COASTAL REGIONS: A CASE STUDY IN SUBEI SHOAL
Hu, Chuli	pg. 6642 TU1.R13.2 - A RISK ASSESSMENT FRAMEWORK OF CYANOBACTERIA BLOOM USING LANDSAT DATA: A CASE STUDY OF LAKE LONGGAN (CHINA)
Hu, Denghui	pg. 3529 WE2.R8.3 - PRELIMINARY ANALYSIS OF TROPICAL CYCLONE OCEAN WAVES USING SENTINEL-1 SAR DATA.
Hu, Fei	pg. 6423 FR1.R13.2 - ARTIFACT-FREE RFI LOCALIZATION BASED ON SPATIAL SMOOTHING MUSIC IN SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETERS (pg. 6511) FR2.R13.2 - A WAVENUMBER DOMAIN IMAGING ALGORITHM FOR SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETRY IN NEAR-FIELD
Hu, Guangcheng	pg. 4343) TU2.R11.1 - DISENTANGLING THE RESPONSE OF VAGETATION TO RAINFALL ANOMALIES FOR DROUGHT EVALUATION OVER THE INDUS BASIN
Ни, Нао	pg. 6423 FR1.R13.2 - ARTIFACT-FREE RFI LOCALIZATION BASED ON SPATIAL SMOOTHING MUSIC IN SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETERS pg. 6511 FR2.R13.2 - A WAVENUMBER DOMAIN IMAGING ALGORITHM FOR SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETRY IN NEAR-FIELD pg. 5442 TH1.R19.3 - ESTIMATION OF LOCATION AND

	INTENSITY OF TROPICAL CYCLONES BASED ON MICROWAVE SOUNDING INSTRUMENTS
Hu, Jiaochan	pg. 56 MO2.R5.5 - SUPERPIXEL-LEVEL CONSTRAINT REPRESENTATION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION
Hu, Jing	pg. 2663 FR2.R5.3 - DEEP INTRA FUSION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
Hu, Jingxiang	pg. 889 TU2.R7.5 - RESEARCH ON 3D REAL SCENE PLANNING METHOD FOR MINE REFORESTATION
Hu, Jun	pg. 932 TU2.R16.8 - CIRCULAR EXPERIMENT WITH P-BAND ULTRA-WIDEBAND SYNTHETIC APERTURE RADAR SYSTEM
Hu, Lei	pg. 6810 TU2.R2.11 - AUTOMATIC GENERATION OF DECISION SUPPORT REPORT FOR DISASTER RESPONSE USING REMOTE SENSING AND SDI
Hu, Liang-Cheng	pg. 3119 WE1.R14.8 - DEEP NEURAL NETWORK-BASED DATA RECONSTRUCTION FOR LANDSLIDE DETECTION
Hu, Ling	pg. 4128 MO2.R10.3 - STUDY ON UAV SENSED CANOPY LEAF DISTRIBUTION USING COMPUTER SIMULATION pg. 5266 FR2.R11.5 - PREDICTION OF GRAIN PROTEIN CONTENT OF WINTER WHEAT USING UAV BASED HYPERSPECTRAL DATA
Hu, Lucas	TU2.R6.2 - WEAKLY SUPERVISED SEMANTIC SEGMENTATION IN THE 2020 IEEE GRSS DATA FUSION CONTEST
Hu, Nicole	pg. 6802 TU2.R2.9 - A MACHINE LEARNING SOLUTION FOR OPERATIONAL REMOTE SENSING OF ACTIVE WILDFIRES
Hu, Shuo	pg. 5131 FR1.R10.6 - RE-EVALUATING BASALTIC DEPOSITS IN MARE NUBIUM WITH CE-2 CELMS DATA
Hu, Wei	pg. 2229 TH2.R20.9 - MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING
Hu, Wenshuai	pg. 858 TU2.R5.8 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON TENSOR-TRAIN CONVOLUTIONAL LONG SHORT- TERM MEMORY
Hu, Xin	pg. 4187 MO2.R11.7 - CROPNET: DEEP SPATIAL-TEMPORAL- SPECTRAL FEATURE LEARNING NETWORK FOR CROP CLASSIFICATION FROM TIME-SERIES MULTI-SPECTRAL IMAGES
Hu, Xinchang	pg. 2149 TH2.R9.11 - AN ANTENNA BEAM STEERING STRATEGY FOR SAR ECHO SIMULATION IN HIGHLY ELLIPTICAL ORBIT
Hu, Xudong	pg. 2643 FR2.R3.10 - A NOVEL FRAMEWORK OF CNN INTEGRATED WITH ADABOOST FOR REMOTE SENSING SCENE CLASSIFICATION

Hu, Yao	pg. 2763 FR2.R9.5 - KERNEL ROTATIONAL NETWORK FOR SYNTHETIC APERTURE RADAR TARGET RECOGNITION
Hu, Yihua	pg. 1251 WE1.R18.9 - A SVA BASED SIDELOBE SUPPRESSION METHOD FOR SEA-LAND SEGMENTATION AND SHIP DETECTION IN SAR IMAGES
Hu, Yonghong	pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA
Hu, Yongxiang	pg. 3016 TU2.R9.4 - SEA ICE MELT AND FREEZE ONSET FROM SPACE-BASED LIDAR MEASUREMENTS
Hu, Yongxin	pg. 4926 TH2.R1.6 - SPATIAL DOWNSCALING OF LAND SURFACE TEMPERATURE BASED ON SURFACE ENERGY BALANCE
Hu, Yuan	pg. 1841 TH1.R9.11 - SPATIAL ATTENTION NETWORK FOR ROAD EXTRACTION
Hu, Yue	pg. 1341 WE2.R3.9 - REMOTE SENSING IMAGES INPAINTING BASED ON STRUCTURED LOW-RANK MATRIX APPROXIMATION
Hu, Yunli	pg. 5337) TU1.R19.12 - POLARIMETRIC RADAR MEASUREMENTS AND RAINFALL PERFORMANCE DURING A SEVERE RAINFALL EVENT IN COMPLEX TERRAIN OVER EASTERN CHINA
Hu, Yuxin	pg. 2181 TH2.R18.7 - A GEOMETRIC VIEW OF FAST GRAM DETERMINANT-BASED ENDMEMBER EXTRACTION ALGORITHM FOR HYPERSPECTRAL IMAGERY
Hu, Zhiyong	pg. 2567 FR1.R18.3 - AN EMPIRICAL STUDY ON FULLY CONVOLUTIONAL NETWORK AND HYPERCOLUMN METHODS FOR UAV REMOTE SENSING IMAGERY CLASSIFICATION
Hu, Zhongwen	pg. 6301 WE2,R17.2 - VOLUNTEERED REMOTE SENSING USING HANDHELD CAMERAS IN A PASSENGER AIRCRAFT
Hua, Yuansheng	pg. 952 TU2.R18.1 - EVENT AND ACTIVITY RECOGNITION IN AERIAL VIDEOS USING DEEP NEURAL NETWORKS AND A NEW DATASET pg. 529 TU1.R7.2 - LEARNING MULTI-LABEL AERIAL IMAGE CLASSIFICATION UNDER LABEL NOISE: A REGULARIZATION APPROACH USING WORD EMBEDDINGS pg. 1452 WE2.R9.5 - INSTANCE SEGMENTATION OF BUILDINGS USING KEYPOINTS
Huang, Bang	pg. 6555 FR2.R17.1 - FOCUSING OF SPACEBORNE SAR DATA USING THE IMPROVED NONLINEAR CHIRP SCALING ALGORITHM pg. 1094 WE1.R6.4 - JOINT RANGE-ANGLE-DOPPLER RESOLUTION CAPABILITY ANALYSIS FOR FDA RADAR SIGNAL VIA GENERALIZED AMBIGUITY FUNCTION pg. 2627 FR2.R3.6 - RESEARCH ON C&I JAMMING BASED ON

	FREQUENCY DIVERSE ARRAY ANTENNA
Huang, Bohao	pg. 1476 WE2.R9.11 - DO DEEP LEARNING MODELS GENERALIZE TO OVERHEAD IMAGERY FROM NOVEL GEOGRAPHIC LOCATIONS? THE XGD BENCHMARK PROBLEM pg. 948 TU2.R16.12 - DESIGNING SYNTHETIC OVERHEAD IMAGERY TO MATCH A TARGET GEOGRAPHIC REGION: PRELIMINARY RESULTS TRAINING DEEP LEARNING MODELS
Huang, Bowen	pg. 4211 MO2.R12.2 - A NOVEL BUILDING RECONSTRUCTION FRAMEWORK USING SINGLE-VIEW REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORKS pg. 3063 WE1.R9.5 - A DISTRIBUTION CONTROLLABLE SIMULATION METHOD OF REMOTE SENSING SEA-ICE IMAGES
Huang, Chengquan	TH1.R6.8 - DEVELOPMENT OF A HARMONIZED MULTI-SENSOR GLOBAL ACTIVE FIRE DATA SET: CURRENT STATUS AND MULTI-PRODUCT VALIDATION RESULTS
Huang, Chong	pg. 216 MO2.R16.1 - INTEGRATING TIME-SERIES AND HIGH- SPATIAL REMOTE SENSING DATA BASED ON MULTILEVEL DECISION FUSION
Huang, Chuan	pg. 2815 FR2.R12.7 - A LONG-TIME INTEGRATION METHOD FOR GNSS-BASED PASSIVE RADAR DETECTION OF MARINE TARGET WITH MULTI-STAGE MOTIONS
Huang, Fang	pg. 244 MO2.R16.8 - OPTIMIZATION OF DSM PRODUCT GENERATION OF ZY-3 SATELLITE IMAGES BASED ON IMAGE FREQUENCY-DOMAIN FUSION AND FILTERING pg. 609 TU1.R10.11 - PARALLEL GENERATION OF A 3D DENSE POINT CLOUD BASED ON UAV IMAGING AND THE CMVS ALGORITHM
Huang, Feixiong	pg. 5313 TU1.R19.6 - ASSIMILATION OF GNSS-R DELAY- DOPPLER MAPS INTO WEATHER MODELS
Huang, Guanyu	FR1.R19.8 - ESTIMATE OF GROUND-LEVEL OZONE CONCENTRATIONS BY USING OMI OBSERVATIONS AND MACHINE LEARNING: A CASE STUDY IN ATLANTA GEORGIA U.S.A.
Huang, Hai	pg. 5290 FR2.R11.11 - MARKOV CHAIN MONTE CARLO AND FOUR-DIMENSIONAL VARIATIONAL APPROACH BASED WINTER WHEAT YIELD ESTIMATION pg. 4383 TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Huang, He	pg. 4943 TH2.R6.2 - VEGETATION INDICES DERIVED FROM FENGYUN-3D MERSI-II DATA pg. 5581 FR2.R19.5 - MONITORING PM2.5 DISTRIBUTIONS OVER CHINA FROM GEOSTATIONARY SATELLITE OBSERVATIONS
Huang, Hong	pg. 2021 TH2.R3.1 - DEEP MANIFOLD LEARNING NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION

	pg. 2037 TH2.R3.5 - SPATIAL-SPECTRAL COMBINATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Huang, Huaguo	pg. 4614 WE2.R10.2 - EXTENDING STOCHASTIC RADIATIVE TRANSFER THEORY TO SIMULATE BRF OVER FORESTS CONTAINING TREES WITH HETEROGENEOUS DAMAGED FOLIAGE pg. 6814 TU2.R2.12 - ADAPTING 3-PG MODEL TO SIMULATE EARLY FOREST GROWTH DYNAMICS IN HIGHLY BURNT AREAS ACROSS DAXING ANLING MOUNTAIN IN CHINA
Huang, Jianxi	pg. 4383 TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Huang, Jianxi Huang	pg. 5290 FR2.R11.11 - MARKOV CHAIN MONTE CARLO AND FOUR-DIMENSIONAL VARIATIONAL APPROACH BASED WINTER WHEAT YIELD ESTIMATION
Huang, Jing	pg. 3172 TH1.R14.3 - INTRODUCTION TO POSTGRADUATE EDUCATION OF REMOTE SENSING IN CHINA pg. 641 TU1.R11.8 - MULTI-LEVEL STRATEGY-BASED SPATIAL INFORMATION PREDICTION FOR SPATIOTEMPORAL REMOTE SENSING IMAGERY FUSION
Huang, Jingfeng	pg. 6393 TH1.R15.4 - MONITORING OF THE CROSS-CALIBRATION BIASES BETWEEN THE S-NPP AND NOAA-20 VIIRS SENSOR DATA RECORDS USING GOES ADVANCED BASELINE IMAGER AS A TRANSFER TH1.R15.8 - SNPP AND NOAA-20 GLOBAL INTER-SENSOR BIAS ASSESSMENTS WITHIN ICVS FRAMEWORK USING 32-DAY AVERAGED DIFFERENCE METHOD
Huang, Kekun	pg. 1592 WE2.R18.6 - ACCURATE DETECTION OF HISTORICAL BUILDINGS USING AERIAL PHOTOGRAPHS AND DEEP TRANSFER LEARNING
Huang, Kuan-ting	pg. 3735 TH2.R12.3 - BETWEEN VULNERABILITY AND SUSTAINABILITY: EVALUATING THE FLOOD IMPACT ON URBAN ROAD NETWORK
Huang, Lanqing	pg. 3428 TU2.R15.8 - POLARIMETRIC CHARACTERISTICS FOR SEA-ICE SURFACE TOPOGRAPHIC DERIVATION USING TANDEM-X INTERFEROMETRY DATA
Huang, Liheng	pg. 1205 WE1.R17.9 - STREET VIEW IMAGE RETRIEVAL WITH AVERAGE POOLING FEATURES
Huang, Lijia	pg. 1651 TH1.R2.10 - MULTI-ASPECT SAR TARGET RECOGNITION BASED ON EFFICIENTNET AND GRU
Huang, Lingcao	pg. 3090 WE1.R9.12 - DETECTING CHANGES OF RETROGRESSIVE THAW SLUMPS FROM SATELLITE IMAGES. USING SIAMESE NEURAL NETWORK
Huang, Miaofen	pg. 1287 WE1.R20.6 - SPECTRAL PROPERTIES ANALYSIS OF

	WASTEWATER IN OIL FIELD AND ITS REMOTE SENSING DETECTION WITH GF-2
Huang, Min	pg. 2535 FR1.R17.6 - GEOSOT GRID REMOTE SENSING INTELLIGENT INTERPRETATION MODEL BASED ON FINE-TUNING RESNET-18: A CASE STUDY OF CONSTRUCTION LAND
Huang, Nan	pg. 5566 FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT pg. 1042 WE1.R5.2 - LOCALLY CONSTRAINED COLLABORATIVE REPRESENTATION BASED FISHER'S LDA FOR CLUSTERING OF HYPERSPECTRAL IMAGES
Huang, Pingping	pg. 2447 FR1.R14.6 - IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE ON SAR IMAGE SHIP DETECTION BASED ON DEEP LEARNING pg. 1560 WE2.R16.10 - AMPLITUDE AND PHASE ERROR CORRECTION METHOD FOR ARRAY SAR PROCESSED IN TIME DOMAIN
Huang, Pu	pg. 5773 WE1.R8.12 - SPATIAL-TEMPORAL PATTERNS OF TOTAL SUSPENDED MATTERS (TSM) IN THE YELLOW RIVER ESTUARY
Huang, Qien	pg. 5298 TU1.R19.2 - ASSIMATION OF FY3D COMBINED MICROWAVE SOUNDER OBSERVATION IN ATMS ALIKE ONE DATA STREAM
Huang, Qiujun	pg. 6810 TU2.R2.11 - AUTOMATIC GENERATION OF DECISION SUPPORT REPORT FOR DISASTER RESPONSE USING REMOTE SENSING AND SDI
Huang, Shanhong	pg. 1287 WE1.R20.6 - SPECTRAL PROPERTIES ANALYSIS OF WASTEWATER IN OIL FIELD AND ITS REMOTE SENSING DETECTION WITH GF-2
Huang, Shanyu	pg. 4371 TU2.R11.8 - MONITORING OF VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT BY MULTIANGULAR CANOPY REFLECTANCE SPECTRA IN MAIZE
Huang, Shifeng	pg. 6898 WE2.R2.10 - STUDY ON REGIONAL DROUGHT MONITORING BASED ON MULTI-SOURCES DATA IN CHINA
Huang, Shuangde	pg. 6997 FR2.R2.11 - A METHOD TO CREATE TRAINING DATASET FOR DEHAZING WITH CYCLEGAN
Huang, Stacey	pg. 2487 FR1.R16.5 - AN ANALYTICAL FRAMEWORK FOR UNDERSTANDING PERSISTENT SCATTERER INCIDENCE IN INSAR IMAGERY WITH BANDWIDTH AND WAVELENGTH
Huang, Tao	pg. 6981 FR2.R2.7 - UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA
Huang, Weimin	pg. 6182 WE1.R13.1 - GLOBAL SOIL MOISTURE ESTIMATION USING CYGNSS DATA

	pg. 4562 WE2.R1.1 - SENSITIVITY OF CYGNSS-DERIVED SOIL
Huang, Wenjiang	MOISTURE TO GLOBAL PRECIPITATION Pg. 4906 TH2.R1.1 - EFFECT OF SPATIAL RESOLUTION ON SOIL PROPERTIES RETRIEVAL FROM IMAGING SPECTROSCOPY: AN ASSESSMENT OF THE HYPERSPECTRAL CHIME MISSION POTENTIAL Pg. 830 TU2.R5.1 - TWO-STEP ENSEMBLE BASED CLASS NOISE CLEANING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 4371 TU2.R11.8 - MONITORING OF VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT BY MULTIANGULAR CANOPY REFLECTANCE SPECTRA IN MAIZE
Huang, Wenli	pg. 4746 TH1.R4.4 - AUTOMATIC EXTRACTION OF FLOOD COVERAGE BASED ON DYNAMIC SURFACE WATER EXTENT AND SAR DATA
Huang, Xiao	pg. 6758 TU1.R17.9 - TRANSLATING MULTISPECTRAL IMAGERY TO NIGHTTIME IMAGERY VIA CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
Huang, Xiaomeng	pg. 4570 WE2.R1.3 - IDENTIFYING TERRESTRIAL VEGETATION- SOIL MOISTURE OSCILLATION FROM SATELLITE OBSERVATIONS pg. 4586 WE2.R1.7 - SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
Huang, Xiaoqi	pg. 6345 TH1.R13.1 - ANALYSIS OF FIVE-YEAR AMSR2 BRIGHTNESS TEMPERATURE USING THE HISTOGRAMS OF COLD MEASUREMENTS pg. 5783 TH1.R8.3 - A STUDY ON MICROWAVE EMISSIVITY FROM WIND-INDUCED SEA FOAM
Huang, Xiayuan	pg. 2727 FR2.R6.8 - POLSAR IMAGE FEATURE EXTRACTION BASED ON CO-REGULARIZATION
Huang, Xuan	pg. 4466 WE1.R1.9 - AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA
Huang, Yan	pg. 2352 FR1.R9.5 - A NOVEL SAR IMAGE DOMAIN-GROUND MOVING TARGET IMAGING METHOD pg. 2141 TH2.R9.9 - GROUND MOVING TARGET IMAGING BASED ON MSOKT AND KT FOR SYNTHETIC APERTURE RADAR
Huang, Yanbo	pg. 5998 TU1.R14.3 - RETRIEVAL OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE AT RED SPECTRAL PEAK WITH TROPOMI ON SENTINEL-5 PRECURSOR pg. 4838 TH1.R10.5 - PRELIMINARY STUDY OF WAVELENGTH POSITIONS OF LEAF FLUORESCENCE PEAKS WITH EXPERIMENTAL DATA
Huang, Yaohuan	pg. 5624 MO2.R8.6 - MONITORING OF TIANWAN NUCLEAR POWER PLANT THERMAL POLLUTION BASED ON REMOTELY SENSED LANDSAT DATA
Huang, Yinli	(pg. 1251) WE1.R18.9 - A SVA BASED SIDELOBE SUPPRESSION

	METHOD FOR SEA-LAND SEGMENTATION AND SHIP DETECTION IN SAR IMAGES
Huang, Yongfa	pg. 2396 FR1.R12.4 - SPATIAL-SPECTRAL AUTOENCODER NETWORKS FOR HYPERSPECTRAL UNMIXING
Huang, Yuancheng	pg. 2416 FR1.R12.9 - HYPERSPECTRAL ANOMALY DETECTION BASED ON ISOLATION FOREST WITH BAND CLUSTERING
Huang, Yukun	pg. 1949 TH1.R17.5 - PYRAMID CONVOLUTIONAL NEURAL NETWORKS AND BOTTLENECK RESIDUAL MODULES FOR CLASSIFICATION OF MULTISPECTRAL IMAGES
Huang, Yulin	Pg. 2791 FR2.R12.1 - AN EFFICIENT COHERENT INTEGRATION APPROACH FOR BISTATIC SAR MOVING TARGET DETECTION AND PARAMETER ESTIMATION BASED ON 2-D DERAMP PROCESSING [Pg. 6571] FR2.R17.5 - FAST TOTAL VARIATION SUPERRESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING [Pg. 3188] TH1.R14.7 - MAJORIZE-MINIMIZATION BASED SUPER-RESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING [Pg. 2815] FR2.R12.7 - A LONG-TIME INTEGRATION METHOD FOR GNSS-BASED PASSIVE RADAR DETECTION OF MARINE TARGET WITH MULTI-STAGE MOTIONS [Pg. 2639] FR2.R3.9 - A DEFORMABLE CONVOLUTION NEURAL NETWORK FOR SAR ATR [Pg. 2779] FR2.R9.9 - KERNEL LOCAL SAMPLE DIRECTIONAL DISCRIMINANT EMBEDDING FOR SAR AUTOMATIC TARGET RECOGNITION [Pg. 473] TU1.R5.10 - UAV INTELLIGENT OPTIMAL PATH PLANNING METHOD FOR DISTRIBUTED RADAR SHORT-TIME APERTURE SYNTHESIS [Pg. 1793] TH1.R7.10 - AN IMPROVED TARGET EXTRACTION SCHEME FOR FORWARD-LOOKING SCANNING RADAR [Pg. 2467] FR1.R14.11 - HARBOR DETECTION IN SAR IMAGES BASED ON MULTIDIRECTIONAL ONE-DIMENSIONAL SCANNING [Pg. 6718] TU1.R15.11 - SCENE EDGE TARGET RECOVERY OF SCANNING RADAR ANGULAR SUPER-RESOLUTION BASED ON DATA EXTRAPOLATION [Pg. 2153] TH2.R9.12 - EFFICIENT TIME DOMAIN ECHO SIMULATION OF BISTATIC SAR CONSIDERING TOPOGRAPHY VARIATION
Huang, Yuling	pg. 1755 TH1.R5.12 - MULTI-VIEW CNN-LSTM NEURAL NETWORK FOR SAR AUTOMATIC TARGET RECOGNITION
Huang, Yuxia	pg. 2567 FR1.R18.3 - AN EMPIRICAL STUDY ON FULLY CONVOLUTIONAL NETWORK AND HYPERCOLUMN METHODS FOR UAV REMOTE SENSING IMAGERY CLASSIFICATION pg. 5773 WE1.R8.12 - SPATIAL-TEMPORAL PATTERNS OF TOTAL SUSPENDED MATTERS (TSM) IN THE YELLOW RIVER ESTUARY
Huang, Zhenhang	pg. 1236 WE1.R18.5 - FAST SINGLE-SHOT SHIP INSTANCE

	SEGMENTATION BASED ON POLAR TEMPLATE MASK IN REMOTE SENSING IMAGES
Huang, Zhexuan	TH2.R16.6 - AUTOMATIC OIL SLICK DETECTION FOR ENVIRONMENTAL DOMAIN USING SYNTHETIC APERTURE RADAR (SAR) IMAGES
Huang, Zhongling	pg. 1727 TH1.R5.5 - A HYBRID AND EXPLAINABLE DEEP LEARNING FRAMEWORK FOR SAR IMAGES
Hueni, Andreas	pg. 664 TU1.R12.3 - A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM DESIGN TO FIRST RESULTS pg. 6234 WE1.R15.4 - A CALIBRATION AND VALIDATION TOOL FOR DATA QUALITY ANALYSIS OF AIRBORNE IMAGING SPECTROSCOPY DATA pg. 4842 TH1.R10.6 - GENETICALLY CONSTRAINED TEMPORAL TRAJECTORIES OF TEMPERATE FOREST AIRBORNE REFLECTANCE SPECTRA
	pg. 6325 WE2.R17.8 - DETECTION OF SUB-PIXEL PLASTIC ABUNDANCE ON WATER SURFACES USING AIRBORNE IMAGING SPECTROSCOPY
Huerta Batiz, Héctor Ernesto	pg. 5250 FR2.R11.1 - CALIBRATION OF A SVAT MODEL IN THE CENTRAL ZONE OF MEXICO WITH IN-SITU DATA OVER A CORN FIELD REGION pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Huete, Alfredo	pg. 4516 WE1.R10.11 - EFFECTS OF TROPICAL FOREST DEGRADATION ON AMAZON FOREST PHENOLOGY
Huffman, Ernest	pg. 6483 FR1.R15.7 - REMOTE SENSING SYSTEMS FOR URBAN-SCALE DRONE AND AIR TAXI OPERATIONS
Hughes, David	pg. 4886] TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Hughes, Nicholas E.	pg. 2455) FR1.R14.8 - TOWARDS AUTOMATIC DETECTION OF DARK FEATURES IN THE BARENTS SEA USING SYNTHETIC APERTURE RADAR
Hugues, Romain	pg. 1961 TH1.R17.8 - A CYCLE GAN APPROACH FOR HETEROGENEOUS DOMAIN ADAPTATION IN LAND USE CLASSIFICATION
Hui, Shen	pg. 5753 WE1.R8.7 - HIGH-RESOLUTION REMOTE SENSING, IN-SITU OBSERVATIONS, AND MODELING OF LOW-SALINITY LENSES IN THE PRESENCE OF OIL SLICK
Hui, Xiaolong	pg. 2759 FR2.R9.4 - HIGHLY CONTAMINATED WORK MODE IDENTIFICATION OF PHASED ARRAY RADAR USING DEEP LEARNING METHOD
Hulley, Glynn	pg. 3955 FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT

	SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS
Hung, Chih-Cheng	pg. 44 MO2.R5.2 - DIMENSIONALITY REDUCTION WITH WEIGHTED K-MEANS FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 48 MO2.R5.3 - STATISTICAL PERSPECTIVE OF SOM AND CSOM FOR HYPER-SPECTRAL IMAGE CLASSIFICATION
Huo, Hong	pg. 2587 FR1.R18.8 - BILATERAL SIAMESE NETWORK FOR CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES
Huo, Hongyuan	pg. 4367 TU2.R11.7 - STUDY OF TEMPERATURE EMISSIVITY SEPARATION FROM HYPERSPECTRAL THERMAL INFRARED IMAGERY AND ITS APPLICATION IN DETECTING EARLY WATER STRESS IN VEGETATION
Huo, Juan	pg. 5513 TH2.R19.9 - IMPACT OF PRECIPITATION ON MILLIMETER-WAVE BACKHAUL LINKS FOR 5G CELLULAR NETWORKS pg. 5329 TU1.R19.10 - COMPARISON OF MODIS CLOUD MASK PRODUCTS WITH GROUND-BASED MILLIMETER-WAVE RADAR
Huo, Langning	pg. 4618 WE2.R10.3 - NORMALIZED PROJECTED RED & SWIR (NPRS): A NEW VEGETATION INDEX FOR FOREST HEALTH ESTIMATION AND ITS APPLICATION ON SPRUCE BARK BEETLE ATTACK DETECTION
Huo, Weibo	pg. 6718 TU1.R15.11 - SCENE EDGE TARGET RECOVERY OF SCANNING RADAR ANGULAR SUPER-RESOLUTION BASED ON DATA EXTRAPOLATION
Hussain, Ekbal	pg. 6857 WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING
Huynh, Frédéric	pg. 3154) WE2.R14.6 - THE FRENCH LAND DATA AND SERVICES CENTER: THEIA
Huynh, Thanh-Long	pg. 260 MO2.R17.1 - VEHICLE DETECTION AND COUNTING FROM VHR SATELLITE IMAGES: EFFORTS AND OPEN ISSUES
Hvidegaard, Sine	pg. 3019 TU2.R9.5 - AIRBORNE ALTIMETRY MEASUREMENTS IN THE ARCTIC USING A COMPACT MULTI-BAND RADAR SYSTEM: INITIAL RESULTS
Hwang, Paul	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE
Hyer, Edward	FR1.R19.1 - DETECTION OF NIGHTTIME FIRE COMBUSTION EFFICIENCY FOR WILDFIRES FROM VIIRS
Hänsch, Ronny	TU2.R6.1 - IEEE DATA FUSION CONTEST OVERVIEW pg. 3059 WE1.R9.4 - UNSUPERVISED CLUSTERING OF C-BAND POLSAR DATA OVER SEA ICE pg. 1751 TH1.R5.11 - STACKED RANDOM FORESTS: MORE

ACCURATE AND BETTER CALIBRATED

I	
lannelli, Gianni Christian	pg. 3505) WE2.R7.6 - ON THE OPTIMAL DESIGN OF CONVOLUTIONAL NEURAL NETWORKS FOR EARTH OBSERVATION DATA ANALYSIS BY MAXIMIZATION OF INFORMATION EXTRACTION
lbikunle, Oluwanisola	pg. 2960 MO2.R9.12 - SNOW RADAR LAYER TRACKING USING ITERATIVE NEURAL NETWORK APPROACH
Ichii, Kazuhito	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS
Ichikawa, Dorj	pg. 4542 WE1.R11.7 - COMBINED USE OF SENTINEL-1, SENTINEL-2 AND LANDSAT 7 & 8 DATA FOR ESTIMATING HEADING DATE OF RICE WITH DIFFERENT CULM LENGTHS pg. 4546 WE1.R11.8 - OBSERVATION OF CROP GROWTH CONDITION IN DIFFERENT REGIONS OF UZBEKISTAN
ldris, Nurul Hazrina	pg. 5843 TH2.R8.8 - ANALYSIS OF SENTINEL-3A SYNTHETIC APERTURE RADAR (SAR) ALTIMETRY WAVEFORMS OVER THE SOUTHEAST ASIA REGION
lenco, Dino	pg. 4711 TH1.R1.6 - IRRIGATION MAPPING USING SENTINEL-1 TIME SERIES
lervolino, Pasquale	pg. 1977 TH1.R18.1 - A SAR-BASED FEASIBILITY STUDY ON DETECTION OF OIL SEEPAGE FROM BURIED PIPELINES
lgnatenko, Vladimir	TU1.R4.3 - POTENTIAL OF MULTITEMPORAL ICEYE SAR DATA IN LAND COVER MAPPING APPLICATIONS [pg. 3581] WE2.R15.9 - ICEYE MICROSATELLITE SAR CONSTELLATION STATUS UPDATE: EVALUATION OF FIRST COMMERCIAL IMAGING MODES [pg. 4283] TU1.R1.9 - CLASSIFICATION OF WIDE-AREA SAR MOSAICS: DEEP LEARNING APPROACH FOR CORINE BASED MAPPING OF FINLAND USING MULTITEMPORAL SENTINEL-1 DATA
lguchi, Toshio	pg. 3593 WE2.R19.2 - PRELIMINARY ANALYSIS OF EXPERIMENTAL PRODUCT FOR THE NEW SCAN PATTERN OF GPM/DPR pg. 3600 WE2.R19.4 - EVALUATION OF CLOUD LIQUID WATER DATABASE USING GLOBAL CLOUD-SYSTEM RESOLVING MODEL FOR GPM/DPR ALGORITHMS pg. 5384 TU2.R19.12 - BRIGHTNESS TEMPERATURE OBTAINED FROM GLOBAL PRECIPITATION MEASUREMENT MISSION'S DUAL-FREQUENCY PRECIPITATION RADAR
Ikeda, Takashi	pg. 4546 WE1.R11.8 - OBSERVATION OF CROP GROWTH CONDITION IN DIFFERENT REGIONS OF UZBEKISTAN
Ilyashenko, Matviy	pg. 1050 WE1.R5.4 - SATELLITE AGRICULTURAL MONITORING

	IN UKRAINE AT COUNTRY LEVEL: WORLD BANK PROJECT
lm, Heeji	(pg. 2559) FR1.R18.1 - IMPROVEMENT OF CNN-BASED ROAD EXTRACTION FROM SATELLITE IMAGES VIA MORPHOLOGICAL IMAGE PROCESSING
lmai, Haruki	pg. 324 MO2.R18.6 - PARAMETER OPTIMIZATION FOR DETECTING SEISMIC GROUND DEFORMATION FROM AIRBORNE SAR IMAGES
lmai, Masataka	pg. 6222 WE1.R15.1 - INFLIGHT RADIOMETRIC CALIBRATION FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON pg. 4104 MO2.R1.8 - VERIFYING RAPID INCREASING OF MEGA- SOLAR PV POWER PLANTS IN JAPAN BY APPLYING A CNN- BASED CLASSIFICATION METHOD TO SATELLITE IMAGES
lmai, Tadashi	pg. 3467 WE2.R4.4 - PROGRESS OF THE ISS BASED VEGETATION LIDAR MISSION, MOLI - JAPAN'S FIRST SPACE-BASED LIDAR
lmaizumi, Tomoyuki	pg. 3578 WE2.R15.8 - THE LATEST STATUS OF OUR COMMERCIAL SMALL SYNTHETIC APERTURE RADAR SATELLITE CONSTELLATION
lmaki, Kazuya	pg. 4546 WE1.R11.8 - OBSERVATION OF CROP GROWTH CONDITION IN DIFFERENT REGIONS OF UZBEKISTAN
lmamoglu, Nevrez	pg. 4104 MO2.R1.8 - VERIFYING RAPID INCREASING OF MEGA- SOLAR PV POWER PLANTS IN JAPAN BY APPLYING A CNN- BASED CLASSIFICATION METHOD TO SATELLITE IMAGES
lmasu, Ryoichi	pg. 5541 FR1.R19.5 - PRODUCTS AND SCIENCE ACHIEVEMENTS OF GOSAT SATELLITE SERIES
Inada, Hitomi	pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) : ITS LAUNCH AND CURRENT STATUS
Inoue, Shimpei	pg. 5171 FR1.R11.4 - PADDY FIELD MAPPING IN EASTERN PART OF ASIA USING SENTINEL-1 AND SENTINEL-2
Inoue, Yoshio	pg. 5159 FR1.R11.1 - ASSESSING CROP PRODUCTIVITY IN DECONTAMINATED FARMLAND IN FUKUSHIMA USING MICRO- SATELLITE VENMS AND HYPERSPECTRAL SENSING pg. 2703 FR2.R6.2 - HYPERSPECTRAL DATA CLASSIFICATION AND REGRESSION USING WAVELET TRANSFORM pg. 4815 TH1.R6.10 - ASSESSMENT OF IMAGERY FOR LAND MAPPING WITH CONSTELLATION AND CONVENTIONAL SATELLITE
lodice, Antonio	pg. 352 MO2.R19.3 - POLARIMETRIC TWO-SCALE MODEL FOR THE EVALUATION OF BISTATIC SCATTERING FROM ANISOTROPIC SEA SURFACES pg. 1536 WE2.R16.4 - ASSESSING PERFORMANCE OF MULTITEMPORAL SAR IMAGE DESPECKLING FILTERS VIA A BENCHMARKING TOOL pg. 6806 TU2.R2.10 - FIRE RISK ANALYSIS BY USING

	SENTINEL-2 DATA: THE CASE STUDY OF THE VESUVIUS IN CAMPANIA, ITALY
lordache, Marian-Daniel	pg. 4489 WE1.R10.4 - APPLICATION OF RANDOM FOREST CLASSIFICATION TO DETECT THE PINE WILT DISEASE FROM HIGH RESOLUTION SPECTRAL IMAGES
loup, Elias	pg. 1853 TH1.R12.3 - FLIGHT DATA OF AIRPLANE FOR WIND FORECASTING
Iovan, Corina	pg. 1969 TH1.R17.10 - DEEP CONVOLUTIONAL NEURAL NETWORK FOR MANGROVE MAPPING
Isaksen, Lars	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Islam, Ashraful	pg. 4665 WE2.R11.4 - USE OF REMOTE SENSING SATELLITE IMAGES IN RICE AREA MONITORING SYSTEM OF BANGLADESH
Islam, Md. Toufiqul	pg. 4299 TU2.R10.2 - DEVELOPMENT OF GREENNESS ANALYSIS TOOL USING REMOTE SENSING SATELLITE IMAGES
Isleifson, Dustin	pg. 3031 TU2.R9.8 - MODELING BACKSCATTER FROM OIL- CONTAMINATED SEA ICE USING A MULTI-LAYERED SCATTERING MODEL
lssa, Hamzeh	pg. 5454 TH1.R19.6 - MISSION OPERATIONS AND SCIENCE PLAN FOR THE MEZNSAT CUBESAT MISSION FOR GREENHOUSE GASES MONITORING
Itakura, Kenta	pg. 4339 TU2.R10.12 - TREE SPECIES CLASSIFICATION USING LEAF AND TREE TRUNK IMAGES
Ito, Akihiko	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS pg. 5171 FR1.R11.4 - PADDY FIELD MAPPING IN EASTERN PART OF ASIA USING SENTINEL-1 AND SENTINEL-2
Ito, Koichi	pg. 324 MO2.R18.6 - PARAMETER OPTIMIZATION FOR DETECTING SEISMIC GROUND DEFORMATION FROM AIRBORNE SAR IMAGES
ltoh, Yuki	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
lturbide-Sanchez, Flavio	pg. 6043 TU2.R4.3 - DERIVATION OF JPSS-2 CRIS PRE-LAUNCH SPECTRAL CALIBRATION PARAMETERS FROM THE THERMAL VACUUM TEST DATA pg. 6022 TU1.R14.9 - PROGRESS TOWARD EVALUATING PRELAUNCH THERMAL VACUUM TESTS OF THE JPSS-2 CRIS INSTRUMENT TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT

Ivanov, Mikhail	pg. 6125 WE1.R7.7 - GEOMAGNETIC ANOMALIES IN O+
	CONCENTRATION CONSIDERING THE SUN SEASONAL POSITION
	ACCORDING TO THE DATA FROM THE COMPLEX "RIMS"
Ivonin, Dmitry	pg. 2455 FR1.R14.8 - TOWARDS AUTOMATIC DETECTION OF
, ,	
	DARK FEATURES IN THE BARENTS SEA USING SYNTHETIC
	APERTURE RADAR
Iwao, Koki	ALCO DA O LIVERDE CERTAL INA CER CUITE (LICIU)
IWao, Koki	pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) :
	ITS LAUNCH AND CURRENT STATUS
Iwasaki, Akira	FD1 D11 1 ASSESSING SDSD DDSDUGTD/IT/AD
IWasaki, Akii a	pg. 5159 FR1.R11.1 - ASSESSING CROP PRODUCTIVITY IN
	DECONTAMINATED FARMLAND IN FUKUSHIMA USING MICRO-
	SATELLITE VENMS AND HYPERSPECTRAL SENSING
	pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) :
	ITS LAUNCH AND CURRENT STATUS
	pg. 2069 TH2.R5.2 - GAN-BASED SAR-TO-OPTICAL IMAGE
	TRANSLATION WITH REGION INFORMATION
	pg. 2703 FR2.R6.2 - HYPERSPECTRAL DATA CLASSIFICATION
	AND REGRESSION USING WAVELET TRANSFORM
	pg. 5127 FR1.R10.5 - FAULT DISPLACEMENT DETECTION
	CAUSED BY LARGE EARTHQUAKE USING EXTENDED
	DEEPMATCHING
	pg. 4815 TH1.R6.10 - ASSESSMENT OF IMAGERY FOR LAND
	MAPPING WITH CONSTELLATION AND CONVENTIONAL
	SATELLITE
Iwashita, Keishi	THE DE 7 ESTIMATION OF DEINFORCED SLODE
masinta, neisiii	pg. 4963 TH2.R6.7 - ESTIMATION OF REINFORCED SLOPE
	DYNAMICS USING ALOS-2/ PALSAR-2 AND VALIDATION BY
	TERRESTRIAL LASER SCANNER
Iwatate, Wataru	THE DIE 6 DETECTION OF SLOW MOVEMENT
matare, matara	pg. 3803 TH2.R15.6 - DETECTION OF SLOW MOVEMENT
	AREAS IN THE FOREST AREA USING THE TIME SERIES L-BAND
	SAR INTERFEROMETRY
Izguierdo-Verdiguier, Emma	FRI RC 0. DOWN CCALING MODIC VECETATION
izquicido-veraigaiei, Eiliilia	pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION
	PRODUCTS WITH LANDSAT GAP FILLED SURFACE
	REFLECTANCE IN GOOGLE EARTH ENGINE
Izumi, Yuta	THE TOO THE DESIGNATION OF THE SERVER CHRISTEDING ADDROACH
	pg. 790 TU2.R3.2 - A TIME-SERIES CLUSTERING APPROACH
	FOR ATMOSPHERIC PROPAGATION DELAY COMPENSATION IN
	GROUND-BASED RADAR INTERFEROMETRY
J	
LS. Aadithyaa	THE PLANE THE PLANE THE PROPERTY AND COUNTY
J S, Aadithyaa	pg. 4287 TU1.R1.10 - INTEGRATION OF GENETIC ALGORITHM
J S, Aadithyaa	AND AGENT BASED MODEL TO VISUALIZE NEAR REALISTIC
J S, Aadithyaa	
	AND AGENT BASED MODEL TO VISUALIZE NEAR REALISTIC SUSTAINABLE URBAN GROWTH: A COMPARATIVE STUDY
J. A. Nhanga, Claudio	AND AGENT BASED MODEL TO VISUALIZE NEAR REALISTIC SUSTAINABLE URBAN GROWTH: A COMPARATIVE STUDY (pg. 573) TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE-
	AND AGENT BASED MODEL TO VISUALIZE NEAR REALISTIC SUSTAINABLE URBAN GROWTH: A COMPARATIVE STUDY Pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE-VEHICLE COLLISIONS RISK ASSESSMENT BASED ON
	AND AGENT BASED MODEL TO VISUALIZE NEAR REALISTIC SUSTAINABLE URBAN GROWTH: A COMPARATIVE STUDY (pg. 573) TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE-
J. A. Nhanga, Claudio	AND AGENT BASED MODEL TO VISUALIZE NEAR REALISTIC SUSTAINABLE URBAN GROWTH: A COMPARATIVE STUDY Pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE-VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
	AND AGENT BASED MODEL TO VISUALIZE NEAR REALISTIC SUSTAINABLE URBAN GROWTH: A COMPARATIVE STUDY Pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE-VEHICLE COLLISIONS RISK ASSESSMENT BASED ON

Jabin, Pierre-Emmanuel	pg. 3680 TH2.R7.5 - ANALYSIS OF HYPERSPECTRAL DATA BY MEANS OF TRANSPORT MODELS AND MACHINE LEARNING
Jackisch, Robert	(pg. 3739) TH2.R12.4 - REMOTE SENSING AND DEEP LEARNING FOR SUSTAINABLE MINING
	pg. 4112 MO2.R1.10 - INTRINSIC IMAGE DECOMPOSITION-BASED RESOLUTION ENHANCEMENT FOR MINERAL MAPPING
Jackson, Thomas	pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND
	WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI- TEMPORAL STUDY
	pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS
Jacobi, David	pg. 1397 WE2.R6.2 - NONDESTRUCTIVE MICROWAVE SPECTROSCOPY IN CALCITE-RICH SHALE CORE SLABS
Jacobs, Gregg	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Jacobs, Nathan	pg. 1110 WE1.R6.8 - SURFACE MODELING FOR AIRBORNE LIDAR
	pg. 1468 WE2.R9.9 - SINGLE IMAGE CLOUD DETECTION VIA MULTI-IMAGE FUSION
	(pg. 1121) WE1.R6.11 - ESTIMATING DISPLACED POPULATIONS FROM OVERHEAD
Jacobsen, Sven	pg. 1233 WE1.R18.4 - SHIP WAKE COMPONENT DETECTABILITY ON SYNTHETIC APERTURE RADAR (SAR)
Jaeger, Marc	pg. 3770 TH2.R13.5 - SIMILARITY APPROACH FOR RADIO FREQUENCY INTERFERENCE DETECTION AND CORRECTION IN MULTI-RECEIVER SAR
Jaffrain, Gabriel	pg. 4251 TU1.R1.1 - ELASTIC MAPPING THROUGH THE COPERNICUS GLOBAL LAND COVER LAYERS
Jagdhuber, Thomas	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
	pg. 5011 TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
Jain, Kamal	pg. 4267 TU1.R1.5 - COMPARISON OF SPATIAL MODELLING APPROACHES TO PREDICT URBAN GROWTH OF LUCKNOW CITY, INDIA
	pg. 2217 TH2.R20.6 - DETECTION OF RAIL FASTENERS FROM AERIAL IMAGES USING DEEP CONVOLUTION NEURAL NETWORKS
Jain, Vijal	pg. 1524 WE2.R16.1 - DE-SPECKLING OF SYNTHETIC APERTURE RADAR USING DISCRETE FOURIER TRANSFORM

Jain, Vinit	pg. 3908 FR1.R7.5 - REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK
Jaiswal, Akshay Kumar	pg. 6883 WE2.R2.6 - RAPID FLOOD MAPPING USING SENTINEL-1A IMAGES: A CASE STUDY OF FLOOD IN PANAMARAM, KERALA
Jakobi, Jannis	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Jales, Philip	pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Jallad, Abdul-Halim	pg. 5454 TH1.R19.6 - MISSION OPERATIONS AND SCIENCE PLAN FOR THE MEZNSAT CUBESAT MISSION FOR GREENHOUSE GASES MONITORING
Janardanan, Rajesh	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Jang, Jae-Cheol	pg. 3564 WE2.R15.4 - IMPROVEMENT OF KOMPSAT-5 SEA SURFACE WIND WITH CORRECTION EQUATION RRETRIEVAL AND APPLICATION
Janssen, Daniel	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Jarnot, Robert	TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Jeannin, Nicolas	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Jelenak, Zorana	pg. 5647 TU1.R8.1 - C-BAND CROSS-POLARIZATION AIRBORNE OCEAN SURFACE NRCS OBSERVATIONS IN HURRICANES: 20152019 pg. 5658 TU1.R8.4 - AN OVERVIEW OF NOAA CYGNSS WIND PRODUCT VERSION 1.0
	pg. 5794 TH1.R8.6 - SCATSAT-1 HIGH WINDS GEOPHYSICAL MODEL FUNCTION AND ITS WINDS APPLICATION IN OPERATIONAL MARINE FORECASTING AND WARNING pg. 5982 TU1.R4.11 - AMSR-2 OBSERVATIONS OF HURRICANE DORIAN
Jenerowicz, Małgorzata	pg. 485 TU1.R6.3 - MULTIFRACTAL PARAMETERS FOR CLASSIFICATION OF HYPERSPECTRAL DATA pg. 1691 TH1.R3.8 - MULTIFRACTAL FEATURES FOR LAND USE CLASSIFICATION

Jenkins, Richard	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Jenney, Lorraine	pg. 1977 TH1.R18.1 - A SAR-BASED FEASIBILITY STUDY ON DETECTION OF OIL SEEPAGE FROM BURIED PIPELINES
Jenssen, Robert	(pg. 1801) TH1.R9.1 - SELF-CONSTRUCTING GRAPH CONVOLUTIONAL NETWORKS FOR SEMANTIC LABELING
Jeon, Taegyun	pg. 4088 MO2.R1.4 - ANALYSIS OF OIL STORAGE TREND USING KOMPSAT-5 SAR DATA
Jeong, Byung Jang	pg. 2440 FR1.R14.4 - HUMAN DETECTION WITH RANGE- DOPPLER SIGNATURES USING 3D CONVOLUTIONAL NEURAL NETWORKS
Jepsen, Jane Uhd	pg. 3873 FR1.R3.4 - POLARIMETRIC GUIDED NONLOCAL MEANS COVARIANCE MATRIX ESTIMATION FOR DEFOLIATION MAPPING
Jeyakumar, Paramsothy	pg. 1086) WE1.R6.2 - MAPPING ANTIMONY CONCENTRATION OVER GEOTHERMAL AREAS USING HYPERSPECTRAL AND THERMAL REMOTE SENSING
Jezek, Ken	pg. 6434 FR1.R13.5 - P-BAND RADIOMETRY: RFI AND CALIBRATION FOR UWBRAD
Jezek, Kenneth	pg. 3010 TU2.R9.2 - ULTRA WIDEBAND RADIOMETER SIGNATURES OF ARCTIC SEA ICE: PRELIMINARY RESULTS FROM THE MOSAIC CAMPAIGN
Jha, Divyansh	pg. 1217) WE1.R17.12 - IDENTIFYING SETTLEMENTS USING SVM AND U-NET
Ji, Baofeng	(pg. 5513) TH2.R19.9 - IMPACT OF PRECIPITATION ON MILLIMETER-WAVE BACKHAUL LINKS FOR 5G CELLULAR NETWORKS
Ji, Dabin	(pg. 6871) WE2.R2.3 - THE APPLICATION OF REMOTE SENSING PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA
Ji, Jinsheng	pg. 549 TU1.R7.7 - GRAPH EMBEDDING FOR REMOTE SCENE IMAGE CLASSIFICATION BASED ON ATTENTION MODEL pg. 284 MO2.R17.7 - GEOSPATIAL OBJECT DETECTION WITH SINGLE SHOT ANCHOR-FREE NETWORK
Ji, Kefeng	pg. 1129 WE1.R16.2 - AN EFFICIENT WATER SEGMENTATION METHOD FOR SAR IMAGES pg. 1248 WE1.R18.8 - SHIP TARGET SIGNATURE INDICATION BASED ON COMPLEX SIGNAL KURTOSIS IN SAR IMAGES
Ji, Yonggang	pg. 300 MO2.R17.11 - VESSEL TARGET MONITORING WITH BISTATIC COMPACT HF SURFACE WAVE RADAR

Ji, Yongjie	pg. 1993 TH1.R18.5 - DEFORMATION VELOCITY MONITORING IN KUNMING CITY USING ASCENDING AND DESCENDING SENTINEL-1A DATA WITH SBAS-INSAR TECHNIQUE
Ji, Zexuan	pg. 834 TU2.R5.2 - A SUPERPIXEL-BASED FRAMEWORK FOR NOISY HYPERSPECTRAL IMAGE CLASSIFICATION pg. 1723 TH1.R5.4 - COMPLEX-VALUED SPATIAL-SCATTERING SEPARATED ATTENTION NETWORK FOR POLSAR IMAGE CLASSIFICATION
Ji, Zhenyuan	pg. 425 TU1.R3.10 - DUAL-BASELINE INTERFEROMETRIC ISAR IMAGING
Ji, Zhonglin	pg. 3184 TH1.R14.6 - FINE-SCALE POPULATION DISTRIBUTIONS MAPPING BASED ON REMOTE SENSING AND SOCIAL SENSING DATA pg. 5183 FR1.R11.7 - USING NDVI TIME SERIES CURVE CHANGE RATE TO ESTIMATE WINTER WHEAT YIELD
Jia, Chen	pg. 4315 TU2.R10.6 - LAI INVERSION FROM MODIS DATA USING DEEP BELIEF NETWORK (DBN). pg. 5521 TH2.R19.11 - AEROSOL INVERSION FOR LANDSAT 8 OLI DATA USING DEEP LEARNING ALGORITHM
Jia, Hongying	pg. 1440 WE2.R9.2 - MAPPING OF URBAN AREAS FROM SAR IMAGES VIA SEMANTIC SEGMENTATION
Jia, Huicong	pg. 6871 WE2.R2.3 - THE APPLICATION OF REMOTE SENSING PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA
Jia, Kun	pg. 6686 TU1.R15.3 - EVALUATION OF DOWNWARD SHORTWAVE RADIATION ESTIMATIONS OVER TROPICAL OCEAN SURFACE BASED ON BAYESIAN MODEL AVERAGING METHOD
Jia, Li	pg. 4343 TU2.R11.1 - DISENTANGLING THE RESPONSE OF VAGETATION TO RAINFALL ANOMALIES FOR DROUGHT EVALUATION OVER THE INDUS BASIN pg. 5045 FR1.R1.8 - SOIL MOISTURE ESTIMATION BY USING MULTI-ANGULAR AND MULTI-TEMPORAL OBSERVATIONS FROM SMOS pg. 6894 WE2.R2.9 - ASSESSMENT OF GRACE DATA RESPONSE TO GLOBAL DROUGHT EVENTS FROM 2003 TO 2016
Jia, Sen	pg. 2607 FR2.R3.1 - CLOUD SHADOW DETECTION IN HYPERSPECTRAL IMAGERY USING BACKPROPAGATION NEURAL NETWORK WITH LIDAR DATA
Jia, Shenyue	pg. 4485 WE1.R10.3 - INVESTIGATING THE LAGGED RELATIONSHIP BETWEEN SMAP SOIL MOISTURE AND LIVE FUEL MOISTURE IN CALIFORNIA, USA
Jia, Weijie	pg. 5151 FR1.R10.11 - DETECTING RECENT LANDSLIDE ACTIVITIES IN YIGONG AND SURROUNDING AREAS IN EASTERN

	TIBET OF CHINA BASED ON GF-3 SAR AMPLITUDE IMAGERY
Jia, Xiaowei	pg. 3494 WE2.R7.3 - PROCESS GUIDED DEEP LEARNING FOR MODELING PHYSICAL SYSTEMS: AN APPLICATION IN LAKE TEMPERATURE MODELING
Jia, Xiuping	pg. 1299 WE1.R20.9 - ACTIVE DEEP FEATURES EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON DICTIONARY LEARNING
Jia, Yan	pg. 6182 WE1.R13.1 - GLOBAL SOIL MOISTURE ESTIMATION USING CYGNSS DATA pg. 4562 WE2.R1.1 - SENSITIVITY OF CYGNSS-DERIVED SOIL MOISTURE TO GLOBAL PRECIPITATION
Jia, Yongjun	pg. 5858 FR1.R8.1 - EVALUATION OF HY-2B ALTIMETER PRODUCTS OVER OCEAN pg. 5827 TH2.R8.4 - PRELIMINARY PRECISION ASSESSMENT OF HY-2B ALTIMETER DATA OVER ANTARCTICA AND GREENLAND
Jia, Yunzhe	pg. 720 TU1.R16.6 - METRIC LEARNING BASED FINE-GRAINED CLASSIFICATION FOR POLSAR IMAGERY
Jia, Zhaoyang	pg. 3086 WE1.R9.11 - COMPREHENSIVE VERIFICATION AND ANALYSIS OF MULTI-SCALE REMOTE SENSING PRODUCTS FOR SURFACE FREEZING-THAWING STATUS ON THE QINGHAI-TIBET PLATEAU
Jiang, Bo	pg. 4594) WE2.R1.9 - COMPARISON OF SMAP AND NLDAS-2 SOIL MOISTURE DATA SETS OVER THE SOUTHERN GREAT PLAINS
Jiang, Decai	(pg. 5151) FR1.R10.11 - DETECTING RECENT LANDSLIDE ACTIVITIES IN YIGONG AND SURROUNDING AREAS IN EASTERN TIBET OF CHINA BASED ON GF-3 SAR AMPLITUDE IMAGERY
Jiang, Fan	pg. 2384 FR1.R12.1 - CAUCHY NMF FOR HYPERSPECTRAL UNMIXING
Jiang, Fang-Qing	pg. 5509 TH2.R19.8 - OBSERVING URBAN AEROSOLS USING CO-LOCATED NO2 ENHANCEMENT FROM TROPOMI
Jiang, Geng-Ming	pg. 6373 TH1.R13.8 - INTERCALIBRATION OF FY-3C MWRI OVER FOREST WARM-SCENES USING MICROWAVE RADIATIVE TRANSFER MODEL
Jiang, Hongbo	(pg. 1201) WE1.R17.8 - INCORPORATING MULTI-SOURCE REMOTE SENSING IN THE DETECTION OF EARTHQUAKE-DAMAGED BUILDINGS BASED ON LOGISTIC REGRESSION MODELLING
Jiang, Huiping	pg. 4681 WE2.R11.8 - USE NIGHT TIME LIGHT REMOTE SENSING TO DISCOVER DRAGON FRUIT PLANTATIONS IN VIETNAM
Jiang, Jonathan	FR1.R2.8 - THE SMART ICE CLOUD SENSING (SMICES)

	SMALLSAT CONCEPT FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE
Jiang, Kaili	STRATEGIES (pg. 2871) FR2.R16.10 - A DETECTION METHOD OF MULTI- SENSOR FOR RADAR COUNTERMEASURE NETWORK
Jiang, Li	pg. 6615 TU1.R2.7 - THREE-DIMENSIONAL VARIATIONS OF CARBON MONOXIDE CONCENTRATION ASSOCIATED WITH WENCHUAN EARTHQUAKE BASED ON AIRS DATA
Jiang, Liangcun	pg. 3127 WE1.R14.10 - GEOCUBE: TOWARDS THE MULTI-SOURCE GEOSPATIAL DATA CUBE IN BIG DATA ERA pg. 6810 TU2.R2.11 - AUTOMATIC GENERATION OF DECISION SUPPORT REPORT FOR DISASTER RESPONSE USING REMOTE SENSING AND SDI
Jiang, Liming	pg. 2539 FR1.R17.8 - CHANGE OF GLACIAL LAKE IN KARAKORAM RANGE
Jiang, Linghai	pg. 2886 FR2.R18.3 - LANDSLIDE MONITORING AND DETECTION FOR MOUNTAINOUS AREAS USING SBAS COMBINED WITH GLCM pg. 453 TU1.R5.5 - PERSISTENT SCATTERER DETECTION AND 3-D RECONSTRUCTION OF TRANSMISSION TOWER IN MOUNTAIN AREA BASED ON SAR TOMOGRAPHY pg. 4466 WE1.R1.9 - AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA
Jiang, Lingmei	pg. 4450 WE1.R1.5 - EVALUATION OF SOIL MOISTURE RETRIEVALS FROM ALOS-2, SENTINEL-1 DATA IN GENHE, CHINA pg. 2938 MO2.R9.6 - ASSESSING THE PERFORMANCES OF FY-3D/MWRI AND DMSP SSMIS IN GLOBSNOW-2 ASSIMILATION SYSTEM FOR SWE ESTIMATION pg. 2946 MO2.R9.8 - THE VALIDATION OF SNOW COVER PRODUCT OVER HIGH MOUNTAIN ASIA pg. 3078 WE1.R9.9 - DEVELOPMENT OF MICROWAVE EMISSION MODEL FOR FROZEN SOIL WITH CONSIDERING THE VOLUME SCATTERING EFFECT
Jiang, Maofei	pg. 5858 FR1.R8.1 - EVALUATION OF HY-2B ALTIMETER PRODUCTS OVER OCEAN pg. 5866 FR1.R8.3 - GRAVITY ANOMALY AND ITS ACCURACY ASSESSMENT FROM HY-2A/GM ALTIMETRY DATA IN THE SOUTH CHINA SEA pg. 5827 TH2.R8.4 - PRELIMINARY PRECISION ASSESSMENT OF HY-2B ALTIMETER DATA OVER ANTARCTICA AND GREENLAND
Jiang, Min	pg. 6894 WE2.R2.9 - ASSESSMENT OF GRACE DATA RESPONSE TO GLOBAL DROUGHT EVENTS FROM 2003 TO 2016
Jiang, Mingzhe	pg. 1456 WE2.R9.6 - UNSUPERVISED SEGMENTATION OF

	MULTILOOK COMPACT POLARIMETRIC SAR DATA BASED ON COMPLEX WISHART DISTRIBUTION
Jiang, Shaobin	pg. 1647 TH1.R2.9 - SHIP DETECTION WITH SAR BASED ON YOLO
Jiang, Shuai	pg. 1628 TH1.R2.4 - A TARGET DETECTION ALGORITHM OF NEURAL NETWORK BASED ON HISTOGRAM STATISTICS
Jiang, Tao	(pg. 2420) FR1.R12.10 - DISCRIMINATIVE SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL ANOMALY DETECTION
Jiang, Wenliang	pg. 5211 FR2.R10.3 - RISK INVESTIGATION OF LANDSLIDE HAZARD AND DISASTER EMERGENCY BASED ON MULTI- PLATFORMS REMOTE SENSING TECHNIQUES (pg. 6305) WE2.R17.3 - RESEARCH ON MECHANISM AND PROCESS OF THE SHUICHENG LANDSLIDE IN GUIZHOU BASED ON UAV IMAGES
Jiang, Xiaoguang	pg. 4926 TH2.R1.6 - SPATIAL DOWNSCALING OF LAND SURFACE TEMPERATURE BASED ON SURFACE ENERGY BALANCE pg. 4558 WE1.R11.11 - ASSESSING THE DIRECTIONAL EFFECTS OF REMOTELY SENSED LAND SURFACE TEMPERATURE ON EVAPOTRANSPIRATION ESTIMATION
Jiang, Xue	pg. 742 TU1.R18.1 - FUSION OF LINEAR AND NONLINEAR CLASSIFIERS FOR KERNEL DICTIONARY LEARNING: APPLICATION TO SAR TARGET RECOGNITION pg. 2475 FR1.R16.2 - SAR TARGET CLASSIFICATION WITH LIMITED DATA VIA DATA DRIVEN ACTIVE LEARNING pg. 2459 FR1.R14.9 - SYNTHETIC MINORITY CLASS DATA BY GENERATIVE ADVERSARIAL NETWORK FOR IMBALANCED SAR TARGET RECOGNITION
Jiang, Yanan	pg. 1011 WE1.R3.5 - LANDSLIDE DISPLACEMENT MONITORING BY TIME SERIES INSAR COMBINING PS AND DS TARGETS
Jiang, Yazhen	pg. 4926] TH2.R1.6 - SPATIAL DOWNSCALING OF LAND SURFACE TEMPERATURE BASED ON SURFACE ENERGY BALANCE pg. 1865] TH1.R12.6 - IMPROVEMENTS TO AN END-MEMBER-BASED TWO-SOURCE APPROACH FOR ESTIMATING GLOBAL EVAPOTRANSPIRATION pg. 4558] WE1.R11.11 - ASSESSING THE DIRECTIONAL EFFECTS OF REMOTELY SENSED LAND SURFACE TEMPERATURE ON EVAPOTRANSPIRATION ESTIMATION
Jiang, Yicheng	pg. 6282 WE2.R13.5 - A NOVEL BISTATIC SAR IMAGING ALGORITHM BASED ON GNSS TRANSMITTERS AND LOW-ORBIT RECEIVERS
Jiang, Yinyin	(pg. 1460) WE2.R9.7 - HIGH-ORDER TRIPLET CRF-PCANET FOR UNSUPERVISED SEGMENTATION OF SAR IMAGE

Jiang, Zhiyu	pg. 2428 FR1.R14.1 - WEIGHTED HIERARCHICAL SPARSE REPRESENTATION FOR HYPERSPECTRAL TARGET DETECTION pg. 980 TU2.R18.8 - INSTANCE-AWARE REMOTE SENSING IMAGE CAPTIONING WITH CROSS-HIERARCHY ATTENTION
Jiao, Changzhe	(pg. 2436) FR1.R14.3 - HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK
Jiao, Hua	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Jiao, Jian	pg. 6575 FR2.R17.6 - IONOSPHERE ESTIMATION OF THE SPLIT-SPECTRUM INSAR BASED ON IRI MODEL pg. 5155 FR1.R10.12 - QUALITY ASSESSMENT OF THREE DIGITAL ELEVATION MODELS WITH 30 M RESOLUTION BY TAKING 12 M TANDEM-X DEM AS REFERENCE
Jiao, Licheng	Pg. 1937 TH1.R17.2 - A LEARNABLE BLUR KERNEL FOR REMOTE SENSING IMAGE RETRIEVAL Pg. 838 TU2.R5.3 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK Pg. 316 MO2.R18.4 - SAR IMAGE CHANGE DETECTION METHOD VIA A PYRAMID POOLING CONVOLUTIONAL NEURAL NETWORK Pg. 541 TU1.R7.5 - REMOTE SENSING SCENE CLASSIFICATION BASED ON GLOBAL AND LOCAL CONSISTENT NETWORK Pg. 1283 WE1.R20.5 - HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER NETWORK TU2.R6.8 - WEAKLY SUPERVISED LAND COVER CLASSIFICATION METHOD FOR LARGE-SCALE MULTI-RESOLUTION LABELED SATELLITE IMAGES DATA SETS Pg. 2591 FR1.R18.9 - APPLICATION OF A HYPER-PARAMETER OPTIMIZATION ALGORITHM USING MARS SURROGATE FOR DEEP POLSAR IMAGE CLASSIFICATION MODELS Pg. 936 TU2.R16.9 - FEATURE CORRELATION ANALYSIS OF TWO-BRANCH CONVOLUTIONAL NETWORKS FOR MULTI-SOURCE IMAGE CLASSIFICATION Pg. 2057 TH2.R3.10 - REMOTE SENSING IMAGES FEATURE LEARNING BASED ON MULTI-BRANCH NETWORKS Pg. 2547 FR1.R17.10 - A DEEP GENERALIZED CORRELATION NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION Pg. 2647 FR2.R3.11 - SUPERVISED ADAPTIVE-RPN NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES Pg. 2551 FR1.R17.11 - A LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION Pg. 2651 FR2.R3.12 - DEEP ADAPTIVE PROPOSAL NETWORK IN OPTICAL REMOTE SENSING IMAGES OBJECTIVE DETECTION
Jiao, Qisong	(pg. 5211) FR2.R10.3 - RISK INVESTIGATION OF LANDSLIDE HAZARD AND DISASTER EMERGENCY BASED ON MULTI- PLATFORMS REMOTE SENSING TECHNIQUES

	pg. 6305 WE2.R17.3 - RESEARCH ON MECHANISM AND PROCESS OF THE SHUICHENG LANDSLIDE IN GUIZHOU BASED ON UAV IMAGES pg. 1201 WE1.R17.8 - INCORPORATING MULTI-SOURCE REMOTE SENSING IN THE DETECTION OF EARTHQUAKE-DAMAGED BUILDINGS BASED ON LOGISTIC REGRESSION MODELLING
Jiao, RunCheng	pg. 6981 FR2.R2.7 - UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA
Jiao, Zekun	pg. 84 MO2.R6.1 - CHANNEL IMBALANCE CALIBRATION METHOD FOR AIRBORNE TOMOSAR SYSTEM pg. 2368 FR1.R9.9 - A FAST 3-D IMAGING METHOD FOR CIRCULAR SAR BASED ON 3-D BACK-PROJECTION ALGORITHM
Jiao, Ziti	pg. 4303 TU2.R10.3 - A METHOD FOR IMPROVING THE ACCURACY OF THE MODERATE RESOLUTION LAI PRODUCT BASED ON THE MIXED-PIXEL CLUMPING INDEX pg. 3235 TH2.R14.12 - A METHOD TO IDENTIFY HIGH-QUALITY PURE SNOW DATA IN POLDER DATABASE
Jimenez, Pedro	pg. 3626 TH2.R2.5 - ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING
Jiménez Escalona, José Carlos	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Jiménez-Escalona, José Carlos	pg. 4727 TH1.R1.10 - COMPARISON OF SMAP RETRIEVAL SOIL MOISTURE LEVEL 2 PRODUCT WITH IN SITU MEASUREMENTS OVER CORN FIELDS IN CENTRAL MEXICO.
Jin, Mengjie	pg. 3086 WE1.R9.11 - COMPREHENSIVE VERIFICATION AND ANALYSIS OF MULTI-SCALE REMOTE SENSING PRODUCTS FOR SURFACE FREEZING-THAWING STATUS ON THE QINGHAI-TIBET PLATEAU
Jin, Pu	pg. 952 TU2.R18.1 - EVENT AND ACTIVITY RECOGNITION IN AERIAL VIDEOS USING DEEP NEURAL NETWORKS AND A NEW DATASET pg. 1452 WE2.R9.5 - INSTANCE SEGMENTATION OF BUILDINGS USING KEYPOINTS
Jin, Rong	pg. 5635 MO2.R8.9 - SIMULATION ANALYSIS OF PAYLOAD IMR AND MICAP ONBOARD CHINESE OCEAN SALINITY SATELLITE
Jin, Shuanggen	pg. 4562 WE2.R1.1 - SENSITIVITY OF CYGNSS-DERIVED SOIL MOISTURE TO GLOBAL PRECIPITATION pg. 6182 WE1.R13.1 - GLOBAL SOIL MOISTURE ESTIMATION USING CYGNSS DATA
Jin, Xin	TH1.R15.8 - SNPP AND NOAA-20 GLOBAL INTER-SENSOR BIAS ASSESSMENTS WITHIN ICVS FRAMEWORK USING 32-DAY

	AVERAGED DIFFERENCE METHOD TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT
Jin, Xu	pg. 5893 FR1.R8.10 - LAND AND SEA ICE MASK OPTIMIZATION FOR SCANNING MICROWAVE RADIOMETER OF HY-2B SATELLITE
Jin, Yaqiu	pg. 1893 TH1.R16.2 - VARIABLE RESOLUTION SYNTHETIC APERTURE RADAR IMAGING SYSTEM
Jing, Linhai	pg. 2679 FR2.R5.7 - CNN-BASED TREE SPECIES CLASSIFICATION USING AIRBORNE LIDAR DATA AND HIGH- RESOLUTION SATELLITE IMAGE
Jing, Zehuan	pg. 2715 FR2.R6.5 - A NOVEL VARIATIONAL AUTOENCODER BASED RADAR SIGNAL RECONSTRUCTION ALGORITHM USING POLLUTED DATA
Jitsev, Jenia	pg. 621 TU1.R11.3 - SUPER-RESOLUTION OF LARGE VOLUMES OF SENTINEL-2 IMAGES WITH HIGH PERFORMANCE DISTRIBUTED DEEP LEARNING pg. 1058 WE1.R5.6 - SCALING UP A MULTISPECTRAL RESNET-50 TO 128 GPUS
Jitsufuchi, Tetsuya	pg. 6842 WE1.R2.7 - MULTI-ANGLE OBSERVATION OF THE GEOTHERMAL AREA IN THE HAKONE VOLCANO (OWAKUDANI). USING AN AIRBORNE SENSOR (STIC: ARTS-SE'S CAMERA SYSTEMS)
Jo, MinJeong	pg. 688 TU1.R12.9 - GENERATING FLOOD PROBABILITY MAP BASED ON COMBINED USE OF SYNTHETIC APERTURE RADAR AND OPTICAL IMAGERY
Jochum, Matthew	pg. 3101 WE1.R14.3 - A MACHINE LEARNING APPROACH FOR DATA QUALITY CONTROL OF EARTH OBSERVATION DATA MANAGEMENT SYSTEM
Johannessen, Johnny	pg. 5670 TU1.R8.7 - RETRIEVING OCEAN SURFACE CURRENTS FROM THE SENTINEL-1 DOPPLER SHIFT OBSERVATIONS: A CASE STUDY OF THE NORWEGIAN COASTAL CURRENT
Johansson, A. Malin	pg. 2455 FR1.R14.8 - TOWARDS AUTOMATIC DETECTION OF DARK FEATURES IN THE BARENTS SEA USING SYNTHETIC APERTURE RADAR
Johnsen, Harald	pg. 5670 TU1.R8.7 - RETRIEVING OCEAN SURFACE CURRENTS FROM THE SENTINEL-1 DOPPLER SHIFT OBSERVATIONS: A CASE STUDY OF THE NORWEGIAN COASTAL CURRENT
Johnson, Benjamin	pg. 5469 TH1.R19.10 - TOWARDS A MASS-CONSISTENT METHODOLOGY FOR REALISTIC MELTING HYDROMETEOR RETRIEVAL
Johnson, David	pg. 6043 TU2.R4.3 - DERIVATION OF JPSS-2 CRIS PRE-LAUNCH SPECTRAL CALIBRATION PARAMETERS FROM THE THERMAL

	VACUUM TEST DATA (pg. 6022) TU1.R14.9 - PROGRESS TOWARD EVALUATING PRELAUNCH THERMAL VACUUM TESTS OF THE JPSS-2 CRIS INSTRUMENT TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT
Johnson, Jesse	pg. 4707 TH1.R1.5 - ESTIMATING GLOBAL EVAPOTRANSPIRATION USING SMAP SURFACE AND ROOT-ZONE MOISTURE CONTENT
Johnson, Joel	pg. 5434 TH1.R19.1 - MONITORING RAPID CHANGE IN THE ATMOSPHERE USING CYGNSS WIND SPEED MEASUREMENTS pg. 4692 TH1.R1.1 - PREDICTING SOIL MOISTURE RETRIEVAL PERFORMANCE FOR THE NISAR MISSION WE1.R13.2 - ASSESSMENT OF CYGNSS CHARACTERIZATION OF TROPICAL CYCLONES USING MATCHED FILTER BASED RETRIEVALS
	pg. 3010 TU2.R9.2 - ULTRA WIDEBAND RADIOMETER SIGNATURES OF ARCTIC SEA ICE: PRELIMINARY RESULTS FROM THE MOSAIC CAMPAIGN pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF
	OCEAN SURFACE MEAN SQUARE SLOPE (pg. 2972) TU1.R9.3 - MELT DETECTION OVER GREENLAND USING SMAP RADIOMETER OBSERVATIONS (pg. 3444) TU2.R17.4 - CHARACTERIZING THE COHERENT REFLECTED POWER DEPENDENCE ON ROUGH SURFACE HEIGHT AT LOW SIGNAL LEVELS
	WE1.R13.5 - LAND AND OCEAN COHERENCE DETECTION USING THE CYCLONE GLOBAL NAVIGATION SATELLITE SYSTEM (CYGNSS) MISSION LEVEL-1 DELAY-DOPPLER MAPS Pg. 6434 FR1.R13.5 - P-BAND RADIOMETRY: RFI AND CALIBRATION FOR UWBRAD
	pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION FR1.R13.11 - MONITORING IN THE RFI ENVIRONMENT USING SMAP DATA FROM 2015-2020
Johnson, Joel T.	pg. 6579 FR2.R17.7 - AN ALGORITHM FOR ADAPTIVE DETERMINATION OF RADAR COHERENT INTEGRATION TIME
Jojic, Nebojsa	TU2.R6.2 - WEAKLY SUPERVISED SEMANTIC SEGMENTATION IN THE 2020 IEEE GRSS DATA FUSION CONTEST
Jonard, Francois	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Jonzén, Jonas	pg. 4478 WE1.R10.1 - COMBINING TANDEM-X, SENTINEL-2 AND FIELD DATA FOR PREDICTION OF SPECIES-WISE STEM VOLUMES

	pg. 4822 TH1.R10.1 - NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING
Jordan, Guilleux	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Jorge, Flavio	pg. 3762 TH2.R13.2 - GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS
Josephson, Colleen	pg. 5049 FR1.R1.9 - TIME-OF-FLIGHT SOIL MOISTURE ESTIMATION USING RF BACKSCATTER TAGS
Joshi, Manjunath	pg. 1512 WE2.R12.9 - A NOVEL APPROACH FOR HYPERSPECTRAL IMAGE SUPERRESOLUTION USING SPECTRAL UNMIXING AND TRANSFER LEARNING pg. 2189 TH2.R18.9 - DEEP LEARNING IN HYPERSPECTRAL UNMIXING: A REVIEW
Joshil, Shashank	pg. 6582 FR2.R17.8 - POLYPHASE CODING FOR WEATHER RADARS
Joshil, Shashank S	pg. 5392 WE1.R19.2 - STUDY OF ICE HYDROMETEORS USING D3R RADAR AND GROUND OBSERVATIONS DURING ICE-POP CAMPAIGN pg. 5364 TU2.R19.7 - ATTENUATION CORRECTION AT KU BAND FOR D3R RADAR
Josko, João	pg. 3231 TH2.R14.11 - CLASSIFICATION OF ERRORS IN GEOGRAPHIC DATA USING ISO 19157
Joyce, Robert	pg. 3309 MO2.R7.6 - MONITORING HEAVY PRECIPITATION WITH THE CMORPH INTEGRATED SATELLITE PRECIPITATION ESTIMATES
Ju, Zhengshan	pg. 4566 WE2.R1.2 - SOIL MOISTURE MAPPING WITH POLARIMETRIC SAR IN HUANGHE DELTA OF CHINA
Juan, José Miguel	pg. 5937 MO2.R13.9 - IONOSPHERIC SCINTILLATION MODEL LIMITATIONS AND IMPACT IN GNSS-R MISSIONS
Juba, Brendan	pg. 1679 TH1.R3.5 - A TENSOR DECOMPOSITION METHOD FOR UNSUPERVISED FEATURE LEARNING ON SATELLITE IMAGERY
Jucker, Tommaso	pg. 6097 WE1.R4.7 - COMPARISON OF TLS AND ULS DATA FOR WILDLIFE HABITAT ASSESSMENTS IN TEMPERATE WOODLANDS
Judge, Jasmeet	pg. 5250 FR2.R11.1 - CALIBRATION OF A SVAT MODEL IN THE CENTRAL ZONE OF MEXICO WITH IN-SITU DATA OVER A CORN FIELD REGION pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS pg. 4351 TU2.R11.3 - MONITORING VEGETATION CONDITIONS

	OVER AGRICULTURAL REGIONS USING ACTIVE OBSERVATIONS
	(pg. 4719) TH1.R1.8 - SMAP SOIL MOISTURE PRODUCT VALIDITY IN HETEROGENEOUS IRRIGATED REGIONS
	pg. 4727 TH1.R1.10 - COMPARISON OF SMAP RETRIEVAL SOIL
	MOISTURE LEVEL 2 PRODUCT WITH IN SITU MEASUREMENTS
	OVER CORN FIELDS IN CENTRAL MEXICO.
Julier, Andréa	pg. 260 MO2.R17.1 - VEHICLE DETECTION AND COUNTING FROM VHR SATELLITE IMAGES: EFFORTS AND OPEN ISSUES
Jung, Jinha	pg. 4882 TH1.R11.5 - ESTIMATION OF VISUAL RATING OF TAR
	SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS
	(UAS) DATA AND MACHINE LEARNING TECHNIQUES
	(pg. 5199) FR1.R11.11 - COMBINING UAS AND SENTINEL-2 DATA TO ESTIMATE CANOPY PARAMETERS OF A COTTON CROP
	USING MACHINE LEARNING
Jung, Jungkyo	(pg. 6875)_WE2.R2.4 - EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA
	pg. 6670 TU1.R13.9 - MEASUREMENT OF COASTAL LAND
	MOTION OF TIDE GAUGES AT KOREAN PENINSULA USING
	SEQUENTIAL SBAS-INSAR TECHNIQUE
Jung, Sunghun	pg. 5612 MO2.R8.3 - MAPPING RED TIDE INTENSITY USING
	MULTISPECTRAL CAMERA ON UNMANNED AERIAL VEHICLE: A
	CASE STUDY IN KOREAN SOUTH COAST
Jung, Yoon Taek	pg. 3877 FR1.R3.5 - ANALYSIS OF SINGLE-POL AND QUAD-POL
	DAMAGE INDICATORS FOR EXTRACTION OF BUILDING DAMAGES CAUSED BY 2016 KUMAMOTO EARTHQUAKE
	DAMAGES CAUSED BY 2010 KOMAMOTO LANTIQUAKE
Jupp, David	pg. 6678 TU1.R15.1 - MODTRAN®6 GENERATED SINGLE
	SCATTERING ADJACENCY FUNCTION
Justice, Chris	pg. 4175 MO2.R11.4 - CROP HARVEST MONITORING USING
	POLARIMETRIC SAR PARAMETERS
Justice, Christopher	pg. 3706 TH2.R11.2 - NASA HARVEST(ING) EARTH
	OBSERVATIONS FOR INFORMED AGRICULTURAL DECISIONS
Justina, Diego Della	pg. 4890 TH1.R11.7 - MACHINE LEARNING APPROACHES FOR
	CROP GROWTH MONITORING USING MULTI-TEMPORAL AND
	MULTI-VARIETY REMOTELY SENSED DATA
Jutten, Christian	pg. 3896 FR1.R7.2 - ADDRESSING RELIABILITY OF
	MULTIMODAL REMOTE SENSING TO ENHANCE MULTISENSOR
	DATA FUSION AND TRANSFER LEARNING
Jäger, Marc	pg. 3059 WE1.R9.4 - UNSUPERVISED CLUSTERING OF C-BAND POLSAR DATA OVER SEA ICE
K	
Kabadayı, M. Erdem	(pg. 6069) TU2.R4.10 - LAND COVER FEATURE EXTRACTION
	FROM CORONA SPY SATELLITE IMAGES DURING THE COLD
	<u>WAR - 1968</u>

Kabir, Amin	pg. 3135 WE2.R14.1 - AN INSTITUTIONAL PARTNERSHIP MODEL TO PROVIDE UNDERGRADUATE STUDENTS REMOTE SENSING EDUCATION/RESEARCH EXPERIENCES USING NOVEL INEXPENSIVE LIDAR INSTRUMENTATION
Kafatos, Menas	pg. 4485 WE1.R10.3 - INVESTIGATING THE LAGGED RELATIONSHIP BETWEEN SMAP SOIL MOISTURE AND LIVE FUEL MOISTURE IN CALIFORNIA, USA
Kaiser, Andreas	(pg. 4501) WE1.R10.7 - A MULTI-SCALE REMOTE SENSING APPROACH TO UNDERSTANDING VEGETATION DYNAMICS IN THE NAMA KAROO-GRASSLAND ECOTONE OF SOUTH AFRICA
Kaiser, Johannes W.	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Kalb, Virginia	pg. 156 MO2.R14.8 - UNCERTAINTIES IN VIIRS NIGHTTIME LIGHT TIME SERIES ANALYSIS
Kaleschke, Lars	pg. 3010 TU2.R9.2 - ULTRA WIDEBAND RADIOMETER SIGNATURES OF ARCTIC SEA ICE: PRELIMINARY RESULTS FROM THE MOSAIC CAMPAIGN
Kallel, Abdelaziz	pg. 136 MO2.R14.3 - PREDICTION OF PLANT GROWTH BASED ON STATISTICAL MEASUREMENTS USING SATELLITE IMAGE TIME SERIES pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Kalluri, Satya	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG TH1.R6.9 - AN INTRODUCTION TO THE GEONEX LEVEL-1G PRODUCTS: TOP-OF-ATMOSPHERE REFLECTANCE AND BRIGHTNESS TEMPERATURE
Kalpoma, Kazi A	pg. 4299 TU2.R10.2 - DEVELOPMENT OF GREENNESS ANALYSIS TOOL USING REMOTE SENSING SATELLITE IMAGES pg. 4665 WE2.R11.4 - USE OF REMOTE SENSING SATELLITE IMAGES IN RICE AREA MONITORING SYSTEM OF BANGLADESH
Kam, James	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2).
Kamangir, Hamid	pg. 6965 FR2.R2.3 - SPATIAL RESOLUTION ENHANCEMENT OF UNMANNED AIRCRAFT SYSTEM IMAGERY USING DEEP

	LEARNING-BASED SINGLE IMAGE SUPER-RESOLUTION
Kamara, Samuel	pg. 3379 TU2.R14.3 - AFRICA REGIONAL DATA CUBE (ARDC) IS HELPING COUNTRIES IN AFRICA REPORT ON THE SUSTAINABLE DEVELOPMENT GOALS
Kamicaityte, Jurate	PERMAFROST LANDSCAPE BY MULTI-FUSION DATA MODELING. EXAMPLE OF VERKHOYANSK RIDGE (RUSSIA)
Kampffmeyer, Michael	pg. 1801 TH1.R9.1 - SELF-CONSTRUCTING GRAPH CONVOLUTIONAL NETWORKS FOR SEMANTIC LABELING
Kan, Wanlin	pg. 5298 TU1.R19.2 - ASSIMATION OF FY3D COMBINED MICROWAVE SOUNDER OBSERVATION IN ATMS ALIKE ONE DATA STREAM
Kane, Evan	pg. 5073 FR1.R4.3 - TRACKING CHANGES IN INUNDATION EXTENT OF A BOREAL WETLAND IN ALASKA USING L-BAND SAR
Kaneko, Eiji	pg. 304 MO2.R18.1 - SMALL OBJECT CHANGE DETECTION BASED ON MULTITASK SIAMESE NETWORK
Kanemaru, Kaya	pg. 5384 TU2.R19.12 - BRIGHTNESS TEMPERATURE OBTAINED FROM GLOBAL PRECIPITATION MEASUREMENT MISSION'S DUAL-FREQUENCY PRECIPITATION RADAR
Kang, Dohyuk	MO2.R9.3 - VALIDATION OF THE COMBINED ACTIVE AND PASSIVE MICROWAVE SNOW RETRIEVAL ALGORITHM USING ESA SNOWSAR APPLIED TO CANADA AND US
Kang, Jian	pg. 7005 TU1.R20.1 - SUN GLINT REMOVAL OF HYPERSPECTRAL IMAGES VIA TEXTURE-AWARE TOTAL VARIATION pg. 1687 TH1.R3.7 - BAND-WISE MULTI-SCALE CNN ARCHITECTURE FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION
Kang, Ki-mook	pg. 417 TU1.R3.8 - INVESTIGATION OF ALONG-TRACK INTERFEROMETIC SAR USING ELECTROMAGNETIC SIMULATION
Kang, Wei	Pg. 1993 TH1.R18.5 - DEFORMATION VELOCITY MONITORING IN KUNMING CITY USING ASCENDING AND DESCENDING SENTINEL-1A DATA WITH SBAS-INSAR TECHNIQUE
Kang, Xudong	Pg. 7005 TU1.R20.1 - SUN GLINT REMOVAL OF HYPERSPECTRAL IMAGES VIA TEXTURE-AWARE TOTAL VARIATION Pg. 2707 FR2.R6.3 - NOISE ANALYSIS OF HYPERSPECTRAL IMAGES CAPTURED BY DIFFERENT SENSORS Pg. 4112 MO2.R1.10 - INTRINSIC IMAGE DECOMPOSITION- BASED RESOLUTION ENHANCEMENT FOR MINERAL MAPPING Pg. 80 MO2.R5.11 - MULTISCALE FEATURE EXTRACTION WITH GAUSSIAN CURVATURE FILTER FOR HYPERSPECTRAL IMAGE CLASSIFICATION

file:///home/lep/igarss2020/aa/CFP20IGA-USB/H...

174 of 499 10/5/20, 11:40 AM

(pg. 2987) TU1.R9.7 - GLACIER MELTING RISK: PREDICTIVE

	MODEL OF GLACIAL MELTING BY CORRELATING TIMESERIES ANALYSIS OF GEOGLACIAL DATA WITH FRACTAL-ANALYSIS OF REMOTE-SENSED IMAGES
Karami, Azam	pg. 1584] WE2.R18.4 - A WEAKLY SUPERVISED DEEP LEARNING APPROACH FOR PLANT CENTER DETECTION AND COUNTING
Karbou, Fatima	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Karimoddini 🗓, Ali	pg. 4199 MO2.R11.10 - WEED AND CROP DISCRIMINATION USING U-NET LEARNING
Karmakar, Chandrabali	(pg. 6918) FR1.R2.3 - A FAST SEARCH SYSTEM FOR REMOTE SENSING IMAGERY BASED ON BAG OF VISUAL WORDS AND LATENT DIRICHLET ALLOCATION
Karpatne, Anuj	WE2.R7.1 - PHYSICS-GUIDED MACHINE LEARNING: ADVANCES IN AN EMERGING PARADIGM COMBINING SCIENTIFIC KNOWLEDGE WITH MACHINE LEARNING [pg. 3494] WE2.R7.3 - PROCESS GUIDED DEEP LEARNING FOR MODELING PHYSICAL SYSTEMS: AN APPLICATION IN LAKE TEMPERATURE MODELING
Karuppasamy Ponnambalam, ManiKandan	(pg. 5620) MO2.R8.5 - OCEAN COLOR MODELING IN THE CENTRAL RED SEA USING OCEANOGRAPHICAL OBSERVATION AND SIMULATED PARAMETERS
Kashimura, Osamu	pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) : ITS LAUNCH AND CURRENT STATUS
Kasilingam, Dayalan	pg. 192 MO2.R15.6 - MULTIPLICATIVE PROCESSING FOR POLARIMETRIC SAR INTERFEROMETRY
Kasischke, Eric	pg. 5073 FR1.R4.3 - TRACKING CHANGES IN INUNDATION EXTENT OF A BOREAL WETLAND IN ALASKA USING L-BAND SAR
Kaslis, Kyriakos	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Kasraee, Neda	pg. 3247 MO2.R2.3 - FLOOD MAPPING USING UAVSAR AND CONVOLUTIONAL NEURAL NETWORKS
Katti, Sachin	pg. 5049 FR1.R1.9 - TIME-OF-FLIGHT SOIL MOISTURE ESTIMATION USING RF BACKSCATTER TAGS
Katz, Bert	pg. 3309 MO2.R7.6 - MONITORING HEAVY PRECIPITATION WITH THE CMORPH INTEGRATED SATELLITE PRECIPITATION ESTIMATES
Katzberg, Steven	WE1.R13.2 - ASSESSMENT OF CYGNSS CHARACTERIZATION OF TROPICAL CYCLONES USING MATCHED FILTER BASED RETRIEVALS
Kaulfus, Aaron	pg. 3097 WE1.R14.2 - ADVANCING OPEN SCIENCE THROUGH

	INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM
	(MAAP)'S DATA ECOSYSTEM [pg. 2248] FR1.R5.2 - EMPLOYING DEEP LEARNING TO ENABLE VISUAL EXPLORATION OF EARTH SCIENCE EVENTS
	pg. 3131 WE1.R14.11 - STANDARDIZED ALGORITHM DOCUMENTATION FOR IMPROVED SCIENTIFIC DATA UNDERSTANDING: THE ALGORITHM PUBLICATION TOOL PROTOTYPE
Kaur, Gunkirat	pg. 4677 WE2.R11.7 - SOIL NUTRIENTS PREDICTION USING REMOTE SENSING DATA IN WESTERN INDIA: AN EVALUATION OF MACHINE LEARNING MODELS
Kavluru, Radha Krishna	pg. 6993 FR2.R2.10 - RTC-GAN: REAL-TIME CLASSIFICATION OF SATELLITE IMAGERY USING DEEP GENERATIVE ADVERSARIAL NETWORKS WITH INFUSED SPECTRAL INFORMATION
Kawaguchi, Noriyuki	TH1.R13.6 - EVALUATION OF DIRECT RF SAMPLING HYPERSPECTRAL MICROWAVE RADIOMETER (DSMRAD)
Kawakita, Shirou	pg. 3162 WE2.R14.8 - DEVELOPMENT OF OPEN DATA CUBE TO FACILITATE DISASTER RISK REDUCTION
Kawulok, Michal	pg. 645 TU1.R11.9 - EVALUATING SUPER-RESOLUTION OF SATELLITE IMAGES: A PROBA-V CASE STUDY pg. 866 TU2.R5.10 - HYPERSPECTRAL IMAGE CLASSIFICATION USING SPECTRAL-SPATIAL CONVOLUTIONAL NEURAL NETWORKS
Kazama, So	pg. 4951 TH2.R6.4 - DETECTING IRRIGATION EFFECT ON SURFACE TEMPERATURE USING MODIS AND LAND SURFACE MODEL IN WHOLE UZBEKISTAN pg. 6794 TU2.R2.7 - EVALUATING TREES CROWNS DAMAGE FOR THE 2017 LARGEST WILDFIRE IN JAPAN USING SENTINEL-2A NDMI
Kefauver, Shawn C.	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Kefauver, Shawn Carlisle	pg. 4359 TU2.R11.5 - OPEN-SOURCE SOFTWARE FOR CROP PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB IMAGES
Kehir, Warwick	pg. 1114 WE1.R6.9 - BUSHFIRE SEVERITY MAPPING USING SENTINEL-1 AND -2 IMAGERY
Kehs, Annalyse	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Keller, Graziela	pg. 6381 TH1.R15.1 - OCO-2 CALIBRATION REFINEMENT ACROSS VERSIONS AND PLANS FOR OCO-3
Kelly, Michael	pg. 3853 TH2.R17.6 - AN INNOVATIVE SPACECUBE

	APPLICATION FOR ATMOSPHERIC SCIENCE
Kelly, Richard	pg. 3716 TH2.R11.5 - EARTH OBSERVATION AT FINER SCALES IS CRITICAL TO FARMING COMMUNITIES FACING INCREASED WATER SHORTAGES OVER THE NEXT DECADE
Kelly, Vicky	pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
Kerekes, John	pg. 5570 FR2.R19.2 - REVIEW OF GLOBAL NEAR REAL TIME PM2.5 ESTIMATES AND MODEL FORECASTS
Kereszturi, Gabor	pg. 1086 WE1.R6.2 - MAPPING ANTIMONY CONCENTRATION OVER GEOTHERMAL AREAS USING HYPERSPECTRAL AND THERMAL REMOTE SENSING pg. 5119 FR1.R10.3 - BIOGEOCHEMICAL EXPLORATION OF GOLD MINERALIZATION AND ITS PATHFINDER ELEMENTS USING HYPERSPECTRAL REMOTE SENSING
Kerr, Yann	Pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND Pg. 4830 TH1.R10.3 - MONITORING THE GLOBAL BIOMASS THANKS TO 10 YEARS OF SMOS VEGETATION OPTICAL DEPTH WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI-TEMPORAL STUDY Pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS Pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS Pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR).
Kettner, Albert J.	pg. 3239 MO2.R2.1 - APPLYING REMOTE SENSING TO SUPPORT FLOOD RISK ASSESSMENT AND RELIEF AGENCIES: A GLOBAL TO LOCAL APPROACH
Kganyago, Mahlatse	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
Khaleghian, Salman	pg. 3505 WE2.R7.6 - ON THE OPTIMAL DESIGN OF CONVOLUTIONAL NEURAL NETWORKS FOR EARTH OBSERVATION DATA ANALYSIS BY MAXIMIZATION OF INFORMATION EXTRACTION
Khalil, Rao Zahid	pg. 1528 WE2.R16.2 - COMPARATIVE ANALYSIS BETWEEN OPTICAL AND FUSED IMAGE WITH SAR
Khalsa, SiriJodha	pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY

Khan, Zaheer	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT
Khanna, Yuvraj	pg. 1965 TH1.R17.9 - FROM SUPERVISED TO UNSUPERVISED LEARNING FOR LAND COVER ANALYSIS OF SENTINEL-2 MULTISPECTRAL IMAGES.
Khati, Unmesh	pg. 3861 FR1.R3.1 - ASSESSMENT OF POLSAR AND INSAR TIME-SERIES FROM THE 2019 NASA AM-PM CAMPAIGN FOR ABOVE-GROUND BIOMASS ESTIMATION pg. 4742 TH1.R4.3 - SPLIT-WINDOW BASED FLOOD MAPPING WITH L-BAND ALOS-2 SAR IMAGES: A CASE OF KERALA FLOOD EVENT IN 2018
Khazaal, Ali	[pg. 5978] TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Khenchaf, Ali	pg. 348 MO2.R19.2 - SIMULATION OF MICROWAVE BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL
Khiripet, Noppadon	pg. 5175 FR1.R11.5 - CROP EVAPOTRANSPIRATION ESTIMATES FOR SUGARCANE BASED ON REMOTE SENSING AND LAND SURFACE MODEL IN THAILAND pg. 4684 WE2.R11.9 - YIELD AND COMMERCIAL CANE SUGAR ESTIMATION FOR SUGARCANE IN THAILAND - A CASE STUDY
Khujanazarov, Temur	pg. 4951 TH2.R6.4 - DETECTING IRRIGATION EFFECT ON SURFACE TEMPERATURE USING MODIS AND LAND SURFACE MODEL IN WHOLE UZBEKISTAN
Kiaghadi, Amin	pg. 6674 TU1.R13.10 - A NEW ALGORITHM FOR ESTIMATING SURFACE ROUGHNESS USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) DATA
Kidera, Shouhei	pg. 2336 FR1.R9.1 - BI-DIRECTIONAL PROCESSING ALGORITHM WITH RPM AND WKD BASED DOPPLER VELOCITY ESTIMATOR FOR 3-D DOPPLER-RADAR IMAGING pg. 766 TU1.R18.7 - HUMAN BODY RECOGNITION METHOD USING DIFFRACTION SIGNAL IN NLOS SCENARIO FOR MILLIMETER WAVE RADAR
Kiefl, Nadine	pg. 312 MO2.R18.3 - POTENTIAL OF FOREST MONITORING WITH MULTI-TEMPORAL TANDEM-X HEIGHT MODELS
Kielbasa, Chase	pg. 6150) WE1.R12.2 - PERFORMANCE OF SWESARR'S MULTI- FREQUENCY DUAL-POLARIMETRY SYNTHETIC APERTURE RADAR DURING NASA'S SNOWEX AIRBORNE CAMPAIGN
Kijkullert, Chalerm	pg. 5175 FR1.R11.5 - CROP EVAPOTRANSPIRATION ESTIMATES FOR SUGARCANE BASED ON REMOTE SENSING AND LAND SURFACE MODEL IN THAILAND
Kikkert, Julie	pg. 469 TU1.R5.9 - TOWARD A STRUCTURAL DESCRIPTION OF ROW CROPS USING UAS-BASED LIDAR POINT CLOUDS

Kikuyama, Ryosuke	pg. 381 MO2.R19.11 - SOLAR ACTIVITY IS ONE OF TRIGGERS OF EARTHQUAKES WITH MAGNITUDES LESS THAN 6
Killisly, Clement	TH2.R16.6 - AUTOMATIC OIL SLICK DETECTION FOR ENVIRONMENTAL DOMAIN USING SYNTHETIC APERTURE RADAR (SAR) IMAGES
Killough, Brian	pg. 3373 TU2.R14.1 - ADVANCEMENTS IN THE OPEN DATA CUBE AND ANALYSIS READY DATA - PAST, PRESENT AND FUTURE pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS pg. 3379 TU2.R14.3 - AFRICA REGIONAL DATA CUBE (ARDC) IS HELPING COUNTRIES IN AFRICA REPORT ON THE SUSTAINABLE DEVELOPMENT GOALS pg. 3387 TU2.R14.5 - A NOVEL ARCHITECTURE OF JUPYTERHUB ON AMAZON ELASTIC KUBERNETES SERVICE FOR OPEN DATA CUBE SANDBOX pg. 3391 TU2.R14.6 - SAR ANALYSIS READY DATA AND TOOLS FOR THE OPEN DATA CUBE pg. 3395 TU2.R14.7 - OPEN DATA CUBE (ODC) VISUALIZATION: BRIDGING THE GAP BETWEEN DATA, DECISIONS, AND DEVELOPMENT GOALS
Kilner, Christopher	pg. 3399 TU2.R14.8 - DATA CUBE APPLICATION ALGORITHMS FOR THE UNITED NATION SUSTAINABLE DEVELOPMENT GOALS (UN-SDGS) pg. 3637 TH2.R2.8 - COMMUNITY REORGANIZATION
, , , , , , , , , , , , , , , , , , ,	RESPONSE TO CLIMATE CHANGE: SPECIES INTERACTIONS, STATE-SPACE MODELING AND FOOD WEBS
Kilsedar, Candan Eylul	pg. 4779 TH1.R6.1 - LAND COVER AND SOIL CONSUMPTION MONITORING WITH A FOS GEOPORTAL IN FIVE ITALIAN BIG URBAN AREAS
Kim, Dongchul	pg. 5574 FR2.R19.3 - SATELLITE REMOTE SENSING OBSERVATIONS OF TRANS-ATLANTIC DUST TRANSPORT AND DEPOSITION: A MULTI-SENSOR ANALYSIS
Kim, Duk-jin	pg. 1624 TH1.R2.3 - FINE ACQUISITION OF VESSEL TRAINING DATA FOR MACHINE LEARNING FROM SENTINEL-1 SAR IMAGES ACCOMPANIED BY AIS IMFORMATION pg. 417 TU1.R3.8 - INVESTIGATION OF ALONG-TRACK INTERFEROMETIC SAR USING ELECTROMAGNETIC SIMULATION pg. 6670 TU1.R13.9 - MEASUREMENT OF COASTAL LAND MOTION OF TIDE GAUGES AT KOREAN PENINSULA USING SEQUENTIAL SBAS-INSAR TECHNIQUE
Kim, Edward	Pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND MO2.R9.3 - VALIDATION OF THE COMBINED ACTIVE AND PASSIVE MICROWAVE SNOW RETRIEVAL ALGORITHM USING ESA SNOWSAR APPLIED TO CANADA AND US Pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON

	THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2). WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI- TEMPORAL STUDY pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS pg. 3778 TH2.R13.7 - THE SPECTRUM OUTLOOK FOR EARTH REMOTE SENSING POST WRC-19 pg. 6449 FR1.R13.9 - ON STUDY OF ERROR SOURCES IN MICROWAVE THERMAL VACUUM NON-LINEARITY TEST AND
Kim, Gwantae	ON-ORBIT VERIFICATION (pg. 3857) TH2.R17.7 - SEISMIC SIGNAL SYNTHESIS BY GENERATIVE ADVERSARIAL NETWORK WITH GATED CONVOLUTIONAL NEURAL NETWORK STRUCTURE (pg. 6619) TU1.R2.8 - CONVOLUTIONAL RECURRENT NEURAL NETWORKS FOR EARTHQUAKE EPICENTRAL DISTANCE ESTIMATION USING SINGLE-CHANNEL SEISMIC WAVEFORM
Kim, Heeseob	pg. 3552 WE2.R15.1 - STATUS OF THE KOMPSAT-5 SAR MISSION, UTILIZATION AND FUTURE PLANS
Kim, Hye-Yun	pg. 6698 TU1.R15.6 - SHORTWAVE RADIATION BUDGET PRODUCTS FROM GOES-R SERIES ABI
Kim, Jae-Hyun	pg. 6479 FR1.R15.6 - WIDEBAND WAVEFORM GENERATION AND MEASUREMENT FOR HIGH-RESOLUTION X-BAND UAV-SAR
Kim, Keunyong	pg. 5612 MO2.R8.3 - MAPPING RED TIDE INTENSITY USING MULTISPECTRAL CAMERA ON UNMANNED AERIAL VEHICLE: A CASE STUDY IN KOREAN SOUTH COAST
Kim, Kyeong-Rok	pg. 6479 FR1.R15.6 - WIDEBAND WAVEFORM GENERATION AND MEASUREMENT FOR HIGH-RESOLUTION X-BAND UAV-SAR
Kim, Minhwa	pg. 3877 FR1.R3.5 - ANALYSIS OF SINGLE-POL AND QUAD-POL DAMAGE INDICATORS FOR EXTRACTION OF BUILDING DAMAGES CAUSED BY 2016 KUMAMOTO EARTHQUAKE
Kim, Sang-Wan	pg. 1339 WE2.R3.8 - WATER BODY DETECTION AND WATER QUALITY MONITORING IN THE DAM BASED ON THE X-BAND SAR AND OPTICAL DATA
Kim, Seho	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION pg. 5933 MO2.R13.8 - DEVELOPMENT OF AN END-TO-END MISSION SIMULATOR FOR LAND REMOTE SENSING WITH SIGNALS OF OPPORTUNITY
Kim, Seung Hee	pg. 4485 WE1.R10.3 - INVESTIGATING THE LAGGED RELATIONSHIP BETWEEN SMAP SOIL MOISTURE AND LIVE FUEL MOISTURE IN CALIFORNIA, USA
Kim, Seung-Bum	WE1.R1.8 - ROBUST RETRIEVAL OF SURFACE SOIL MOISTURE ACROSS WIDE-RANGING INCIDENCE ANGLES OVER SHORT CROPS: FOR APPLICATION TO NI-SAR

Kim, Seungbum	pg. 367 MO2.R19.7 - A PHYSICAL PATCH MODEL FOR GNSS-R LAND APPLICATIONS WITH TOPOGRAPHY EFFECTS AND DDM SIMULATIONS WE1.R1.7 - DEVELOPMENT OF NISAR SOIL MOISTURE PRODUCT
Kim, Tae-Sung	pg. 2165 TH2.R18.3 - HAZARDOUS NOXIOUS SUBSTANCE DETECTION BASED ON HYPERSPECTRAL REMOTE SENSING TECHNIQUE
Kim, Won	TU2.R19.8 - UNIT AREA AVERAGE RAINFALL ESTIMATION USING AN ELECTROMAGNETIC WAVE RAIN GAUGE SYSTEM
Kim, Wonkook	pg. 5612 MO2.R8.3 - MAPPING RED TIDE INTENSITY USING MULTISPECTRAL CAMERA ON UNMANNED AERIAL VEHICLE: A CASE STUDY IN KOREAN SOUTH COAST
Kim, Yongwoo	pg. 224 MO2.R16.3 - A NO-REFERENCE SUPER RESOLUTION FOR SATELLITE IMAGE QUALITY ENHANCEMENT FOR KOMPSAT-3
Kim, Youngwook	pg. 2440 FR1.R14.4 - HUMAN DETECTION WITH RANGE- DOPPLER SIGNATURES USING 3D CONVOLUTIONAL NEURAL NETWORKS pg. 4707 TH1.R1.5 - ESTIMATING GLOBAL EVAPOTRANSPIRATION USING SMAP SURFACE AND ROOT-ZONE MOISTURE CONTENT
Kimani, John	pg. 3379 TU2.R14.3 - AFRICA REGIONAL DATA CUBE (ARDC) IS HELPING COUNTRIES IN AFRICA REPORT ON THE SUSTAINABLE DEVELOPMENT GOALS
Kimball, John	pg. 2972 TU1.R9.3 - MELT DETECTION OVER GREENLAND USING SMAP RADIOMETER OBSERVATIONS pg. 3334 TU2.R1.5 - SATELLITE FLOOD ASSESSMENT AND FORECASTS FROM SMAP AND LANDSAT pg. 4707 TH1.R1.5 - ESTIMATING GLOBAL EVAPOTRANSPIRATION USING SMAP SURFACE AND ROOT-ZONE MOISTURE CONTENT pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Kimball, Mindy	pg. 5026 FR1.R1.3 - USE OF X-RAY FLUORESCENCE TO EXPEDITE SAMPLING TO EVALUATE AND VISUALIZE SOIL LEAD CONCENTRATIONS AT WEST POINT, NY
Kimura, Toshiyoshi	pg. 3467 WE2.R4.4 - PROGRESS OF THE ISS BASED VEGETATION LIDAR MISSION, MOLI - JAPAN'S FIRST SPACE-BASED LIDAR

King, Lucinda	pg. 6194) WE1.R13.4 - A TOPOGRAPHICALLY-ACCURATE GNSS-R REFLECTION POINT PREDICTOR FOR ON-BOARD OPERATIONAL PROCESSING pg. 6289) WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
King, Stuart	TH1.R5.8 - ASSESSING FOREST/NON-FOREST SEPARABILITY USING SENTINEL-1 C-BAND SAR
Kirchengast, Gottfried	pg. 6834 WE1.R2.5 - THE 2015 CALBUCO VOLCANIC CLOUD DETECTION USING GNSS RADIO OCCULTATION AND SATELLITE LIDAR
Kirpes, Rachel	pg. 3023 TU2.R9.6 - OBSERVATIONS OF ARCTIC SEA ICE LEADS AND OPEN WATER DURING THE MICROBIOLOGICAL-OCEAN-CLOUD COUPLING IN THE HIGH ARCTIC CAMPAIGN
Kirsch, Moritz	pg. 4035 FR2.R14.3 - TOWARDS 4D VIRTUAL OUTCROPS WITH HYPERSPECTRAL IMAGING
Kiryushov, Boris	pg. 6125 WE1.R7.7 - GEOMAGNETIC ANOMALIES IN O+ CONCENTRATION CONSIDERING THE SUN SEASONAL POSITION ACCORDING TO THE DATA FROM THE COMPLEX "RIMS"
Klamkin, Jonathan	pg. 3471 WE2.R4.5 - INTEGRATED PHOTONICS TECHNOLOGY FOR SPACE-BASED REMOTE-SENSING
Klemisch, Adam	pg. 1929 TH1.R16.11 - AN IMPROVED SPECKLE FILTER FOR SENTINEL-1 SAR IMAGE PROCESSING
Kleniewska, Małgorzata	pg. 5096 FR1.R4.9 - COMPREHENSIVE ANALYSIS OF CO2 FLUXES AND REFLECTANCE CORRELATIONS IN THE WETLAND ECOSYSTEM
Kleynhans, Waldo	pg. 2244 FR1.R5.1 - UNSUPERVISED SEQUENTIAL CLASSIFICATION OF MODIS TIME-SERIES
Kline, Elizabeth	pg. 6051 TU2.R4.5 - GOES-17 ABI L1B PRODUCT PERFORMANCE WITH PREDICTIVE CALIBRATION
Kling, George	pg. 4934 TH2.R1.8 - MONITORING SOILWATER AND ORGANIC CARBON STORAGE PATTERNS AT THE ARCTIC FOOTHILLS, ALASKA, USING INSAR
Klugmann, Dirk	pg. 5462 TH1.R19.8 - FMCW RADAR IN THE DIGITAL AGE: A SYNTHESISER BASED RADAR WIND PROFILER SIGNAL GENERATION
Klöppel, Frank	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Kneubühler, Mathias	pg. 664 TU1.R12.3 - A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM DESIGN TO FIRST RESULTS
Knight, Rosemary	pg. 5061 FR1.R1.12 - TOWARDS SUSTAINABLE

	GROUNDWATER MANAGEMENT: PREDICTING DEFORMATION SCENARIOS WITH COUPLED HYDROGEOPHYSICAL MODELS
Knodt, Uwe	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Knuteson, Robert	pg. 3640 TH2.R4.1 - THE NEXT GENERATION US LEO HYPERSPECTRAL INFRARED SOUNDER pg. 3657 TH2.R4.6 - EXPEDITIOUS IMPLEMENTATION OF A HYPERSPECTRAL IMAGING INFRARED SOUNDER (HIIS) IN GEOSTATIONARY ORBIT
Ko, Hanseok	pg. 3857 TH2.R17.7 - SEISMIC SIGNAL SYNTHESIS BY GENERATIVE ADVERSARIAL NETWORK WITH GATED CONVOLUTIONAL NEURAL NETWORK STRUCTURE pg. 6619 TU1.R2.8 - CONVOLUTIONAL RECURRENT NEURAL NETWORKS FOR EARTHQUAKE EPICENTRAL DISTANCE ESTIMATION USING SINGLE-CHANNEL SEISMIC WAVEFORM
Kobayashi, Hirokazu	pg. 826 TU2.R3.11 - THE STUDY OF PLATFORM FLUCTUATION EFFECT FOR HIGH SQUINT FMCW SAR AND ISAR
Koch, William	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY
Koellner, Nicole	FR2.R14.7 - GEOLOGICAL CHARACTERIZATION OF NIAQORNARSSUIT COMPLEX BASED ON AIRBORNE HYPERSPECTRAL AND MAGNETIC DATA FUSION
Koerting, Friederike	FR2.R14.7 - GEOLOGICAL CHARACTERIZATION OF NIAQORNARSSUIT COMPLEX BASED ON AIRBORNE HYPERSPECTRAL AND MAGNETIC DATA FUSION
Kojima, Shoichiro	pg. 2755 FR2.R9.3 - SEMI-SUPERVISED LAND COVER CLASSIFICATION USING PI-SAR2 OBSERVATION DATA
Kokaly, Ray	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Kokaly, Raymond	pg. 4031 FR2.R14.1 - IMAGING SPECTROSCOPY APPLIED TO MINERAL MAPPING OVER LARGE AREAS: USGS ANALYSIS OF AVIRIS-CLASSIC DATA COVERING CALIFORNIA AND NEVADA
Kolm, Manfred-Georg	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Kolpuke, Shriniwas	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Komarov, Alexander	pg. 3027 TU2.R9.7 - ESTIMATION OF ICE CONCENTRATION FROM SAR USING MULTISCALE ICE AND WATER RETRIEVALS pg. 3031 TU2.R9.8 - MODELING BACKSCATTER FROM OIL- CONTAMINATED SEA ICE USING A MULTI-LAYERED SCATTERING MODEL

Kong, Weiping	pg. 4371 TU2.R11.8 - MONITORING OF VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT BY MULTIANGULAR CANOPY REFLECTANCE SPECTRA IN MAIZE
Kong, Yingying	pg. 2332 FR1.R6.12 - A FUSION METHOD OF SAR IMAGE AND OPTICAL IMAGE BASED ON NSCT AND GRAM-SCHMIDT TRANSFORM
Kongoli, Cezar	pg. 5345 TU2.R19.2 - AN OPERATIONAL SATELLITE SNOWFALL RATE PRODUCT AT NOAA
Konings, Alexandra G.	pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
Konno, Tomohiko	pg. 2755 FR2.R9.3 - SEMI-SUPERVISED LAND COVER CLASSIFICATION USING PI-SAR2 OBSERVATION DATA
Konoplev, Oleg	(pg. 3479) WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Kopackova, Veronika	pg. 4041 FR2.R14.5 - QUANTITATIVE PREDICTIONS OF REE ABUNDANCES IN CARBONATITES USING REFLECTANCE SPECTROSCOPY
Kopp, Greg	pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS
Kopriva, Ivica	pg. 1038 WE1.R5.1 - L0-MOTIVATED LOW RANK SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGERY
Korswagen, Hans	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Korting, Thales	pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO
Korus, Roger	(pg. 3585) WE2.R15.10 - THE SAR-XL MULTI-APERTURE X AND L BAND SAR SYSTEM WITH DIGITAL BEAMFORMING AND ITS CORRESPONDING DUAL-BAND APPLICATIONS
Koshimura, Shunichi	pg. 3751 TH2.R12.7 - DAMAGE CHARACTERIZATION IN URBAN ENVIRONMENTS FROM MULTITEMPORAL REMOTE SENSING DATASETS BUILT FROM PREVIOUS EVENTS
Koskowich, Bradley	(pg. 1873) TH1.R12.8 - EXTRACTING CAMERA POSE USING SINGLE IMAGE SUPER RESOLUTION NETWORKS
Kosovic, Branko	pg. 3626 TH2.R2.5 - ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING
Kostrzewa, Daniel	pg. 645 TU1.R11.9 - EVALUATING SUPER-RESOLUTION OF

	SATELLITE IMAGES: A PROBA-V CASE STUDY
Kou, Xiaokang	pg. 3086 WE1.R9.11 - COMPREHENSIVE VERIFICATION AND
	ANALYSIS OF MULTI-SCALE REMOTE SENSING PRODUCTS FOR
	SURFACE FREEZING-THAWING STATUS ON THE QINGHAI-TIBET PLATEAU
	<u>PLATEAU</u>
Koudelka, Otto	pg. 3345 TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION
Koukoula, Marika	pg. 3943 FR2.R1.6 - STORM POWER OUTAGE PREDICTION
	AND VERIFICATION USING NWP MODELS AND REMOTE
	SENSING DATA
Kouyama, Toru	pg. 6222 WE1.R15.1 - INFLIGHT RADIOMETRIC CALIBRATION
	FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON
	pg. 4104 MO2.R1.8 - VERIFYING RAPID INCREASING OF MEGA-
	SOLAR PV POWER PLANTS IN JAPAN BY APPLYING A CNN-
	BASED CLASSIFICATION METHOD TO SATELLITE IMAGES
Koyama, Christian	pg. 3784 TH2.R15.1 - TRIAL OF DEFORESTATION DETECTION
	BY USING 25M RESOLUTION PALSAR-2/SCANSAR DATA
	pg. 3799 TH2.R15.5 - RAINFALL-INDUCED CHANGES IN
	L-BAND BACKSCATTER OVER TROPICAL FORESTS AND THEIR IMPACT ON DEFORESTATION MONITORING
	pg. 3807 TH2.R15.7 - SEASONAL CHANGE ANALYSIS FOR
	ALOS-2 PALSAR-2 DEFORESTATION DETECTION
Kozak, Alexander	pg. 6170 WE1.R12.7 - DEVELOPMENT AND RESULTS FOR A
	NEW SOFTWARE DEFINED RADAR: THE SLIMSDR
Kraatz, Simon	pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT
	2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE
	UNDER FOREST CANOPY
	pg. 731 TU1.R16.9 - ISCE DOCKER TOOLS: AUTOMATED
	RADIOMETRIC TERRAIN CORRECTION AND IMAGE COREGISTRATION OF UAVSAR MLC DATA
" 0.11	
Kraemer, Guido	pg. 3999 FR2.R7.7 - DISCOVERING DIFFERENTIAL EQUATIONS
	FROM EARTH OBSERVATION DATA
Krapez, JC.	pg. 4715 TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD
	(T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND
	<u>UAV</u>
Kraus, Thomas	pg. 3403 TU2.R15.1 - TANDEM-X: 10 YEARS OF OPERATION
Krause, Keith	pg. 6093 WE1.R4.6 - EVALUATION OF SMALL-FOOTPRINT FULL-
	WAVEFORM AIRBORNE LIDAR INSTRUMENT REQUIREMENTS
	USING DIRSIG SIMULATIONS OF FORESTS
Kreischer, Ken	FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES)
	SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE
	STRATEGIES
Kristensen, Steen S	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN
	ADVANCED L-BAND RADIOMETER MISSION

Krivochiza, Jevgenij	pg. 6588 FR2.R17.10 - SDR IMPLEMENTATION OF A TESTBED FOR SYNCHRONIZATION OF COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS
Kroodsma, Rachael	WE1.R19.1 - FIRST YEAR OF COSMIR OBSERVATIONS OF EAST COAST WINTER STORMS FROM THE IMPACTS CAMPAIGN Pg. 5341 TU2.R19.1 - RECONFIGURING COSSIR FOR THE NEXT GENERATION OF CLOUD AND PRECIPITATION SCIENCE
Kropp, Jürgen	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT
Kruger, Anton	pg. 4347 TU2.R11.2 - MEASUREMENT OF CROP WATER BY ON SITE RADIOMETRY
Krupiński, Michał	pg. 485 TU1.R6.3 - MULTIFRACTAL PARAMETERS FOR CLASSIFICATION OF HYPERSPECTRAL DATA pg. 1691 TH1.R3.8 - MULTIFRACTAL FEATURES FOR LAND USE CLASSIFICATION
Kruspe, Anna	pg. 2081 TH2.R5.5 - ON THE FUSION STRATEGIES OF SENTINEL-1 AND SENTINEL-2 DATA FOR LOCAL CLIMATE ZONE CLASSIFICATION
Krutz, David	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Ku, Bonhwa	pg. 3857 TH2.R17.7 - SEISMIC SIGNAL SYNTHESIS BY GENERATIVE ADVERSARIAL NETWORK WITH GATED CONVOLUTIONAL NEURAL NETWORK STRUCTURE pg. 6619 TU1.R2.8 - CONVOLUTIONAL RECURRENT NEURAL NETWORKS FOR EARTHQUAKE EPICENTRAL DISTANCE ESTIMATION USING SINGLE-CHANNEL SEISMIC WAVEFORM
Kuang, Gangyao	pg. 1248 WE1.R18.8 - SHIP TARGET SIGNATURE INDICATION BASED ON COMPLEX SIGNAL KURTOSIS IN SAR IMAGES pg. 256 MO2.R16.11 - ADAPTIVE-WEIGHT FUSION NETWORK FOR LAND COVER CLASSIFICATION USING HETEROGENEOUS REMOTE SENSING IMAGES
Kuang, Jianming	pg. 5139 FR1.R10.8 - DETECTION OF PRE-FAILURE DEFORMATION OF THE 2017 MAOXIAN LANDSLIDE WITH TIME- SERIES INSAR AND MULTI-TEMPORAL OPTICAL DATASETS
Kubade, Ashish	pg. 1671 TH1.R3.3 - FEEDBACK NEURAL NETWORK BASED SUPER-RESOLUTION OF DEM FOR GENERATING HIGH FIDELITY FEATURES
Kubatko, Ethan	WE1.R13.2 - ASSESSMENT OF CYGNSS CHARACTERIZATION OF TROPICAL CYCLONES USING MATCHED FILTER BASED RETRIEVALS
Kubota, Takuji	pg. 3593 WE2.R19.2 - PRELIMINARY ANALYSIS OF EXPERIMENTAL PRODUCT FOR THE NEW SCAN PATTERN OF GPM/DPR pg. 3600 WE2.R19.4 - EVALUATION OF CLOUD LIQUID WATER

	DATABASE USING GLOBAL CLOUD-SYSTEM RESOLVING MODEL FOR GPM/DPR ALGORITHMS [pg. 3611] WE2.R19.8 - DEVELOPMENT OF RAINFALL NORMALIZATION MODULE FOR GSMAP MICROWAVE IMAGERS AND SOUNDERS
Kuchi, Aditi	pg. 976 TU2.R18.7 - LEVEE-CRACK DETECTION FROM SATELLITE OR DRONE IMAGERY USING MACHINE LEARNING APPROACHES
Kuciauskas, Arunas	pg. 3316 MO2.R7.8 - APPLYING THE NOAA UNIQUE COMBINED ATMOSPHERIC PROCESSING SYSTEM (NUCAPS) TO SUPPORT FORECASTERS AT THE US NAVY AND US AIR FORCE IN MONITORING IMPACTFUL PACIFIC WEATHER EVENTS
Kuehnle, Helena	pg. 6234 WE1.R15.4 - A CALIBRATION AND VALIDATION TOOL FOR DATA QUALITY ANALYSIS OF AIRBORNE IMAGING SPECTROSCOPY DATA
Kuester, Jannick	pg. 664 TU1.R12.3 - A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM DESIGN TO FIRST RESULTS
Kuffer, Monika	pg. 3747 TH2.R12.6 - TOWARDS UNCOVERING SOCIO- ECONOMIC INEQUALITIES USING VHR SATELLITE IMAGES AND DEEP LEARNING
Kukunda, Collins B.	pg. 312 MO2.R18.3 - POTENTIAL OF FOREST MONITORING WITH MULTI-TEMPORAL TANDEM-X HEIGHT MODELS
Kukunuri, Anjana	pg. 1747 TH1.R5.10 - A NEURAL NETWORK APPROACH TO CLASSIFY MIXED CLASSES USING MULTI FREQUENCY SAR DATA
Kulbicki, Michel	pg. 1969 TH1.R17.10 - DEEP CONVOLUTIONAL NEURAL NETWORK FOR MANGROVE MAPPING
Kuleshov, Vladimir	pg. 5709 TU2.R8.6 - RETRIEVAL OF MEAN SQUARE SLOPES OF SEA WAVES, SURFACE WIND SPEED, TOTAL WATER VAPOR CONTENT AND TOTAL CLOUD LIQUID WATER CONTENT IN HAGIBIS TYPHOON AREA FROM SATELLITE ACTIVE AND PASSIVE MICROWAVE DATA
Kull, Ain	pg. 4738 TH1.R4.2 - INSAR COHERENCE FOR MONITORING GROUNDWATER TABLE FLUCTUATIONS IN NORTHERN PEATLANDS
Kulshrestha, Utkarsh	pg. 893 TU2.R7.6 - EDGE ANALYTICS AND COMPLEX EVENT PROCESSING FOR REAL TIME AIR POLLUTION MONITORING AND CONTROL
Kumar Vishal, Mukesh	[pg. 5286] FR2.R11.10 - LEAF COUNTING IN RICE (ORYZA SATIVA L.) USING OBJECT DETECTION: A DEEP LEARNING APPROACH
Kumar, Ajay	(pg. 1588) WE2.R18.5 - UAV BASED REMOTE SENSING FOR TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF MAIZE CROP USING MULTISPECTRAL IMAGES

Kumar, Mohit	pg. 6582 FR2.R17.8 - POLYPHASE CODING FOR WEATHER RADARS
Kumar, Rajesh	pg. 5554 FR1.R19.9 - CHANGE IN LAND AND OCEAN PARAMETERS ALONG THE TRACK OF TROPICAL CYCLONE FANI
Kumar, Sandeep	pg. 1217 WE1.R17.12 - IDENTIFYING SETTLEMENTS USING SVM AND U-NET
Kumar, Sanjeev	pg. 2005 TH1.R18.8 - SNOW CHARACTERIZATION AND AVALANCHE DETECTION IN THE INDIAN HIMALAYA
Kumar, Sudhir	pg. 5286 FR2.R11.10 - LEAF COUNTING IN RICE (ORYZA SATIVA L.) USING OBJECT DETECTION: A DEEP LEARNING APPROACH
Kumar, Vineet	pg. 4870 TH1.R11.2 - VEGETATION MONITORING USING A NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND DATA
Kumar, Vipin	pg. 3494 WE2.R7.3 - PROCESS GUIDED DEEP LEARNING FOR MODELING PHYSICAL SYSTEMS: AN APPLICATION IN LAKE TEMPERATURE MODELING
Kumon, Yuki	pg. 5127 FR1.R10.5 - FAULT DISPLACEMENT DETECTION CAUSED BY LARGE EARTHQUAKE USING EXTENDED DEEPMATCHING
Kunkee, David	pg. 6420 FR1.R13.1 - REMOTE SENSING AND PROPOSED FEDERAL SPECTRUM ACTIONS: WILL PASSIVE MICROWAVE REMOTE SENSING BE AFFECTED?
Kuo, Kwo-Sen	pg. 3608 WE2.R19.6 - RECENT ADVANCES TO THE OPENSSP PARTICLE AND SCATTERING DATABASE pg. 901 TU2.R7.8 - STARE TOWARDS INTEGRATIVE ANALYSIS WITH MINIMIZED DATA WRANGLING HASSLE pg. 5469 TH1.R19.10 - TOWARDS A MASS-CONSISTENT METHODOLOGY FOR REALISTIC MELTING HYDROMETEOR RETRIEVAL
Kupaev, Aleksandr	pg. 3545 WE2.R8.7 - FILM SLICKS ON THE SEA SURFACE: THEIR DYNAMICS AND REMOTE SENSING
Kupssinsku, Lucas	pg. 2619 FR2.R3.4 - HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN REMOTE SENSING IMAGES?
Kuras, Agnieszka	FR2.R14.7 - GEOLOGICAL CHARACTERIZATION OF NIAQORNARSSUIT COMPLEX BASED ON AIRBORNE HYPERSPECTRAL AND MAGNETIC DATA FUSION
Kurian, Nikhil Cherian	pg. 2280 FR1.R5.10 - SATELLITE-DERIVED BATHYMETRY USING DEEP CONVOLUTIONAL NEURAL NETWORK
Kurihara, Junichi	pg. 6222 WE1.R15.1 - INFLIGHT RADIOMETRIC CALIBRATION

	FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON
Kurihara, Ryuji	pg. 2695 FR2.R5.11 - TOTAL NUCLEAR NORMS OF GRADIENTS FOR HYPERSPECTRAL IMAGE PANSHARPENING
Kurum, Mehmet	pg. 4700 TH1.R1.3 - PRELIMINARY STUDY OF CRAMER-RAO LOWER BOUND FOR SUBSURFACE SOIL MOISTURE ESTIMATION USING SOOP REFLECTOMETRY
	pg. 6278 WE2.R13.4 - GNSS REFLECTOMETRY FROM SMARTPHONES: TESTING PERFORMANCE OF IN-BUILT ANTENNAS AND GNSS CHIPS
	pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
	pg. 4470 WE1.R1.10 - MACHINE-LEARNING BASED RETRIEVAL OF SOIL MOISTURE AT HIGH SPATIO-TEMPORAL SCALES USING CYGNSS AND SMAP OBSERVATIONS
Kushta, Jonilda	pg. 3821 TH2.R16.4 - TIMELY UPDATE OF EMISSION FLUXES WITH SATELLITE INFORMATION
Kussul, Nataliia	pg. 6914 FR1.R2.2 - DEEP RECURRENT NEURAL NETWORK FOR CROP CLASSIFICATION TASK BASED ON SENTINEL-1 AND SENTINEL-2 IMAGERY
	pg. 1050 WE1.R5.4 - SATELLITE AGRICULTURAL MONITORING IN UKRAINE AT COUNTRY LEVEL: WORLD BANK PROJECT
	pg. 4971 TH2.R6.9 - ASSESSMENT OF LAND CONSUMPTION
	FOR SDG INDICATOR 11.3.1 USING GLOBAL AND LOCAL BUILT- UP AREA MAPS
Kuthethoor, Prahalad	pg. 5929 MO2.R13.7 - VALIDATION OF SUPER-RESOLUTION GNSS-R USING AN AIRBORNE FIELD TRIAL
Kuwahara, Toshinori	pg. 6222 WE1.R15.1 - INFLIGHT RADIOMETRIC CALIBRATION FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON
Kuze, Akihiko	pg. 5541 FR1.R19.5 - PRODUCTS AND SCIENCE ACHIEVEMENTS OF GOSAT SATELLITE SERIES
Kvinge, Henry	pg. 3684 TH2.R7.6 - ROTATIONAL EQUIVARIANCE FOR OBJECT CLASSIFICATION USING XVIEW
Kwak, Young-Joo	pg. 3262 MO2.R2.7 - MULTI-PERSPECTIVE FRAMEWORK FOR 4D-BIM-INFRASTRUCTURE MANAGEMENT BY UTILIZING EO DATA
Kwasniewski, Misha	pg. 1117 WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Kwoh, Leong Keong	pg. 3788 TH2.R15.2 - CHANGE DETECTION IN BI-TEMPORAL ALOS-2 PALSAR-2 POLARIMETRIC DATA
	pg. 6635 TU1.R2.12 - EARTHQUAKE EARLY WARNING USING

König, Simon	pg. 5163 FR1.R11.2 - CROP YIELD ESTIMATION USING MULTI- SOURCE SATELLITE IMAGE SERIES AND DEEP LEARNING
Körner, Marco	pg. 7025 TU2.R20.1 - MODEL AND DATA UNCERTAINTY FOR SATELLITE TIME SERIES FORECASTING WITH DEEP RECURRENT MODELS pg. 7041 TU2.R20.5 - META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION
Körting, Friederike	pg. 5226 FR2.R10.7 - MULTI-SCALE APPROACH USING REMOTE SENSING TECHNIQUES FOR LITHIUM PEGMATITE EXPLORATION: FIRST RESULTS
Körting, Thales	pg. 2061 TH2.R3.11 - STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION pg. 168 MO2.R14.11 - ASSESSING DIFFERENTIATION BETWEEN PASTURE AND CROPLANDS USING REMOTE SENSING IMAGE TIME SERIES METRICS
Körting, Thales Sehn	pg. 1345 WE2.R3.10 - LAND COVER CLASSIFICATION OF AN AREA SUSCEPTIBLE TO LANDSLIDES USING RANDOM FOREST AND NDVI TIME SERIES DATA pg. 1389 WE2.R5.11 - MAPPING DEFORESTED AREAS IN THE CERRADO BIOME THROUGH RECURRENT NEURAL NETWORKS
Kühnl, Marlene	pg. 4219 MO2.R12.4 - DERIVING URBAN MASS CONCENTRATIONS USING TANDEM-X AND SENTINEL-2 DATA FOR THE ASSESSMENT OF MORPHOLOGICAL POLYCENTRICITY
L	
L'Helguen, Céline	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
La Pama, Inga	MO2.R10.6 - DOES REPEATED PRESCRIBED BURNING RESULT IN FOREST STRUCTURE SIMILAR TO THAT OF WILDFIRE? INSIGHT FROM ANALYSIS OF LIDAR DATA OF THE NEW JERSEY PINELANDS NATIONAL RESERVE
La, Tran Vu	pg. 5380 TU2.R19.11 - COMBINATION OF GEOSTATIONARY AND POLAR SATELLITE SENSORS TO MONITOR CUMULONIMBUS AND THEIR WINDS AT THE OCEAN SURFACE
LaFarr, Margaret	pg. 5537 FR1.R19.4 - ANALYZING METEOROLOGICAL AND CHEMICAL CONDITIONS FOR TWO HIGH OZONE EVENTS OVER THE NEW YORK CITY AND LONG ISLAND REGION
LaPorta, Laura	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES
Labahn, Steven	pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS
Laberinti, Paolo	pg. 6535 FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL

	CHALLENGES
Lacava, Teodosio	pg. 3166 TH1.R14.1 - THE CORDINET PROJECT: ANALYSIS OF THE BARRIERS LIMITING A MORE DIFFUSE AND SYSTEMATIC USE OF EARTH OBSERVATION COPERNICUS-BASED SOLUTIONS
Lacey, Jennifer	pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS
Lachaise, Marie	pg. 3416 TU2.R15.5 - AN ADAPTIVE FILTERING APPROACH FOR THE NEW TANDEM-X CHANGE DEM
Lachiver, Jean-Michel	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Laczkowski, Doug	TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Lafon, Robert	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Lagomasino, David	pg. 5964 TU1.R4.6 - EVALUATING CURRENT AND FUTURE SENSOR-SPECIFIC BIOMASS CALIBRATION IN THE TALLEST MANGROVE FOREST ON EARTH
Lahboub, Youness	pg. 6105 WE1.R7.2 - CAPABILITIES OF THE NEW MOROCCAN SATELLITE MOHAMMED-VI FOR PLANIMETRIC AND ALTIMETRIC MAPPING
Lai, Gengke	pg. 6778 TU2.R2.3 - ASSESSMENT OF THE EFFECT OF PROSAILH FOR OPEN AND CLOSED SHRUBLANDS LIVE FUEL MOISTURE CONTENT RETRIEVAL pg. 6782 TU2.R2.4 - EVALUATION OF HIMAWARI-8 FOR LIVE FUEL MOISTURE CONTENT RETRIEVAL
Lajas, Dulce	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Lakhankar, Tarendra	pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
Lamas-Fernández, Francisco	pg. 1026 WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)
Lambrigtsen, Bjorn	pg. 3649 TH2.R4.4 - GEOSTAR - A 'SHOVEL READY' GEOSTATIONARY MICROWAVE SOUNDER
Lamentowski, Leszek	pg. 3581 WE2.R15.9 - ICEYE MICROSATELLITE SAR CONSTELLATION STATUS UPDATE: EVALUATION OF FIRST COMMERCIAL IMAGING MODES
Lan, Lihua	pg. 4566 WE2.R1.2 - SOIL MOISTURE MAPPING WITH POLARIMETRIC SAR IN HUANGHE DELTA OF CHINA
Lan, Yang	pg. 7013 TU1.R20.3 - NEW ALGORITHM FOR NEAR-FIELD ISAR

	IMAGING pg. 405 TU1.R3.5 - AN INFINITY-NORM-BASED PHASE UNWRAPPING METHOD WITH TSPA FRAMEWORK FOR MULTI-
	BASELINE SAR INTERFEROGRAMS pg. 409 TU1.R3.6 - IMPROVED BRANCH-CUT ALGORITHM FOR MULTIBASELINE PHASE UNWRAPPING USING SAR INTERFEROGRAMS
Lanari, Riccardo	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR CO-SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Landier, Lucas	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Landivar, Juan	pg. 5199 FR1.R11.11 - COMBINING UAS AND SENTINEL-2 DATA TO ESTIMATE CANOPY PARAMETERS OF A COTTON CROP USING MACHINE LEARNING
Landrum, Mike	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2).
Laneve, Giovanni	pg. 6010 TU1.R14.6 - ON-ORBIT IMAGE SHARPNESS ASSESSMENT USING THE EDGE METHOD: METHODOLOGICAL IMPROVEMENTS FOR AUTOMATIC EDGE IDENTIFICATION AND SELECTION FROM NATURAL TARGETS pg. 2009 TH1.R18.9 - AN AUTOMATIC SPECTRAL RULE-BASED SYSTEM FOR REAL-TIME THERMAL ANOMALIES DETECTION USING GOES-16 ABI DATA
Lang, Roger	pg. 5628 MO2.R8.7 - DEBYE DIELECTRIC MODEL FUNCTION FOR SEAWATER BASED ON EXPANDED L-BAND MEASUREMENT DATA SET
Lang, Shuyan	pg. 5654 TU1.R8.3 - RAIN EFFECTS ON CFOSAT SCATTEROMETER: TOWARDS AN IMPROVED WIND QUALITY CONTROL
Langheinrich, Maximilian	pg. 5302 TU1.R19.3 - GAN-GENERATED ELEVATION MODELS IN COMPUTATIONAL FLUID DYNAMICS: A FEASIBILITY STUDY FOR COMPLEX URBAN TERRAIN TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Lapalus, Philipe	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Lapini, Alessandro	pg. 4163 MO2.R11.1 - APPLICATION OF DEEP LEARNING TO OPTICAL AND SAR IMAGES FOR THE CLASSIFICATION OF AGRICULTURAL AREAS IN ITALY

Lapshin, Vladimir	pg. 6125 WE1.R7.7 - GEOMAGNETIC ANOMALIES IN O+ CONCENTRATION CONSIDERING THE SUN SEASONAL POSITION ACCORDING TO THE DATA FROM THE COMPLEX "RIMS"
Larsen, Kameron	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION pg. 3357 TU2.R13.5 - DIGITAL BACK END FOR P-BAND REFLECTIONS CONCEPTS
Larson, Jordan	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Lassalle, Guillaume	pg. 4045 FR2.R14.6 - REMOTE SENSING OF OIL IN VEGETATED REGIONS: AN OVERVIEW OF RECENT ADVANCES AND FUTURE CHALLENGES TOWARD OPERATIONAL APPLICATIONS
Lassalle, Pierre	pg. 260 MO2.R17.1 - VEHICLE DETECTION AND COUNTING FROM VHR SATELLITE IMAGES: EFFORTS AND OPEN ISSUES pg. 1961 TH1.R17.8 - A CYCLE GAN APPROACH FOR HETEROGENEOUS DOMAIN ADAPTATION IN LAND USE CLASSIFICATION
Lastilla, Lorenzo	pg. 897 TU2.R7.7 - FIRST TEST OF AGISOFT METASHAPE SATELLITE IMAGE PROCESSING FOR DSM GENERATION: A CASE STUDY IN TRENTO WITH PLÉIADES IMAGERY
Laszlo, Istvan	pg. 6698 TU1.R15.6 - SHORTWAVE RADIATION BUDGET PRODUCTS FROM GOES-R SERIES ABI
Latini, Daniele	pg. 2085 TH2.R5.6 - MULTI-POL SAR DATA FUSION FOR COASTLINE EXTRACTION BY NEURAL NETWORKS CHAINING
Lau, Eric	pg. 3313 MO2.R7.7 - TAILORING NATIONAL WEATHER SERVICE TRAINING TO SERVE THE PACIFIC'S MOST REMOTE LOCATIONS
Lau, lan	pg. 6417 TH1.R15.10 - AUSTRALIA, A HUB FOR SPACEBORNE IMAGING SPECTROSCOPY CALIBRATION AND VALIDATION
Lauret, Nicolas	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Laurila, Pekka	TU1.R4.3 - POTENTIAL OF MULTITEMPORAL ICEYE SAR DATA IN LAND COVER MAPPING APPLICATIONS [Pg. 3581] WE2.R15.9 - ICEYE MICROSATELLITE SAR CONSTELLATION STATUS UPDATE: EVALUATION OF FIRST COMMERCIAL IMAGING MODES
Laurore, Lionel	pg. 449 TU1.R5.4 - OPERATIONAL PIPELINE FOR LARGE-SCALE 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGES
Lauwaet, Dirk	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT

pg. 3861 FR1.R3.1 - ASSESSMENT OF POLSAR AND INSAR
TIME-SERIES FROM THE 2019 NASA AM-PM CAMPAIGN FOR
ABOVE-GROUND BIOMASS ESTIMATION
pg. 1897 TH1.R16.3 - AN EFFICIENT AREA-BASED ALGORITHM
FOR SAR RADIOMETRIC TERRAIN CORRECTION AND MAP
<u>PROJECTION</u>
pg. 96 MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT
P, L AND S-BANDS AT BERMS AND DELTA JUNCTION
pg. 6214 WE1.R13.9 - WAVE COHERENCE IN GNSS
REFLECTOMETRY: A SIGNAL PROCESSING POINT OF VIEW
REFERENCE A SIGNAL TROCESSING FORM OF VIEW
pg. 6826 WE1.R2.3 - RAPID STRUCTURE DETECTION IN
SUPPORT OF DISASTER RESPONSE : A CASE STUDY OF THE
2018 KILAUEA VOLCANO ERUPTION
(pg. 6914) FR1.R2.2 - DEEP RECURRENT NEURAL NETWORK
FOR CROP CLASSIFICATION TASK BASED ON SENTINEL-1 AND
SENTINEL-2 IMAGERY
pg. 1050 WE1.R5.4 - SATELLITE AGRICULTURAL MONITORING
IN UKRAINE AT COUNTRY LEVEL: WORLD BANK PROJECT
WELL DO 1. INVEDCION ECTIMATES OF METHANIS
pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE
EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT
<u>OBSERVATIONS</u>
pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL
SYSTEM REAL-TIME AUTONOMY
WELL BOOK MULTI TEMPORAL INCAR MONITORING OF
(pg. 1026) WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF
THE BENINAR DAM (SE SPAIN).
pg. 6857 WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE
FOR TECTONICS AND VOLCANIC MONITORING
pg. 2165 TH2.R18.3 - HAZARDOUS NOXIOUS SUBSTANCE
DETECTION BASED ON HYPERSPECTRAL REMOTE SENSING
TECHNIQUE
pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE
SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO
RADAR SYSTEM
pg. 5851 TH2.R8.10 - IMPROVING THE ESTIMATION OF THE
SEA LEVEL ANOMALY SLOPE
<u> </u>
pg. 5697 TU2.R8.3 - OCEANIC SURFACE CURRENT
APPROXIMATION FROM SPARSE DATA
pg. 445 TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV
DRONE REMOTE SENSING USING PYTHON MODELLING
ELECTRICAL RESISTIVITY IMAGING (PYMERI)
pg. 3696 TH2.R7.9 - QUANTUM ASSISTED IMAGE
REGISTRATION
2004 ED1 D7 A SHTEDING INTERNAL TIDES FROM MURE
(pg. 3904) FR1.R7.4 - FILTERING INTERNAL TIDES FROM WIDE-
SWATH ALTIMETER DATA USING CONVOLUTIONAL NEURAL

	<u>NETWORKS</u>
Le Toan, Thuy	pg. 389 TU1.R3.1 - MEKONG SAR INTERFEROMETRY BIG DATA: PRELIMINARY RESULTS
Le Vine, David	pg. 3766 TH2.R13.3 - RETRIEVAL OF RFI CHARACTERISTICS USING L-BAND SATELLITE DATA pg. 3330 TU2.R1.4 - SMAP MICROWAVE RADIOMETER CALIBRATION REVISIT APPROACHES AND PERFORMAMNCE pg. 5628 MO2.R8.7 - DEBYE DIELECTRIC MODEL FUNCTION FOR SEAWATER BASED ON EXPANDED L-BAND MEASUREMENT DATA SET FR1.R13.11 - MONITORING IN THE RFI ENVIRONMENT USING SMAP DATA FROM 2015-2020
Le, Minda	pg. 3604 WE2.R19.5 - EVALUATION OF GPM-DPR GRAUPEL AND HAIL IDENTIFICATION ALGORITHM ON A GLOBAL SCALE
Le, Thu Trang	pg. 328 MO2.R18.7 - VOLCANIC ERUPTION MONITORING USING COHERENCE CHANGE DETECTION MATRIX
Le, Trung Chon	pg. 389 TU1.R3.1 - MEKONG SAR INTERFEROMETRY BIG DATA: PRELIMINARY RESULTS
Leca, Stefan	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Lechler, Sarah	pg. 2061 TH2.R3.11 - STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION
Lecrenier, Olivier	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Leduc-Leballeur, Marion	pg. 6434 FR1.R13.5 - P-BAND RADIOMETRY: RFI AND CALIBRATION FOR UWBRAD
Lee, Boram	pg. 1339 WE2.R3.8 - WATER BODY DETECTION AND WATER QUALITY MONITORING IN THE DAM BASED ON THE X-BAND SAR AND OPTICAL DATA
Lee, Christine	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Lee, Chul-Ho	pg. 6635 TU1.R2.12 - EARTHQUAKE EARLY WARNING USING LOW-COST MEMS SENSORS
Lee, Craig	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Lee, Da-Young	pg. 4882 TH1.R11.5 - ESTIMATION OF VISUAL RATING OF TAR SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS (UAS) DATA AND MACHINE LEARNING TECHNIQUES
Lee, Hwa-Seon	pg. 4156 MO2.R10.10 - DAMAGED TREES DETECTION USING THE EXPANSION OF DEEP LEARNING MODEL FROM UAV RGB IMAGES TO MULTISPECTRAL IMAGES

Lee, Jimin	pg. 6619 TU1.R2.8 - CONVOLUTIONAL RECURRENT NEURAL
	NETWORKS FOR EARTHQUAKE EPICENTRAL DISTANCE
	ESTIMATION USING SINGLE-CHANNEL SEISMIC WAVEFORM
	pg. 6635 TU1.R2.12 - EARTHQUAKE EARLY WARNING USING
	LOW-COST MEMS SENSORS
Lee, Joseph	pg. 4590 WE2.R1.8 - ASSESSMENT OF SMAP AND ESA CCI
	SOIL MOISTURE OVER THE GREAT LAKES BASIN
Lee, Ken Yoong	pg. 3788 TH2.R15.2 - CHANGE DETECTION IN BI-TEMPORAL
	ALOS-2 PALSAR-2 POLARIMETRIC DATA
Lee, Kwang Jae	pg. 968 TU2.R18.5 - SHIP DETECTION FOR KOMPSAT-3A
	OPTICAL IMAGES USING BINARY FEATURES AND ADABOOST
	CLASSIFICATION
Lee, Kwang-Jae	pg. 2851 FR2.R16.5 - DATA AUGMENTATION FOR SHIP
	DETECTION USING KOMPSAT-5 IMAGES AND DEEP LEARNING
	MODEL
Lee, Kwon-Ho	pg. 5600 FR2.R19.10 - ESTIMATION OF DIRECTIONAL SURFACE
	REFLECTANCE AND ATMOSPHERIC AEROSOLS OVER EAST ASIA
	USING A MULTI-CHANNEL GEOSTATIONARY SATELLITE
Lee, Kyu-Sung	pg. 4156 MO2.R10.10 - DAMAGED TREES DETECTION USING
	THE EXPANSION OF DEEP LEARNING MODEL FROM UAV RGB
	IMAGES TO MULTISPECTRAL IMAGES
Lee, Moonjin	pg. 2165 TH2.R18.3 - HAZARDOUS NOXIOUS SUBSTANCE
	DETECTION BASED ON HYPERSPECTRAL REMOTE SENSING
	TECHNIQUE
Lee, Myron	pg. 3357 TU2.R13.5 - DIGITAL BACK END FOR P-BAND
	REFLECTIONS CONCEPTS
Lee, Peter	pg. 6158 WE1.R12.4 - RECALIBRATING SENTINEL-1 ADDITIVE
	NOISE-GAIN WITH LINEAR PROGRAMMING
Lee, Richard	(pg. 6381) TH1.R15.1 - OCO-2 CALIBRATION REFINEMENT
	ACROSS VERSIONS AND PLANS FOR OCO-3
Lee, Sang-Moo	pg. 5686 TU1.R8.11 - DEVELOPMENT OF A TWO-SCALE
, , , , , , , , , , , , , , , , , , ,	OCEAN SURFACE EMISSIVITY MODEL APPLICABLE OVER A
	WIDE RANGE OF MICROWAVE FREQUENCIES
Lee, Seung-Jae	pg. 3552 WE2.R15.1 - STATUS OF THE KOMPSAT-5 SAR
	MISSION, UTILIZATION AND FUTURE PLANS
	pg. 968 TU2.R18.5 - SHIP DETECTION FOR KOMPSAT-3A
	OPTICAL IMAGES USING BINARY FEATURES AND ADABOOST CLASSIFICATION
	pg. 2851 FR2.R16.5 - DATA AUGMENTATION FOR SHIP
	DETECTION USING KOMPSAT-5 IMAGES AND DEEP LEARNING
	MODEL
Lee, Seung-Kuk	pg. 5964 TU1.R4.6 - EVALUATING CURRENT AND FUTURE
	SENSOR-SPECIFIC BIOMASS CALIBRATION IN THE TALLEST

	MANGROVE FOREST ON EARTH
Lee, Seungchul	pg. 417 TU1.R3.8 - INVESTIGATION OF ALONG-TRACK INTERFEROMETIC SAR USING ELECTROMAGNETIC SIMULATION
Lee, Shihyal	pg. 4999 TH2.R10.7 - ALLOMETRIC RELATIONSHIPS BETWEEN ABOVE-GROUND BIOMASS AND LIDAR FULL WAVEFORM MEASUREMENTS - POTENTIAL APPLICATIONS FOR GLOBAL ECOSYSTEM DYNAMICS INVESTIGATION (GEDI) MISSION
Lee, Sun-Gu	pg. 3552 WE2.R15.1 - STATUS OF THE KOMPSAT-5 SAR MISSION, UTILIZATION AND FUTURE PLANS pg. 3556 WE2.R15.2 - MULTI-TEMPORAL ASSESSMENT OF X-BAND SAR SOIL MOISTURE RETRIEVALS ACROSS GROWTH STAGES OF A DRYLAND WHEAT FIELD pg. 3560 WE2.R15.3 - INTERCOMPARISON OF X- AND C-BANDS ACTIVE MICROWAVE SOIL MOISTURE RETRIEVALS OVER DRYLAND WHEAT FIELDS pg. 3564 WE2.R15.4 - IMPROVEMENT OF KOMPSAT-5 SEA SURFACE WIND WITH CORRECTION EQUATION RRETRIEVAL AND APPLICATION pg. 3568 WE2.R15.5 - CHANGE DETECTION OF URBAN AREAS
Lee, Tsengdar	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS
Lee, Yeji	pg. 3877 FR1.R3.5 - ANALYSIS OF SINGLE-POL AND QUAD-POL DAMAGE INDICATORS FOR EXTRACTION OF BUILDING DAMAGES CAUSED BY 2016 KUMAMOTO EARTHQUAKE
Lee, Yoon-Kyung	pg. 1339) WE2.R3.8 - WATER BODY DETECTION AND WATER QUALITY MONITORING IN THE DAM BASED ON THE X-BAND SAR AND OPTICAL DATA
Lefebvre, Alain	pg. 3459 WE2.R4.2 - STATUS OF ESA'S EARTHCARE MISSION PREPARATION pg. 3475 WE2.R4.6 - FLIGHT LIDAR DEVELOPMENT AND QUALIFICATION FOR THE ESA EARTH CLOUD AEROSOL AND RADIATION EXPLORER (EARTHCARE) MISSION
Lefèvre, Sébastien	pg. 260 MO2.R17.1 - VEHICLE DETECTION AND COUNTING FROM VHR SATELLITE IMAGES: EFFORTS AND OPEN ISSUES pg. 264 MO2.R17.2 - SMALL OBJECT DETECTION FROM REMOTE SENSING IMAGES WITH THE HELP OF OBJECT-FOCUSED SUPER-RESOLUTION USING WASSERSTEIN GANS
Lehner, Susanne	pg. 5753) WE1.R8.7 - HIGH-RESOLUTION REMOTE SENSING, IN-SITU OBSERVATIONS, AND MODELING OF LOW-SALINITY LENSES IN THE PRESENCE OF OIL SLICK
Lei, Bin	pg. 1727 TH1.R5.5 - A HYBRID AND EXPLAINABLE DEEP LEARNING FRAMEWORK FOR SAR IMAGES
Lei, Bingbing	pg. 862 TU2.R5.9 - ADAPTIVE NEIGHBORHOOD STRATEGY

	BASED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Lei, Fangni	pg. 4470 WE1.R1.10 - MACHINE-LEARNING BASED RETRIEVAL OF SOIL MOISTURE AT HIGH SPATIO-TEMPORAL SCALES USING CYGNSS AND SMAP OBSERVATIONS
Lei, Jietao	pg. 5203 FR2.R10.1 - MICROWAVE THERMAL EMISSION FEATURES OF MARE TRANQUILLITATIS AND MARE SERENITATIS INDICATED BY CE2 CELMS DATA
Lei, Lin	pg. 256 MO2.R16.11 - ADAPTIVE-WEIGHT FUSION NETWORK FOR LAND COVER CLASSIFICATION USING HETEROGENEOUS REMOTE SENSING IMAGES
Lei, Mingyang	pg. 956 TU2.R18.2 - REMOTE SENSING TARGET TRACKING FOR UAV AERIAL VIDEOS BASED ON MULTI-FREQUENCY FEATURE ENHANCEMENT
Lei, Mingyu	pg. 2173 TH2.R18.5 - HYPERSPECTRAL UNMIXING VIA RECURRENT NEURAL NETWORK WITH CHAIN CLASSIFIER
Lei, Ning	pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Lei, Yang	pg. 4979 TH2.R10.2 - TROPICAL FOREST HEIGHT AND UNDERLYING TOPOGRAPHY FROM TANDEM-X SAR INTERFEROMETRY pg. 1424 WE2.R6.9 - A PSEUDOSPECTRAL TIME-DOMAIN SIMULATOR FOR LARGE-SCALE HALF-SPACE ELECTROMAGNETIC SCATTERING AND RADAR SOUNDING APPLICATIONS pg. 2743 FR2.R6.12 - A FAST DENSE FEATURE TRACKING ROUTINE WITH ITS APPLICATION IN CRYOSPHERE REMOTE SENSING USING SENTINEL-1 AND LANDSAT-8 DATA
Lei, Yonghui	Pg. 6871 WE2.R2.3 - THE APPLICATION OF REMOTE SENSING PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA
Leidner, Mark	pg. 5313 TU1.R19.6 - ASSIMILATION OF GNSS-R DELAY- DOPPLER MAPS INTO WEATHER MODELS
Leitao, Pedro	pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO
Lejeune, Yves	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Lelieveld, Jos	pg. 3821 TH2.R16.4 - TIMELY UPDATE OF EMISSION FLUXES WITH SATELLITE INFORMATION
Leman, Mohammad	pg. 4299 TU2.R10.2 - DEVELOPMENT OF GREENNESS

	ANALYSIS TOOL USING REMOTE SENSING SATELLITE IMAGES
Lemmetyinen, Juha	pg. 2938 MO2.R9.6 - ASSESSING THE PERFORMANCES OF FY-3D/MWRI AND DMSP SSMIS IN GLOBSNOW-2 ASSIMILATION SYSTEM FOR SWE ESTIMATION
Lenain, Luc	pg. 3533) WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Leng, Xiangguang	pg. 1129 WE1.R16.2 - AN EFFICIENT WATER SEGMENTATION METHOD FOR SAR IMAGES pg. 1248 WE1.R18.8 - SHIP TARGET SIGNATURE INDICATION BASED ON COMPLEX SIGNAL KURTOSIS IN SAR IMAGES
Leong, Kevin	FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE STRATEGIES
Lerot, Christophe	pg. 6039 TU2.R4.2 - TOTAL COLUMN RETRIEVAL OF SO2 AND HCHO FROM SENTINEL-4 MEASUREMENTS
Lesiv, Myroslava	pg. 4251 TU1.R1.1 - ELASTIC MAPPING THROUGH THE COPERNICUS GLOBAL LAND COVER LAYERS
Leslie, R. Vincent	pg. 6441 FR1.R13.7 - PRE-LAUNCH CALIBRATION OF THE NASA TROPICS CONSTELLATION MISSION pg. 6449 FR1.R13.9 - ON STUDY OF ERROR SOURCES IN MICROWAVE THERMAL VACUUM NON-LINEARITY TEST AND ON-ORBIT VERIFICATION
Leslie, Vincent	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2).
Leuschen, Carl	pg. 2924 MO2.R9.2 - SNOW GRAIN SIZE ESTIMATES FROM AIRBORNE KA-BAND RADAR MEASUREMENTS
Leuschen, Carlton	pg. 3019 TU2.R9.5 - AIRBORNE ALTIMETRY MEASUREMENTS IN THE ARCTIC USING A COMPACT MULTI-BAND RADAR SYSTEM: INITIAL RESULTS
Leveque, Nicolas	Pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Levering, Alex	pg. 3983 FR2.R7.2 - INTERPRETABLE SCENICNESS FROM SENTINEL-2 IMAGERY
Levick, Shaun	pg. 6097 WE1.R4.7 - COMPARISON OF TLS AND ULS DATA FOR WILDLIFE HABITAT ASSESSMENTS IN TEMPERATE WOODLANDS
Levinson, Richard	pg. 3841 TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS
Lewis, Adam	pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS

Lewis, Ryan	(pg. 3920) FR1.R7.8 - ROAD NETWORK AND TRAVEL TIME EXTRACTION FROM MULTIPLE LOOK ANGLES WITH SPACENET DATA
Lewis-Beck, Colin	TH2.R10.9 - VICARIOUS VALIDATION OF L-BAND VEGETATION OPTICAL DEPTH
Lewiński, Stanisław	pg. 3513 WE2.R7.8 - MULTI-SPECTRAL IMAGE CLASSIFICATION WITH QUANTUM NEURAL NETWORK
Lewyckyj, Nicolas	(pg. 4489) WE1.R10.4 - APPLICATION OF RANDOM FOREST CLASSIFICATION TO DETECT THE PINE WILT DISEASE FROM HIGH RESOLUTION SPECTRAL IMAGES
Ley, Andreas	pg. 3908 FR1.R7.5 - REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK
Lguensat, Redouane	[pg. 3904] FR1.R7.4 - FILTERING INTERNAL TIDES FROM WIDE- SWATH ALTIMETER DATA USING CONVOLUTIONAL NEURAL NETWORKS
Li, Alan	pg. 3841 TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS pg. 3633 TH2.R2.7 - NASA NEMO-NET - A NEURAL MULTIMODAL OBSERVATION & TRAINING NETWORK FOR MARINE ECOSYSTEM MAPPING AT DIVERSE SPATIOTEMPORAL SCALES
Li, Baihui	pg. 2886 FR2.R18.3 - LANDSLIDE MONITORING AND DETECTION FOR MOUNTAINOUS AREAS USING SBAS COMBINED WITH GLCM pg. 1989 TH1.R18.4 - LANDSLIDE DETECTION BASED ON GLCM USING SAR IMAGES pg. 1007 WE1.R3.4 - ATMOSPHERIC CORRECTION OF SAR IMAGES BASED ON PS-INSAR pg. 453 TU1.R5.5 - PERSISTENT SCATTERER DETECTION AND 3-D RECONSTRUCTION OF TRANSMISSION TOWER IN MOUNTAIN AREA BASED ON SAR TOMOGRAPHY pg. 4466 WE1.R1.9 - AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA pg. 940 TU2.R16.10 - DEEP LEARNING FOR VEGETATION IMAGE SEGMENTATION IN LAI MEASUREMENT
Li, Beibei	pg. 1460 WE2.R9.7 - HIGH-ORDER TRIPLET CRF-PCANET FOR UNSUPERVISED SEGMENTATION OF SAR IMAGE
Li, Bin	pg. 1778 TH1.R7.6 - VISUAL CONTEXT AWARE SHIP DETECTOR FOR HIGH-RESOLUTION SAR IMAGERY
Li, Bingquan	pg. 5211 FR2.R10.3 - RISK INVESTIGATION OF LANDSLIDE HAZARD AND DISASTER EMERGENCY BASED ON MULTI- PLATFORMS REMOTE SENSING TECHNIQUES

Li, Boyu	pg. 2356 FR1.R9.6 - CLUTTER SUPPRESSION AND MOVING TARGET RADIAL VELOCITY ESTIMATION METHOD FOR HRWS MULTICHANNEL SYSTEM BASED ON SUBSPACE PROJECTION
Li, Chang	pg. 728 TU1.R16.8 - STUDY ON POLARIMETRIC SCATTERING CHARACTERISTICS BASED ON DIFFERNENT BAND SAR IMAGES
Li, Changhui	pg. 1869 TH1.R12.7 - ROBUST ESTIMATION APPROACH FOR PLANE FITTING IN 3D LASER SCANNING DATA
Li, Chuang	pg. 2209 TH2.R20.4 - SPECTRAL-SPATIAL STACKED AUTOENCODERS BASED ON THE BILATERAL FILTER FOR HYPERSPECTRAL ANOMALY DETECTION pg. 6089 WE1.R4.5 - TIME-FREQUENCY DOMAIN NONLINEAR PHASE COMPENSATION FOR FMCW LADAR SIGNALS
Li, Chuanrong	pg. 5994 TU1.R14.2 - A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER pg. 5543 FR1.R19.6 - RETRIEVAL OF TOTAL OZONE COLUMN USING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY (DOAS) ALGORITHM FROM ULTRAVIOLET SOLAR RADIATION DATA pg. 4688 WE2.R11.10 - JOINT ESTIMATION OF GRASSLAND LEAF AREA INDEX AND LEAF CHLOROPHYLL CONTENT FROM UNMANNED AERIAL VEHICLE HYPERSPECTRAL DATA
Li, Chunjiang	pg. 5100 FR1.R4.10 - POYANG LAKE VEGETATION BIOMASS INVERSION USING RADARSAT-2 POLSAR DATA AND SIMPLIFIED WATER-CLOUD MODEL
Li, Chunsheng	pg. 1229 WE1.R18.3 - SHIP DETECTION IN RADAR IMAGE SERIES BASED ON THE LONG SHORT-TERM MEMORY NETWORK
Li, Cong	pg. 2292 FR1.R6.1 - A ROBUST MATCHING METHOD FOR OPTICAL AND SAR IMAGES BASED ON COARSE-TO-FINE MECHANISM pg. 2811 FR2.R12.6 - A TWO-STEP SHIP TARGET DETECTION METHOD IN HIGH-RESOLUTION SAR IMAGE BASED ON COARSE-TO-FINE MECHANISM

Li, Deren	pg. 2388 FR1.R12.2 - SEMI-AUTOMATIC FULLY SPARSE SEMANTIC MODELING FRAMEWORK FOR HYPERSPECTRAL UNMIXING
	pg. 577 TU1.R10.3 - SUPER RESOLUTION GENERATIVE ADVERSARIAL NETWORK BASED IMAGE AUGMENTATION FOR
	SCENE CLASSIFICATION OF REMOTE SENSING IMAGES
	pg. 1817 TH1.R9.5 - A MODIFIED D-LINKNET WITH TRANSFER
	LEARNING FOR ROAD EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING
	pg. 1373 WE2.R5.7 - TOPIC MODEL FOR REMOTE SENSING
	DATA: A COMPREHENSIVE REVIEW
	pg. 1197 WE1.R17.7 - URBAN SCENES CHANGE DETECTION
	BASED ON MULTI-SCALE IRREGULAR BAG OF VISUAL
	FEATURES FOR HIGH SPATIAL RESOLUTION IMAGERY
Li, Di	pg. 1267 WE1.R20.1 - HYPERSPECTRAL IMAGE
	CLASSIFICATION BASED ON SEMI-SUPERVISED DUAL-BRANCH
	CONVOLUTIONAL AUTOENCODER WITH SELF-ATTENTION
Li, Dong	pg. 1981 TH1.R18.2 - POLARIMETRIC SCATTERING
	CHARACTERISTIC ANALYSIS OF DISASTER AFFECTED AREA
	BASED ON HUYNEN-EULER PARAMETERS
	pg. 2352 FR1.R9.5 - A NOVEL SAR IMAGE DOMAIN-GROUND
	MOVING TARGET IMAGING METHOD
	pg. 2141 TH2.R9.9 - GROUND MOVING TARGET IMAGING
	BASED ON MSOKT AND KT FOR SYNTHETIC APERTURE RADAR
Li, Dongsheng	pg. 1778 TH1.R7.6 - VISUAL CONTEXT AWARE SHIP
	DETECTOR FOR HIGH-RESOLUTION SAR IMAGERY
Li, Fan	pg. 6226 WE1.R15.2 - RECONSTRUCTING MODIS LST
	PRODUCTS OVER TIBETAN PLATEAU BASED ON RANDOM
	<u>FOREST</u>
	pg. 4634 WE2.R10.7 - A FUEL MOISTURE CONTENT
	MONITORING METHODOLOGY BASED ON OPTICAL REMOTE
	SENSING
	(pg. 1885) TH1.R12.11 - SOIL MOISTURE RETRIEVAL USING STACKED GENERALIZATION: AN ENSEMBLE MACHINE
	LEARNING METHOD
Li, Fang	pg. 2324 FR1.R6.10 - HYPERSPECTRAL ANOMALY DETECTION
	<u>VIA BAND FUSION</u>
Li, Fengpeng	pg. 4076 MO2.R1.1 - A MULTI-STAGE NETWORK FOR
	IMPROVING THE SAMPLE QUALITY IN AERIAL IMAGE OBJECT
	<u>DETECTION</u>
	pg. 2400 FR1.R12.5 - SEMI-SUPERVISED HYPERSPECTRAL
	UNMIXING WITH VERY DEEP CONVOLUTIONAL NEURAL NETWORKS
	-12 · 1 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3
Li, Fuqin	pg. 6678 TU1.R15.1 - MODTRAN®6 GENERATED SINGLE
	SCATTERING ADJACENCY FUNCTION
Li, Gang	pg. 1436 WE2.R9.1 - ADAPTIVE SUPERPIXEL SEGMENTATION
-	WITH FISHER VECTORS FOR SHIP DETECTION IN SAR IMAGES

	pg. 6427 FR1.R13.3 - LOCATION OF SMOS RFI SOURCES USING A MATRIX COMPLETION APPROACH
	pg. 5741 WE1.R8.4 - INVESTIGATION OF SUBMESOSCALE EDDIES FROM MODIS COLOR INDEX PRODUCTS IN COASTAL REGIONS: A CASE STUDY IN SUBEI SHOAL
Li, Gaopeng	pg. 1240 WE1.R18.6 - RECOGNITION OF SHIP BY ISAR WITH IMPROVED PARTIAL-MODAL GENERATIVE ADVERSARIAL NETWORKS
Li, Guofei	pg. 2471 FR1.R16.1 - A NON-LINEARLY MOVING SHIP AUTOFOCUS METHOD UNDER HYBRID COORDINATE SYSTEM pg. 916 TU2.R16.4 - IMPROVED OMEGA-K ALGORITHM FOR HIGHLY SQUINTED TOPSAR WITH CURVED TRAJECTORY
Li, Guowei	pg. 1560 WE2.R16.10 - AMPLITUDE AND PHASE ERROR CORRECTION METHOD FOR ARRAY SAR PROCESSED IN TIME DOMAIN
Li, Haitao	pg. 656 TU1.R12.1 - AN END-TO-END DEEP LEARNING CHANGE DETECTION FRAMEWORK FOR REMOTE SENSING IMAGES pg. 1945 TH1.R17.4 - END-TO-END DEEP LEARNING SEMANTIC CLASSIFICATION ARCHITECTURE FOR REMOTE SENSING IMAGERY
Li, Haixiang	pg. 2803 FR2.R12.4 - SHADOW DETECTION IN SAR IMAGES: AN OTSU- AND CFAR-BASED METHOD
Li, Han	pg. 2113 TH2.R9.2 - AN IMPROVED IMAGING ALGORITHM FOR AIRBORNE NEAR-NADIR TOPS SAR WITH YAW ANGLE ERROR pg. 180 MO2.R15.3 - X-BAND POLINSAR VEGETATION CANOPY HEIGHT INVERSION STRATEGY BASED ON FREQUENCY SEGMENTATION
Li, Hang	pg. 1353 WE2.R5.2 - A CNN-GCN FRAMEWORK FOR MULTI-LABEL AERIAL IMAGE SCENE CLASSIFICATION pg. 537 TU1.R7.4 - SE-HRNET: A DEEP HIGH-RESOLUTION NETWORK WITH ATTENTION FOR REMOTE SENSING SCENE CLASSIFICATION pg. 972 TU2.R18.6 - INSHORE SHIP DETECTION BASED ON MULTI-INFORMATION FUSION NETWORK AND INSTANCE SEGMENTATION

Li, Hao	pg. 2392 FR1.R12.3 - SUPERPIXEL-BASED SPATIAL
	CONSTRAINTS SPARSE UNMIXING FOR HYPERSPECTRAL
	REMOTE SENSING IMAGERY
	pg. 3739 TH2.R12.4 - REMOTE SENSING AND DEEP LEARNING
	FOR SUSTAINABLE MINING
	pg. 2400 FR1.R12.5 - SEMI-SUPERVISED HYPERSPECTRAL UNMIXING WITH VERY DEEP CONVOLUTIONAL NEURAL
	NETWORKS
	pg. 1385 WE2.R5.10 - UNSUPERVISED STYLE TRANSFER VIA
	DUALGAN FOR CROSS-DOMAIN AERIAL IMAGE CLASSIFICATION
	pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A
	HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE
	FREQUENCY MODULE
Li, Haojiang	pg. 3774 TH2.R13.6 - WIDEBAND INTERFERENCE
	SUPPRESSION FOR SAR BY TIME-FREQUENCY-PULSE JOINT
	DOMAIN PROCESSING
Li, Heng-Chao	pg. 1663 TH1.R3.1 - EDGE-DRIVEN OBJECT MATCHING FOR
	<u>UAV IMAGES AND SATELLITE SAR IMAGES</u>
	pg. 340 MO2.R18.10 - CHANGE DETECTION OF POLARIMETRIC
	SAR IMAGES USING MINKOWSKI LOG-RATIO DISTANCE
Li, Hengchao	pg. 858 TU2.R5.8 - HYPERSPECTRAL IMAGE CLASSIFICATION
	BASED ON TENSOR-TRAIN CONVOLUTIONAL LONG SHORT-
	TERM MEMORY
Li, Heping	pg. 4363 TU2.R11.6 - STUDY ON SPATIOTEMPORAL
	VARIATIONS OF EVAPOTRANSPIRATION IN ETUOKEQIANQI
	BASED ON MOD16 PRODUCTS AND PENMAN-MONTEITH
	MODEL
Li, Hongbo	pg. 2615 FR2.R3.3 - SATELLITE ATTITUDE CHANGE
	RECOGNITION BASED ON MULTI-FRAME IMAGE BY 3D
	CONVOLUTIONAL NEURAL NETWORKS
	pg. 2129 TH2.R9.6 - A VARIABLE-DECOUPLING METHOD USED
	IN MSR-BASED IMAGING ALGORITHMS FOR SAR WITH CONSTANT ACCELERATION
	pg. 6985 FR2.R2.8 - HLS-BASED FPGA IMPLEMENTATION OF
	CONVOLUTIONAL DEEP BELIEF NETWORK FOR SIGNAL
	MODULATION RECOGNITION
Li, Hua	pg. 4854 TH1.R10.9 - EVALUATION OF FOUR THERMAL
	INFRARED KERNEL-DRIVEN MODELS USING LIMITED
	<u>OBSERVATIONS</u>
Li, Huan	pg. 3066 WE1.R9.6 - SHIP NAVIGATION ROUTE PLANNING
	USING TOPOLOGY OF SEA ICE CHANNELS EXTRACTED FROM
	HIGH RESOLUTION SATELLITE IMAGES
Li, Hui	pg. 2679 FR2.R5.7 - CNN-BASED TREE SPECIES
	CLASSIFICATION USING AIRBORNE LIDAR DATA AND HIGH-
	RESOLUTION SATELLITE IMAGE

Li, Ji	pg. 2511 FR1.R16.11 - REMOTE SENSING DATA AUGMENTATION THROUGH ADVERSARIAL TRAINING
Li, Jiajia	(pg. 5477) TH1.R19.12 - SPATIAL AND TEMPORAL CHARACTERISTICS OF SEA FOG IN YELLOW SEA AND BOHAL
	SEA BASED ON ACTIVE AND PASSIVE REMOTE SENSING
Li, Jian	pg. 2017 TH1.R18.11 - MERRAMAX: A MACHINE LEARNING
	APPROACH TO STOCHASTIC CONVERGENCE WITH A MULTI- VARIATE DATASET
Li, Jiangfeng	pg. 1667 TH1.R3.2 - GRAPH-BASED MICRO-SEISMIC SIGNAL CLASSIFICATION WITH AN OPTIMISED FEATURE SPACE
Li, Jiaojiao	pg. 1857 TH1.R12.4 - SPECTRAL SUPER-RESOLUTION USING
	HYBRID 2D-3D STRUCTURE TENSOR ATTENTION NETWORKS WITH CAMERA SPECTRAL SENSITIVITY PRIOR
	pg. 2671 FR2.R5.5 - DEEP RESIDUAL SPATIAL ATTENTION
	NETWORK FOR HYPERSPECTRAL PANSHARPENING
	pg. 1825 TH1.R9.7 - DILATED RESIDUAL NETWORK BASED ON
	DUAL EXPECTATION MAXIMIZATION ATTENTION FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES
	pg. 2193 TH2.R18.10 - HYPERSPECTRAL TARGET DETECTION
	WITH ROI FEATURE TRANSFORMATION
Li, Jichao	pg. 2575 FR1.R18.5 - SHIP SEGMENTATION ON HIGH- RESOLUTION SAR IMAGE BY A 3D DILATED MULTISCALE U-NET
Li, Jie	pg. 2667 FR2.R5.4 - COMBINED THE DATA-DRIVEN WITH
	MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED NOISE REMOVAL IN HYPERSPECTRAL IMAGE
	pg. 2396 FR1.R12.4 - SPATIAL-SPECTRAL AUTOENCODER
	NETWORKS FOR HYPERSPECTRAL UNMIXING
	pg. 2173 TH2.R18.5 - HYPERSPECTRAL UNMIXING VIA
	RECURRENT NEURAL NETWORK WITH CHAIN CLASSIFIER
	(pg. 589) TU1.R10.6 - LUNAR HYPERSPECTRAL IMAGE DESTRIPING METHOD USING LOW-RANK MATRIX RECOVERY
	AND GUIDED PROFILE
	pg. 2687 FR2.R5.9 - DATA-DRIVEN AND MODEL-DRIVEN
	SPECTRAL SUPERRESOLUTION ALGORITHMS: COMBINATION,
	ANALYSIS AND APPLICATION FOR CLASSIFICATION (pg. 2731) FR2.R6.9 - VIDEO SATELLITE IMAGERY SUPER
	RESOLUTION FOR 'JILIN-1' VIA A SINGLE-AND-MULTI FRAME
	ENSEMBLED FRAMEWORK
Li, Jilu	pg. 2924 MO2.R9.2 - SNOW GRAIN SIZE ESTIMATES FROM AIRBORNE KA-BAND RADAR MEASUREMENTS
	pg. 3019 TU2.R9.5 - AIRBORNE ALTIMETRY MEASUREMENTS IN
	THE ARCTIC USING A COMPACT MULTI-BAND RADAR SYSTEM: INITIAL RESULTS
Li, Jing	pg. 4295 TU2.R10.1 - SPATIAL-TEMPORAL PREDICTION OF
-	VEGETATION INDEX WITH A CONVOLUTIONAL GRU NETWORK
	pg. 2519 FR1.R17.2 - FLOOD MAPPING WITH SAR AND MULTI-
	SPECTRAL REMOTE SENSING IMAGES BASED ON WEIGHTED

	EVIDENTIAL FUSION
	pg. 4303 TU2.R10.3 - A METHOD FOR IMPROVING THE ACCURACY OF THE MODERATE RESOLUTION LAI PRODUCT BASED ON THE MIXED-PIXEL CLUMPING INDEX
	pg. 493 TU1.R6.5 - FEATURE SEPARATION BASED ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 3066 WE1.R9.6 - SHIP NAVIGATION ROUTE PLANNING
	USING TOPOLOGY OF SEA ICE CHANNELS EXTRACTED FROM HIGH RESOLUTION SATELLITE IMAGES
	pg. 4505 WE1.R10.8 - GENERATING SPATIAL-TEMPORAL CONTINUOUS LAI TIME-SERIES FROM LANDSAT USING NEURAL NETWORK AND METEOROLOGICAL DATA
	pg. 5014 TH2.R10.11 - A HIGHLY CHLOROPHYLL-SENSITIVE AND LAI-INSENSITIVE INDEX BASED ON THE RED-EDGE BAND:
Li, Jingrun	CSI
Li, jingrun	pg. 2859 FR2.R16.7 - SHIP DETECTION AND FINE-GRAINED RECOGNITION IN LARGE-FORMAT REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORK
Li, Jingwen	pg. 1161) WE1.R16.10 - ISAR IMAGING OF SPACE STATION BASED ON EPHEMERIS DATA ERROR COMPENSATION
Li, Jingyi	pg. 2715 FR2.R6.5 - A NOVEL VARIATIONAL AUTOENCODER BASED RADAR SIGNAL RECONSTRUCTION ALGORITHM USING POLLUTED DATA
Li, Jinzhi	pg. 3172 TH1.R14.3 - INTRODUCTION TO POSTGRADUATE EDUCATION OF REMOTE SENSING IN CHINA
Li, Jonathan	pg. 4167 MO2.R11.2 - EARLY-SEASON CROP CLASSIFICATION WITH RADARSAT-2 POLARIMETRIC SYNTHETIC APERTURE RADAR IMAGERY
	pg. 1580 WE2.R18.3 - AUTOMATED DETECTION OF MANHOLE COVERS IN MLS POINT CLOUDS USING A DEEP LEARNING APPROACH
	pg. 2767 FR2.R9.6 - EXTRACTION OF POWER LINES AND PYLONS FROM LIDAR POINT CLOUDS USING A GCN-BASED
	METHOD
	pg. 2771 FR2.R9.7 - A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR 3D POINT CLOUDS
	pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS
Li, JuanJuan	pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH
Li, JuanJuan	pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION
Li, JuanJuan Li, Jun	pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF
	pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE
	pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF
	pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA pg. 5348 TU2.R19.3 - SPATIAL DOWNSCALING FOR GLOBAL PRECIPITATION MEASUREMENT USING A GEOGRAPHICALLY
	pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA pg. 5348 TU2.R19.3 - SPATIAL DOWNSCALING FOR GLOBAL

	DATA-DEFICIENT REGIONS (Pg. 2177) TH2.R18.6 - SPECTRAL-SPATIAL WEIGHTED SPARSE NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
Li, Kun	Pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR Pg. 1532 WE2.R16.3 - REMOVEMENT OF STAGGERED SAR AMBIGUITY IN LOW-OVERSAMPLING BY DEEP LEARNING Pg. 5543 FR1.R19.6 - RETRIEVAL OF TOTAL OZONE COLUMN USING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY (DOAS) ALGORITHM FROM ULTRAVIOLET SOLAR RADIATION DATA Pg. 6250 WE1.R15.8 - BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION Pg. 2499 FR1.R16.8 - A ROBUST AMBIGUITY REMOVAL METHOD FOR STAGGERED SAR
Li, Lei	pg. 5022 FR1.R1.2 - RESEARCH ON WATER SUITABILITY OF MAIZE PLANTING RANGE IN NORTHEAST CHINA pg. 236 MO2.R16.6 - SPATIO-TEMPORAL FUSION OF NIGHT- TIME LIGHT IMAGES WITH DEEP LEARNING pg. 6333 WE2.R17.10 - CO-OBSERVATION AND ANALYSIS OF UAV AND MULTISPECTRAL REMOTE SENSING
Li, Li	pg. 4914 TH2.R1.3 - SENTINEL-1 IMAGERY INCORPORATING MACHINE LEARNING FOR DRYLAND SALINITY MONITORING: A CASE STUDY IN ESPERANCE, WESTERN AUSTRALIA pg. 2352 FR1.R9.5 - A NOVEL SAR IMAGE DOMAIN-GROUND MOVING TARGET IMAGING METHOD
Li, Linfeng	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 2859 FR2.R16.7 - SHIP DETECTION AND FINE-GRAINED RECOGNITION IN LARGE-FORMAT REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORK pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Li, Linghao	pg. 1901 TH1.R16.4 - PRELIMINARY RESULT OF MIMO SAR TOMOGRAPHY VIA 3D FFBP pg. 100 MO2.R6.5 - HIGH-RESOLUTION SAR TOMOGRAPHY VIA SEGMENTED DECHIRPING
Li, Lingling	pg. 537 TU1.R7.4 - SE-HRNET: A DEEP HIGH-RESOLUTION NETWORK WITH ATTENTION FOR REMOTE SENSING SCENE CLASSIFICATION pg. 2651 FR2.R3.12 - DEEP ADAPTIVE PROPOSAL NETWORK IN OPTICAL REMOTE SENSING IMAGES OBJECTIVE DETECTION
Li, Linyuan	pg. 4622 WE2.R10.4 - ANALYZING LEAF CLUMPING EFFECT OF

	INDIVIDUAL TREES BASED ON MODELED REALISTIC STRUCTURE
Li, Lu	pg. 176 MO2.R15.2 - EVALUATION OF A_S1 FOR BUILDING DAMAGE MAPPING BASED ON TOUZI DECOMPOSITION pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK pg. 1655 TH1.R2.11 - HYPERSPECTRAL TARGET DETECTION BY FRACTIONAL FOURIER TRANSFORM
Li, Mengyang	pg. 984 TU2.R18.9 - A FINE-GRAINED SHIP DETECTION FRAMEWORK BASED ON FIXED ROI MASKING AND FEATURE OPTIMIZATION IN OPTICAL REMOTE SENSING IMAGES pg. 565 TU1.R7.12 - A WAVELET DOMAIN BASED CNN SHIP CLASSIFICATION METHOD FOR HIGH RESOLUTION OPTICAL SATELLITE REMOTE SENSING IMAGES
Li, Ming	pg. 3172 TH1.R14.3 - INTRODUCTION TO POSTGRADUATE EDUCATION OF REMOTE SENSING IN CHINA pg. 6694 TU1.R15.5 - HIGH-RESOLUTION BRDF AND ALBEDO PARAMETERS INVERSION FROM SENTINEL-2 MULTISPECTRAL INSTRUMENT DATA pg. 1460 WE2.R9.7 - HIGH-ORDER TRIPLET CRF-PCANET FOR UNSUPERVISED SEGMENTATION OF SAR IMAGE pg. 300 MO2.R17.11 - VESSEL TARGET MONITORING WITH BISTATIC COMPACT HF SURFACE WAVE RADAR pg. 6722 TU1.R15.12 - 3D FDTD INVESTIGATION ON BISTATIC SCATTERING FROM 2D ROUGH SURFACE WITH CPML ABSORBING CONDITION
Li, Mujie	pg. 6879 WE2.R2.5 - WARNING OF RAINFALL-INDUCED LANDSLIDE IN BAZHOU DISTRICT pg. 4279 TU1.R1.8 - LAND USE AND LAND COVER CHANGE OF GHANA pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB- SAHARA AFRICA
Li, Muyi	pg. 5183 FR1.R11.7 - USING NDVI TIME SERIES CURVE CHANGE RATE TO ESTIMATE WINTER WHEAT YIELD
Li, Ning	(pg. 2125) TH2.R9.5 - UNAMBIGUOUS SIGNAL RECONSTRUCTION ALGORITHM FOR HIGH SQUINT MULTICHANNEL SAR MOUNTED ON HIGH SPEED MANEUVERING PLATFORMS
Li, Ninghui	(pg. 5885) FR1.R8.8 - VALIDATION OF SEA SURFACE TEMPERATURE FROM FY-3C VIRR
Li, Panhu	pg. 924 TU2.R16.6 - A PRECISE ONE-STEP MOTION COMPENSATION FOR SYNTHETIC APERTURE RADAR
Li, Peijun	pg. 4183 MO2.R11.6 - WINTER WHEAT MAPPING FROM LANDSAT NOVI TIME SERIES DATA USING TIME-WEIGHTED DYNAMIC TIME WARPING AND PHENOLOGICAL RULES

Li, Peng	pg. 2847 FR2.R16.4 - A NOVEL SUPPORT VECTOR MACHINE BASED RADAR INDIVIDUAL RECOGNITION ALGORITHM UNDER INCONSISTENT NOISE CONDITION
	pg. 2759 FR2.R9.4 - HIGHLY CONTAMINATED WORK MODE IDENTIFICATION OF PHASED ARRAY RADAR USING DEEP LEARNING METHOD
	pg. 2715 FR2.R6.5 - A NOVEL VARIATIONAL AUTOENCODER BASED RADAR SIGNAL RECONSTRUCTION ALGORITHM USING POLLUTED DATA
	pg. 716 TU1.R16.5 - COMPARISON OF TARGET DETECTION RESULTS IN A FOREST WHETHER THE BRANCHES ARE COVERED WITH SNOW BASED ON P-BAND AIRBORNE SAR QUAD-POL IMAGES
Li, Pengshan	pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK
Li, Qi	pg. 6014 TU1.R14.7 - EVALUATION OF THE GF1-B/C/D SATELLITE RADIOMETRIC PERFORMANCE USING RADCALNET BAOTOU SITE
Li, Qian	pg. 2679 FR2.R5.7 - CNN-BASED TREE SPECIES CLASSIFICATION USING AIRBORNE LIDAR DATA AND HIGH- RESOLUTION SATELLITE IMAGE
Li, Qiang	pg. 830 TU2.R5.1 - TWO-STEP ENSEMBLE BASED CLASS NOISE CLEANING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 6305 WE2.R17.3 - RESEARCH ON MECHANISM AND PROCESS OF THE SHUICHENG LANDSLIDE IN GUIZHOU BASED ON UAV IMAGES
	(pg. 5211) FR2.R10.3 - RISK INVESTIGATION OF LANDSLIDE HAZARD AND DISASTER EMERGENCY BASED ON MULTI-PLATFORMS REMOTE SENSING TECHNIQUES
	pg. 6608 TU1.R2.5 - EARTHQUAKE-INDUCED BUILDING DAMAGE ASSESSMENT ON SAR MULTI- TEXTURE FEATURE FUSION
	pg. 1201 WE1.R17.8 - INCORPORATING MULTI-SOURCE REMOTE SENSING IN THE DETECTION OF EARTHQUAKE-DAMAGED BUILDINGS BASED ON LOGISTIC REGRESSION MODELLING
Li, Qingyu	pg. 1452 WE2.R9.5 - INSTANCE SEGMENTATION OF BUILDINGS USING KEYPOINTS
Li, Qinyu	pg. 3509 WE2.R7.7 - BUILDING EXTRACTION BY GATED GRAPH CONVOLUTIONAL NEURAL NETWORK WITH DEEP STRUCTURED FEATURE EMBEDDING

Li, Rui	PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON
	BASINS OF INDOCHINA PENINSULA (pg. 4922) TH2.R1.5 - SOIL MOISTURE ESTIMATION BASED ON LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER BASIN, CHINA
Li, Ruirui	pg. 1236 WE1.R18.5 - FAST SINGLE-SHOT SHIP INSTANCE SEGMENTATION BASED ON POLAR TEMPLATE MASK IN REMOTE SENSING IMAGES
Li, Sen	pg. 2041 TH2.R3.6 - NEURAL NETWORK PRUNING FOR HYPERSPECTRAL IMAGE BAND SELECTION
Li, Shengqi	pg. 4943 TH2.R6.2 - VEGETATION INDICES DERIVED FROM FENGYUN-3D MERSI-II DATA
Li, Shifeng	pg. 6714 TU1.R15.10 - ESTIMATION OF SURFACE ALBEDO BASED ON FY-3D MERSI-2 TOA DATA pg. 5430 WE1.R19.12 - EFFECTS OF CLOUD ON LAND SURFACE TEMPERATURE (LST) CHANGE IN THERMAL INFRARED REMOTE SENSING IMAGES: A CASE STUDY OF LANDSAT 8 DATA
Li, Shihua	pg. 4653 WE2.R11.1 - MAPPING RICE PLANTING AREA USING MULTI-TEMPORAL QUAD-POL RADARSAT-2 DATASETS AND RANDOM FOREST ALGORITHM
Li, Shiming	pg. 4649 WE2.R10.11 - DOMINANT TREES ANALYSIS USING UAV LIDAR AND PHOTOGRAMMETRY
Li, Shuang	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS TH1.R6.9 - AN INTRODUCTION TO THE GEONEX LEVEL-1G PRODUCTS: TOP-OF-ATMOSPHERE REFLECTANCE AND BRIGHTNESS TEMPERATURE
Li, Shutao	Pg. 7005 TU1.R20.1 - SUN GLINT REMOVAL OF HYPERSPECTRAL IMAGES VIA TEXTURE-AWARE TOTAL VARIATION Pg. 2707 FR2.R6.3 - NOISE ANALYSIS OF HYPERSPECTRAL IMAGES CAPTURED BY DIFFERENT SENSORS Pg. 637 TU1.R11.7 - UNSUPERVISED BLUR KERNEL LEARNING FOR PANSHARPENING Pg. 292 MO2.R17.9 - VEHICLE DETECTION WITH PARTIAL ANCHORS IN REMOTE SENSING IMAGES Pg. 4112 MO2.R1.10 - INTRINSIC IMAGE DECOMPOSITION- BASED RESOLUTION ENHANCEMENT FOR MINERAL MAPPING Pg. 80 MO2.R5.11 - MULTISCALE FEATURE EXTRACTION WITH GAUSSIAN CURVATURE FILTER FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Li, Sijia	pg. 4120 MO2.R10.1 - THE RELATIONSHIP BETWEEN CANOPY

	CLUMPING INDEX (CI), FRACTIONAL VEGETATION COVER (FVC), AND LEAF AREA INDEX (LAI): AN ANALYSIS OF GLOBAL SATELLITE PRODUCTS
	pg. 2890 FR2.R18.4 - LONG-TERM VARIATION OF GLOBAL LAI AND THE UNCERTAINTY: ANALYSIS OF THE GEOV2 AND MODIS LAI PRODUCTS
Li, Sijie	pg. 3235 TH2.R14.12 - A METHOD TO IDENTIFY HIGH-QUALITY PURE SNOW DATA IN POLDER DATABASE
Li, Song	pg. 696 TU1.R12.11 - SPARSE REPRESENTATION-BASED IMAGE FUSION FOR MULTI-SOURCE NDVI CHANGE DETECTION
Li, Steven	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Li, Tao	pg. 774 TU1.R18.9 - SHIP DETECTION BASED ON SUPERPIXELWISE LOCAL CONTRAST MEASUREMENT FOR POLSAR IMAGES
	(pg. 4723) TH1.R1.9 - SOIL MOISTURE ESTIMATION BASED ON THE AIEM FOR BARE AGRICULTURAL AREA
Li, Tongwen	pg. 5529 FR1.R19.2 - RECOVERY OF THE CARBON MONOXIDE PRODUCT FROM S5P-TROPOMI BY FUSING MULTIPLE DATASETS: A CASE STUDY IN HUBEI PROVINCE, CHINA
Li, Wan	pg. 5994 TU1.R14.2 - A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER
	pg. 5543 FR1.R19.6 - RETRIEVAL OF TOTAL OZONE COLUMN USING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY (DOAS) ALGORITHM FROM ULTRAVIOLET SOLAR RADIATION DATA
	pg. 6250 WE1.R15.8 - BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION
Li, Wei	pg. 3055 WE1.R9.3 - SEA-ICE CLASSIFICATION BASED ON OPTICAL IMAGE USING MORPHOLOGICAL PROFILE FEATURES pg. 2412 FR1.R12.8 - A BACKGROUND REFINEMENT COLLABORATIVE REPRESENTATION METHOD WITH SALIENCY
	WEIGHT FOR HYPERSPECTRAL ANOMALY DETECTION (pg. 5104) FR1.R4.11 - CONVOLUTIONAL NEURAL NETWORK FOR COASTAL WETLAND CLASSIFICATION IN HYPERSPECTRAL IMAGE (pg. 1655) TH1.R2.11 - HYPERSPECTRAL TARGET DETECTION
	BY FRACTIONAL FOURIER TRANSFORM
Li, Weidong	pg. 1833 TH1.R9.9 - SEMANTIC SEGMENTATION OF URBAN BUILDINGS FROM VHR REMOTELY SENSED IMAGERY USING ATTENTION-BASED CNN
Li, Weihua	pg. 4622 WE2.R10.4 - ANALYZING LEAF CLUMPING EFFECT OF INDIVIDUAL TREES BASED ON MODELED REALISTIC

Pg. 1381 WE2.R5.9 - UNSUPERVISED MIXED MULTI-TARGET DOMAIN ADAPTATION FOR REMOTE SENSING IMAGES CLASSIFICATION TU2.R13.6 - CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY? Pg. 2767 FR2.R9.6 - EXTRACTION OF POWER LINES AND PYLONS FROM LIDAR POINT CLOUDS USING A GCN-BASED METHOD TOTAL PROPERTY OF THE PRO
EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY? Pg. 2767 FR2.R9.6 - EXTRACTION OF POWER LINES AND PYLONS FROM LIDAR POINT CLOUDS USING A GCN-BASED METHOD Pg. 6571 FR2.R17.5 - FAST TOTAL VARIATION SUPERRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING Pg. 3188 TH1.R14.7 - MAJORIZE-MINIMIZATION BASED SUPER- RESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING Pg. 1793 TH1.R7.10 - AN IMPROVED TARGET EXTRACTION
PYLONS FROM LIDAR POINT CLOUDS USING A GCN-BASED METHOD Pg. 6571 FR2.R17.5 - FAST TOTAL VARIATION SUPERRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING Pg. 3188 TH1.R14.7 - MAJORIZE-MINIMIZATION BASED SUPER- RESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING MAGING Pg. 1793 TH1.R7.10 - AN IMPROVED TARGET EXTRACTION
MAGING PRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING PRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING PRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING PRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING PRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING PRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING PRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING PRESOLUTION METHOD FOR RADAR FORWARD-LOOKING MAGING
pg. 2101 TH2.R5.10 - SAR IMAGE SUPER-RESOLUTION BASE ON WEIGHTED DENSE CONNECTED CONVOLUTIONAL NETWORK pg. 2153 TH2.R9.12 - EFFICIENT TIME DOMAIN ECHO
JARIATION OF BISTATIC SAR CONSIDERING TOPOGRAPHY /ARIATION pg. 5620 MO2.R8.5 - OCEAN COLOR MODELING IN THE
CENTRAL RED SEA USING OCEANOGRAPHICAL OBSERVATION AND SIMULATED PARAMETERS Pg. 4642 WE2.R10.9 - FORECASTING VEGETATION HEALTH IN THE MENA REGION BY PREDICTING VEGETATION INDICATORS WITH MACHINE LEARNING MODELS
pg. 256 MO2.R16.11 - ADAPTIVE-WEIGHT FUSION NETWORK FOR LAND COVER CLASSIFICATION USING HETEROGENEOUS REMOTE SENSING IMAGES
pg. 4011 FR2.R8.2 - RETRIEVAL OF SEA SURFACE WIND SPEED BY SPACEBORNE SAR BASED ON MACHINE LEARNING
pg. 5022 FR1.R1.2 - RESEARCH ON WATER SUITABILITY OF MAIZE PLANTING RANGE IN NORTHEAST CHINA pg. 3051 WE1.R9.2 - SEA ICE AND OPEN WATER CLASSIFICATION OF SAR IMAGES USING A DEEP LEARNING MODE pg. 6961 FR2.R2.2 - SATELLITE OBSERVATION OF TANSMERIDIONAL PROPAGATING INTERNAL WAVES IN THE CELEBES SEA

	OCEANIC MESOSCALE EDDY DETECTION BASED ON MULTI- SOURCE REMOTE SENSING IMAGERY
	(pg. 5765) WE1.R8.10 - AUTOMATIC MAPPING OF TROPICAL CYCLONE-INDUCED COASTAL INUNDATION IN SAR IMAGERY BASED ON CLUSTERING OF DEEP FEATURES
	pg. 5811 TH1.R8.11 - CNN-BASED TROPICAL CYCLONE TRACK FORECASTING FROM SATELLITE INFRARED IMAGES
Li, Xiaojie	pg. 6333 WE2.R17.10 - CO-OBSERVATION AND ANALYSIS OF UAV AND MULTISPECTRAL REMOTE SENSING
Li, Xiaojun	pg. 4434 WE1.R1.1 - DEVELOPMENT AND VALIDATION OF THE SMOS-IC VERSION 2 (V2) SOIL MOISTURE PRODUCT pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION pg. 5011 TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
Li, Xiaoming	pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA
Li, Xiaowan	pg. 437 TU1.R5.1 - 3D RECONSTRUCTION IN MOUNTAIN AREA FOR ARRAY TOMOSAR
Li, Xiaoxi	pg. 2739 FR2.R6.11 - RESEARCH ON STEREO MATCHING FOR SATELLITE GENERALIZED IMAGE PAIR BASED ON IMPROVED SURF AND RFM
Li, Xiaoyao	pg. 4614] WE2.R10.2 - EXTENDING STOCHASTIC RADIATIVE TRANSFER THEORY TO SIMULATE BRF OVER FORESTS CONTAINING TREES WITH HETEROGENEOUS DAMAGED FOLIAGE
Li, Xin	pg. 5566 FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT pg. 6694 TU1.R15.5 - HIGH-RESOLUTION BRDF AND ALBEDO PARAMETERS INVERSION FROM SENTINEL-2 MULTISPECTRAL INSTRUMENT DATA pg. 5501 TH2.R19.6 - PRELIMINARY EVALUATION OF HIMAWARI-8 HOURLY AEROSOL PRODUCTS OVER CHINA
Li, Xinjuan	pg. 2699 FR2.R6.1 - A RADIATION BASED TOPOGRAPHIC CORRECTION METHOD ON LANDSAT 8/OLI SURFACE REFLECTANCE
Li, Xinyan	pg. 6615 TU1.R2.7 - THREE-DIMENSIONAL VARIATIONS OF CARBON MONOXIDE CONCENTRATION ASSOCIATED WITH WENCHUAN EARTHQUAKE BASED ON AIRS DATA

Li, Xirong	pg. 1464 WE2.R9.8 - DBC: DEEP BOUNDARIES COMBINATION FOR FARMLAND BOUNDARY DETECTION BASED ON UAV IMAGERY
	pg. 1743 TH1.R5.9 - LEARNING RELATION BY GRAPH NEURAL
	NETWORK FOR SAR IMAGE FEW-SHOT LEARNING
Li, Xiuzhong	TH1.R8.2 - MLE ANALYSIS FROM THE COMBINED SCATTEROMETER AND ALTIMETER MEASUREMENTS OF THE
	HY-2B SATELLITE
Li, Xuelong	pg. 1361 WE2.R5.4 - RELATIONSHIPS EXCAVATING OF
	AUGMENTED FEATURE FOR REMOTE SENSING SCENE CLASSIFICATION
	pg. 2683 FR2.R5.8 - HYPERSPECTRAL AND MULTISPECTRAL
	IMAGE FUSION USING NON-CONVEX RELAXATION LOW RANK
	AND TOTAL VARIATION REGULARIZATION
Li, Yachao	pg. 2340 FR1.R9.2 - SHIP POSITIONING AND RADIAL VELOCITY ESTIMATION FOR SPACEBORNE SAR BASED ON ENERGY
	CENTER EXTRACTION (pg. 1145) WE1.R16.6 - EXPEDITING PHASE GRADIENT
	AUTOFOCUS ALGORITHM FOR SAR IMAGING
	pg. 2635 FR2.R3.8 - HIGH-RESOLUTION IMAGING BASED ON
	TEMPORAL-SPATIAL STOCHASTIC RADIATION FIELD AND COMPRESSIVE SENSING THEORY
Li, Yalan	pg. 3172 TH1.R14.3 - INTRODUCTION TO POSTGRADUATE
	EDUCATION OF REMOTE SENSING IN CHINA
Li, Yan	pg. 5790 TH1.R8.5 - EXTREME HIGH WIND SPEED
	MONITORING WITH SPATIAL RESOLUTION ENHANCEMENT OF
	HY-2B SMR BRIGHTNESS TEMPERATURE (pg. 5635) MO2.R8.9 - SIMULATION ANALYSIS OF PAYLOAD IMR
	AND MICAP ONBOARD CHINESE OCEAN SALINITY SATELLITE
	pg. 5893 FR1.R8.10 - LAND AND SEA ICE MASK OPTIMIZATION
	FOR SCANNING MICROWAVE RADIOMETER OF HY-2B SATELLITE
Li, Yang	pg. 4754 TH1.R4.6 - RELIABILITY EVALUATION OF WETLAND
	SAMPLES BASED ON HISTORICAL THEMATIC MAPS
Li, Yangyang	pg. 2591 FR1.R18.9 - APPLICATION OF A HYPER-PARAMETER
	OPTIMIZATION ALGORITHM USING MARS SURROGATE FOR
	DEEP POLSAR IMAGE CLASSIFICATION MODELS
Li, Yansheng	pg. 1353 WE2.R5.2 - A CNN-GCN FRAMEWORK FOR MULTI-
	LABEL AERIAL IMAGE SCENE CLASSIFICATION
	pg. 1385 WE2.R5.10 - UNSUPERVISED STYLE TRANSFER VIA DUALGAN FOR CROSS-DOMAIN AERIAL IMAGE CLASSIFICATION
	pg. 1612 WE2.R18.11 - DEEP NETWORKS UNDER BLOCK-
	LEVEL SUPERVISION FOR PIXEL-LEVEL CLOUD DETECTION IN
	MULTI-SPECTRAL SATELLITE IMAGERY
Li, Yifeng	pg. 4167 MO2.R11.2 - EARLY-SEASON CROP CLASSIFICATION
	WITH RADARSAT-2 POLARIMETRIC SYNTHETIC APERTURE
	RADAR IMAGERY

Li, Yinan	pg. 5635 MO2.R8.9 - SIMULATION ANALYSIS OF PAYLOAD IMR AND MICAP ONBOARD CHINESE OCEAN SALINITY SATELLITE pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE
Li, Yingcheng	pg. 3195 TH2.R14.2 - DESIGN AND DEVELOPMENT OF SPATIO- TEMPORAL FUSION AND OPERATION PLATFORM FOR ANCIENT AND MODERN MAPS
Li, Yingjie	pg. 5566 FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT pg. 3172 TH1.R14.3 - INTRODUCTION TO POSTGRADUATE EDUCATION OF REMOTE SENSING IN CHINA pg. 6694 TU1.R15.5 - HIGH-RESOLUTION BRDF AND ALBEDO PARAMETERS INVERSION FROM SENTINEL-2 MULTISPECTRAL INSTRUMENT DATA pg. 5501 TH2.R19.6 - PRELIMINARY EVALUATION OF
Li, Yitao	HIMAWARI-8 HOURLY AEROSOL PRODUCTS OVER CHINA Pg. 240 MO2.R16.7 - EVALUATION OF SPATIOTEMPORAL
Li, IItao	FUSION MODELS IN LAND SURFACE TEMPERATURE USING POLAR-ORBITING AND GEOSTATIONARY SATELLITE DATA
Li, Yonghong	pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Li, Yongsheng	pg. 5211 FR2.R10.3 - RISK INVESTIGATION OF LANDSLIDE HAZARD AND DISASTER EMERGENCY BASED ON MULTI- PLATFORMS REMOTE SENSING TECHNIQUES
Li, Yu	pg. 505 TU1.R6.8 - DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION. pg. 6722 TU1.R15.12 - 3D FDTD INVESTIGATION ON BISTATIC SCATTERING FROM 2D ROUGH SURFACE WITH CPML ABSORBING CONDITION
Li, Yuanming	pg. 3857 TH2.R17.7 - SEISMIC SIGNAL SYNTHESIS BY GENERATIVE ADVERSARIAL NETWORK WITH GATED CONVOLUTIONAL NEURAL NETWORK STRUCTURE pg. 6619 TU1.R2.8 - CONVOLUTIONAL RECURRENT NEURAL NETWORKS FOR EARTHQUAKE EPICENTRAL DISTANCE ESTIMATION USING SINGLE-CHANNEL SEISMIC WAVEFORM
Li, Yuanxiang	pg. 6969 FR2.R2.4 - EDGE PREDICTION NET FOR RECONSTRUCTING ROAD LABELS CONTAMINATED BY CLOUDS
Li, Yuanyuan	pg. 2811 FR2.R12.6 - A TWO-STEP SHIP TARGET DETECTION METHOD IN HIGH-RESOLUTION SAR IMAGE BASED ON COARSE-TO-FINE MECHANISM
Li, Yun	pg. 1993 TH1.R18.5 - DEFORMATION VELOCITY MONITORING IN KUNMING CITY USING ASCENDING AND DESCENDING SENTINEL-1A DATA WITH SBAS-INSAR TECHNIQUE

Li, Yunqing	pg. 5057 FR1.R1.11 - EVALUATION OF THE EFFECTS OF HETEROGENEOUS SOIL MOISTURE ON MEASURED BRIGHTNESS TEMPERATURE BY A MICROWAVE RADIOMETER
Li, Yunsong	pg. 2663 FR2.R5.3 - DEEP INTRA FUSION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
	pg. 2256 FR1.R5.4 - CLOUD DETECTION USING GABOR FILTERS AND ATTENTION-BASED CONVOLUTIONAL NEURAL NETWORK FOR REMOTE SENSING IMAGES
	pg. 1857 TH1.R12.4 - SPECTRAL SUPER-RESOLUTION USING HYBRID 2D-3D STRUCTURE TENSOR ATTENTION NETWORKS WITH CAMERA SPECTRAL SENSITIVITY PRIOR
	pg. 2671 FR2.R5.5 - DEEP RESIDUAL SPATIAL ATTENTION NETWORK FOR HYPERSPECTRAL PANSHARPENING
	pg. 2583 FR1.R18.7 - DEEP ENCODER-DECODER NETWORK BASED ON THE UP AND DOWN BLOCKS USING WAVELET TRANSFORM FOR CLOUD DETECTION
	pg. 2420 FR1.R12.10 - DISCRIMINATIVE SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL
	ANOMALY DETECTION (pg. 2193) TH2.R18.10 - HYPERSPECTRAL TARGET DETECTION WITH ROI FEATURE TRANSFORMATION
Li, Yuxia	pg. 6226 WE1.R15.2 - RECONSTRUCTING MODIS LST PRODUCTS OVER TIBETAN PLATEAU BASED ON RANDOM FOREST
	pg. 3199 TH2.R14.3 - ROAD VECTORIZATION BASED ON IMAGE PIXEL TRACKING AND ATTRIBUTE MATCHING METHOD
	pg. 4530 WE1.R11.4 - ANALYSIS OF THE RELATION BETWEEN S-BAND BACKSCATTER AND RANKS DISTRIBUTION OF WHEAT
	pg. 2491 FR1.R16.6 - HIGH-RESOLUTION OPTICAL AND SAR IMAGE REGISTRATION USING LOCAL SELF-SIMILAR
	DESCRIPTOR BASED ON EDGE FEATURE (pg. 4319) TU2.R10.7 - RESEARCH ON THE OPTICAL METHOD OF LEAF AREA INDEX MEASUREMENT BASE ON THE
	HEMISPHERICAL IMAGE (pg. 4634) WE2.R10.7 - A FUEL MOISTURE CONTENT MONITORING METHODOLOGY BASED ON OPTICAL REMOTE SENSING
	pg. 2268 FR1.R5.7 - NEW NETWORK BASED ON UNET++ AND DENSENET FOR BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGERY
	pg. 4203 MO2.R11.11 - RESEARCH OF METHANE EMISSIONS BASED ON BIOGEOCHEMICAL MODEL AND ACTIVE
	MICROWAVE MEASUREMENT (pg. 1885) TH1.R12.11 - SOIL MOISTURE RETRIEVAL USING
	STACKED GENERALIZATION: AN ENSEMBLE MACHINE LEARNING METHOD
	pg. 2599 FR1.R18.11 - NEW NETWORK BASED ON D-LINKNET AND RESNEXT FOR HIGH RESOLUTION SATELLITE IMAGERY ROAD EXTRACTION
Li, Yuzhen	pg. 6226 WE1.R15.2 - RECONSTRUCTING MODIS LST PRODUCTS OVER TIBETAN PLATEAU BASED ON RANDOM FOREST

li Zahana	pg. 4530 WE1.R11.4 - ANALYSIS OF THE RELATION BETWEEN S-BAND BACKSCATTER AND RANKS DISTRIBUTION OF WHEAT pg. 4634 WE2.R10.7 - A FUEL MOISTURE CONTENT MONITORING METHODOLOGY BASED ON OPTICAL REMOTE SENSING pg. 2268 FR1.R5.7 - NEW NETWORK BASED ON UNET++ AND DENSENET FOR BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGERY pg. 1885 TH1.R12.11 - SOIL MOISTURE RETRIEVAL USING STACKED GENERALIZATION: AN ENSEMBLE MACHINE LEARNING METHOD
Li, Zezhong	pg. 964 TU2.R18.4 - ARBITRARY-ORIENTED SHIP DETECTION METHOD BASED ON IMPROVED REGRESSION MODEL FOR TARGET DIRECTION DETECTION NETWORK
Li, Zhanqing	pg. 5558 FR1.R19.10 - SATELLITE-BASED HIGH-SPATIAL- RESOLUTION AND HIGH-QUALITY FINE PARTICULATE MATTERS ACROSS CHINA
Li, Zhao-Liang	pg. 4926 TH2.R1.6 - SPATIAL DOWNSCALING OF LAND SURFACE TEMPERATURE BASED ON SURFACE ENERGY BALANCE pg. 240 MO2.R16.7 - EVALUATION OF SPATIOTEMPORAL FUSION MODELS IN LAND SURFACE TEMPERATURE USING POLAR-ORBITING AND GEOSTATIONARY SATELLITE DATA
Li, Zhen	pg. 1409 WE2.R6.5 - STOLT MIGRATION IMAGING FOR SHORT-PULSE GROUND-PENETRATING RADAR BASED ON COMPRESSIVE SENSING pg. 3039 TU2.R9.10 - ASSESSMENT OF FOUR PASSIVE MICROWAVE SEA ICE CONCENTRATIONS BY USING AUTOMATIC MODIS SEA ICE CLASSIFICATION
Li, Zhenfang	pg. 2113 TH2.R9.2 - AN IMPROVED IMAGING ALGORITHM FOR AIRBORNE NEAR-NADIR TOPS SAR WITH YAW ANGLE ERROR pg. 180 MO2.R15.3 - X-BAND POLINSAR VEGETATION CANOPY HEIGHT INVERSION STRATEGY BASED ON FREQUENCY SEGMENTATION
Li, Zhengying	pg. 2021 TH2.R3.1 - DEEP MANIFOLD LEARNING NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 2037 TH2.R3.5 - SPATIAL-SPECTRAL COMBINATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Li, Zhenjiang	pg. 5998 TU1.R14.3 - RETRIEVAL OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE AT RED SPECTRAL PEAK WITH TROPOMI ON SENTINEL-5 PRECURSOR
Li, Zhenlong	pg. 6758 TU1.R17.9 - TRANSLATING MULTISPECTRAL IMAGERY TO NIGHTTIME IMAGERY VIA CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

Li, Zhipeng	PICKING NETWORKS: TRANSFER LEARNING FROM SEISMIC P-WAVE TO ULTRASONIC LOGGING IMAGING
Li, Zhongwei	pg. 3055 WE1.R9.3 - SEA-ICE CLASSIFICATION BASED ON OPTICAL IMAGE USING MORPHOLOGICAL PROFILE FEATURES
Li, Zhongyu	pg. 2791 FR2.R12.1 - AN EFFICIENT COHERENT INTEGRATION APPROACH FOR BISTATIC SAR MOVING TARGET DETECTION AND PARAMETER ESTIMATION BASED ON 2-D DERAMP PROCESSING pg. 2815 FR2.R12.7 - A LONG-TIME INTEGRATION METHOD FOR GNSS-BASED PASSIVE RADAR DETECTION OF MARINE TARGET WITH MULTI-STAGE MOTIONS pg. 2101 TH2.R5.10 - SAR IMAGE SUPER-RESOLUTION BASE ON WEIGHTED DENSE CONNECTED CONVOLUTIONAL NETWORK pg. 2153 TH2.R9.12 - EFFICIENT TIME DOMAIN ECHO SIMULATION OF BISTATIC SAR CONSIDERING TOPOGRAPHY VARIATION
Li, Zhou	pg. 742 TU1.R18.1 - FUSION OF LINEAR AND NONLINEAR CLASSIFIERS FOR KERNEL DICTIONARY LEARNING: APPLICATION TO SAR TARGET RECOGNITION pg. 2475 FR1.R16.2 - SAR TARGET CLASSIFICATION WITH LIMITED DATA VIA DATA DRIVEN ACTIVE LEARNING
Li, Zhuotao	pg. 2739 FR2.R6.11 - RESEARCH ON STEREO MATCHING FOR SATELLITE GENERALIZED IMAGE PAIR BASED ON IMPROVED SURF AND RFM
Li, Zongling	pg. 1628 TH1.R2.4 - A TARGET DETECTION ALGORITHM OF NEURAL NETWORK BASED ON HISTOGRAM STATISTICS
Lian, Yanchao	TU2.R6.8 - WEAKLY SUPERVISED LAND COVER CLASSIFICATION METHOD FOR LARGE-SCALE MULTI-RESOLUTION LABELED SATELLITE IMAGES DATA SETS
Liang, Da	pg. 1141 WE1.R16.5 - CHALLENGES AND OPPORTUNITIES FOR STAGGERED SAR WITH LOW OVERSAMPLING FACTORS pg. 1544 WE2.R16.6 - A MODIFIED EXTENDED WAVENUMBER-DOMAIN ALGORITHM FOR ULTRA-HIGH RESOLUTION SPACEBORNE SPOTLIGHT SAR DATA PROCESSING pg. 1925 TH1.R16.10 - MULTICHANNEL SLIDING SPOTLIGHT SAR IMAGING: FIRST RESULT OF GF-3 SATELLITE
Liang, Ding	TH1.R15.8 - SNPP AND NOAA-20 GLOBAL INTER-SENSOR BIAS ASSESSMENTS WITHIN ICVS FRAMEWORK USING 32-DAY AVERAGED DIFFERENCE METHOD (Pg. 6258) WE1.R15.10 - LIFETIME PERFORMANCE ASSESSMENT OF SNPP OMPS NADIR MAPPER SDR DATA USING SIMULTANEOUS NADIR OVERPASS COLLOCATED OBSERVATIONS WITH GOME-2

Liang, Feng	pg. 2284 FR1.R5.11 - HUMAN IDENTIFICATION USING MICRO- MOTION AND LIGHTWEIGHT NEURAL NETWORKS
Liang, Hongbo	pg. 862 TU2.R5.9 - ADAPTIVE NEIGHBORHOOD STRATEGY BASED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Liang, Hongjie	pg. 3012 TU2.R9.3 - RETRIEVAL OF ARCTIC SEA ICE SURFACE MELT ONSET IN 2016 FROM FY-3B/MWRI DATA
Liang, Jiadian	pg. 2479 FR1.R16.3 - EFFICIENT INSAR IMAGING BASED ON FREQUENCY-DOMAIN BACK PROJECTION ALGORITHM pg. 2483 FR1.R16.4 - ISAR COMPRESSIVE SENSING IMAGING USING CONVOLUTION NEURAL NETWORK WITH INTERPRETABLE OPTIMIZATION pg. 2372 FR1.R9.10 - LINEAR ARRAY 3-D SAR SPARSE IMAGING VIA CONVOLUTIONAL NEURAL NETWORK
Liang, Liting	pg. 1981 TH1.R18.2 - POLARIMETRIC SCATTERING CHARACTERISTIC ANALYSIS OF DISASTER AFFECTED AREA BASED ON HUYNEN-EULER PARAMETERS
Liang, Lusheng	pg. 6690 TU1.R15.4 - RADIATIVE TRANSFER MODELS FOR DERIVING GEOSTATIONARY BROADBAND SHORTWAVE RADIANCES DIRECTLY FROM VISIBLE CHANNELS FOR THE CERES SYN1DEG PRODUCT
Liang, Shuang	pg. 3039 TU2.R9.10 - ASSESSMENT OF FOUR PASSIVE MICROWAVE SEA ICE CONCENTRATIONS BY USING AUTOMATIC MODIS SEA ICE CLASSIFICATION
Liang, Tianchen	pg. 5493 TH2.R19.4 - RETRIEVAL OF AEROSOL OPTICAL DEPTH (AOD) FROM THE LANDSAT8 OLI OBSERVATIONS OVER BEIJING
Liang, Xingdong	pg. 437 TU1.R5.1 - 3D RECONSTRUCTION IN MOUNTAIN AREA FOR ARRAY TOMOSAR pg. 1782 TH1.R7.7 - A NOVEL GOSD-CFAR FOR MILLIMETER WAVE RADAR DETECTION
Liang, Xudong	pg. 5306 TU1.R19.4 - A SIMULATING METHOD OF AIRSHIP-BORNE POLARIMETRIC WEATHER RADAR FOR TYPHOON OBSERVATION
Liang, Yi	pg. 2471 FR1.R16.1 - A NON-LINEARLY MOVING SHIP AUTOFOCUS METHOD UNDER HYBRID COORDINATE SYSTEM pg. 2292 FR1.R6.1 - A ROBUST MATCHING METHOD FOR OPTICAL AND SAR IMAGES BASED ON COARSE-TO-FINE MECHANISM pg. 916 TU2.R16.4 - IMPROVED OMEGA-K ALGORITHM FOR HIGHLY SQUINTED TOPSAR WITH CURVED TRAJECTORY pg. 2811 FR2.R12.6 - A TWO-STEP SHIP TARGET DETECTION METHOD IN HIGH-RESOLUTION SAR IMAGE BASED ON COARSE-TO-FINE MECHANISM
Liang, Yuchen	pg. 6981 FR2.R2.7 - UNBALANCED GEOLOGIC BODY

	CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA
Liang, Yuping	pg. 1267 WE1.R20.1 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON SEMI-SUPERVISED DUAL-BRANCH CONVOLUTIONAL AUTOENCODER WITH SELF-ATTENTION pg. 276 MO2.R17.5 - SMALL OBJECT DETECTION IN OPTICAL REMOTE SENSING VIDEO WITH MOTION GUIDED R-CNN
Liangjiang, Zhou	pg. 2827 FR2.R12.10 - ESTIMATION METHOD OF MICRO- DOPPLER PARAMETERS BASED ON CONCENTRATION OF TIME- FREQUENCY ROTATION DOMAIN
Liao, Chunhua	pg. 5270 FR2.R11.6 - ESTIMATING CHLOROPHYLL CONTENT OF RICE BASED ON UAV-BASED HYPERSPECTRAL IMAGERY AND CONTINUOUS WAVELET TRANSFORM
Liao, Furong	pg. 1153 WE1.R16.8 - SAR IMAGE REGISTRATION BASED ON OPTIMIZED RANSAC ALGORITHM WITH MIXED FEATURE EXTRACTION
Liao, Mingsheng	pg. 104 MO2.R6.6 - PROCESSING OPTIONS FOR HIGH- RESOLUTION SAR TOMOGRAPHY FROM IRREGULAR TRAJECTORIES
Liao, Shan	pg. 6722 TU1.R15.12 - 3D FDTD INVESTIGATION ON BISTATIC SCATTERING FROM 2D ROUGH SURFACE WITH CPML ABSORBING CONDITION
Liao, Tien-Hao	Pg. 4991 TH2.R10.5 - A REGIONAL L-BAND HIGH BIOMASS ESTIMATION FRAMEWORK LEVERAGING SPACEBORNE LIDAR AND INTERFEROMETRIC DATA TO OVERCOME BACKSCATTER SATURATION WE1.R1.8 - ROBUST RETRIEVAL OF SURFACE SOIL MOISTURE ACROSS WIDE-RANGING INCIDENCE ANGLES OVER SHORT CROPS: FOR APPLICATION TO NI-SAR Pg. 4766 TH1.R4.9 - MANGROVE MAPPING WITH THE FREEMAN-DURDEN POLARIMETRIC DECOMPOSITION AND INSAR COHERENCE FROM ALOS-2
Liao, Xingxing	pg. 2499 FR1.R16.8 - A ROBUST AMBIGUITY REMOVAL METHOD FOR STAGGERED SAR
Liao, Yuanqin	pg. 4947 TH2.R6.3 - A 21-YEAR (1990-2011) RECORD OF LAND COVER CHANGES AND URBAN DYNAMICS OF SHANGHAI CITY DERIVED FROM LANDSAT IMAGES
Liao, Yue	TU2.R6.3 - LAND COVER MAPPING BASED ON MULTI-BRANCH FUSION OF OBJECT-BASED AND PIXEL-BASED SEGMENTATION WITH FILTERED LABELS [Pg. 1821] TH1.R9.6 - LEARNING DISCRIMINATIVE GLOBAL AND LOCAL FEATURES FOR BUILDING EXTRACTION FROM AERIAL IMAGES
Liao, Zhanmang	pg. 4983 TH2.R10.3 - HIGH-RESOLUTION WOODY VEGETATION COVER, HEIGHT AND BIOMASS MAPPING ACROSS AUSTRALIA

Liao, Zhiqiang	pg. 708 TU1.R16.3 - ANALYSIS OF POLARIZATION ORIENTATION ANGLE ESTIMATION OF X-BAND POLSAR DATA AND EXPERIMENT INVESTIGATION
Lidgley, Jack	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY
Liebowitz, Anna	pg. 4407 TU2.R12.6 - URBAN HEAT ISLANDS AND REMOTE SENSING: CHARACTERIZING LAND SURFACE TEMPERATURE AT THE NEIGHBORHOOD SCALE
Liew, Soo Chin	pg. 3788 TH2.R15.2 - CHANGE DETECTION IN BI-TEMPORAL ALOS-2 PALSAR-2 POLARIMETRIC DATA pg. 5533 FR1.R19.3 - CHARACTERIZATION OF BIOMASS BURNING AEROSOLS DURING THE 2019 FIRE EVENT: SINGAPORE AND KUCHING CITIES pg. 5616 MO2.R8.4 - ESTIMATION OF COLORED DISSOLVED ORGANIC MATTER USING SENTINEL-2 DATA IN THE COASTAL WATERS OF SINGAPORE pg. 5578 FR2.R19.4 - WRF-CHEM SIMULATIONS OF AEROSOL TRANSPORT DURING THE ATTIKA FOREST FIRE EVENT OF JULY 2018 pg. 5901 FR1.R8.12 - ESTIMATION OF COLORED DISSOLVED ORGANIC MATTER FROM SATELLITE DATA
Lifschitz, Agustin	pg. 260 MO2.R17.1 - VEHICLE DETECTION AND COUNTING FROM VHR SATELLITE IMAGES: EFFORTS AND OPEN ISSUES
Lim, Boon	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Lim, Byoung-Gyun	pg. 2364 FR1.R9.8 - METHOD FOR ELIMINATING SPURIOUS SIGNAL FROM DERAMPED SAR RAW DATA
Lim, Sanghun	TU2.R19.8 - UNIT AREA AVERAGE RAINFALL ESTIMATION USING AN ELECTROMAGNETIC WAVE RAIN GAUGE SYSTEM WE1.R19.9 - STUDY ON THE K-BAND EWRG SIGNAL PROCESSING FOR HIGH-RESOLUTION RAINFALL OBSERVATION
Lima, Alexandre	pg. 5226 FR2.R10.7 - MULTI-SCALE APPROACH USING REMOTE SENSING TECHNIQUES FOR LITHIUM PEGMATITE EXPLORATION: FIRST RESULTS pg. 561 TU1.R7.11 - LITHIUM (LI) PEGMATITE MAPPING USING ARTIFICIAL NEURAL NETWORKS (ANNS): PRELIMINARY RESULTS
Lima, Aracely	(pg. 2093) TH2.R5.8 - AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI- SENSOR SATELLITE IMAGERY APPROACH
Lin, Chinsu	pg. 4124) MO2.R10.2 - INTEGRATING UAV AND LIDAR DATA FOR RETRIEVING TREE VOLUME OF HINOKI FORESTS pg. 4638) WE2.R10.8 - MAPPING SURFACE FUEL LOADINGS OF FORESTS USING STRATIFIED RANDOM SAMPLING AND

	GEOSTATISTICAL ANALYSIS DERIVED DATA
Lin, Hong	pg. 1869 TH1.R12.7 - ROBUST ESTIMATION APPROACH FOR PLANE FITTING IN 3D LASER SCANNING DATA
Lin, Hsi-Ching	pg. 3162 WE2.R14.8 - DEVELOPMENT OF OPEN DATA CUBE TO FACILITATE DISASTER RISK REDUCTION
Lin, Hui	pg. 6650 TU1.R13.4 - ANALYZING MANGROVE ZONATION DYNAMICS USING TIME-SERIES HIGH-RESOLUTION SATELLITE IMAGES pg. 4422 TU2.R12.10 - A SHADOW FREE MULTISOURCE STACK SPARSE AUTOENCODER FRAMEWORK FOR URBAN IMPERVIOUS SURFACE MAPPING
Lin, Li-Ching	pg. 3162 WE2.R14.8 - DEVELOPMENT OF OPEN DATA CUBE TO FACILITATE DISASTER RISK REDUCTION
Lin, Mingsen	pg. 5790 TH1.R8.5 - EXTREME HIGH WIND SPEED MONITORING WITH SPATIAL RESOLUTION ENHANCEMENT OF HY-2B SMR BRIGHTNESS TEMPERATURE pg. 5635 MO2.R8.9 - SIMULATION ANALYSIS OF PAYLOAD IMR AND MICAP ONBOARD CHINESE OCEAN SALINITY SATELLITE pg. 5897 FR1.R8.11 - EVALUATION OF SEA SURFACE TEMPERATURE FROM HY-1C DATA
Lin, Simei	pg. 6814 TU2.R2.12 - ADAPTING 3-PG MODEL TO SIMULATE EARLY FOREST GROWTH DYNAMICS IN HIGHLY BURNT AREAS ACROSS DAXING ANLING MOUNTAIN IN CHINA
Lin, Wenming	TH1.R8.2 - MLE ANALYSIS FROM THE COMBINED SCATTEROMETER AND ALTIMETER MEASUREMENTS OF THE HY-2B SATELLITE pg. 5654 TU1.R8.3 - RAIN EFFECTS ON CFOSAT SCATTEROMETER: TOWARDS AN IMPROVED WIND QUALITY CONTROL pg. 5787 TH1.R8.4 - GENERALIZATION OF KU-BAND FALSE- ALARM REDUCTION METHOD AND APPLICATION TO CSCAT
Lin, Xun	pg. 984 TU2.R18.9 - A FINE-GRAINED SHIP DETECTION FRAMEWORK BASED ON FIXED ROI MASKING AND FEATURE OPTIMIZATION IN OPTICAL REMOTE SENSING IMAGES pg. 565 TU1.R7.12 - A WAVELET DOMAIN BASED CNN SHIP CLASSIFICATION METHOD FOR HIGH RESOLUTION OPTICAL SATELLITE REMOTE SENSING IMAGES
Lin, Yan	pg. 6109] WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA
Lin, Yinyi	pg. 6650 TU1.R13.4 - ANALYZING MANGROVE ZONATION DYNAMICS USING TIME-SERIES HIGH-RESOLUTION SATELLITE IMAGES pg. 4422 TU2.R12.10 - A SHADOW FREE MULTISOURCE STACK SPARSE AUTOENCODER FRAMEWORK FOR URBAN IMPERVIOUS SURFACE MAPPING

Lin, Youtian	pg. 4231 MO2.R12.7 - A DYNAMIC END-TO-END FUSION FILTER FOR LOCAL CLIMATE ZONE CLASSIFICATION USING SAR AND MULTI-SPECTRUM REMOTE SENSING DATA
Lin, Yun	pg. 782 TU1.R18.11 - MULTI-ANGULAR SAR STATISTICAL PROPERTIES ANALYSIS AND MAN-MADE TARGET DETECTION
Lindberg, Eva	pg. 4618 WE2.R10.3 - NORMALIZED PROJECTED RED & SWIR (NPRS): A NEW VEGETATION INDEX FOR FOREST HEALTH ESTIMATION AND ITS APPLICATION ON SPRUCE BARK BEETLE ATTACK DETECTION
Lindquist, Erik	(pg. 4481) WE1.R10.2 - A MULTI-SENSOR APPROACH TO SEPARATE PALM OIL PLANTATIONS FROM FOREST COVER USING NDFI AND A MODIFIED PAULI DECOMPOSITION TECHNIQUE
Lindstrom, Scott	pg. 3313 MO2.R7.7 - TAILORING NATIONAL WEATHER SERVICE TRAINING TO SERVE THE PACIFIC'S MOST REMOTE LOCATIONS
Ling, Yun	(pg. 5566) FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT
Ling, Zhang	pg. 996 WE1.R3.1 - APPLICATION OF L-BAND SCANSAR MODE IN MONITORING LAND SUBSIDENCE
Linhoss, Anna	pg. 6662 TU1.R13.7 - STRATEGIC CONSERVATION OF GULF COAST LANDSCAPES USING MULTI-CRITERIA DECISION ANALYSIS AND OPEN SOURCE REMOTE SENSING AND GIS DATA
Linna, Petri	pg. 4661 WE2.R11.3 - ASSESSMENT OF CLOUD COVER IN SENTINEL-2 DATA USING RANDOM FOREST CLASSIFIER
Linnabary, Ryan	pg. 6270 WE2.R13.2 - ANALYSIS OF GNSS-R COVERAGE BY A REGIONAL AIRCRAFT FLEET
Linstead, Erik	(pg. 4642) WE2.R10.9 - FORECASTING VEGETATION HEALTH IN THE MENA REGION BY PREDICTING VEGETATION INDICATORS WITH MACHINE LEARNING MODELS
Linville, Lisa	pg. 2296 FR1.R6.2 - MULTIMODAL DATA FUSION VIA ENTROPY MINIMIZATION
Liou, Yuei-An	pg. 4959 TH2.R6.6 - EVALUATIING THE NDLI'S PERFORMANCE FOR IDENTIFYING WATER SURFACE USING SENTINEL-2 MSI DATA
Liou-Mark, Janet	pg. 3143 WE2.R14.3 - SERVICE-LEARNING: AN ENTRÉE TO INTRODUCE MINORITY STUDENTS TO REMOTE SENSING RESEARCH
Lippa, Timothy	pg. 1790 TH1.R7.9 - SPECTRAL INFORMATION CONTENT ALGORITHM FOR AUTOMATED SIGNATURE ASSESSMENT
Lipping, Tarmo	pg. 4661 WE2.R11.3 - ASSESSMENT OF CLOUD COVER IN

Lissi, Franco Perez	SENTINEL-2 DATA USING RANDOM FOREST CLASSIFIER (pg. 3345) TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION
Liu, Bin	pg. 3051 WE1.R9.2 - SEA ICE AND OPEN WATER CLASSIFICATION OF SAR IMAGES USING A DEEP LEARNING MODE pg. 5717 TU2.R8.8 - AUTOMATIC EXTRACTION OF INTERNAL WAVE SIGNATURE FROM MULTIPLE SATELLITE SENSORS BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS pg. 5765 WE1.R8.10 - AUTOMATIC MAPPING OF TROPICAL CYCLONE-INDUCED COASTAL INUNDATION IN SAR IMAGERY BASED ON CLUSTERING OF DEEP FEATURES
Liu, Bo	pg. 316 MO2.R18.4 - SAR IMAGE CHANGE DETECTION METHOD VIA A PYRAMID POOLING CONVOLUTIONAL NEURAL NETWORK pg. 1635 TH1.R2.6 - ADAPTIVE FEATURE AGGREGATION NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Liu, Chang	pg. 5104 FR1.R4.11 - CONVOLUTIONAL NEURAL NETWORK FOR COASTAL WETLAND CLASSIFICATION IN HYPERSPECTRAL IMAGE
Liu, Chao	pg. 2057 TH2.R3.10 - REMOTE SENSING IMAGES FEATURE LEARNING BASED ON MULTI-BRANCH NETWORKS
Liu, Chen	pg. 6467 FR1.R15.3 - DETECT GEOGRAPHICAL LOCATION BY MULTI-VIEW SCENE MATCHING
Liu, Cheng-Hsuan	pg. 6449 FR1.R13.9 - ON STUDY OF ERROR SOURCES IN MICROWAVE THERMAL VACUUM NON-LINEARITY TEST AND ON-ORBIT VERIFICATION
Liu, Chun	pg. 738 TU1.R16.11 - PORT DETECTION IN POLARIMETRIC SAR IMAGES BASED ON THREE-COMPONENT DECOMPOSITION
Liu, Chunxiu	pg. 1608 WE2.R18.10 - IMPROVING THE PERFORMANCE OF SEABIRDS DETECTION COMBINING MULTIPLE SEMANTIC SEGMENTATION MODELS
Liu, Cynthia	pg. 3162 WE2.R14.8 - DEVELOPMENT OF OPEN DATA CUBE TO FACILITATE DISASTER RISK REDUCTION
Liu, Dacheng	pg. 716 TU1.R16.5 - COMPARISON OF TARGET DETECTION RESULTS IN A FOREST WHETHER THE BRANCHES ARE COVERED WITH SNOW BASED ON P-BAND AIRBORNE SAR QUAD-POL IMAGES
Liu, Dehong	pg. 1881 TH1.R12.10 - GRAPH-BASED ARRAY SIGNAL DENOISING FOR PERTURBED SYNTHETIC APERTURE RADAR
Liu, Di	pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION
Liu, Fang	pg. 4938 TH2.R6.1 - URBAN RESIDENTIAL AREA SPRAWL

	SIMULATION OF METROPOLITAN "SUBURBANIZATION" TREND IN BEIJING pg. 838 TU2.R5.3 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK pg. 964 TU2.R18.4 - ARBITRARY-ORIENTED SHIP DETECTION METHOD BASED ON IMPROVED REGRESSION MODEL FOR TARGET DIRECTION DETECTION NETWORK TU2.R6.8 - WEAKLY SUPERVISED LAND COVER CLASSIFICATION METHOD FOR LARGE-SCALE MULTI-RESOLUTION LABELED SATELLITE IMAGES DATA SETS pg. 936 TU2.R16.9 - FEATURE CORRELATION ANALYSIS OF TWO-BRANCH CONVOLUTIONAL NETWORKS FOR MULTI-
	SOURCE IMAGE CLASSIFICATION pg. 2057 TH2.R3.10 - REMOTE SENSING IMAGES FEATURE LEARNING BASED ON MULTI-BRANCH NETWORKS
	pg. 2328 FR1.R6.11 - FUSION OF SAR AND OPTICAL REMOTE SENSING IMAGES BASED ON DEEP CONVOLUTION GENERATIVE ADVERSARIAL NETWORKS pg. 2651 FR2.R3.12 - DEEP ADAPTIVE PROPOSAL NETWORK
	IN OPTICAL REMOTE SENSING IMAGES OBJECTIVE DETECTION
Liu, Fei	pg. 4418 TU2.R12.9 - SPATIO-TEMPORAL DYNAMICS OF SURFACE URBAN HEAT ISLAND PHENOMENA AND URBAN DEVELOPMENT IN THREE CHINESE COASTAL METROPOLISES
Liu, Ganchao	pg. 6467 FR1.R15.3 - DETECT GEOGRAPHICAL LOCATION BY MULTI-VIEW SCENE MATCHING pg. 6738 TU1.R17.4 - VISUAL LOCALIZATION BASED ON
	REMOTE SENSING SCENE MATCHING WITH SIAMESE FEATURE AGGREGATION NETWORK
Liu, Gang	pg. 2787 FR2.R9.11 - TREE SPECIES CLASSIFICATION BASED ON AIRBORNE LIDAR AND HYPERSPECTRAL DATA
Liu, Gaohuan	pg. 216 MO2.R16.1 - INTEGRATING TIME-SERIES AND HIGH- SPATIAL REMOTE SENSING DATA BASED ON MULTILEVEL DECISION FUSION
Liu, Genwang	pg. 1774 TH1.R7.5 - A HIGH RESOLUTION SAR SHIP SAMPLE DATABASE AND SHIP TYPE CLASSIFICATION
Liu, Guang	pg. 6682 TU1.R15.2 - MOON-BASED EARTH RADIATION BUDGET EXPERIMENT SITE SELECTION ANALYSIS BASED ON EARTH OBSERVATION GEOMETRY
Liu, Guanghui	pg. 2260 FR1.R5.5 - IMPROVED CLOUD DETECTION MODEL USING S-NPP CRIS FSR DATA VIA MACHINE LEARNING
Liu, Guangyuan	pg. 2591 FR1.R18.9 - APPLICATION OF A HYPER-PARAMETER OPTIMIZATION ALGORITHM USING MARS SURROGATE FOR DEEP POLSAR IMAGE CLASSIFICATION MODELS
Liu, Guoqiang	pg. 5741 WE1.R8.4 - INVESTIGATION OF SUBMESOSCALE EDDIES FROM MODIS COLOR INDEX PRODUCTS IN COASTAL REGIONS: A CASE STUDY IN SUBEL SHOAL

Liu, Hanqiang	pg. 200 MO2.R15.8 - DEEP LEARNING BASED CLASSIFICATION USING SEMANTIC INFORMATION FOR POLSAR IMAGE
Liu, Hao	pg. 5635 MO2.R8.9 - SIMULATION ANALYSIS OF PAYLOAD IMR AND MICAP ONBOARD CHINESE OCEAN SALINITY SATELLITE
Liu, Hongli	pg. 4669 WE2.R11.5 - AUTUMN CROP MAPPING BASED ON DEEP LEARNING METHOD DRIVEN BY HISTORICAL LABELLED DATASET
Liu, Hongqing	pg. 6698 TU1.R15.6 - SHORTWAVE RADIATION BUDGET PRODUCTS FROM GOES-R SERIES ABI
Liu, Hongwei	pg. 2053 TH2.R3.9 - META NETWORK FOR RADAR HRRP NONCOOPERATIVE TARGET RECOGNITION WITH MISSING ASPECTS
Liu, Hongxing	pg. 4758 TH1.R4.7 - MULTI-PREDICTOR ENSEMBLE MODEL FOR RIVER TURBIDITY ASSESSMENT USING LANDSAT 8 IMAGERY AT A REGIONAL SCALE
Liu, Hongyi	pg. 2185 TH2.R18.8 - MULTI-TEMPORAL HYPERSPECTRAL IMAGES UNMIXING BY MIXED DISTRIBUTION CONSIDERING SMOOTH VARIATION OF ABUNDANCE pg. 521 TU1.R6.12 - MULTI-GPU PARALLEL IMPLEMENTATION OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Liu, Jia	pg. 336 MO2.R18.9 - BIPARTITE RESIDUAL NETWORK FOR CHANGE DETECTION IN HETEROGENEOUS OPTICAL AND RADAR IMAGES
Liu, Jiachao	pg. 1825 TH1.R9.7 - DILATED RESIDUAL NETWORK BASED ON DUAL EXPECTATION MAXIMIZATION ATTENTION FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES
Liu, Jiachuan	pg. 344 MO2.R19.1 - RESEARCH ON COMPOSITE ELECTROMAGNETIC SCATTERING COMPUTATION OF SEA SURFACE AND SHIP TARGET
Liu, Jiangdong	pg. 6662 TU1.R13.7 - STRATEGIC CONSERVATION OF GULE COAST LANDSCAPES USING MULTI-CRITERIA DECISION ANALYSIS AND OPEN SOURCE REMOTE SENSING AND GIS DATA
Liu, Jiao	pg. 1365 WE2.R5.5 - AN OPEN SET DOMAIN ADAPTATION NETWORK BASED ON ADVERSARIAL LEARNING FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION
Liu, Jiaxi	pg. 2539 FR1.R17.8 - CHANGE OF GLACIAL LAKE IN KARAKORAM RANGE
Liu, Jie	pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR
Liu, Jingdong	pg. 2587 FR1.R18.8 - BILATERAL SIAMESE NETWORK FOR CHANGE DETECTION USING HIGH RESOLUTION REMOTE

	SENSING IMAGES
Liu, Jun	pg. 3023 TU2.R9.6 - OBSERVATIONS OF ARCTIC SEA ICE LEADS AND OPEN WATER DURING THE MICROBIOLOGICAL-OCEAN-CLOUD COUPLING IN THE HIGH ARCTIC CAMPAIGN
Liu, Kang	pg. 1564 WE2.R16.11 - INTERRUPTED FMCW SAR IMAGING VIA SPARSE RECONSTRUCTION
Liu, Ke	pg. 728 TU1.R16.8 - STUDY ON POLARIMETRIC SCATTERING CHARACTERISTICS BASED ON DIFFERNENT BAND SAR IMAGES
Liu, Lei	pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR
Liu, Lin	pg. 3090 WE1.R9.12 - DETECTING CHANGES OF RETROGRESSIVE THAW SLUMPS FROM SATELLITE IMAGES USING SIAMESE NEURAL NETWORK
Liu, Meng	pg. 4926 TH2.R1.6 - SPATIAL DOWNSCALING OF LAND SURFACE TEMPERATURE BASED ON SURFACE ENERGY BALANCE pg. 1865 TH1.R12.6 - IMPROVEMENTS TO AN END-MEMBER-BASED TWO-SOURCE APPROACH FOR ESTIMATING GLOBAL EVAPOTRANSPIRATION
Liu, Mengxi	pg. 2543 FR1.R17.9 - SIAMESE GENERATIVE ADVERSARIAL NETWORK FOR CHANGE DETECTION UNDER DIFFERENT SCALES
Liu, Mingfeng	pg. 6650 TU1.R13.4 - ANALYZING MANGROVE ZONATION DYNAMICS USING TIME-SERIES HIGH-RESOLUTION SATELLITE IMAGES
Liu, Minkun	pg. 1901 TH1.R16.4 - PRELIMINARY RESULT OF MIMO SAR TOMOGRAPHY VIA 3D FFBP pg. 100 MO2.R6.5 - HIGH-RESOLUTION SAR TOMOGRAPHY VIA SEGMENTED DECHIRPING
Liu, Na	pg. 176 MO2.R15.2 - EVALUATION OF A_S1 FOR BUILDING DAMAGE MAPPING BASED ON TOUZI DECOMPOSITION
Liu, Naihao	pg. 1393 WE2.R6.1 - SEMI-SUPERVISED DEEP LEARNING SEISMIC IMPEDANCE INVERSION USING GENERATIVE ADVERSARIAL NETWORK
Liu, Nengyuan	pg. 1225 WE1.R18.2 - AN INTEGRATED METHOD OF SHIP DETECTION AND RECOGNITION IN SAR IMAGES BASED ON DEEP LEARNING
Liu, Pang-Wei	pg. 4351 TU2.R11.3 - MONITORING VEGETATION CONDITIONS OVER AGRICULTURAL REGIONS USING ACTIVE OBSERVATIONS
Liu, Peng	pg. 5819 TH2.R8.2 - IN-ORBIT CALIBRATION AND VALIDATION OF HY-2B ALTIMETER USING AN IMPROVED TRANSPONDER pg. 5862 FR1.R8.2 - DEVELOPMENT AND INTEGRATION TEST OF AN IMPROVED TRANSPONDER FOR HY-2B ALTIMETER

	pg. 6301 WE2.R17.2 - VOLUNTEERED REMOTE SENSING USING HANDHELD CAMERAS IN A PASSENGER AIRCRAFT pg. 236 MO2.R16.6 - SPATIO-TEMPORAL FUSION OF NIGHT- TIME LIGHT IMAGES WITH DEEP LEARNING
Liu, Penghua	(pg. 2543) FR1.R17.9 - SIAMESE GENERATIVE ADVERSARIAL NETWORK FOR CHANGE DETECTION UNDER DIFFERENT SCALES
Liu, Qiang	pg. 1957 TH1.R17.7 - SIMILAR REGION RECOMMENDATION BASED ON HISTOGRAM FEATURES
Liu, Qiankun	pg. 5866 FR1.R8.3 - GRAVITY ANOMALY AND ITS ACCURACY ASSESSMENT FROM HY-2A/GM ALTIMETRY DATA IN THE SOUTH CHINA SEA pg. 1957 TH1.R17.7 - SIMILAR REGION RECOMMENDATION BASED ON HISTOGRAM FEATURES
Liu, Qichao	pg. 850 TU2.R5.6 - PERONA-MALIK DIFFUSION DRIVEN CNN FOR SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES pg. 854 TU2.R5.7 - A DIRECTIONAL MESSAGE PROPAGATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGES CLASSIFICATION
Liu, Qinghui	pg. 1801 TH1.R9.1 - SELF-CONSTRUCTING GRAPH CONVOLUTIONAL NETWORKS FOR SEMANTIC LABELING
Liu, Qingjie	pg. 220 MO2.R16.2 - PAN-SHARPENING WITH A CNN-BASED TWO STAGE RATIO ENHANCEMENT METHOD pg. 1189 WE1.R17.5 - BUILDING DETECTION VIA A TWO-STREAM FPN NETWORK FROM PANCHROMATIC AND MULTI-SPECTRAL IMAGES pg. 6973 FR2.R2.5 - MINERAL DETECTION FROM HYPERSPECTRAL IMAGES USING A SPATIAL-SPECTRAL RESIDUAL CONVOLUTIONAL NEURAL NETWORK
Liu, Qingsheng	pg. 216 MO2.R16.1 - INTEGRATING TIME-SERIES AND HIGH- SPATIAL REMOTE SENSING DATA BASED ON MULTILEVEL DECISION FUSION
Liu, Qingwang	pg. 4649 WE2.R10.11 - DOMINANT TREES ANALYSIS USING UAV LIDAR AND PHOTOGRAMMETRY
Liu, Qinhuo	pg. 4295 TU2.R10.1 - SPATIAL-TEMPORAL PREDICTION OF VEGETATION INDEX WITH A CONVOLUTIONAL GRU NETWORK pg. 4303 TU2.R10.3 - A METHOD FOR IMPROVING THE ACCURACY OF THE MODERATE RESOLUTION LAI PRODUCT BASED ON THE MIXED-PIXEL CLUMPING INDEX pg. 4505 WE1.R10.8 - GENERATING SPATIAL-TEMPORAL CONTINUOUS LAI TIME-SERIES FROM LANDSAT USING NEURAL NETWORK AND METEOROLOGICAL DATA pg. 4854 TH1.R10.9 - EVALUATION OF FOUR THERMAL INFRARED KERNEL-DRIVEN MODELS USING LIMITED OBSERVATIONS pg. 5014 TH2.R10.11 - A HIGHLY CHLOROPHYLL-SENSITIVE AND LAI-INSENSITIVE INDEX BASED ON THE RED-EDGE BAND:

	CSI
Liu, Qiong	pg. 1323 WE2.R3.4 - A NOVEL GENERAL SEMISUPERVISED DEEP LEARNING FRAMEWORK FOR CLASSIFICATION AND REGRESSION WITH REMOTE SENSING IMAGES
Liu, Qixuan	pg. 2264 FR1.R5.6 - LABEL SMOOTHING TECHNIQUE FOR ORDINAL CLASSIFICATION IN CLOUD ASSESSMENT
Liu, Quanhua	pg. 6449 FR1.R13.9 - ON STUDY OF ERROR SOURCES IN MICROWAVE THERMAL VACUUM NON-LINEARITY TEST AND ON-ORBIT VERIFICATION
Liu, Quanhua (Mark)	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2).
Liu, Rongyuan	pg. 2013 TH1.R18.10 - EVALUATION OF SPATIAL-TEMPORAL VARIATION OF VEGETATION RESTORATION IN DEXING COPPER MINE AREA USING REMOTE SENSING DATA
Liu, Shanwei	pg. 5477 TH1.R19.12 - SPATIAL AND TEMPORAL CHARACTERISTICS OF SEA FOG IN YELLOW SEA AND BOHAI SEA BASED ON ACTIVE AND PASSIVE REMOTE SENSING
Liu, Shian-Jing	pg. 1548 WE2,R16.7 - RECURRENT DEEP LEARNING FOR RICE FIELDS DETECTION FROM SAR IMAGES
Liu, Shuwen	pg. 1778 TH1.R7.6 - VISUAL CONTEXT AWARE SHIP DETECTOR FOR HIGH-RESOLUTION SAR IMAGERY
Liu, Siyu	pg. 1042 WE1.R5.2 - LOCALLY CONSTRAINED COLLABORATIVE REPRESENTATION BASED FISHER'S LDA FOR CLUSTERING OF HYPERSPECTRAL IMAGES pg. 2595 FR1.R18.10 - LIGHT-WEIGHT ATTENTION SEMANTIC SEGMENTATION NETWORK FOR HIGH-RESOLUTION REMOTE SENSING IMAGES
Liu, Song	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY pg. 1287 WE1.R20.6 - SPECTRAL PROPERTIES ANALYSIS OF WASTEWATER IN OIL FIELD AND ITS REMOTE SENSING DETECTION WITH GF-2
Liu, Songlin	pg. 24 MO2.R3.7 - A THREE-STAGE FRAMEWORK FOR MULTI- BASELINE INSAR PHASE UNWRAPPING
Liu, Tao	pg. 6906 WE2.R2.12 - A FULLY AUTOMATIC METHOD FOR RAPIDLY MAPPING IMPACTED AREA BY NATURAL DISASTER pg. 2603 FR1.R18.12 - AUTOMATED OPENSTREETMAP DATA ALIGNMENT FOR ROAD NETWORK MAPPING
Liu, Tsang-Sen	pg. 2831 FR2.R12.11 - FUSARIUM WILT INSPECTION FOR PHALAENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL BAND SELECTION TECHNIQUES

Liu, Wei	TU2.R6.5 - LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS - IEEE DATA FUSION CONTEST 2020 TRACK 1 TU2.R6.6 - LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS WITH MULTI-RESOLUTION LABEL - IEEE DATA FUSION CONTEST 2020
	TRACK 2
Liu, Wen	pg. 4096 MO2.R1.6 - DETECTION OF LANDSLIDES INDUCED BY THE 2018 HOKKAIDO EASTERN IBURI EARTHQUAKE USING MULTI-TEMPORAL ALOS-2 IMAGERY
Liu, Wenbo	pg. 6555 FR2.R17.1 - FOCUSING OF SPACEBORNE SAR DATA USING THE IMPROVED NONLINEAR CHIRP SCALING ALGORITHM
Liu, Wenkang	pg. 1917 TH1.R16.8 - AN EFFICIENT MEO SAR IMAGING ALGORITHM BASED ON OPTIMAL IMAGING COORDINATE SYSTEM
Liu, Xian	pg. 2779 FR2.R9.9 - KERNEL LOCAL SAMPLE DIRECTIONAL DISCRIMINANT EMBEDDING FOR SAR AUTOMATIC TARGET RECOGNITION
Liu, Xiangzhuo	pg. 4434 WE1.R1.1 - DEVELOPMENT AND VALIDATION OF THE SMOS-IC VERSION 2 (V2) SOIL MOISTURE PRODUCT pg. 6782 TU2.R2.4 - EVALUATION OF HIMAWARI-8 FOR LIVE FUEL MOISTURE CONTENT RETRIEVAL
	pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION (pg. 5011) TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
Liu, Xiaobo	pg. 1295 WE1.R20.8 - MULTI-CLASSIFIERS CONSISTENCY BASED UNSUPERVISED MANIFOLD ALIGNMENT FOR CLASSIFICATION OF REMOTE SENSING IMAGES pg. 513 TU1.R6.10 - PARTICLE SWARM OPTIMIZATION BASED DEEP LEARNING ARCHITECTURE SEARCH FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Liu, Xiaojing	pg. 3078 WE1.R9.9 - DEVELOPMENT OF MICROWAVE EMISSION MODEL FOR FROZEN SOIL WITH CONSIDERING THE VOLUME SCATTERING EFFECT
Liu, Xingang	pg. 6969 FR2.R2.4 - EDGE PREDICTION NET FOR RECONSTRUCTING ROAD LABELS CONTAMINATED BY CLOUDS
Liu, Xingzhao	pg. 742 TU1.R18.1 - FUSION OF LINEAR AND NONLINEAR CLASSIFIERS FOR KERNEL DICTIONARY LEARNING: APPLICATION TO SAR TARGET RECOGNITION pg. 1620 TH1.R2.2 - COMPUTER VISION AIDED OPTICAL CORRELATOR FOR SAR TARGET RECOGNITION pg. 2475 FR1.R16.2 - SAR TARGET CLASSIFICATION WITH LIMITED DATA VIA DATA DRIVEN ACTIVE LEARNING pg. 909 TU2.R16.2 - ADAPTIVE SIDELOBE SUPPRESSION OF

	SAR IMAGES WITH ARBITRARY DOPPLER CENTROIDS AND
	BANDWIDTHS pg. 1413 WE2.R6.6 - INVERSION OF UNDERGROUND STRUCTURE BASED ON GA_RLPSO TIME-DOMAIN FULL WAVEFORM CONJUGATE GRADIENT METHOD
	pg. 1335 WE2.R3.7 - AZIMUTH VELOCITY ESTIMATION IN MULTI-CHANNEL SAR BASED ON VARIABLE-BORESIGHT MODE
	pg. 2459 FR1.R14.9 - SYNTHETIC MINORITY CLASS DATA BY GENERATIVE ADVERSARIAL NETWORK FOR IMBALANCED SAR TARGET RECOGNITION
Liu, Xiong	FR1.R19.8 - ESTIMATE OF GROUND-LEVEL OZONE CONCENTRATIONS BY USING OMI OBSERVATIONS AND MACHINE LEARNING: A CASE STUDY IN ATLANTA GEORGIA U.S.A.
Liu, Xirong	pg. 4307 TU2.R10.4 - AN FPAR RETRIEVAL ALGORITHM BASED ON DEEP LEARNING FOR MODIS VISIBLE BAND SURFACE REFLECTANCE
Liu, Xiuqing	pg. 172 MO2.R15.1 - FOUR-COMPONENT DECOMPOSITION METHOD OF POLARIMETRIC SAR INTERFEROMETRY USING REFINED VOLUME SCATTERING MODELS
Liu, Xiyun	pg. 1711 TH1.R5.1 - LAND COVER CLASSIFICATION FOR POLSAR IMAGES BASED ON MIXTURE MODELS AND MRF
Liu, Xu	pg. 6385 TH1.R15.2 - DEVELOPMENT OF A HIGH-FIDELITY CLARREO PATHFINDER SIMULATOR
	pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS
	pg. 936 TU2.R16.9 - FEATURE CORRELATION ANALYSIS OF
	TWO-BRANCH CONVOLUTIONAL NETWORKS FOR MULTI- SOURCE IMAGE CLASSIFICATION
	pg. 2651 FR2.R3.12 - DEEP ADAPTIVE PROPOSAL NETWORK IN OPTICAL REMOTE SENSING IMAGES OBJECTIVE DETECTION
Liu, Xuan	pg. 4343 TU2.R11.1 - DISENTANGLING THE RESPONSE OF VAGETATION TO RAINFALL ANOMALIES FOR DROUGHT EVALUATION OVER THE INDUS BASIN
Liu, Yang	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC
	RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY
	pg. 5352 TU2.R19.4 - CROSS VALIDATION OF GOES-R AND NOAA MULTI-RADAR MULTI-SENSOR (MRMS) OPE OVER THE
	CONTINENTAL UNITED STATES
	pg. 1287 WE1.R20.6 - SPECTRAL PROPERTIES ANALYSIS OF WASTEWATER IN OIL FIELD AND ITS REMOTE SENSING DETECTION WITH GF-2
	pg. 4758 TH1.R4.7 - MULTI-PREDICTOR ENSEMBLE MODEL
	FOR RIVER TURBIDITY ASSESSMENT USING LANDSAT 8 IMAGERY AT A REGIONAL SCALE
Liu, Yangfei	pg. 1472 WE2.R9.10 - PANCHROMATIC IMAGE LAND COVER CLASSIFICATION VIA DCNN WITH UPDATING ITERATION

	STRATEGY
Liu, Yao	(pg. 6141) WE1.R7.11 - A STUDY OF SPECTRA BANDWIDTH INDEX SETTING OF INFRARED IMAGER BASED ON SPECTRUM SIMULATION
Liu, Yaokai	pg. 5994 TU1.R14.2 - A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER
	(pg. 6250) WE1.R15.8 - BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION
Liu, Yi	pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION
Liu, Yijian	pg. 2443 FR1.R14.5 - SIMPLE, FAST, ACCURATE OBJECT DETECTION BASED ON ANCHOR-FREE METHOD FOR HIGH RESOLUTION REMOTE SENSING IMAGES
Liu, Ying	pg. 1169 WE1.R16.12 - THE EFFECTS OF NOISE, SPARSITY AND PHASE ON PSEUDO-RANDOM TIME-SPACE MODULATION SAR PERFORMANCE
Liu, Yingbing	pg. 754 TU1.R18.4 - INCREMENTAL MULTITASK SAR TARGET RECOGNITION WITH DOMINANT NEURON PRESERVATION
Liu, Yingjie	pg. 6762 TU1.R17.10 - A DEEP LEARNING MODEL FOR OCEANIC MESOSCALE EDDY DETECTION BASED ON MULTI-SOURCE REMOTE SENSING IMAGERY
Liu, Yu	pg. 5399 WE1.R19.4 - RESEARCH OF CLOUD DETECTION BASED ON MULTI-TEMPORAL THERMAL INFRARED DATA pg. 5057 FR1.R1.11 - EVALUATION OF THE EFFECTS OF HETEROGENEOUS SOIL MOISTURE ON MEASURED BRIGHTNESS TEMPERATURE BY A MICROWAVE RADIOMETER
Liu, Yuanzhong	pg. 6499 FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING
Liu, Yuhan	pg. 2611 FR2.R3.2 - AUTOMATIC SINGLE-IMAGE BASED CLOUD DETECTION METHOD WITHOUT PRIOR INFORMATION
Liu, Yukai	pg. 6519 FR2.R13.4 - STUDY ON THE IMPROVEMENT OF THE HYPERSPECTRUM RADIOMETER DIGITAL INTERMEDIATE FREQUENCY MODULE pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE
Liu, Yuling	(pg. 6129) WE1.R7.8 - NOAA20 AND S-NPP VIIRS LAND SURFACE TEMPERATURE PRODUCT VALIDATION AND INTER- COMPARISON

Liu, Yunlong	pg. 1782 TH1.R7.7 - A NOVEL GOSD-CFAR FOR MILLIMETER WAVE RADAR DETECTION
Liu, Yunxiang	pg. 6210 WE1.R13.8 - DETECTION OF COHERENT GNSS-R MEASUREMENTS USING A SUPPORT VECTOR MACHINE
Liu, Yuqing	pg. 1556 WE2.R16.9 - AN IMAGING COMPENSATION SCHEME FOR CORRECTING IONOSPHERIC EFFECT ON HIGH-RESOLUTION SPACEBORNE P-BAND SAR
Liu, Zeyu	pg. 2563 FR1.R18.2 - IRON ORE REGION SEGMENTATION USING HIGH-RESOLUTION REMOTE SENSING IMAGES BASED ON RES-U-NET pg. 152 MO2.R14.7 - PHOTOVOLTAIC PANEL CONSTRUCTION CHANGE MONITORING BASED ON LSTM MODELS
Liu, Zhaoxian	pg. 5034 FR1.R1.5 - ASSESSMENT OF HEAVY METAL POLLUTION IN AGRICULTURAL SOIL AROUND A GOLD MINE AREA IN YITONG COUNTY pg. 1299 WE1.R20.9 - ACTIVE DEEP FEATURES EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON DICTIONARY LEARNING
Liu, Zhe	pg. 1532 WE2.R16.3 - REMOVEMENT OF STAGGERED SAR AMBIGUITY IN LOW-OVERSAMPLING BY DEEP LEARNING pg. 2499 FR1.R16.8 - A ROBUST AMBIGUITY REMOVAL METHOD FOR STAGGERED SAR
Liu, Zhenjie	pg. 7017) TU1.R20.4 - SPATIAL BIAS CORRECTION OF SOCIAL MEDIA DATA BY EXPLOITING REMOTE SENSING KNOWLEDGE IN DATA-DEFICIENT REGIONS
Liu, Zhi	pg. 413 TU1.R3.7 - A DEM FUSION METHOD OF MULTI- BASELINE INSAR BASED ON PRIOR TERRAIN AND GUIDED FILTER
Liu, Zhigang	pg. 4379 TU2.R11.10 - ON THE ESTIMATION OF THE LEAF ANGLE DISTRIBUTION FROM DRONE BASED PHOTOGRAMMETRY
Liu, Zhuang	pg. 4570 WE2.R1.3 - IDENTIFYING TERRESTRIAL VEGETATION- SOIL MOISTURE OSCILLATION FROM SATELLITE OBSERVATIONS pg. 4586 WE2.R1.7 - SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
Liu, Zhutian	pg. 2791 FR2.R12.1 - AN EFFICIENT COHERENT INTEGRATION APPROACH FOR BISTATIC SAR MOVING TARGET DETECTION AND PARAMETER ESTIMATION BASED ON 2-D DERAMP PROCESSING
Liu, Zicheng	pg. 3900 FR1.R7.3 - POWER SERIES MODULE FOR SEMANTIC SEGMENTATION IN REMOTE SENSING IMAGE pg. 680 TU1.R12.7 - CSDN: A CROSS SPATIAL DIFFERENCE NETWORK FOR SEMANTIC CHANGE DETECTION IN REMOTE SENSING IMAGES

Liu, Ziming	pg. 2145 TH2.R9.10 - HIERARCHICAL ATTENTION FOR SHIP DETECTION IN SAR IMAGES pg. 2463 FR1.R14.10 - MULTI-SCALE REMOTE SENSING TARGETS DETECTION WITH ROTATED FEATURE PYRAMID
Liu, Zixu	pg. 1357 WE2.R5.3 - CLASS-WISE ADVERSARIAL TRANSFER NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION
Livo, Eric	pg. 4031 FR2.R14.1 - IMAGING SPECTROSCOPY APPLIED TO MINERAL MAPPING OVER LARGE AREAS: USGS ANALYSIS OF AVIRIS-CLASSIC DATA COVERING CALIFORNIA AND NEVADA
Lizarazo, Ivan	pg. 5111 FR1.R10.1 - DEVELOPMENT OF LOW-COST GROUND CONTROL SYSTEM FOR UAV-BASED MAPPING pg. 4902 TH1.R11.10 - A SUPERVOXEL-BASED APPROACH FOR LEAVES SEGMENTATION OF POTATO PLANTS FROM POINT CLOUDS
Llaveria, David	pg. 6065 TU2.R4.9 - CORRECTING IMAGE BLURRING INDUCED BY THE ADCS JITTER IN CUBESATS
Llovera-Torres, Maria	pg. 6766 TU1.R17.11 - IDENTIFICATION OF ARCHAEOLOGICAL LAND USE EMPLOYING DEEP LEARNING TECHNIQUES: PROSPECTIVE STUDY WITHIN MEXICO
Lobell, David	pg. 7041 TU2.R20.5 - META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION pg. 5179 FR1.R11.6 - LANDSAT-BASED RECONSTRUCTION OF CORN AND SOYBEAN YIELD HISTORIES IN THE UNITED STATES SINCE 1999
Lobry, Sylvain	pg. 529 TU1.R7.2 - LEARNING MULTI-LABEL AERIAL IMAGE CLASSIFICATION UNDER LABEL NOISE: A REGULARIZATION APPROACH USING WORD EMBEDDINGS (pg. 3983) FR2.R7.2 - INTERPRETABLE SCENICNESS FROM SENTINEL-2 IMAGERY
Loftus, Adrian	pg. 3608 WE2.R19.6 - RECENT ADVANCES TO THE OPENSSP PARTICLE AND SCATTERING DATABASE pg. 5469 TH1.R19.10 - TOWARDS A MASS-CONSISTENT METHODOLOGY FOR REALISTIC MELTING HYDROMETEOR RETRIEVAL
Lohman, Rowena	WE1.R1.7 - DEVELOPMENT OF NISAR SOIL MOISTURE PRODUCT
Loizzo, Rosa	pg. 3282 MO2.R4.5 - THE HYPERSPECTRAL PRISMA MISSION IN OPERATIONS
Loke, Matthew	pg. 4520 WE1.R11.1 - VEGETABLE PRODUCTION POTENTIAL IN OAHU, HAWAII WITH AN INTEGRATED USE OF SENTINEL-2 TIME SERIES AND GIS MODELING

Lombardini, Fabrizio	pg. 120 MO2.R6.10 - GEN-CAPON AND GEN-MUSIC DIFF-TOMO
	FOR NON-STATIONARY DISTRIBUTED MEDIA: EXPLORATION OF
	POTENTIAL FOR SUBCANOPY SUBSIDENCE MONITORING
Long, Teng	pg. 1901 TH1.R16.4 - PRELIMINARY RESULT OF MIMO SAR
	TOMOGRAPHY VIA 3D FFBP
	pg. 944 TU2.R16.11 - SEMANTIC SEGMENTATION
	KNOWLEDGE BASED MMRF OPTIMAL METHOD FOR FINE-
	GRAINED URBAN INFRASTRUCTURE CLASSIFICATION MAPPING
	FROM OPTICAL VHR AERIAL IMAGERY
Longbotham, Nathan	pg. 4819 TH1.R6.11 - UNSUPERVISED METRIC FOR LARGE-
	SCALE CLOUD MASK EVALUATION
Loomis, Bryant	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED
	OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE
	PLANS
Lopez-Sanchez, Juan M	pg. 4554 WE1.R11.10 - AGRICULTURAL FIELDS MONITORING
	WITH MULTI-TEMPORAL POLARIMETRIC SAR (MT-POLSAR)
	CHANGE DETECTION
Lopez-Sanchez, Juan M.	pg. 4870 TH1.R11.2 - VEGETATION MONITORING USING A
	NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY
	STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND
	<u>DATA</u>
	pg. 3420 TU2.R15.6 - COMPARING INSAR METHODOLOGIES
	FOR THE RETRIEVAL OF PADDY RICE HEIGHT WITH TANDEM-X
	DATA
	pg. 4148 MO2.R10.8 - INITIAL TESTS FOR THE GENERATION
	OF A SPANISH NATIONAL MAP OF FOREST HEIGHT FROM
	TANDEM-X DATA
Lopinto, Ettore	pg. 3282 MO2.R4.5 - THE HYPERSPECTRAL PRISMA MISSION
	IN OPERATIONS
Lorenz, Sandra	pg. 4035 FR2.R14.3 - TOWARDS 4D VIRTUAL OUTCROPS WITH
	HYPERSPECTRAL IMAGING
Lorenzo, Jose	pg. 6945 FR1.R2.10 - DATA MINING ON THE CANDELA CLOUD
	<u>PLATFORM</u>
Loria, Eric	pg. 7029 TU2.R20.2 - WIND VECTOR AND WAVE HEIGHT
	RETRIEVAL IN INLAND WATERS USING CYGNSS
	pg. 5913 MO2.R13.3 - SIMULATION STUDY OF CYGNSS
	OBSERVABILITY OF DYNAMIC INUNDATION EVENTS
	pg. 5917 MO2.R13.4 - INVESTIGATION OF COHERENT AND
	INCOHERENT SCATTERING FROM LAKES USING CYGNSS OBSERVATIONS
	pg. 3353 TU2.R13.4 - NEXT GENERATION GNSS-R
	INSTRUMENT
	WE1.R13.5 - LAND AND OCEAN COHERENCE DETECTION USING THE CYCLONE GLOBAL NAVIGATION SATELLITE SYSTEM
	(CYGNSS) MISSION LEVEL-1 DELAY-DOPPLER MAPS
	pg. 5921 MO2.R13.5 - AN ADAPTIVE INTEGRATION
	ALGORITHM FOR IMPROVED COHERENT REFLECTION
	ALSONITHITI ON THE HOVED CONTENENT INCIDENTIAL

	MEASUREMENT IN GNSS-R INSTRUMENTS
	pg. 5847 TH2.R8.9 - IMPROVED ORBIT DETERMINATION OF THE CYGNSS SATELLITES AND ITS APPLICATION TO GNSS-R OCEAN ALTIMETRY
Lorusso, Rino	pg. 3282 MO2.R4.5 - THE HYPERSPECTRAL PRISMA MISSION IN OPERATIONS
Lou, Yunling	pg. 3247 MO2.R2.3 - FLOOD MAPPING USING UAVSAR AND CONVOLUTIONAL NEURAL NETWORKS
Louati, Mahdi	pg. 136 MO2.R14.3 - PREDICTION OF PLANT GROWTH BASED ON STATISTICAL MEASUREMENTS USING SATELLITE IMAGE TIME SERIES
Lourenço, João	TH2.R11.6 - VIRTUAL ENVIRONMENTS & SUSTAINABLE AGRICULTURE: A CASE STUDY
Lovergine, Francesco Paolo	pg. 4069 FR2.R15.5 - OPERATIONAL SOIL MOISTURE MAPPING AT C-BAND AND PERSPECTIVES FOR L-BAND
Lu, Bin	pg. 2201 TH2.R20.2 - AIRCRAFT TARGET DETECTION IN POLSAR IMAGE BASED ON REGION SEGMENTATION AND MULTI-FEATURE DECISION
Lu, Chen	pg. 2747 FR2.R9.1 - POTENTIAL OF LAND COVER CLASSIFICATION BASED ON GF-1 AND GF-3 DATA
Lu, Chenyue	pg. 2121 TH2.R9.4 - THE PHASE ERROR ANALYSIS AND COMPENSATION OF MRUAV-SAR
Lu, Da	pg. 204] MO2.R15.9 - POLSAR IMAGE CLASSIFICATION VIA COMPLEX-VALUED MULTI-SCALE CONVOLUTIONAL NEURAL NETWORK
Lu, Daniel	pg. 4073 FR2.R15.6 - P-BAND SYNTHETIC APERTURE RADAR FOR PLANETARY SUBSURFACE IMAGING APPLICATIONS
Lu, Haiyuan	pg. 4363 TU2.R11.6 - STUDY ON SPATIOTEMPORAL VARIATIONS OF EVAPOTRANSPIRATION IN ETUOKEOIANOI BASED ON MOD16 PRODUCTS AND PENMAN-MONTEITH MODEL
Lu, Hengxing	pg. 5831 TH2.R8.5 - AN ESTIMATE OF THE DECAY RATE OF SWELLS USING ALTIMETER DATA
Lu, Hui	pg. 4570 WE2.R1.3 - IDENTIFYING TERRESTRIAL VEGETATION- SOIL MOISTURE OSCILLATION FROM SATELLITE OBSERVATIONS pg. 4586 WE2.R1.7 - SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
Lu, Jianfeng	pg. 2157 TH2.R18.1 - NONLOCAL LOW-RANK NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING

Lu, Jiawei	pg. 6028 TU1.R14.11 - LIGHTGUIDE, INTEGRAL FIELD SNAPSHOT IMAGING SPECTROMETER FOR ENVIRONMENTAL IMAGING AND EARTH OBSERVATIONS
Lu, Jing	pg. 4343 TU2.R11.1 - DISENTANGLING THE RESPONSE OF VAGETATION TO RAINFALL ANOMALIES FOR DROUGHT EVALUATION OVER THE INDUS BASIN pg. 6894 WE2.R2.9 - ASSESSMENT OF GRACE DATA RESPONSE TO GLOBAL DROUGHT EVENTS FROM 2003 TO 2016
Lu, Jun	pg. 244 MO2.R16.8 - OPTIMIZATION OF DSM PRODUCT GENERATION OF ZY-3 SATELLITE IMAGES BASED ON IMAGE FREQUENCY-DOMAIN FUSION AND FILTERING pg. 609 TU1.R10.11 - PARALLEL GENERATION OF A 3D DENSE POINT CLOUD BASED ON UAV IMAGING AND THE CMVS ALGORITHM
Lu, Lirong	pg. 4955 TH2.R6.5 - AN AUTOMATIC METHOD FOR MAPPING PEN AQUACULTURE IN A SHALLOW LAKE
Lu, Mei	pg. 5831 TH2.R8.5 - AN ESTIMATE OF THE DECAY RATE OF SWELLS USING ALTIMETER DATA
Lu, Ping	pg. 3074) WE1.R9.8 - RETRIEVING SURFACE DEFORMATION OF THE QINGHAI-TIBET RAILWAY ACROSS PERMAFROST AREAS FROM INSAR
Lu, Qianrong	pg. 924 TU2.R16.6 - A PRECISE ONE-STEP MOTION COMPENSATION FOR SYNTHETIC APERTURE RADAR
Lu, Shanlong	pg. 4922) TH2.R1.5 - SOIL MOISTURE ESTIMATION BASED ON LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER BASIN, CHINA
Lu, Xiankai	pg. 549 TU1.R7.7 - GRAPH EMBEDDING FOR REMOTE SCENE IMAGE CLASSIFICATION BASED ON ATTENTION MODEL pg. 284 MO2.R17.7 - GEOSPATIAL OBJECT DETECTION WITH SINGLE SHOT ANCHOR-FREE NETWORK
Lu, Xiaomei	pg. 3016 TU2.R9.4 - SEA ICE MELT AND FREEZE ONSET FROM SPACE-BASED LIDAR MEASUREMENTS
Lu, Xiaoqi	pg. 2447 FR1.R14.6 - IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE ON SAR IMAGE SHIP DETECTION BASED ON DEEP LEARNING
Lu, Xiaoyan	pg. 2579 FR1.R18.6 - A NOVEL GLOBAL-AWARE DEEP NETWORK FOR ROAD DETECTION OF VERY HIGH RESOLUTION REMOTE SENSING

Lu, Xukun	pg. 4395 TU2.R12.3 - AN ACCURATE EXTRACTION ALGORITHM OF THE INDOOR BOUNDARY FEATURES BASED ON POINT CLOUD DATA
	pg. 2787 FR2.R9.11 - TREE SPECIES CLASSIFICATION BASED ON AIRBORNE LIDAR AND HYPERSPECTRAL DATA
Lu, Youchun	pg. 2886 FR2.R18.3 - LANDSLIDE MONITORING AND DETECTION FOR MOUNTAINOUS AREAS USING SBAS COMBINED WITH GLCM
	pg. 1989 TH1.R18.4 - LANDSLIDE DETECTION BASED ON GLCM USING SAR IMAGES
	pg. 1007 WE1.R3.4 - ATMOSPHERIC CORRECTION OF SAR IMAGES BASED ON PS-INSAR
	pg. 453 TU1.R5.5 - PERSISTENT SCATTERER DETECTION AND 3-D RECONSTRUCTION OF TRANSMISSION TOWER IN MOUNTAIN AREA BASED ON SAR TOMOGRAPHY
	P-M NOLINEAR DIFFUSION AND COHERENT ENHANCEMENT DIFFUSION
	pg. 1153 WE1.R16.8 - SAR IMAGE REGISTRATION BASED ON OPTIMIZED RANSAC ALGORITHM WITH MIXED FEATURE EXTRACTION
	pg. 4466 WE1.R1.9 - AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA
Lu, Youkang	pg. 2185 TH2.R18.8 - MULTI-TEMPORAL HYPERSPECTRAL IMAGES UNMIXING BY MIXED DISTRIBUTION CONSIDERING SMOOTH VARIATION OF ABUNDANCE
Lu, Zhendong	pg. 5588 FR2.R19.7 - DETECTING LAYER HEIGHT OF SMOKE AND DUST AEROSOLS OVER VEGETATED LAND AND WATER SURFACES VIA OXYGEN ABSORPTION BANDS
Lu, Zhong	pg. 1011 WE1.R3.5 - LANDSLIDE DISPLACEMENT MONITORING BY TIME SERIES INSAR COMBINING PS AND DS TARGETS
Lubar, David	pg. 6420 FR1.R13.1 - REMOTE SENSING AND PROPOSED FEDERAL SPECTRUM ACTIONS: WILL PASSIVE MICROWAVE REMOTE SENSING BE AFFECTED?
Lubawy, Andrew	pg. 3387 TU2.R14.5 - A NOVEL ARCHITECTURE OF JUPYTERHUB ON AMAZON ELASTIC KUBERNETES SERVICE FOR OPEN DATA CUBE SANDBOX
	pg. 3391 TU2.R14.6 - SAR ANALYSIS READY DATA AND TOOLS FOR THE OPEN DATA CUBE
	pg. 3399 TU2.R14.8 - DATA CUBE APPLICATION ALGORITHMS FOR THE UNITED NATION SUSTAINABLE DEVELOPMENT GOALS (UN-SDGS)
Lucas, Benjamin	pg. 1074 WE1.R5.10 - UNSUPERVISED DOMAIN ADAPTATION TECHNIQUES FOR CLASSIFICATION OF SATELLITE IMAGE TIME SERIES
Lucey, Jared	TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO

	FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Ludlow, David	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT
Ludwig, Michael	pg. 6146 WE1.R12.1 - A KA-BAND ALONG TRACK INTERFEROMETRY AND GROUND MOVING TARGET IDENTIFICATION ARCHITECTURE BASED ON REFLECTARRAY ANTENNAS
Lukashin, Constantine	pg. 6385 TH1.R15.2 - DEVELOPMENT OF A HIGH-FIDELITY CLARREO PATHFINDER SIMULATOR pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS
Lunga, Dalton	pg. 1953 TH1.R17.6 - SAMPLING SUBJECTIVE POLYGONS FOR PATCH-BASED DEEP LEARNING LAND-USE CLASSIFICATION IN SATELLITE IMAGES pg. 2603 FR1.R18.12 - AUTOMATED OPENSTREETMAP DATA ALIGNMENT FOR ROAD NETWORK MAPPING
Luo, Chang	pg. 4187 MO2.R11.7 - CROPNET: DEEP SPATIAL-TEMPORAL- SPECTRAL FEATURE LEARNING NETWORK FOR CROP CLASSIFICATION FROM TIME-SERIES MULTI-SPECTRAL IMAGES
Luo, Fenglan	pg. 877) TU2.R7.2 - ESTIMATING MULTIPLE-SCALE GDP DISTRIBUTION USING NIGHTTIME LIGHT AND SPATIAL METHODS
Luo, Jie	pg. 5497 TH2.R19.5 - SMOKE INJECTION HEIGHT OF WILDFIRE EVENT BASED ON MULTI-SOURCE REMOTE SENSING DATA IN YUNNAN PROVINCE, CHINA
Luo, Jingxin	pg. 2711 FR2.R6.4 - RESEARCH OF HILBERT HUANG TRANSFORM ALGORITHM AND ITS IMPROVEMENT
Luo, Juhua	pg. 4955 TH2.R6.5 - AN AUTOMATIC METHOD FOR MAPPING PEN AQUACULTURE IN A SHALLOW LAKE
Luo, Linbo	pg. 1845 TH1.R12.1 - UAV IMAGE MOSAICING BASED MULTI- REGION LOCAL PROJECTION DEFORMATION pg. 1849 TH1.R12.2 - DRONE IMAGE STITCHING USING LOCAL LEAST SQUARE ALIGNMENT pg. 228 MO2.R16.4 - MULTISCALE INFRARED AND VISIBLE IMAGE FUSION BASED ON PHASE CONGRUENCY AND SALIENCY
Luo, Qian	pg. 3735 TH2.R12.3 - BETWEEN VULNERABILITY AND SUSTAINABILITY: EVALUATING THE FLOOD IMPACT ON URBAN ROAD NETWORK
Luo, ShiYu	pg. 6722 TU1.R15.12 - 3D FDTD INVESTIGATION ON BISTATIC SCATTERING FROM 2D ROUGH SURFACE WITH CPML ABSORBING CONDITION
Luo, Shiyu	pg. 1444 WE2.R9.3 - SEGMENTATION OF SAR IMAGES BASED

	ON THE OPTIMAL LEVEL SETS USING CWOA [pg. 1552] WE2.R16.8 - RADIOMETRIC CORRECTION OF DUAL- POLARIZATION SAR DATA OVER STEEP TERRAIN
Luo, Ting	pg. 2205 TH2.R20.3 - INVESTIGATION ON THE METHOD OF ESTABLISHING CONSTRUCTION WASTE TRAINING SAMPLE DATABASE AND ITS APPLICATIONS
Luo, Xiaoyan	pg. 2041) TH2.R3.6 - NEURAL NETWORK PRUNING FOR HYPERSPECTRAL IMAGE BAND SELECTION
Luo, Xin	pg. 1177 WE1.R17.2 - RESEARCH ON VEHICLE DETECTION BASED ON FASTER R-CNN FOR UAV IMAGES pg. 2739 FR2.R6.11 - RESEARCH ON STEREO MATCHING FOR SATELLITE GENERALIZED IMAGE PAIR BASED ON IMPROVED SURF AND RFM
Luo, Yao	pg. 28 MO2.R3.8 - IMPROVED INSAR LAYOVER AND SHADOW DETECTION USING MULTI-FEATURE
Luo, Yi	pg. 5211) FR2.R10.3 - RISK INVESTIGATION OF LANDSLIDE HAZARD AND DISASTER EMERGENCY BASED ON MULTI- PLATFORMS REMOTE SENSING TECHNIQUES
Luo, Yimin	pg. 465 TU1.R5.8 - DEM EXTRACTION FROM AIRBORNE LIDAR POINT CLOUD IN THICK-FORESTED AREAS VIA CONVOLUTIONAL NEURAL NETWORK
Luo, Zengliang	pg. 4574 WE2.R1.4 - IMPROVING SOIL MOISTURE SPATIO- TEMPORAL RESOLUTION USING MACHINE LEARNING METHOD pg. 3066 WE1.R9.6 - SHIP NAVIGATION ROUTE PLANNING USING TOPOLOGY OF SEA ICE CHANNELS EXTRACTED FROM HIGH RESOLUTION SATELLITE IMAGES
Luo, Zheng Yu	(pg. 728) TU1.R16.8 - STUDY ON POLARIMETRIC SCATTERING CHARACTERISTICS BASED ON DIFFERNENT BAND SAR IMAGES
Luo, Zhengyu	pg. 6654 TU1.R13.5 - REMOTE SENSING MONITORING OF MANGROVE VARIATION IN JIULONG RIVER ESTUARY OF FUJIAN FROM 1978 TO 2018
Luo, Zhipeng	pg. 2767 FR2.R9.6 - EXTRACTION OF POWER LINES AND PYLONS FROM LIDAR POINT CLOUDS USING A GCN-BASED METHOD pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION
Luo, Zhongming	(pg. 2459) FR1.R14.9 - SYNTHETIC MINORITY CLASS DATA BY GENERATIVE ADVERSARIAL NETWORK FOR IMBALANCED SAR TARGET RECOGNITION
Luojus, Kari	pg. 2938) MO2.R9.6 - ASSESSING THE PERFORMANCES OF FY-3D/MWRI AND DMSP SSMIS IN GLOBSNOW-2 ASSIMILATION SYSTEM FOR SWE ESTIMATION
Luppino, Luigi	pg. 3892 FR1.R7.1 - CHANGE DETECTION WITH

	HETEROGENEOUS REMOTE SENSING DATA: FROM SEMI- PARAMETRIC REGRESSION TO DEEP LEARNING
Luppino, Luigi Tommaso	pg. 684 TU1.R12.8 - HETEROGENEOUS CHANGE DETECTION WITH SELF-SUPERVISED DEEP CANONICALLY CORRELATED AUTOENCODERS
Luthcke, Scott	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Luvall, Jeffrey	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Lux, Harald	pg. 4323) TU2.R10.8 - ANNUAL GRASS BIOMASS MAPPING WITH LANDSAT-8 AND SENTINEL-2 DATA OVER KRUGER NATIONAL PARK, SOUTH AFRICA
Lux, Oliver	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Lv, Liang	pg. 2587 FR1.R18.8 - BILATERAL SIAMESE NETWORK FOR CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES
Lv, Ning	pg. 2511 FR1.R16.11 - REMOTE SENSING DATA AUGMENTATION THROUGH ADVERSARIAL TRAINING
Lv, Rongchuan	pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE
Lv, Xiaofeng	pg. 5893 FR1.R8.10 - LAND AND SEA ICE MASK OPTIMIZATION FOR SCANNING MICROWAVE RADIOMETER OF HY-2B SATELLITE
Lv, Xiaolei	pg. 2380 FR1.R9.12 - TWO-STEP BISTATIC SPACEBORNE SLIDING-SPOTLIGHT SAR IMAGING AGORITHM BASED ON ACCURATE RANGE MODEL
Lv, Yafei	(pg. 984) TU2.R18.9 - A FINE-GRAINED SHIP DETECTION FRAMEWORK BASED ON FIXED ROI MASKING AND FEATURE OPTIMIZATION IN OPTICAL REMOTE SENSING IMAGES
Lv, Zheng	pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR
Lyapustin, Alexei	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS pg. 4850 Th1.R10.8 - THE AOD SENSITIVITY COMPARISON BETWEEN MODIS MULTI-ANGLE IMPLEMENTATION OF ATMOSPHERIC CORRECTION (MAIAC) AND STANDARD MODIS SURFACE REFLECTANCE
Lynch, Erin	pg. 6022 TU1.R14.9 - PROGRESS TOWARD EVALUATING

	PRELAUNCH THERMAL VACUUM TESTS OF THE JPSS-2 CRIS INSTRUMENT
Lynnes, Chris	pg. 3097 WE1.R14.2 - ADVANCING OPEN SCIENCE THROUGH INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM (MAAP)'S DATA ECOSYSTEM
Lyons, Eric	pg. 6483 FR1.R15.7 - REMOTE SENSING SYSTEMS FOR URBAN-SCALE DRONE AND AIR TAXI OPERATIONS
Lyu, Baolei	pg. 5481 TH2.R19.1 - GLOBAL LAYERED AEROSOL DISTRIBUTIONS FROM CALIOP AND MODIS OBSERVATIONS DURING 2006-2016
Lyu, Joseph	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2).
López-Martínez, Carlos	pg. 6666 TU1.R13.8 - MONITORING CHANGES IN THE COASTAL ENVIRONMENT BASED ON SAR SENTINEL-1 TIME-SERIES
Lönnqvist, Anne	pg. 4283 TU1.R1.9 - CLASSIFICATION OF WIDE-AREA SAR MOSAICS: DEEP LEARNING APPROACH FOR CORINE BASED MAPPING OF FINLAND USING MULTITEMPORAL SENTINEL-1 DATA
Lück, Wolfgang	pg. 653 TU1.R11.11 - OPTIMIZING WORKFLOW-EFFICIENCY OF MULTI-SOURCE CLOUD FREE OPTICAL IMAGE MOSAICS USING QUANTITATIVE TECHNIQUES
М	
M C, Chandan	pg. 4287 TU1.R1.10 - INTEGRATION OF GENETIC ALGORITHM AND AGENT BASED MODEL TO VISUALIZE NEAR REALISTIC SUSTAINABLE URBAN GROWTH: A COMPARATIVE STUDY
M, ManjuSarma	pg. 6993 FR2.R2.10 - RTC-GAN: REAL-TIME CLASSIFICATION OF SATELLITE IMAGERY USING DEEP GENERATIVE ADVERSARIAL NETWORKS WITH INFUSED SPECTRAL INFORMATION
M. Bell, David	pg. 4516 WE1.R10.11 - EFFECTS OF TROPICAL FOREST DEGRADATION ON AMAZON FOREST PHENOLOGY
M. Carvalho, Caroline	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
M. Crawford, Melba	pg. 1584 WE2.R18.4 - A WEAKLY SUPERVISED DEEP LEARNING APPROACH FOR PLANT CENTER DETECTION AND COUNTING
M. Espeseth, Martine	pg. 188 MO2.R15.5 - COMPARISON OF MACHINE LEARNING METHODS FOR PREDICTING QUAD-POLARIMETRIC PARAMETERS FROM DUAL-POLARIMETRIC SAR DATA
M. de Souza, Eniuce	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE-

	VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Ma, Ailong	pg. 660 TU1.R12.2 - CHANGEMASK: LEARNING PERMUTATION- INVARIANT REPRESENTATION FOR END-TO-END LULC/LAND- COVER MAPPING AND CHANGE DETECTION
	pg. 4092 MO2.R1.5 - DENSE GREENHOUSE EXTRACTION IN HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGERY
	pg. 1369 WE2.R5.6 - RSSM-NET: REMOTE SENSING IMAGE SCENE CLASSIFICATION BASED ON MULTI-OBJECTIVE NEURAL
	ARCHITECTURE SEARCH
	(pg. 1377) WE2.R5.8 - MAPPING LOCAL CLIMATE ZONES WITH CIRCLED SIMILARITY PROPAGATION BASED DOMAIN
	ADAPTATION
Ma, Andong	pg. 72 MO2.R5.9 - HYPERSPECTRAL IMAGE CLASSIFICATION
	VIA OBJECT-ORIENTED SEGMENTATION-BASED SEQUENTIAL FEATURE EXTRACTION AND RECURRENT NEURAL NETWORK
Ma, Chaofei	pg. 5790 TH1.R8.5 - EXTREME HIGH WIND SPEED
	MONITORING WITH SPATIAL RESOLUTION ENHANCEMENT OF HY-2B SMR BRIGHTNESS TEMPERATURE
	pg. 5635 MO2.R8.9 - SIMULATION ANALYSIS OF PAYLOAD IMR
	AND MICAP ONBOARD CHINESE OCEAN SALINITY SATELLITE
	pg. 5897 FR1.R8.11 - EVALUATION OF SEA SURFACE TEMPERATURE FROM HY-1C DATA
Ma, Chengconghui	TU2.R6.8 - WEAKLY SUPERVISED LAND COVER CLASSIFICATION METHOD FOR LARGE-SCALE MULTI-RESOLUTION LABELED SATELLITE IMAGES DATA SETS
Ma, Congcong	pg. 2847 FR2.R16.4 - A NOVEL SUPPORT VECTOR MACHINE
	BASED RADAR INDIVIDUAL RECOGNITION ALGORITHM UNDER INCONSISTENT NOISE CONDITION
Ma, Cunshi	pg. 1989 TH1.R18.4 - LANDSLIDE DETECTION BASED ON GLCM USING SAR IMAGES
	pg. 5592 FR2.R19.8 - A HIGH-SPATIAL-RESOLUTION AEROSOL
	RETRIEVAL ALGORITHM FOR SENTINEL-2 IMAGES OVER BRIGHT URBAN SURFACES
	pg. 940 TU2.R16.10 - DEEP LEARNING FOR VEGETATION
	IMAGE SEGMENTATION IN LAI MEASUREMENT
Ma, Fei	pg. 754 TU1.R18.4 - INCREMENTAL MULTITASK SAR TARGET RECOGNITION WITH DOMINANT NEURON PRESERVATION
	pg. 288 MO2.R17.8 - IMPROVING SAR TARGET RECOGNITION
	WITH MULTI-TASK LEARNING
Ma, Fuyan	pg. 292 MO2.R17.9 - VEHICLE DETECTION WITH PARTIAL ANCHORS IN REMOTE SENSING IMAGES
Ma, Hairong	pg. 557 TU1.R7.10 - GREENHOUSE EXTRACTION FROM HIGH-
	RESOLUTION REMOTE SENSING IMAGERY WITH IMPROVED RANDOM FOREST
Ma, Haoyang	(pg. 521) TU1.R6.12 - MULTI-GPU PARALLEL IMPLEMENTATION

	OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Ma, Hongliang	pg. 5030 FR1.R1.4 - ASSESSMENT OF MODEL-BASED SURFACE SOIL TEMPERATURE PRODUCTS UNSING GLOBAL DENSE IN- SITU OBSERVATIONS
Ma, Hongxiang	pg. 2511 FR1.R16.11 - REMOTE SENSING DATA AUGMENTATION THROUGH ADVERSARIAL TRAINING
Ma, Hongyuan	pg. 4383 TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Ma, Jingjing	pg. 838 TU2.R5.3 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK pg. 1283 WE1.R20.5 - HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER
	NETWORK pg. 541 TU1.R7.5 - REMOTE SENSING SCENE CLASSIFICATION BASED ON GLOBAL AND LOCAL CONSISTENT NETWORK pg. 2057 TH2.R3.10 - REMOTE SENSING IMAGES FEATURE LEARNING BASED ON MULTI-BRANCH NETWORKS pg. 2647 FR2.R3.11 - SUPERVISED ADAPTIVE-RPN NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Ma, Junyong	pg. 1283 WE1.R20.5 - HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER NETWORK pg. 2057 TH2.R3.10 - REMOTE SENSING IMAGES FEATURE LEARNING BASED ON MULTI-BRANCH NETWORKS
Ma, Li	pg. 1357 WE2.R5.3 - CLASS-WISE ADVERSARIAL TRANSFER NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION pg. 1295 WE1.R20.8 - MULTI-CLASSIFIERS CONSISTENCY BASED UNSUPERVISED MANIFOLD ALIGNMENT FOR CLASSIFICATION OF REMOTE SENSING IMAGES
Ma, Lingfei	pg. 4167 MO2.R11.2 - EARLY-SEASON CROP CLASSIFICATION WITH RADARSAT-2 POLARIMETRIC SYNTHETIC APERTURE RADAR IMAGERY
Ma, Lingling	pg. 5994 TU1.R14.2 - A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER pg. 5543 FR1.R19.6 - RETRIEVAL OF TOTAL OZONE COLUMN USING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY (DOAS) ALGORITHM FROM ULTRAVIOLET SOLAR RADIATION DATA pg. 6250 WE1.R15.8 - BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION
Ma, Peifeng	pg. 4422 TU2.R12.10 - A SHADOW FREE MULTISOURCE STACK

	SPARSE AUTOENCODER FRAMEWORK FOR URBAN IMPERVIOUS SURFACE MAPPING
Ma, Pengge	pg. 2412 FR1.R12.8 - A BACKGROUND REFINEMENT COLLABORATIVE REPRESENTATION METHOD WITH SALIENCY WEIGHT FOR HYPERSPECTRAL ANOMALY DETECTION
Ma, Qingmiao	pg. 5566 FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT (pg. 3172 TH1.R14.3 - INTRODUCTION TO POSTGRADUATE EDUCATION OF REMOTE SENSING IN CHINA
	Pg. 5501 TH2.R19.6 - PRELIMINARY EVALUATION OF HIMAWARI-8 HOURLY AEROSOL PRODUCTS OVER CHINA
Ma, Qiushuo	pg. 541 TU1.R7.5 - REMOTE SENSING SCENE CLASSIFICATION BASED ON GLOBAL AND LOCAL CONSISTENT NETWORK
Ma, Siao-En	pg. 4638 WE2.R10.8 - MAPPING SURFACE FUEL LOADINGS OF FORESTS USING STRATIFIED RANDOM SAMPLING AND GEOSTATISTICAL ANALYSIS DERIVED DATA
Ma, Sijia	pg. 758 TU1.R18.5 - SALIENCY-DRIVEN TARGET DETECTION BASED ON COMMON VISUAL FEATURE CLUSTERING FOR MULTIPLE SAR IMAGES
Ma, Tianyu	pg. 858 TU2.R5.8 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON TENSOR-TRAIN CONVOLUTIONAL LONG SHORT- TERM MEMORY
Ma, Weiwei	pg. 5998 TU1.R14.3 - RETRIEVAL OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE AT RED SPECTRAL PEAK WITH TROPOMI ON SENTINEL-5 PRECURSOR
Ma, Xiaorui	pg. 2863 FR2.R16.8 - SAR IMAGE SHIP DETECTION BASED ON SCENE INTERPRETATION
Ma, Xiaoyang	pg. 148 MO2.R14.6 - FUZZY NEURAL NETWORK-BASED ASSESSMENT OF ROAD TRAFFIC SITUATIONS USING EXTRACTED INFORMATION OBTAINED FROM OPTICAL HIGH- RESOLUTION SATELLITE REMOTE SENSING IMAGES
Ma, Xiaoyu	pg. 4582 WE2.R1.6 - OBSERVATION OF SOIL MOISTURE VERTICAL PROFILES FROM GNSS SIGNAL MULTI-PATH INTERFERENCES
Ma, Yan	pg. 236 MO2.R16.6 - SPATIO-TEMPORAL FUSION OF NIGHT-TIME LIGHT IMAGES WITH DEEP LEARNING
Ma, Yiping	pg. 6006 TU1.R14.5 - A COLOR RESTORATION ALGORITHM FOR THIN-FILM CAMERA IMAGES
Ma, Yueling	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR

	ROSE-L
Ma, Zhiguo	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY
MacKie, Emma	(pg. 2991) TU1.R9.8 - GEOSTATISTICALLY SIMULATING SUBGLACIAL TOPOGRAPHY WITH SYNTHETIC TRAINING DATA
Macchia, Giuseppe	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS
Macelloni, Giovanni	pg. 6434 FR1.R13.5 - P-BAND RADIOMETRY: RFI AND CALIBRATION FOR UWBRAD
Machado, Renato	pg. 332 MO2.R18.8 - UNSUPERVISED AUTOMATIC TARGET DETECTION FOR MULTITEMPORAL SAR IMAGES BASED ON ADAPTIVE K-MEANS ALGORITHM
Madala, Srikanth	pg. 5533 FR1.R19.3 - CHARACTERIZATION OF BIOMASS BURNING AEROSOLS DURING THE 2019 FIRE EVENT: SINGAPORE AND KUCHING CITIES pg. 5578 FR2.R19.4 - WRF-CHEM SIMULATIONS OF AEROSOL TRANSPORT DURING THE ATTIKA FOREST FIRE EVENT OF JULY 2018
Maddox, Emily	pg. 6133 WE1.R7.9 - LANDSAT SURFACE REFLECTANCE VALIDATION SITE SELECTION
Maeda, Takashi	TH1.R13.6 - EVALUATION OF DIRECT RF SAMPLING HYPERSPECTRAL MICROWAVE RADIOMETER (DSMRAD)
Maenhout, Greet Janssens	(pg. 1082) WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Maggiolo, Luca	pg. 2089 TH2.R5.7 - AUTOMATIC AREA-BASED REGISTRATION OF OPTICAL AND SAR IMAGES THROUGH GENERATIVE ADVERSARIAL NETWORKS AND A CORRELATION-TYPE METRIC
Maggioni, Viviana	pg. 3931 FR2.R1.3 - INVESTIGATING THE ASSIMILATION OF LEAF AREA INDEX PRODUCTS AT DIFFERENT TEMPORAL RESOLUTIONS IN A LAND SURFACE MODEL
Magli, Enrico	pg. 613 TU1.R11.1 - DEEPSUM++: NON-LOCAL DEEP NEURAL NETWORK FOR SUPER-RESOLUTION OF UNREGISTERED MULTITEMPORAL IMAGES
	pg. 6230 WE1.R15.3 - ONBOARD DATA REDUCTION FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGES VIA CLOUD SCREENING
	(pg. 2272) FR1.R5.8 - DETECTION OF SOLAR CORONAL MASS EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
	(pg. 2507) FR1.R16.10 - TOWARDS DEEP UNSUPERVISED SAR DESPECKLING WITH BLIND-SPOT CONVOLUTIONAL NEURAL NETWORKS

Magna, Tomas	pg. 4041 FR2.R14.5 - QUANTITATIVE PREDICTIONS OF REE ABUNDANCES IN CARBONATITES USING REFLECTANCE SPECTROSCOPY
Magney, Troy	pg. 4838 TH1.R10.5 - PRELIMINARY STUDY OF WAVELENGTH POSITIONS OF LEAF FLUORESCENCE PEAKS WITH EXPERIMENTAL DATA
Magnusson, Magnus	pg. 2045 TH2.R3.7 - CREATING RGB IMAGES FROM HYPERSPECTRAL IMAGES USING A COLOR MATCHING FUNCTION
Maguire, Conor	pg. 4819 TH1.R6.11 - UNSUPERVISED METRIC FOR LARGE- SCALE CLOUD MASK EVALUATION
Mahadik, Rahul	pg. 2221 TH2.R20.7 - SEISMIC FAULT ANALYSIS USING CURVATURE ATTRIBUTE AND VISUAL SALIENCY
Mahdi, Mostafa Didar	pg. 1331 WE2.R3.6 - A DEEP GAUSSIAN PROCESS FOR FORECASTING CROP YIELD AND TIME SERIES ANALYSIS OF PRECIPITATION BASED IN MUNSHIGANJ, BANGLADESH
Mahecha, Miguel	pg. 3999 FR2.R7.7 - DISCOVERING DIFFERENTIAL EQUATIONS FROM EARTH OBSERVATION DATA
Mahedevan, Amala	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Mahjabeen, Farin	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Mahmood, Arif	pg. 5881 FR1.R8.7 - OCEAN COLOR NET (OCN) FOR THE BARENTS SEA
Mahmud, Mallik	pg. 3043 TU2.R9.11 - COMPARISON OF ASCAT ESTIMATED SNOW THICKNESS ON FIRST-YEAR SEA ICE IN THE CANADIAN ARCTIC WITH MODELED AND PASSIVE MICROWAVE DATA
Mailhes, Corinne	pg. 5851 TH2.R8.10 - IMPROVING THE ESTIMATION OF THE SEA LEVEL ANOMALY SLOPE
Maimaitijiang, Maitiniyazi	pg. 1117 WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Maimaitiyiming, Matthew	pg. 1117 WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Mainvis, Aymeric	pg. 5446 TH1.R19.4 - DETECTION AND CHARACTERIZATION OF IONOSPHERIC ACTIVITY AT HIGH LATITUDE FROM SAR MEASUREMENTS
Makkar, Nikhil	pg. 593 TU1.R10.7 - ENTROPY AND BOUNDARY BASED ADVERSARIAL LEARNING FOR LARGE SCALE UNSUPERVISED DOMAIN ADAPTATION

Author Index | IGARSS 2020

Maksyutov, Shamil	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Malenovsky, Zbynek	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Malhotra, Rakesh	pg. 2523 FR1.R17.3 - A GPU ACCELERATED CONTOURLET METHOD FOR DETECTING CHANGES DUE TO FIRE USING REMOTE SENSING
Malkin, Nikolay	TU2.R6.2 - WEAKLY SUPERVISED SEMANTIC SEGMENTATION IN THE 2020 IEEE GRSS DATA FUSION CONTEST
Mallapragada, Srivatsa	pg. 48 MO2.R5.3 - STATISTICAL PERSPECTIVE OF SOM AND CSOM FOR HYPER-SPECTRAL IMAGE CLASSIFICATION
Malof, Jordan	pg. 2229 TH2.R20.9 - MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING pg. 1476 WE2.R9.11 - DO DEEP LEARNING MODELS GENERALIZE TO OVERHEAD IMAGERY FROM NOVEL GEOGRAPHIC LOCATIONS? THE XGD BENCHMARK PROBLEM pg. 948 TU2.R16.12 - DESIGNING SYNTHETIC OVERHEAD IMAGERY TO MATCH A TARGET GEOGRAPHIC REGION: PRELIMINARY RESULTS TRAINING DEEP LEARNING MODELS
Malthus, Tim	pg. 6417 TH1.R15.10 - AUSTRALIA, A HUB FOR SPACEBORNE IMAGING SPECTROSCOPY CALIBRATION AND VALIDATION
Mammarella, Ivan	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Man Duc, Chuc	pg. 1508 WE2.R12.8 - CORRECTION OF SEASONAL EFFECTS ON VIIRS DNB MONTHLY COMPOSITES BY USING STABLE LIT DATA AND REGRESSION CONVOLUTIONAL NEURAL NETWORK
Man, Li	pg. 996 WE1.R3.1 - APPLICATION OF L-BAND SCANSAR MODE IN MONITORING LAND SUBSIDENCE
Manaster, Andrew	pg. 5651 TU1.R8.2 - TRAINING OF TROPICAL CYCLONE WIND SPEED ALGORITHMS FOR THE WINDSAT AND AMSR SENSORS
Mandal, Dipankar	pg. 4696 TH1.R1.2 - SOIL MOISTURE RETRIEVAL USING SAR DERIVED VEGETATION DESCRIPTORS IN WATER CLOUD MODEL pg. 4870 TH1.R11.2 - VEGETATION MONITORING USING A NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND DATA pg. 7021 TU1.R20.5 - A NON-MODEL BASED THREE COMPONENT SCATTERING POWER DECOMPOSITION FOR FULL

	POLARIMETRIC SAR DATA
Mandal, Subhojit	pg. 1102 WE1.R6.6 - HIGH RESOLUTION SPATIAL MAPPING OF SOIL NUTRIENTS USING K - NEAREST NEIGHBOR BASED CNN APPROACH
Manepalli, Ashray	pg. 3995 FR2.R7.6 - MODELING MOUNTAIN SNOWPACK DYNAMICS WITH CGANS: A VALIDATION STUDY
Maneta, Marco	pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Manfredi, Giovanni	pg. 1797 TH1.R7.11 - CHARACTERIZATION OF THE WALKING ACTIVITY WITHIN THE FOREST BY USING A DOPPLER ANALYSIS IN THE UHF-BAND
Mani, Sneh	pg. 2005 TH1.R18.8 - SNOW CHARACTERIZATION AND AVALANCHE DETECTION IN THE INDIAN HIMALAYA
Manivasagam, V.S.	pg. 5274 FR2.R11.7 - SENTINEL-2 AND PLANETSCOPE DATA FUSION INTO DAILY 3 M IMAGES FOR LEAF AREA INDEX MONITORING
Mansour, Hassan	pg. 441 TU1.R5.2 - ROBUST 3D TOMOGRAPHIC IMAGING OF THE IONOSPHERIC ELECTRON DENSITY
Mantas, Vasco	pg. 4489 WE1.R10.4 - APPLICATION OF RANDOM FOREST CLASSIFICATION TO DETECT THE PINE WILT DISEASE FROM HIGH RESOLUTION SPECTRAL IMAGES
Manunta, Michele	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR CO- SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Manyari, Yassin	pg. 6105 WE1.R7.2 - CAPABILITIES OF THE NEW MOROCCAN SATELLITE MOHAMMED-VI FOR PLANIMETRIC AND ALTIMETRIC MAPPING
Manzo, Mariarosaria	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR COSEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Mao, Deqing	pg. 6718 TU1.R15.11 - SCENE EDGE TARGET RECOVERY OF SCANNING RADAR ANGULAR SUPER-RESOLUTION BASED ON DATA EXTRAPOLATION
Mao, Yinan	pg. 2145 TH2.R9.10 - HIERARCHICAL ATTENTION FOR SHIP DETECTION IN SAR IMAGES pg. 2463 FR1.R14.10 - MULTI-SCALE REMOTE SENSING TARGETS DETECTION WITH ROTATED FEATURE PYRAMID
Mao, Yukun	pg. 1957 TH1.R17.7 - SIMILAR REGION RECOMMENDATION

	BASED ON HISTOGRAM FEATURES
Mao, Zhigang	pg. 4955 TH2.R6.5 - AN AUTOMATIC METHOD FOR MAPPING PEN AQUACULTURE IN A SHALLOW LAKE
Maquaire, Olivier	pg. 445 TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV DRONE REMOTE SENSING USING PYTHON MODELLING ELECTRICAL RESISTIVITY IMAGING (PYMERI)
Maraldi, Claire	pg. 3521) WE2.R8.1 - DETECTION OF INTERNAL SOLITARY WAVES WITH CONVENTIONAL AND ADVANCED SAR ALTIMETRY PROCESSING METHODS: PRELIMINARY RESULTS
Marathi, Balram	pg. 1588) WE2.R18.5 - UAV BASED REMOTE SENSING FOR TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF MAIZE CROP USING MULTISPECTRAL IMAGES
Marblé, André	pg. 3825 TH2.R16.5 - VALIDATION OF INNOVATIVE SYSTEMS OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION REDUCING EMISSIONS AND INCREASING SAFETY
Marcarian, Xavier	pg. 3825 TH2.R16.5 - VALIDATION OF INNOVATIVE SYSTEMS OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION REDUCING EMISSIONS AND INCREASING SAFETY
Marchamalo-Sacristán, Miguel	pg. 1026 WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)
Marchetti, Yuliya	pg. 6381 TH1.R15.1 - OCO-2 CALIBRATION REFINEMENT ACROSS VERSIONS AND PLANS FOR OCO-3
Marcia, Roummel	pg. 2867 FR2.R16.9 - IMAGE CLASSIFICATION IN SYNTHETIC APERTURE RADAR USING RECONSTRUCTION FROM LEARNED INVERSE SCATTERING
Marconcini, Mattia	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT
Marcos, Diego	pg. 704 TU1.R16.2 - DUAL POLARIMETRIC SAR COVARIANCE MATRIX ESTIMATION USING DEEP LEARNING pg. 3983 FR2.R7.2 - INTERPRETABLE SCENICNESS FROM SENTINEL-2 IMAGERY
Maretto, Raian	pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO
Maretto, Raian Vargas	pg. 1389 WE2.R5.11 - MAPPING DEFORESTED AREAS IN THE CERRADO BIOME THROUGH RECURRENT NEURAL NETWORKS
Margulis, Alexander	pg. 6170 WE1.R12.7 - DEVELOPMENT AND RESULTS FOR A NEW SOFTWARE DEFINED RADAR: THE SLIMSDR
Margulis, Maximillian	pg. 6170 WE1.R12.7 - DEVELOPMENT AND RESULTS FOR A NEW SOFTWARE DEFINED RADAR: THE SLIMSDR

Margulis, Steve	pg. 2950 MO2.R9.9 - OBSERVING SYSTEM SIMULATION EXPERIMENT FOR REMOTE SENSING OF SNOW AT P-BAND
Mariani, Flavio	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM)
	MISSION. ESA'S 9TH EARTH EXPLORER
Marin, Carlo	pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR
	SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES
Marin Chaaraha	
Marin, Gheorghe	pg. 4975 TH2.R10.1 - DEEP NEURAL NETWORKS FOR FOREST GROWING STOCK VOLUME RETRIEVAL: A COMPARATIVE
	ANALYSIS FOR L-BAND SAR DATA
Marino, Armando	pg. 4019 FR2.R8.4 - MONITORING HARSH COASTAL
	ENVIRONMENTS USING POLARIMETRIC SAR DATA: THE CASE OF SOLWAY FIRTH WETLANDS
	pg. 4894 TH1.R11.8 - USING C-BAND SAR AND TEMPERATURE
	TO MONITOR TROPICAL AGRICULTURAL FIELDS
	(pg. 4554) WE1.R11.10 - AGRICULTURAL FIELDS MONITORING WITH MULTI-TEMPORAL POLARIMETRIC SAR (MT-POLSAR)
	CHANGE DETECTION
Marinoni, Andrea	pg. 3896 FR1.R7.2 - ADDRESSING RELIABILITY OF
	MULTIMODAL REMOTE SENSING TO ENHANCE MULTISENSOR
	DATA FUSION AND TRANSFER LEARNING Pg. 3505 WE2.R7.6 - ON THE OPTIMAL DESIGN OF
	CONVOLUTIONAL NEURAL NETWORKS FOR EARTH
	OBSERVATION DATA ANALYSIS BY MAXIMIZATION OF
	INFORMATION EXTRACTION
Marion, Rodolphe	pg. 4918 TH2.R1.4 - OMP-BASED ALGORITHM FOR MINERAL
	REFLECTANCE SPECTRA DECONVOLUTION FROM HYPERSPECTRAL IMAGES
	HIPERSPECTRAL IMAGES
Mariotti d'Alessandro, Mauro	pg. 88 MO2.R6.2 - RADIOMETRIC ISSUES IN BIOMASS TOMOGRAPHIC IMAGING
	pg. 433 TU1.R3.12 - GEOMETRICAL CORRECTIONS FOR
	GROUND CANCELED SAR IMAGES
Mariotti d'Alessandro, Mauro	pg. 104 MO2.R6.6 - PROCESSING OPTIONS FOR HIGH-
	RESOLUTION SAR TOMOGRAPHY FROM IRREGULAR
	TRAJECTORIES
Markert, Kel	pg. 3097 WE1.R14.2 - ADVANCING OPEN SCIENCE THROUGH
	INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA
	MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM (MAAP)'S DATA ECOSYSTEM
Markowski, Blerta	pg. 6547 FR2.R13.11 - MECHANICALLY-ACTUATED
	RECONFIGURABLE REFLECTARRAY (MARR) FOR MICROWAVE
	SINGLE PIXEL IMAGER (MSPI)
Marote, David	pg. 6146 WE1.R12.1 - A KA-BAND ALONG TRACK
	INTERFEROMETRY AND GROUND MOVING TARGET

	IDENTIFICATION ARCHITECTURE BASED ON REFLECTARRAY ANTENNAS
Marotta, Enrica	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY)
Marpu, Prashanth	pg. 5454 TH1.R19.6 - MISSION OPERATIONS AND SCIENCE PLAN FOR THE MEZNSAT CUBESAT MISSION FOR GREENHOUSE GASES MONITORING
Marques Jr, Ademir	(pg. 2619) FR2.R3.4 - HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN REMOTE SENSING IMAGES?
Marques Junior, Ademir	pg. 5207] FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA
Marques, Pedro	pg. 6309 WE2.R17.4 - VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY pg. 4550 WE1.R11.9 - MONITORING OF OLIVE TREES TEMPERATURES UNDER DIFFERENT IRRIGATION STRATEGIES BY UAV THERMAL INFRARED IMAGERY pg. 6503 FR1.R15.12 - ESTIMATION OF LEAF AREA INDEX IN CHESTNUT TREES USING MULTISPECTRAL DATA FROM AN UNMANNED AERIAL VEHICLE
Marshak, Alexander	WE1.R19.5 - CLOUD OBSERVATIONS FROM THE DEEP SPACE CLIMATE OBSERVATORY (DSCOVR) AT THE EARTH LAGRANGE 1 POINT
Marshak, Charlie	pg. 4991 TH2.R10.5 - A REGIONAL L-BAND HIGH BIOMASS ESTIMATION FRAMEWORK LEVERAGING SPACEBORNE LIDAR AND INTERFEROMETRIC DATA TO OVERCOME BACKSCATTER SATURATION pg. 4766 TH1.R4.9 - MANGROVE MAPPING WITH THE FREEMAN-DURDEN POLARIMETRIC DECOMPOSITION AND INSAR COHERENCE FROM ALOS-2
Marshall, Jon	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Marsy, Guilhem	pg. 132 MO2.R14.2 - TEMPORAL CONSOLIDATION STRATEGY FOR GROUND BASED IMAGE DISPLACEMENT TIME SERIES
Martellucci, Antonio	pg. 3762 TH2.R13.2 - GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS
Martin Neira, Manuel	pg. 3345 TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION
Martin-Neira, Manuel	pg. 6507] FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION pg. 6289] WE2.R13.7 - THE GRSS STANDARD FOR GNSS-REFLECTOMETRY

Martinez-Marrero, Liz	pg. 6588 FR2.R17.10 - SDR IMPLEMENTATION OF A TESTBED FOR SYNCHRONIZATION OF COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS
Martinho, José	pg. 6487 FR1.R15.8 - TARGET INFLUENCE ON GROUND CONTROL POINTS (GCPS) IDENTIFICATION IN AERIAL IMAGES
Martinis, Sandro	pg. 3243 MO2.R2.2 - AUTOMATIC NEAR-REAL TIME FLOOD EXTENT AND DURATION MAPPING BASED ON MULTI-SENSOR EARTH OBSERVATION DATA
Martins, Luís	pg. 6503 FR1.R15.12 - ESTIMATION OF LEAF AREA INDEX IN CHESTNUT TREES USING MULTISPECTRAL DATA FROM AN UNMANNED AERIAL VEHICLE
Marton, Albert	pg. 3574 WE2.R15.7 - DEMONSTRATION OF THE FEDERATED SATELLITE SYSTEMS CONCEPT FOR FUTURE EARTH OBSERVATION SATELLITE MISSIONS
Martone, Michele	pg. 359 MO2.R19.5 - MODELING TEMPORAL DECORRELATION AT X-BAND BY COMBINING TANDEM-X AND PAZ INSAR DATA
Martín-Neira, Manuel	pg. 6431 FR1.R13.4 - CHARACTERIZING SYSTEMATIC ERRORS IN THE FARADAY ROTATION RETRIEVAL FROM SMOS MEASUREMENTS TU2.R13.6 - CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY?
Martínez-Ferrer, Laura	pg. 3991 FR2.R7.5 - INTERPRETABILITY OF RECURRENT NEURAL NETWORKS IN REMOTE SENSING
Marzi, David	pg. 4791 TH1.R6.4 - GLOBAL VEGETATION MAPPING FOR ESA CLIMATE CHANGE INITIATIVE PROJECT LEVERAGING MULTITEMPORAL HIGH RESOLUTION SENTINEL-1 SAR DATA
Masaki, Takeshi	pg. 3593 WE2.R19.2 - PRELIMINARY ANALYSIS OF EXPERIMENTAL PRODUCT FOR THE NEW SCAN PATTERN OF GPM/DPR pg. 3600 WE2.R19.4 - EVALUATION OF CLOUD LIQUID WATER DATABASE USING GLOBAL CLOUD-SYSTEM RESOLVING MODEL FOR GPM/DPR ALGORITHMS
Masalias, Gerard	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Mashiyi, Nosiseko	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
Masjedi, Ali	pg. 3912 FR1.R7.6 - PREDICTION OF SORGHUM BIOMASS USING TIME SERIES UAV-BASED HYPERSPECTRAL AND LIDAR DATA

Maskey, Manil	pg. 3097 WE1.R14.2 - ADVANCING OPEN SCIENCE THROUGH INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM (MAAP)'S DATA ECOSYSTEM
	pg. 2248 FR1.R5.2 - EMPLOYING DEEP LEARNING TO ENABLE VISUAL EXPLORATION OF EARTH SCIENCE EVENTS
Mason, James	pg. 3833 TH2.R17.1 - LEVERAGING SPACE AND GROUND ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE
Massari, Christian	pg. 3935 FR2.R1.4 - ANTECEDENT WETNESS CONDITIONS OF EUROPEAN FLOODS: A COMPREHENSIVE STUDY
Massie, Steven	pg. 3626 TH2.R2.5 - ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING
Massimo, Menenti	pg. 4343 TU2.R11.1 - DISENTANGLING THE RESPONSE OF VAGETATION TO RAINFALL ANOMALIES FOR DROUGHT EVALUATION OVER THE INDUS BASIN
Masters, Dallas	TU2.R13.6 - CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY?
Mastro, Pietro	pg. 32 MO2.R3.9 - AN ADAPTIVE STATISTICAL MULTI-GRID DINSAR TECHNIQUE FOR STUDYING MULTI-SCALE EARTH SURFACE DEFORMATION PHENOMENA
Materni, Roberto	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Matgen, Patrick	pg. 3251 MO2.R2.4 - SYSTEMATIC AND AUTOMATIC LARGE- SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA pg. 3255 MO2.R2.5 - THE ROLE OF CO- AND CROSS- POLARIZATIONS INSAR COHERENCES IN MAPPING FLOODED
	URBAN AREAS (pg. 6666) TU1.R13.8 - MONITORING CHANGES IN THE COASTAL ENVIRONMENT BASED ON SAR SENTINEL-1 TIME- SERIES
Mathieu, Sandrine	pg. 5325 TU1.R19.9 - IMPROVEMENT OF A CIRRUS CORRECTION EMPIRICAL METHOD WITH SENTINEL-2 DATA
Matosak, Bruno Menini	pg. 1389 WE2.R5.11 - MAPPING DEFORESTED AREAS IN THE CERRADO BIOME THROUGH RECURRENT NEURAL NETWORKS
Matrai, Patricia	pg. 3023 TU2.R9.6 - OBSERVATIONS OF ARCTIC SEA ICE LEADS AND OPEN WATER DURING THE MICROBIOLOGICAL-OCEAN-CLOUD COUPLING IN THE HIGH ARCTIC CAMPAIGN
Matson, Amanda	pg. 4626 WE2.R10.5 - FOREST FLOWS - REAL TIME MONITORING OF WATER QUANTITY AND QUALITY SPATIO- TEMPORAL DYNAMICS IN PLANTED FORESTS

Matsumura, Naoto	pg. 4124 MO2.R10.2 - INTEGRATING UAV AND LIDAR DATA FOR RETRIEVING TREE VOLUME OF HINOKI FORESTS
Matsunaga, Tsuneo	(pg. 1082) WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
	pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) : ITS LAUNCH AND CURRENT STATUS
	pg. 5541 FR1.R19.5 - PRODUCTS AND SCIENCE ACHIEVEMENTS OF GOSAT SATELLITE SERIES
Matsuoka, Masashi	pg. 3751 TH2.R12.7 - DAMAGE CHARACTERIZATION IN URBAN
	ENVIRONMENTS FROM MULTITEMPORAL REMOTE SENSING DATASETS BUILT FROM PREVIOUS EVENTS
	pg. 814 TU2.R3.8 - MONITORING COMPLEX SURFACE
	STRUCTURE BY SEVERAL INTERFEROMETRIC STACKING TEQUNIQUES WITH PALSAR-1 DATA
Matsuoka, Ryo	pg. 2695 FR2.R5.11 - TOTAL NUCLEAR NORMS OF GRADIENTS FOR HYPERSPECTRAL IMAGE PANSHARPENING
Matteoli, Stefania	pg. 3959 FR2.R4.3 - IMPROVING PHYSICAL AND STATISTICAL MODELS FOR DETECTING DIFFICULT TARGETS WITH LRT
	DETECTORS IN CLOSED-FORM (pg. 3743) TH2.R12.5 - A FLUORESCENCE LIDAR SIMULATOR
	FOR THE DESIGN OF ADVANCED WATER QUALITY ASSESSMENT METHODOLOGIES
Matthias, Paul	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Mattia, Francesco	pg. 4534 WE1.R11.5 - A EUROPEAN TEST SITE FOR GROUND DATA MEASUREMENT AND EARTH OBSERVATION SERVICES VALIDATION
	(pg. 4069) FR2.R15.5 - OPERATIONAL SOIL MOISTURE MAPPING AT C-BAND AND PERSPECTIVES FOR L-BAND
	(pg. 2137) TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Matveeva, Maria	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Maurya, Ajay Kumar	pg. 4578 WE2.R1.5 - OPTIMIZATION OF MODEL PARAMETERS FOR SM ESTIMATION USING SENTINEL-1 DATA WITH EFFICIENT ANALYSIS OF WHEAT GROWTH CYCLE
Maurya, Vipin Kumar	pg. 6883 WE2.R2.6 - RAPID FLOOD MAPPING USING SENTINEL-1A IMAGES: A CASE STUDY OF FLOOD IN PANAMARAM, KERALA
Maxwell, Thomas	pg. 2017 TH1.R18.11 - MERRAMAX: A MACHINE LEARNING APPROACH TO STOCHASTIC CONVERGENCE WITH A MULTI-VARIATE DATASET

Mazel, C.	pg. 4715 TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV
McCandless, Tyler	pg. 3626 TH2.R2.5 - ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING
McCarthy, Christopher	pg. 2799 FR2.R12.3 - REMOTELY SENSED METHOD FOR DETECTION OF SPATIAL DISTRIBUTION PATTERN OF DRYLAND PLANTS IN WATER LIMITED ECOSYSTEM
McCarthy, Nicholas F.	pg. 6802 TU2.R2.9 - A MACHINE LEARNING SOLUTION FOR OPERATIONAL REMOTE SENSING OF ACTIVE WILDFIRES
McCarty, Jessica	pg. 3709 TH2.R11.3 - A MULTI-MODAL APPROACH FOR MONITORING CHANGES IN AGRICULTURE IN THE MEKONG RIVER DELTA
McClernan, Mark	TU2.R15.7 - THE 2015 SAGAVANIRKTOK RIVER FLOOD AND ASSOCIATED PERMAFROST DEGRADATION OBSERVED WITH TERRASAR-X/TANDEM-X AND OTHER SENSORS
McCloskey, Peter	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
McColl, Kaighin	pg. 3947 FR2.R1.7 - OBSERVATION-DRIVEN ESTIMATION OF SURFACE WATER BALANCE COMPONENTS FROM SMAP MEASUREMENTS
McCreight, James	pg. 5077 FR1.R4.4 - SWOT APPLICATIONS FOR WRF-HYDRO MODELING IN ALASKA
McDonald, Jesse	pg. 5761 WE1.R8.9 - SURFZONE BATHYMETRY ESTIMATION USING WAVE CHARACTERISTICS OBSERVED BY UNMANNED AERIAL SYSTEMS
McDonald, Kyle	pg. 5081 FR1.R4.5 - AN ANALYSIS OF ICESAT-2, PALSAR-2 AND SENTINEL-1 DATA FOR THE ASSESSMENT OF INUNDATION CHARACTERISTICS IN THE AMAZON BASIN
McDonnell, Shannon	pg. 3629 TH2.R2.6 - SUPPORTING AQUACULTURE IN THE CHESAPEAKE BAY USING ARTIFICIAL INTELLIGENCE TO DETECT POOR WATER QUALITY WITH REMOTE SENSING
McGrath, Andrew	Pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI- TEMPORAL STUDY Pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS
McIntire, Jeff	pg. 6246 WE1.R15.7 - PRELIMINARY JPSS-3 VIIRS

	POLARIZATION SENSITIVITY AND COMPARISON WITH S-NPP, IPSS-1 AND -2
McKague, Darren	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE
	pg. 3353 TU2.R13.4 - NEXT GENERATION GNSS-R INSTRUMENT
	(pg. 6293) WE2.R13.8 - MONITORING GPS EIRP FOR CYGNSS LEVEL 1 CALIBRATION
McKay, John	pg. 3629 TH2.R2.6 - SUPPORTING AQUACULTURE IN THE CHESAPEAKE BAY USING ARTIFICIAL INTELLIGENCE TO DETECT POOR WATER QUALITY WITH REMOTE SENSING
McKelvey, Christa	TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
McKey, Doyle	pg. 5085 FR1.R4.6 - STUDY FLOOD REGIME USING HIGH TEMPORAL RESOLUTION SENTINEL-1 IMAGES
McNairn, Heather	pg. 4870 TH1.R11.2 - VEGETATION MONITORING USING A NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND DATA
McWilliams, James C.	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Mcgettigan, Seamus	pg. 6460 FR1.R15.1 - DETECTION OF SEASONAL ARCTIC TERRAIN CHANGE USING A SMALL UNMANNED AIRCRAFT SYSTEM (SUAS) ON THE ALASKAN NORTH SLOPE
Mead, Stuart	pg. 1086 WE1.R6.2 - MAPPING ANTIMONY CONCENTRATION OVER GEOTHERMAL AREAS USING HYPERSPECTRAL AND THERMAL REMOTE SENSING
Mears, Carl	pg. 3006 TU2.R9.1 - A MICROWAVE EMISSIVITY SEA ICE
Meason, Dean	pg. 4626 WE2.R10.5 - FOREST FLOWS - REAL TIME MONITORING OF WATER QUANTITY AND QUALITY SPATIO- TEMPORAL DYNAMICS IN PLANTED FORESTS
Medjadba, Yasmine	pg. 6981 FR2.R2.7 - UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA
Mega, Tomoaki	WE2.R19.3 - ON THE OPTIMIZATION OF PARAMETERS IN THE GSMAP_GAUGE ALGORITHM
Mehta, Amita	pg. 3629 TH2.R2.6 - SUPPORTING AQUACULTURE IN THE CHESAPEAKE BAY USING ARTIFICIAL INTELLIGENCE TO DETECT POOR WATER QUALITY WITH REMOTE SENSING
Meiller, Carmen	pg. 6234 WE1.R15.4 - A CALIBRATION AND VALIDATION TOOL FOR DATA QUALITY ANALYSIS OF AIRBORNE IMAGING

SPECTROSCOPY DATA

Meissner, Thomas	pg. 5651 TU1.R8.2 - TRAINING OF TROPICAL CYCLONE WIND SPEED ALGORITHMS FOR THE WINDSAT AND AMSR SENSORS
	pg. 3330 TU2.R1.4 - SMAP MICROWAVE RADIOMETER
	CALIBRATION REVISIT APPROACHES AND PERFORMAMNCE
	pg. 6445 FR1.R13.8 - CALIBRATION OF THE SMAP
	RADIOMETER FOR OCEAN APPLICATIONS
Melet, Olivier	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE
	USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
Melgani, Farid	pg. 6734 TU1.R17.3 - REMOTE SENSING IMAGE CAPTIONING
	WITH SVM-BASED DECODING
Melillos, George	pg. 1181 WE1.R17.3 - DETECTION UNDERGROUND
	STRUCTURES IN CYPRUS USING LANDSAT-8 BANDS
Melly, Brigitte	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR
	DEGRADATION MONITORING IN SOUTH AFRICA WITH
	SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
Memarsadeghi, Nargess	
memarsaucym, Naryess	(pg. 3629) TH2.R2.6 - SUPPORTING AQUACULTURE IN THE CHESAPEAKE BAY USING ARTIFICIAL INTELLIGENCE TO DETECT
	POOR WATER QUALITY WITH REMOTE SENSING
	TOOK WATER QUALITY WITH REPORT SENSING
Mendez Dominguez, Elias	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY
	SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Menelle, Michel	pg. 1797 TH1.R7.11 - CHARACTERIZATION OF THE WALKING
	ACTIVITY WITHIN THE FOREST BY USING A DOPPLER ANALYSIS
	IN THE UHF-BAND
Menemenlis, Dimitris	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN
	DYNAMICS EXPERIMENT
Meng, Delin	pg. 1393 WE2.R6.1 - SEMI-SUPERVISED DEEP LEARNING
	SEISMIC IMPEDANCE INVERSION USING GENERATIVE
	ADVERSARIAL NETWORK
Meng, Fanbo	pg. 838 TU2.R5.3 - HYPERSPECTRAL IMAGE CLASSIFICATION
	BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE
	<u>NETWORK</u>
Meng, Huan	pg. 5345 TU2.R19.2 - AN OPERATIONAL SATELLITE SNOWFALL
	RATE PRODUCT AT NOAA
Meng, Junmin	pg. 1774 TH1.R7.5 - A HIGH RESOLUTION SAR SHIP SAMPLE
	DATABASE AND SHIP TYPE CLASSIFICATION
	pg. 300 MO2.R17.11 - VESSEL TARGET MONITORING WITH BISTATIC COMPACT HF SURFACE WAVE RADAR
	DISTANCE COPILACT THE SUMFACE WAYE TADAIX
Meng, Shiyao	pg. 4187 MO2.R11.7 - CROPNET: DEEP SPATIAL-TEMPORAL-
	SPECTRAL FEATURE LEARNING NETWORK FOR CROP
	CLASSIFICATION FROM TIME-SERIES MULTI-SPECTRAL IMAGES

Meng, Wanting	pg. 5426 WE1.R19.11 - CHARACTERISTIC ANALYSIS OF TYPHOON MUFIA FROM FY-3B MWRI OBSERVATIONS
Meng, Xintao	pg. 1620 TH1.R2.2 - COMPUTER VISION AIDED OPTICAL CORRELATOR FOR SAR TARGET RECOGNITION
Meng, Yun	pg. 6989 FR2.R2.9 - CORRELATION ATTENTION FOR REMOTE SENSING IMAGE CAPTIONING
Meng, Zhiguo	pg. 5203 FR2.R10.1 - MICROWAVE THERMAL EMISSION FEATURES OF MARE TRANQUILLITATIS AND MARE SERENITATIS INDICATED BY CE2 CELMS DATA pg. 5131 FR1.R10.6 - RE-EVALUATING BASALTIC DEPOSITS IN MARE NUBIUM WITH CE-2 CELMS DATA pg. 1023 WE1.R3.8 - SURFACE DEFORMATION OF HIGH-SPEED RAILWAY BETWEEN CHANGCHUN AND HARBIN BASED ON TIME-SERIES INSAR TECHNIQUE
Mengen, David	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Mengual, Teresa	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Menon, Vivek	pg. 3849 TH2.R17.5 - EMULATING AND VERIFYING SENSING, COMPUTATION, AND COMMUNICATION IN DISTRIBUTED REMOTE SENSING SYSTEMS
Menotti, David	pg. 4108 MO2.R1.9 - AGRICULTURE MULTISPECTRAL UAV IMAGE REGISTRATION USING SALIENT FEATURES AND MUTUAL INFORMATION
Meoli, Giuseppe	pg. 992 TU2.R18.11 - SEMI-AUTOMATIC CLASSIFICATION OF BUILDING FROM LOW-DENSITY LIDAR DATA AND WORLDVIEW-2 IMAGES THROUGH OBIA TECHNIQUE
Meraz, Nathan	pg. 6085 WE1.R4.4 - LOW-SWAP ELASTIC BACKSCATTER LIDAR FOR CLOSE-RANGE AEROSOL DETECTION
Merghadi, Abdelaziz	pg. 1034 WE1.R3.11 - INSAR INVESTIGATION ON DRAA- DOUAMIS SINKHOLES IN CHERIA NORTHEASTERN OF ALGERIA
Merkle, Nina	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Merlano-Duncan, Juan Carlos	pg. 6588 FR2.R17.10 - SDR IMPLEMENTATION OF A TESTBED FOR SYNCHRONIZATION OF COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS
Merlin, Olivier	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)

Mermet, Eric	(pg. 1969) TH1.R17.10 - DEEP CONVOLUTIONAL NEURAL NETWORK FOR MANGROVE MAPPING
Merrill, Nicholas	pg. 3967 FR2.R4.5 - A NEW AUTOENCODER TRAINING PARADIGM FOR UNSUPERVISED HYPERSPECTRAL ANOMALY DETECTION
Merritt, Scott	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Merzisen, Hugo	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Meshkov, Eugeniy	pg. 5713 TU2.R8.7 - BISTATIC DOPPLER SPECTRA OF THE SIGNAL REFLECTED BY ROUGH WATER SURFACE MEASURED BY MODIFIED MONOSTATIC RADAR
Meshkov, Eugeny	(pg. 5693) TU2.R8.2 - APPLICATION OF DOPPLER RADAR FOR MEASUREMENT OF CURRENT VELOCITY AT SMALL INCIDENCE ANGLES: THE FIRST EXPERIMENTS AT THE RIVER
Messager, Christophe	pg. 3817 TH2.R16.3 - USE OF SAR IMAGERY AND ARTIFICIAL INTELLIGENCE FOR A MULTI-COMPONENTS OCEAN MONITORING pg. 5380 TU2.R19.11 - COMBINATION OF GEOSTATIONARY AND POLAR SATELLITE SENSORS TO MONITOR CUMULONIMBUS AND THEIR WINDS AT THE OCEAN SURFACE
Messineo, Rosario	pg. 2272 FR1.R5.8 - DETECTION OF SOLAR CORONAL MASS EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
Mestre, Ricardo	pg. 2248 FR1.R5.2 - EMPLOYING DEEP LEARNING TO ENABLE VISUAL EXPLORATION OF EARTH SCIENCE EVENTS
Mestre-Quereda, Alejandro	pg. 4148 MO2.R10.8 - INITIAL TESTS FOR THE GENERATION OF A SPANISH NATIONAL MAP OF FOREST HEIGHT FROM TANDEM-X DATA
Metref, Sammy	pg. 3904] FR1.R7.4 - FILTERING INTERNAL TIDES FROM WIDE- SWATH ALTIMETER DATA USING CONVOLUTIONAL NEURAL NETWORKS
Meyer, Franz	pg. 3139 WE2.R14.2 - SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS pg. 4179 MO2.R11.5 - A SATELLITE AGNOSTIC APPROACH TO QUANTIFYING HAIL DAMAGE SWATHS ACROSS THE CENTRAL UNITED STATES AND OTHER AGRICULTURAL REGIONS TU2.R15.7 - THE 2015 SAGAVANIRKTOK RIVER FLOOD AND ASSOCIATED PERMAFROST DEGRADATION OBSERVED WITH TERRASAR-X/TANDEM-X AND OTHER SENSORS pg. 1307 WE1.R20.11 - IMPROVED VEGETATION AND WILDFIRE FUEL TYPE MAPPING USING NASA AVIRIS-NG HYPERSPECTRAL DATA, INTERIOR AK

Meyer, John	pg. 4031 FR2.R14.1 - IMAGING SPECTROSCOPY APPLIED TO MINERAL MAPPING OVER LARGE AREAS: USGS ANALYSIS OF AVIRIS-CLASSIC DATA COVERING CALIFORNIA AND NEVADA
Meyer, Kerry	FR1.R2.1 - CLASSIFYING GLOBAL LOW CLOUD MORPHOLOGY WITH A DEEP LEARNING MODEL: RESULTS AND POTENTIAL USE WE1.R19.5 - CLOUD OBSERVATIONS FROM THE DEEP SPACE CLIMATE OBSERVATORY (DSCOVR) AT THE EARTH LAGRANGE 1 POINT WE1.R19.6 - EXTENDING NASA'S MODIS/VIIRS CLOUD CLIMATE DATA RECORD TO THE ADVANCED GEOSTATIONARY IMAGERS
Mezned, Nouha	pg. 1861 TH1.R12.5 - PLSR METHOD FOR CONTAMINATING MINERAL CONTENT PREDICTION FROM FIELD HYPERSPECTRAL REFLECTANCE: A CASE STUDY OF HAMMAM ZRIBA MINING AREA
Mi, Xueting	pg. 5317 TU1.R19.7 - GENERATION, APPLICATION AND EVALUATION OF GF-1 WFV CLOUD DETECTION METHOD BASED CDAG ALGORITHM
Mialon, Arnaud	pg. 4830 TH1.R10.3 - MONITORING THE GLOBAL BIOMASS THANKS TO 10 YEARS OF SMOS VEGETATION OPTICAL DEPTH pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Miao, Hongli	pg. 5823 TH2.R8.3 - SIMULATION STUDY ON BASELINE ERROR ESTIMATION OF WIDE-SWATH ALTIMETER BY INTERFEROMETRIC PHASE AFTER FLAT-EARTH PHASE REMOVAL
Miao, Shuangxi	pg. 3111 WE1.R14.6 - A MANAGEMENT SYSTEM FOR FORESTRY REMOTE SENSING IMAGES BASED ON THE GLOBAL SUBDIVISION MODEL
Miao, Xiangying	pg. 5823 TH2.R8.3 - SIMULATION STUDY ON BASELINE ERROR ESTIMATION OF WIDE-SWATH ALTIMETER BY INTERFEROMETRIC PHASE AFTER FLAT-EARTH PHASE REMOVAL
Miao, Yuanjing	pg. 5701 TU2.R8.4 - EFFECTS OF WIND ESTIMATION ERRORS ON OCEAN SURFACE CURRENT RETRIEVAL FOR A DOPPLER SCATTEROMETER pg. 5705 TU2.R8.5 - EFFECTS OF DIFFERENT WAVE SPECTRA ON WIND-WAVE INDUCED DOPPLER SHIFT ESTIMATES
Micalizzi, Frankie	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Miccinesi, Lapo	pg. 4207 MO2.R12.1 - AN INTERFEROMETRIC W-BAND RADAR FOR LARGE STRUCTURES MONITORING pg. 794 TU2.R3.3 - A POLARIMETRIC APPROACH FOR MULTIPATH SUPPRESSION/ MITIGATION IN GROUND-BASED INTERFEROMETRIC RADAR IMAGING

Michaelides, Roger	pg. 12 MO2.R3.4 - FEASIBILITY OF RETRIEVING SOIL
	MOISTURE FROM INSAR DECORRELATION PHASE AND CLOSURE PHASE
	pg. 16 MO2.R3.5 - A PHYSICS-BASED DECORRELATION PHASE COVARIANCE MODEL FOR EFFECTIVE DECORRELATION NOISE REDUCTION IN INTERFEROGRAM STACKS
	pg. 4606) WE2.R1.12 - JOINT RETRIEVAL OF SOIL MOISTURE AND PERMAFROST ACTIVE LAYER THICKNESS USING L-BAND INSAR AND P-BAND POLSAR
	INSTITUTE I DANCE I CESTIL
Michaelis, Andrew	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS
	TH1.R6.9 - AN INTRODUCTION TO THE GEONEX LEVEL-1G PRODUCTS: TOP-OF-ATMOSPHERE REFLECTANCE AND BRIGHTNESS TEMPERATURE
	pg. 4513 WE1.R10.10 - HOURLY GPP ESTIMATION IN AUSTRALIA USING HIMAWARI-8 AHI PRODUCTS
Michalenko, Joshua	pg. 2296 FR1.R6.2 - MULTIMODAL DATA FUSION VIA ENTROPY MINIMIZATION
Michel, Andreas	pg. 52 MO2.R5.4 - HYPERSPECTRAL BAND SELECTION WITHIN A DEEP REINFORCEMENT LEARNING FRAMEWORK
Michel, Julien	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
Michel, Thierry	pg. 6162 WE1.R12.5 - RESIDUAL MOTION ESTIMATION FOR MULTI-SQUINT AIRBORNE SAR
Michielsen, Kristel	pg. 1973 TH1.R17.11 - APPROACHING REMOTE SENSING
	IMAGE CLASSIFICATION WITH ENSEMBLES OF SUPPORT VECTOR MACHINES ON THE D-WAVE QUANTUM ANNEALER
Middelmann, Wolfgang	pg. 664 TU1.R12.3 - A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM DESIGN TO FIRST RESULTS
	pg. 52 MO2.R5.4 - HYPERSPECTRAL BAND SELECTION WITHIN
	A DEEP REINFORCEMENT LEARNING FRAMEWORK (pg. 1448) WE2.R9.4 - DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION OF AERIAL IMAGERY USING CYCLE-
	CONSISTENT ADVERSARIAL NETWORKS pg. 1303 WE1.R20.10 - FEATURE CONCATENATION OF
	HYPERSPECTRAL AND DEM DATA FOR LAND COVER
	CLASSIFICATION
Miegebielle, Veronique	CLASSIFICATION TH2.R16.6 - AUTOMATIC OIL SLICK DETECTION FOR ENVIRONMENTAL DOMAIN USING SYNTHETIC APERTURE RADAR (SAR) IMAGES

Mielke, Christian	pg. 5226 FR2.R10.7 - MULTI-SCALE APPROACH USING REMOTE SENSING TECHNIQUES FOR LITHIUM PEGMATITE EXPLORATION: FIRST RESULTS FR2.R14.7 - GEOLOGICAL CHARACTERIZATION OF NIAQORNARSSUIT COMPLEX BASED ON AIRBORNE HYPERSPECTRAL AND MAGNETIC DATA FUSION
Migicovsky, Zoë	pg. 1117 WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Migliaccio, Maurizio	pg. 4019 FR2.R8.4 - MONITORING HARSH COASTAL ENVIRONMENTS USING POLARIMETRIC SAR DATA: THE CASE OF SOLWAY FIRTH WETLANDS pg. 6539 FR2.R13.9 - SPATIAL RESOLUTION ENHANCEMENT OF RADIOMETER MEASUREMENTS COLLECTED BY THE FUTURE MICROWAVE CIMR MISSION pg. 6543 FR2.R13.10 - AN ENHANCED PRODUCT FOR THE FSSCAT MICROWAVE RADIOMETER
Mignone, Luca	pg. 4235 MO2.R12.8 - APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC INFRASTRUCTURE MONITORING
Milani, Lisa	pg. 5341 TU2.R19.1 - RECONFIGURING COSSIR FOR THE NEXT GENERATION OF CLOUD AND PRECIPITATION SCIENCE
Miller, Allison	pg. 1117 WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Miller, Bailey	pg. 822 TU2.R3.10 - MULTIPASS SAR PROCESSING FOR RADAR DEPTH SOUNDER CLUTTER SUPPRESSION, TOMOGRAPHIC PROCESSING, AND DISPLACEMENT MEASUREMENTS
Miller, Charles	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS pg. 3955 FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS
Miller, Heinrich	pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Miller, Julie	pg. 2972 TU1.R9.3 - MELT DETECTION OVER GREENLAND USING SMAP RADIOMETER OBSERVATIONS
Miller, Ryan	pg. 3353 TU2.R13.4 - NEXT GENERATION GNSS-R INSTRUMENT
Miller, Steven	pg. 5588 FR2.R19.7 - DETECTING LAYER HEIGHT OF SMOKE AND DUST AEROSOLS OVER VEGETATED LAND AND WATER SURFACES VIA OXYGEN ABSORPTION BANDS
Min, Jeongki	pg. 6619 TU1.R2.8 - CONVOLUTIONAL RECURRENT NEURAL

	NETWORKS FOR EARTHQUAKE EPICENTRAL DISTANCE ESTIMATION USING SINGLE-CHANNEL SEISMIC WAVEFORM
Min, Rui	pg. 770 TU1.R18.8 - MICRO GESTURE RECOGNITION WITH TERAHERTZ RADAR BASED ON DIAGONAL PROFILE OF RANGE- DOPPLER MAP
Minardo, Aldo	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS
Ming, Yanfang	pg. 1608 WE2.R18.10 - IMPROVING THE PERFORMANCE OF SEABIRDS DETECTION COMBINING MULTIPLE SEMANTIC SEGMENTATION MODELS
Mingcang, Zhu	pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB- SAHARA AFRICA
Minhas, Manpreet Singh	pg. 3035 TU2.R9.9 - A MULTI-SCALE TECHNIQUE TO DETECT MARGINAL ICE ZONES USING CONVOLUTIONAL NEURAL NETWORKS.
Minligareev, Vladimir	pg. 6125 WE1.R7.7 - GEOMAGNETIC ANOMALIES IN O+ CONCENTRATION CONSIDERING THE SUN SEASONAL POSITION ACCORDING TO THE DATA FROM THE COMPLEX "RIMS"
Minnis, Patrick	pg. 2956 MO2.R9.11 - ESTIMATING EFFECTIVE SNOW GRAIN SIZE USING NORMALIZED CHANNEL RATIOS OF MODIS 0.86 AND 1.64 MICRON BANDS
Mishra, Pooja	pg. 724 TU1.R16.7 - SYNERGIC USE OF SAR AND OPTICAL DATA FOR ESTIMATION OF SOIL MOISTURE IN VEGETATIVE REGION
Mishra, Vipul Kumar	pg. 1659 TH1.R2.12 - TOPOGRAPHICAL FEATURE EXTRACTION USING MACHINE LEARNING TECHNIQUES FROM SENTINEL-2A IMAGERY
Mispelhorn, Jonas	pg. 664 TU1.R12.3 - A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM DESIGN TO FIRST RESULTS
Misra, Arundhati	pg. 1719 TH1.R5.3 - UNSUPERVISED LAND COVER CLASSIFICATION OF HYBRID POLSAR IMAGES USING DEEP NETWORK
Misra, Sidharth	pg. 3330 TU2.R1.4 - SMAP MICROWAVE RADIOMETER CALIBRATION REVISIT APPROACHES AND PERFORMAMNCE TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION FR1.R2.8 - THE SMART ICE CLOUD SENSING (SMICES)

	SMALLSAT CONCEPT
	FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE STRATEGIES
Mitchard, Edward T. A.	TH1.R5.8 - ASSESSING FOREST/NON-FOREST SEPARABILITY USING SENTINEL-1 C-BAND SAR
Mitchell, Jon	pg. 4144 MO2.R10.7 - MULTISCALE MODEL OF MOVING VEGETATIVE CLUTTER IN ISAR IMAGING
Mitchell, Thomas	pg. 750 TU1.R18.3 - CASE STUDIES WITH SAR DATA FOR ASSESSING THE UTILITY OF MANUAL FEATURE SELECTION IN MACHINE LEARNING
Mitnik, Leonid	pg. 5709 TU2.R8.6 - RETRIEVAL OF MEAN SQUARE SLOPES OF SEA WAVES, SURFACE WIND SPEED, TOTAL WATER VAPOR CONTENT AND TOTAL CLOUD LIQUID WATER CONTENT IN HAGIBIS TYPHOON AREA FROM SATELLITE ACTIVE AND PASSIVE MICROWAVE DATA
Mitnik, Maia	pg. 5709 TU2.R8.6 - RETRIEVAL OF MEAN SQUARE SLOPES OF SEA WAVES, SURFACE WIND SPEED, TOTAL WATER VAPOR CONTENT AND TOTAL CLOUD LIQUID WATER CONTENT IN HAGIBIS TYPHOON AREA FROM SATELLITE ACTIVE AND PASSIVE MICROWAVE DATA
Mitraka, Zina	MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT (pg. 3455) TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Mitsuhashi, Rei	pg. 3467 WE2.R4.4 - PROGRESS OF THE ISS BASED VEGETATION LIDAR MISSION, MOLI - JAPAN'S FIRST SPACE-BASED LIDAR
Miura, Hiroyuki	pg. 3751 TH2.R12.7 - DAMAGE CHARACTERIZATION IN URBAN ENVIRONMENTS FROM MULTITEMPORAL REMOTE SENSING DATASETS BUILT FROM PREVIOUS EVENTS
Miura, Jasper	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
Miura, Satoko	pg. 3792 TH2.R15.3 - ALOS-4 L-BAND SAR OBSERVATION CONCEPT AND DEVELOPMENT STATUS
Miura, Tomoaki	pg. 4520 WE1.R11.1 - VEGETABLE PRODUCTION POTENTIAL IN OAHU, HAWAII WITH AN INTEGRATED USE OF SENTINEL-2 TIME SERIES AND GIS MODELING
Miyamoto, Mayu	pg. 1909 TH1.R16.6 - IMAGING OF MULTI-CHANNEL SLIDING SPOTLIGHT SAR WITH UP- AND DOWN-CHIRP MODULATION FOR RANGE AMBIGUITY SUPPRESSION
Miyamoto, Takashi	pg. 6623 TU1.R2.9 - USING MULTIMODAL LEARNING MODEL

	FOR EARTHQUAKE DAMAGE DETECTION BASED ON OPTICAL SATELLITE IMAGERY AND STRUCTURAL ATTRIBUTES
Mizuochi, Hiroki	pg. 5108) FR1.R4.12 - INVESTIGATION OF THE ABILITY OF A PASSIVE MICROWAVE SENSOR TO MONITOR SURFACE WATER OVER COMPLEX LANDSCAPE IN EASTERN SIBERIA
Mlisa, Andiswa	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
Mo, Fan	TU2.R4.8 - GYROSCOPE DATA DE-NOISING BASED ON INHERENT FREQUENCY FOR EARTH OBSERVATION SATELLITE
Mo, Yan	pg. 2707 FR2.R6.3 - NOISE ANALYSIS OF HYPERSPECTRAL IMAGES CAPTURED BY DIFFERENT SENSORS
Moeller, Gregor	pg. 461 TU1.R5.7 - TOTAL REFRACTIVITY FIELDS FROM GNSS TROPOSPHERIC DELAYS RECONSTRUCTED WITH COLLOCATION METHODS
Moghaddam, Mahta	pg. 3841 TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS pg. 7037 TU2.R20.4 - ARBITRARY NONLINEAR FM WAVEFORM CONSTRUCTION AND ULTRA-WIDEBAND SYNTHESIS pg. 3845 TH2.R17.4 - SPCTOR: SENSING POLICY CONTROLLER AND OPTIMIZER pg. 4136 MO2.R10.5 - MAPPING TREE CANOPY COVER AND CANOPY HEIGHT WITH L-BAND SAR USING LIDAR DATA AND RANDOM FORESTS pg. 4930 TH2.R1.7 - ELECTROMAGNETIC SCATTERING BEHAVIOR OF A NEW ORGANIC SOIL DIELECTRIC MODEL FOR LONG-WAVELENGTH RADAR RETRIEVAL OF PERMAFROST ACTIVE LAYER SOIL PROPERTIES pg. 5042 FR1.R1.7 - SOILSCAPE WIRELESS IN SITU NETWORKS IN SUPPORT OF CYGNSS LAND APPLICATIONS pg. 4602 WE2.R1.11 - MULTI-TEMPORAL CONVOLUTIONAL NEURAL NETWORKS FOR SATELLITE-DERIVED SOIL MOISTURE OBSERVATION ENHANCEMENT pg. 4606 WE2.R1.12 - JOINT RETRIEVAL OF SOIL MOISTURE AND PERMAFROST ACTIVE LAYER THICKNESS USING L-BAND INSAR AND P-BAND POLSAR
Mohammed, Priscilla	pg. 3330 TU2.R1.4 - SMAP MICROWAVE RADIOMETER CALIBRATION REVISIT APPROACHES AND PERFORMAMNCE
Mohan, Shiv	pg. 734 TU1.R16.10 - SYNERGETIC USE OF MORPHOLOGICAL AND RADAR PARAMETER FOR LUNAR WATER ICE DETECTION
Mohanty, Shradha	pg. 2005 TH1.R18.8 - SNOW CHARACTERIZATION AND AVALANCHE DETECTION IN THE INDIAN HIMALAYA pg. 2999 TU1.R9.10 - SURGING GLACIER DYNAMICS IN TARIM BASIN USING SAR DATA pg. 3002 TU1.R9.11 - ESTIMATING DYNAMIC PARAMETERS OF BARA SHIGRI GLACIER AND DERIVATION OF MASS BALANCE

	FROM VELOCITY Pg. 4335 TU2.R10.11 - FOREST ABOVE GROUND BIOMASS ESTIMATION USING MULTI-SENSOR GEOSTATISTICAL APPROACH
Mohanty, William K.	pg. 2221 TH2.R20.7 - SEISMIC FAULT ANALYSIS USING CURVATURE ATTRIBUTE AND VISUAL SALIENCY
Mohapatra, Pragyan	pg. 1066 WE1.R5.8 - INFLUENCE OF ALEATORIC UNCERTAINTY ON SEMANTIC CLASSIFICATION OF AIRBORNE LIDAR POINT CLOUDS: A CASE STUDY WITH RANDOM FOREST CLASSIFIER USING MULTISCALE FEATURES
Mohite, Jayantrao	pg. 1941 TH1.R17.3 - INTEGRATION OF SENTINEL 1 AND 2 OBSERVATIONS FOR MAPPING EARLY AND LATE SOWING OF SOYBEAN AND COTTON CROP USING DEEP LEARNING pg. 4538 WE1.R11.6 - MONITORING AND ANALYSIS OF VIIRS FIRE EVENTS DATA OVER INDIAN STATES OF PUNJAB AND HARYANA pg. 3123 WE1.R14.9 - DEVELOPMENT OF GEOSPATIAL PROCESSING FRAMEWORKS FOR SENTINEL-1, -2 SATELLITE DATA
Mohr, Veronika	pg. 5749 WE1.R8.6 - STATISTICAL ANALYSES OF MARINE OIL POLLUTION IN A SEA REGION OF HIGH ECONOMIC USE: THE WESTERN JAVA SEA
Mohrmann, John	FR1.R2.1 - CLASSIFYING GLOBAL LOW CLOUD MORPHOLOGY WITH A DEEP LEARNING MODEL: RESULTS AND POTENTIAL USE
Moiret, Adrien	pg. 4251 TU1.R1.1 - ELASTIC MAPPING THROUGH THE COPERNICUS GLOBAL LAND COVER LAYERS
Moiseev, Artem	pg. 5670 TU1.R8.7 - RETRIEVING OCEAN SURFACE CURRENTS FROM THE SENTINEL-1 DOPPLER SHIFT OBSERVATIONS: A CASE STUDY OF THE NORWEGIAN COASTAL CURRENT
Moisy, Christophe	pg. 4434 WE1.R1.1 - DEVELOPMENT AND VALIDATION OF THE SMOS-IC VERSION 2 (V2) SOIL MOISTURE PRODUCT pg. 5011 TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
Molemaker, Jeroen	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Molin Jr., Ricardo	(pg. 332) MO2.R18.8 - UNSUPERVISED AUTOMATIC TARGET DETECTION FOR MULTITEMPORAL SAR IMAGES BASED ON ADAPTIVE K-MEANS ALGORITHM
Molina, Carlos	pg. 5986 TU1.R4.12 - RITA: REQUIREMENTS AND PRELIMINARY DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT
Molina, Julio	pg. 4803 TH1.R6.7 - IMPACT OF MEGADROUGHT ON VEGETATION PRODUCTIVITY IN CHILE: FOREST LESSER RESISTANT THAN CROPS AND GRASSLAND

Molina, Mauricio	pg. 4803 TH1.R6.7 - IMPACT OF MEGADROUGHT ON VEGETATION PRODUCTIVITY IN CHILE: FOREST LESSER RESISTANT THAN CROPS AND GRASSLAND
Molkov, Aleksandr	pg. 3545 WE2.R8.7 - FILM SLICKS ON THE SEA SURFACE: THEIR DYNAMICS AND REMOTE SENSING
Moller, Delwyn	pg. 6270 WE2.R13.2 - ANALYSIS OF GNSS-R COVERAGE BY A REGIONAL AIRCRAFT FLEET pg. 4626 WE2.R10.5 - FOREST FLOWS - REAL TIME MONITORING OF WATER QUANTITY AND QUALITY SPATIO- TEMPORAL DYNAMICS IN PLANTED FORESTS
Molthan, Andrew	pg. 4179 MO2.R11.5 - A SATELLITE AGNOSTIC APPROACH TO QUANTIFYING HAIL DAMAGE SWATHS ACROSS THE CENTRAL UNITED STATES AND OTHER AGRICULTURAL REGIONS
Monahan, Nick	TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Mondal, Rajdeep	pg. 5757 WE1.R8.8 - AUTOMATED COASTLINE DETECTION FROM LANDSAT 8 OLI/TIRS IMAGES WITH THE PRESENCE OF INLAND WATER BODIES IN ANDAMAN
Monerris, Alessandra	pg. 5925 MO2.R13.6 - UNTANGLING THE GNSS-R COHERENT AND INCOHERENT COMPONENTS: EXPERIMENTAL EVIDENCES OVER THE OCEAN pg. 3369 TU2.R13.8 - FIRST EXPERIMENTAL EVIDENCE OF WIND AND SWELL SIGNATURES IN L5 GPS AND E5A GALILEO GNSS-R WAVEFORMS
Monga, Vishal	pg. 2835 FR2.R16.1 - DATA ADAPTIVE IMAGE ENHANCEMENT AND CLASSIFICATION FOR SYNTHETIC APERTURE SONAR
Monje, Raquel	pg. 5466 TH1.R19.9 - SUBMILLIMETER WAVE DIFFERENTIAL ABSORPTION RADAR FOR WATER VAPOR SOUNDING IN THE MARTIAN ATMOSPHERE
Monsivais-Huertero, Alejandro	pg. 4351 TU2.R11.3 - MONITORING VEGETATION CONDITIONS OVER AGRICULTURAL REGIONS USING ACTIVE OBSERVATIONS
Monsiváis Huertero, Alejandro	pg. 5250 FR2.R11.1 - CALIBRATION OF A SVAT MODEL IN THE CENTRAL ZONE OF MEXICO WITH IN-SITU DATA OVER A CORN FIELD REGION pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Monsiváis-Huertero, Alejandro	pg. 4727 TH1.R1.10 - COMPARISON OF SMAP RETRIEVAL SOIL MOISTURE LEVEL 2 PRODUCT WITH IN SITU MEASUREMENTS OVER CORN FIELDS IN CENTRAL MEXICO.
Montero, José	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION

Monterroso, Fernando	pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR CO- SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Montuori, Antonio	pg. 6055 TU2.R4.6 - SCIENTIFIC REQUIREMENTS FOR A NEW EO MISSION IN THE MWIR-LWIR SPECTRAL RANGE
Montzka, Carsten	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Moon, Yongseon	pg. 5612 MO2.R8.3 - MAPPING RED TIDE INTENSITY USING MULTISPECTRAL CAMERA ON UNMANNED AERIAL VEHICLE: A CASE STUDY IN KOREAN SOUTH COAST
Moore, Theresa	pg. 92 MO2.R6.3 - ARRAY MANIFOLD CALIBRATION FOR MULTICHANNEL RADAR ICE SOUNDERS
Moorhead, Robert	pg. 4470 WE1.R1.10 - MACHINE-LEARNING BASED RETRIEVAL OF SOIL MOISTURE AT HIGH SPATIO-TEMPORAL SCALES USING CYGNSS AND SMAP OBSERVATIONS
Moraguez, Matthew	pg. 1600 WE2.R18.8 - CONVOLUTIONAL NEURAL NETWORK FOR DETECTION OF RESIDENTIAL PHOTOVOLTAIC SYSTEMS IN SATELLITE IMAGERY
Morais, Raul	pg. 4195 MO2.R11.9 - MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE
Moreau, Thomas	pg. 3521 WE2.R8.1 - DETECTION OF INTERNAL SOLITARY WAVES WITH CONVENTIONAL AND ADVANCED SAR ALTIMETRY PROCESSING METHODS: PRELIMINARY RESULTS
Moreira Silva, Adalene	pg. 5115 FR1.R10.2 - USING UNSUPERVISED CLUSTERING FOR ANALYZING AIRBORNE GAMMA-RAY SPECTROMETRY DATA
Moreira, Alberto	pg. 3403 TU2.R15.1 - TANDEM-X: 10 YEARS OF OPERATION
Morel, Jean-Michel	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Moreno-Martinez, Alvaro	pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Moreno-Martínez, Álvaro	pg. 3991 FR2.R7.5 - INTERPRETABILITY OF RECURRENT NEURAL NETWORKS IN REMOTE SENSING pg. 3999 FR2.R7.7 - DISCOVERING DIFFERENTIAL EQUATIONS FROM EARTH OBSERVATION DATA
Morgenthal, Theunis	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
Morini, Francesco	pg. 4207 MO2.R12.1 - AN INTERFEROMETRIC W-BAND RADAR

	FOR LARGE STRUCTURES MONITORING
Morino, Isamu	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Morishita, Yu	pg. 6857 WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING
Moritsch, Michael	pg. 3345 TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION
Morris, Mary	TH1.R8.10 - CYGNSS-BASED TROPICAL CYCLONE GALE WIND RADII ESTIMATES: A RETROSPECTIVE EVALUATION
Morrison, Keith	TH2.R9.7 - EXPLAINING ANOMALIES IN SAR AND SCATTEROMETER SOIL MOISTURE RETRIEVALS FROM DRY SOILS WITH SUB-SURFACE SCATTERING
Morton, Douglas	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Morton, Jade	pg. 6210 WE1.R13.8 - DETECTION OF COHERENT GNSS-R MEASUREMENTS USING A SUPPORT VECTOR MACHINE pg. 6218 WE1.R13.10 - COHERENT GPS REFLECTIONS OVER OCEAN SURFACE
Morton, Y. Jade	pg. 6190 WE1.R13.3 - CHARACTERIZATION AND IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE FOR GNSS REFLECTOMETRY pg. 6206 WE1.R13.7 - GPS SIGNAL LAND REFLECTION COHERENCE DEPENDENCE ON WATER EXTENT AND SURFACE TOPOGRAPHY USING CYGNSS MEASUREMENTS pg. 3365 TU2.R13.7 - COHERENT GNSS REFLECTION SIGNAL PROCESSING FOR PRECISION ALTIMETRY APPLICATIONS
Mortula, Maruf	pg. 1327 WE2.R3.5 - INFINITE NUMBER OF LOOKS PREDICTION IN POLSAR FILTERING BY LINEAR REGRESSION
Moser, Gabriele	pg. 3892 FR1.R7.1 - CHANGE DETECTION WITH HETEROGENEOUS REMOTE SENSING DATA: FROM SEMI- PARAMETRIC REGRESSION TO DEEP LEARNING pg. 4080 MO2.R1.2 - URBAN LAND-USE AND LAND-COVER MAPPING BASED ON THE CLASSIFICATION OF TRANSPORT DEMAND AND REMOTE SENSING DATA pg. 2089 TH2.R5.7 - AUTOMATIC AREA-BASED REGISTRATION OF OPTICAL AND SAR IMAGES THROUGH GENERATIVE ADVERSARIAL NETWORKS AND A CORRELATION-TYPE METRIC pg. 684 TU1.R12.8 - HETEROGENEOUS CHANGE DETECTION WITH SELF-SUPERVISED DEEP CANONICALLY CORRELATED AUTOENCODERS
Mothes, Patricia	WE1.R2.9 - DEFORMATION MONITORING AND SOURCE MODELLING BY INSAR OF THE WOLF VOLCANO (GALAPAGOS,

	ECUADOR) (pg. 6854) WE1.R2.10 - INSAR DEFORMATION ANALYSIS AND SOURCE MODELLING OF THE GUAGUA PICHINCHA VOLCANO (ECUADOR)
Motohka, Takeshi	pg. 3792 TH2.R15.3 - ALOS-4 L-BAND SAR OBSERVATION CONCEPT AND DEVELOPMENT STATUS pg. 5957 TU1.R4.4 - CONCEPT STUDY OF FUTURE LAND OBSERVATION SATELLITE TECHNIQUES WHEN UTILIZING KHATRI-RAO (KR) PRODUCT ARRAY PROCESSING
Motteler, Howard	pg. 6043 TU2.R4.3 - DERIVATION OF JPSS-2 CRIS PRE-LAUNCH SPECTRAL CALIBRATION PARAMETERS FROM THE THERMAL VACUUM TEST DATA
Mou, Fan	pg. 2539 FR1.R17.8 - CHANGE OF GLACIAL LAKE IN KARAKORAM RANGE pg. 6997 FR2.R2.11 - A METHOD TO CREATE TRAINING DATASET FOR DEHAZING WITH CYCLEGAN pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB- SAHARA AFRICA
Mou, Lichao	pg. 952 TU2.R18.1 - EVENT AND ACTIVITY RECOGNITION IN AERIAL VIDEOS USING DEEP NEURAL NETWORKS AND A NEW DATASET pg. 529 TU1.R7.2 - LEARNING MULTI-LABEL AERIAL IMAGE CLASSIFICATION UNDER LABEL NOISE: A REGULARIZATION APPROACH USING WORD EMBEDDINGS pg. 1452 WE2.R9.5 - INSTANCE SEGMENTATION OF BUILDINGS USING KEYPOINTS pg. 164 MO2.R14.10 - VISION-BASED SCATTERING KEY-FRAME EXTRACTION FOR VIDEOSAR SUMMARIZATION pg. 692 TU1.R12.10 - A NOVEL APPROACH TO UNSUPERVISED SEGMENTATION OF MULTITEMPORAL VHR IMAGES BASED ON DEEP LEARNING
Mouche, Alexis	pg. 3529 WE2.R8.3 - PRELIMINARY ANALYSIS OF TROPICAL CYCLONE OCEAN WAVES USING SENTINEL-1 SAR DATA. pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Moukomla, Sitthisak	(pg. 6871) WE2.R2.3 - THE APPLICATION OF REMOTE SENSING PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA
Mouri, Koichiro	(Pg. 3272) MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) : ITS LAUNCH AND CURRENT STATUS
Mouroulis, Pantazis	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Mousavi, Seyedmohammad	pg. 2972 TU1.R9.3 - MELT DETECTION OVER GREENLAND USING SMAP RADIOMETER OBSERVATIONS pg. 6438 FR1.R13.6 - ERROR ESTIMATION OF THE MEASURED TIME DELAY USING WIDEBAND AUTOCORRELATION

	RADIOMETRY (pg. 6369) TH1.R13.7 - RFI MITIGATION USING A NEW COMB FILTER FOR WIDEBAND AUTOCORRELATION RADIOMETRY
Moyer, David	pg. 6246] WE1.R15.7 - PRELIMINARY JPSS-3 VIIRS POLARIZATION SENSITIVITY AND COMPARISON WITH S-NPP, JPSS-1 AND -2
Mrittika, Nusrat Jahan	pg. 1331 WE2.R3.6 - A DEEP GAUSSIAN PROCESS FOR FORECASTING CROP YIELD AND TIME SERIES ANALYSIS OF PRECIPITATION BASED IN MUNSHIGANJ, BANGLADESH
Msellmi, Bouthayna	pg. 2823] FR2.R12.9 - SUB-PIXEL MAPPING METHOD BASED ON K-SVD DICTIONARY LEARNING AND TOTAL VARIATION MINIMIZATION
Mu, Huilin	pg. 2129 TH2.R9.6 - A VARIABLE-DECOUPLING METHOD USED IN MSR-BASED IMAGING ALGORITHMS FOR SAR WITH CONSTANT ACCELERATION
Mu, Xihan	pg. 4622 WE2.R10.4 - ANALYZING LEAF CLUMPING EFFECT OF INDIVIDUAL TREES BASED ON MODELED REALISTIC STRUCTURE pg. 4834 TH1.R10.4 - MONITORING DYNAMIC CHANGES OF VEGETATION COVER IN THE TARIM RIVER BASIN BASED WITH LANDSAT IMAGERY AND GOOGLE EARTH ENGINE
Mubea, Kenneth	pg. 3379 TU2.R14.3 - AFRICA REGIONAL DATA CUBE (ARDC) IS HELPING COUNTRIES IN AFRICA REPORT ON THE SUSTAINABLE DEVELOPMENT GOALS
Mudigonda, Mayur	pg. 3995 FR2.R7.6 - MODELING MOUNTAIN SNOWPACK DYNAMICS WITH CGANS: A VALIDATION STUDY
Mueller, Rupert	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS pg. 2408 FR1.R12.7 - IMPROVING THE CLASSIFICATION IN SHADOWED AREAS USING NONLINEAR SPECTRAL UNMIXING
Mueting, Joel	pg. 3833 TH2.R17.1 - LEVERAGING SPACE AND GROUND ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE
Muff, Darren	pg. 3581) WE2.R15.9 - ICEYE MICROSATELLITE SAR CONSTELLATION STATUS UPDATE: EVALUATION OF FIRST COMMERCIAL IMAGING MODES
Mugambi, Benjamin	pg. 3379 TU2.R14.3 - AFRICA REGIONAL DATA CUBE (ARDC) IS HELPING COUNTRIES IN AFRICA REPORT ON THE SUSTAINABLE DEVELOPMENT GOALS
Muhammad, Hassan	pg. 2252 FR1.R5.3 - A QUANTITATIVE ANALYSIS ON THE USE OF SUPERVISED MACHINE LEARNING IN EARTH SCIENCE
Mukai, Sonoyo	pg. 5489 TH2.R19.3 - DETECTION OF AEROSOLS ABOVE CLOUDS BASED ON GCOM-C/SGLI MEASUREMENTS

Mukherjee, Jit	pg. 4084 MO2.R1.3 - A STUDY OF DETECTING COAL SEAM FIRES BY REMOVING OTHER HIGH TEMPERATURE LOCATIONS
	FROM LANDSAT 8 OLI/TIRS IMAGES
	pg. 5757 WE1.R8.8 - AUTOMATED COASTLINE DETECTION
	FROM LANDSAT 8 OLI/TIRS IMAGES WITH THE PRESENCE OF
	INLAND WATER BODIES IN ANDAMAN
	INCAIND WATER BODIES IN ANDAMAN
Mukherjee, Ryan	pg. 1121 WE1.R6.11 - ESTIMATING DISPLACED POPULATIONS FROM OVERHEAD
Mukhopadhyay, Jayanta	pg. 1719 TH1.R5.3 - UNSUPERVISED LAND COVER
	CLASSIFICATION OF HYBRID POLSAR IMAGES USING DEEP
	NETWORK
	pg. 4084 MO2.R1.3 - A STUDY OF DETECTING COAL SEAM
	FIRES BY REMOVING OTHER HIGH TEMPERATURE LOCATIONS
	FROM LANDSAT 8 OLI/TIRS IMAGES
	pg. 5757 WE1.R8.8 - AUTOMATED COASTLINE DETECTION
	FROM LANDSAT 8 OLI/TIRS IMAGES WITH THE PRESENCE OF
	INLAND WATER BODIES IN ANDAMAN
	pg. 1965 TH1.R17.9 - FROM SUPERVISED TO UNSUPERVISED
	LEARNING FOR LAND COVER ANALYSIS OF SENTINEL-2
	MULTISPECTRAL IMAGES.
	MOENSI ECTIVALIMAGES.
Muller, Dietmar	TU1.R17.1 - MULTI-OBJECTIVE OPTIMIZATION FOR ACTIVE
	SENSOR FUSION
Muller Marierre	
Muller, Marianne	(pg. 5207) FR2.R10.2 - A QUANTITATIVE ANALYSIS ON
	DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE
	DATA IN A CONTROLLED KARST AREA
Mullin, Matthew	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR
	EARTH AND PLANETARY APPLICATIONS
Mullissa, Adugna	THE DESCRIPTION OF A DIMETRIC CAR COVADIANCE
Manussa, Adagna	pg. 704 TU1.R16.2 - DUAL POLARIMETRIC SAR COVARIANCE MATRIX ESTIMATION USING DEEP LEARNING
	MATRIX ESTIMATION USING DEEP LEARNING
Mulone, Angelo Fabio	pg. 2272 FR1.R5.8 - DETECTION OF SOLAR CORONAL MASS
	EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL
	NEURAL NETWORKS
Munafò, Michele	THE REAL LAND COVER AND COLUMN CONCUMPTION
Munato, Michele	pg. 4779 TH1.R6.1 - LAND COVER AND SOIL CONSUMPTION
	MONITORING WITH A FOS GEOPORTAL IN FIVE ITALIAN BIG
	URBAN AREAS
Munchak, S. Joseph	WE1.R19.1 - FIRST YEAR OF COSMIR OBSERVATIONS OF EAST
	COAST WINTER STORMS FROM THE IMPACTS CAMPAIGN
Munchak, Stephen Joseph	THE DIG THE DECONSISTING COSSIDEOR THE NEV
Hanenak, Stephen Joseph	(pg. 5341) TU2.R19.1 - RECONFIGURING COSSIR FOR THE NEXT
	pg. 3759 TH2.R13.1 - MAPPING OCEAN-REFLECTED RADIO
	FREQUENCY INTERFERENCE FOR THE GPM MICROWAVE
	IMAGER USING NORMALIZED RETRIEVAL COST FUNCTION

Munoz-Esparza, Domingo	pg. 3626 TH2.R2.5 - ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING
Munoz-Martin, Joan Francesc	pg. 3341 TU2.R13.1 - FFSCAT MISSION: PRELIMINARY RESULTS AND ICE PRODUCTS VALIDATION WITH MOSAIC CAMPAIGN
	DATA (pg. 6274) WE2.R13.3 - ANALYSIS ON THE FEASABILITY OF AIRBORNE GNSS-R RECEIVERS FOR WEATHER NOWCASTING AND TARGET DETECTION
	pg. 5925 MO2.R13.6 - UNTANGLING THE GNSS-R COHERENT AND INCOHERENT COMPONENTS: EXPERIMENTAL EVIDENCES OVER THE OCEAN
	pg. 3369 TU2.R13.8 - FIRST EXPERIMENTAL EVIDENCE OF WIND AND SWELL SIGNATURES IN L5 GPS AND E5A GALILEO GNSS-R WAVEFORMS
Murakami, Daisuke	pg. 874 TU2.R7.1 - A GEOGRAPHICALLY WEIGHTED TOTAL COMPOSITE ERROR ANALYSIS FOR SOFT CLASSIFICATION
Murphy, James	pg. 1046 WE1.R5.3 - PATCH-BASED DIFFUSION LEARNING FOR HYPERSPECTRAL IMAGE CLUSTERING
Murphy, Sean	pg. 5278 FR2.R11.8 - TOWARD MATURITY ASSESSMENT OF SNAP BEAN CROPS: A BEST-CASE GREENHOUSE SCENARIO
Murugan, Deepak	pg. 1747 TH1.R5.10 - A NEURAL NETWORK APPROACH TO CLASSIFY MIXED CLASSES USING MULTI FREQUENCY SAR DATA
Musacchio, Massimo	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY)
Musgrave, Madison	pg. 3727 TH2.R12.1 - ACCELERATING SUSTAINABLE DEVELOPMENT WITH EARTH INTELLIGENCE
Musinsky, John	pg. 6341 WE2.R17.12 - CURRENT STATUS OF NEON'S AOP
Musko, Stephen	pg. 6270 WE2.R13.2 - ANALYSIS OF GNSS-R COVERAGE BY A REGIONAL AIRCRAFT FLEET
Mustafa, Noman	pg. 2563 FR1.R18.2 - IRON ORE REGION SEGMENTATION USING HIGH-RESOLUTION REMOTE SENSING IMAGES BASED ON RES-U-NET
Musthafa, Mohamed	pg. 2005 TH1.R18.8 - SNOW CHARACTERIZATION AND AVALANCHE DETECTION IN THE INDIAN HIMALAYA pg. 3002 TU1.R9.11 - ESTIMATING DYNAMIC PARAMETERS OF BARA SHIGRI GLACIER AND DERIVATION OF MASS BALANCE FROM VELOCITY
Muthoni Mbugua, Jacqueline	pg. 4951 TH2.R6.4 - DETECTING IRRIGATION EFFECT ON SURFACE TEMPERATURE USING MODIS AND LAND SURFACE MODEL IN WHOLE UZBEKISTAN
Mutreja, Guneet	pg. 1217 WE1.R17.12 - IDENTIFYING SETTLEMENTS USING

	SVM AND U-NET
Muzaffer, Ramsha	pg. 4770 TH1.R4.10 - WATER BALANCE STUDY OF MANCHAR LAKE (SINDH, PAKISTAN) USING LANDSAT AND SENTINEL 3A
Muzzafer, Ramsha	pg. 4773 TH1.R4.11 - VALIDATION OF SENTINEL 3A ALTIMETRY DATA FOR RIVER LEVEL MONITORING AT TWO LOCATIONS ALONG THE LOWER INDUS RIVER
Muñoz, Erith	pg. 4481 WE1.R10.2 - A MULTI-SENSOR APPROACH TO SEPARATE PALM OIL PLANTATIONS FROM FOREST COVER USING NDFI AND A MODIFIED PAULI DECOMPOSITION TECHNIQUE pg. 2093 TH2.R5.8 - AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI- SENSOR SATELLITE IMAGERY APPROACH
Muñoz, Joan Francesc	pg. 5986 TU1.R4.12 - RITA: REQUIREMENTS AND PRELIMINARY DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT
Muñoz-Marí, Jordi	pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Myagmarjav, Indra	pg. 4247 MO2.R12.11 - EXTENDED PATTERN OF URBAN SPRAWL ANALYSIS FROM REMOTE SENSING DATA IN ULAANBAATAR, MONGOLIA
Myagmartseren, Purevtseren	pg. 4247 MO2.R12.11 - EXTENDED PATTERN OF URBAN SPRAWL ANALYSIS FROM REMOTE SENSING DATA IN ULAANBAATAR, MONGOLIA
Myint, Soe	FR2.R18.2 - RAPID MAPPING OF BUSHFIRE HAZARD USING LANDSAT IMAGES AND GOOGLE EARTH ENGINE
Myller, Michal	pg. 866 TU2.R5.10 - HYPERSPECTRAL IMAGE CLASSIFICATION USING SPECTRAL-SPATIAL CONVOLUTIONAL NEURAL NETWORKS
Müller, Marianne	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
N	
Nabil, Abdelghani	pg. 6105) WE1.R7.2 - CAPABILITIES OF THE NEW MOROCCAN SATELLITE MOHAMMED-VI FOR PLANIMETRIC AND ALTIMETRIC MAPPING
Naderpour, Reza	pg. 2983 TU1.R9.6 - COMPARISON OF PASSIVE MICROWAVE MELT DETECTION OF GREENLAND: L-BAND AND XPGR pg. 6531 FR2.R13.7 - A COST-EFFECTIVE PORTABLE L-BAND RADIOMETER FOR DRONE AND GROUND-BASED APPLICATIONS
Nag, Sreeja	pg. 3841 TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL

DECISIONS

Nagai, Masahiko	pg. 4546 WE1.R11.8 - OBSERVATION OF CROP GROWTH CONDITION IN DIFFERENT REGIONS OF UZBEKISTAN
Nagajothi, K	pg. 881 TU2.R7.3 - QUANTITATIVE ANALYSIS OF WATERSHEDS PARTITIONED FROM CARTOSAT DEM OF LOWER INDUS SUB- BASIN VIA MULTIFRACTAL SPECTRA
Nagananda, Navya	pg. 3497 WE2.R7.4 - VISUALIZATION OF DEEP TRANSFER LEARNING IN SAR IMAGERY
Nagatani, Izumi	pg. 3784 TH2.R15.1 - TRIAL OF DEFORESTATION DETECTION BY USING 25M RESOLUTION PALSAR-2/SCANSAR DATA pg. 3799 TH2.R15.5 - RAINFALL-INDUCED CHANGES IN L-BAND BACKSCATTER OVER TROPICAL FORESTS AND THEIR IMPACT ON DEFORESTATION MONITORING pg. 3807 TH2.R15.7 - SEASONAL CHANGE ANALYSIS FOR ALOS-2 PALSAR-2 DEFORESTATION DETECTION
Nagi, Anmol Sharan	pg. 6930 FR1.R2.6 - IDENTIFYING SEA ICE RIDGING IN SAR IMAGERY USING CONVOLUTIONAL NEURAL NETWORKS pg. 3035 TU2.R9.9 - A MULTI-SCALE TECHNIQUE TO DETECT MARGINAL ICE ZONES USING CONVOLUTIONAL NEURAL NETWORKS.
Naik, Balaji	pg. 1588 WE2.R18.5 - UAV BASED REMOTE SENSING FOR TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF MAIZE CROP USING MULTISPECTRAL IMAGES
Nair, Varun	pg. 2229 TH2.R20.9 - MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING pg. 948 TU2.R16.12 - DESIGNING SYNTHETIC OVERHEAD IMAGERY TO MATCH A TARGET GEOGRAPHIC REGION: PRELIMINARY RESULTS TRAINING DEEP LEARNING MODELS
Nakamura, Kenji	pg. 6702 TU1.R15.7 - COMPARATIVE ASSESSMENT OF SOLAR RADIATION BY SATELLITE-BASED AND REANALYSIS PRODUCTS OVER VIETNAM REGIONS
Nakamura, Ryosuke	pg. 2655 FR2.R5.1 - DENSIFICATION OF AIRBORNE LIDAR POINT CLOUD WITH FUSED ENCODER-DECODER NETWORKS pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI): ITS LAUNCH AND CURRENT STATUS pg. 4104 MO2.R1.8 - VERIFYING RAPID INCREASING OF MEGA- SOLAR PV POWER PLANTS IN JAPAN BY APPLYING A CNN- BASED CLASSIFICATION METHOD TO SATELLITE IMAGES
Nakamura, Sho	pg. 676 TU1.R12.6 - BUILDING CHANGE DETECTION USING MODIFIED SIAMESE NEURAL NETWORKS
Nakamura, Shohei	pg. 1909 TH1.R16.6 - IMAGING OF MULTI-CHANNEL SLIDING SPOTLIGHT SAR WITH UP- AND DOWN-CHIRP MODULATION FOR RANGE AMBIGUITY SUPPRESSION

Nakata, Makiko	pg. 5485 TH2.R19.2 - MODEL SIMULATION OF ANTHROPOGENIC IMPACTS ON THE NEAR FUTURE CLIMATE pg. 5489 TH2.R19.3 - DETECTION OF AEROSOLS ABOVE CLOUDS BASED ON GCOM-C/SGLI MEASUREMENTS
Nakatsuka, Hirotaka	pg. 3459 WE2.R4.2 - STATUS OF ESA'S EARTHCARE MISSION PREPARATION
Nakaya, Tomoki	pg. 874 TU2.R7.1 - A GEOGRAPHICALLY WEIGHTED TOTAL COMPOSITE ERROR ANALYSIS FOR SOFT CLASSIFICATION
Nakoudi, Konstantina	pg. 5584 FR2.R19.6 - RETRIEVAL OF ARCTIC PARTICLE MICROPHYSICS FROM AIR-BORNE LIDAR AND SUN- PHOTOMETER DATA
Naksomboon, Ratchanon	pg. 5998 TU1.R14.3 - RETRIEVAL OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE AT RED SPECTRAL PEAK WITH TROPOMI ON SENTINEL-5 PRECURSOR
Nalepa, Jakub	pg. 645 TU1.R11.9 - EVALUATING SUPER-RESOLUTION OF SATELLITE IMAGES: A PROBA-V CASE STUDY pg. 866 TU2.R5.10 - HYPERSPECTRAL IMAGE CLASSIFICATION USING SPECTRAL-SPATIAL CONVOLUTIONAL NEURAL NETWORKS pg. 870 TU2.R5.11 - SEGMENTING HYPERSPECTRAL IMAGES USING SPECTRAL CONVOLUTIONAL NEURAL NETWORKS IN THE PRESENCE OF NOISE
Nalli, Nicholas	pg. 3316 MO2.R7.8 - APPLYING THE NOAA UNIQUE COMBINED ATMOSPHERIC PROCESSING SYSTEM (NUCAPS) TO SUPPORT FORECASTERS AT THE US NAVY AND US AIR FORCE IN MONITORING IMPACTFUL PACIFIC WEATHER EVENTS
Nalli, Nick	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG
Nandan, Vishnu	pg. 3043 TU2.R9.11 - COMPARISON OF ASCAT ESTIMATED SNOW THICKNESS ON FIRST-YEAR SEA ICE IN THE CANADIAN ARCTIC WITH MODELED AND PASSIVE MICROWAVE DATA
Narra, Nathaniel	pg. 4661 WE2.R11.3 - ASSESSMENT OF CLOUD COVER IN SENTINEL-2 DATA USING RANDOM FOREST CLASSIFIER
Nascetti, Andrea	pg. 2495 FR1.R16.7 - COSMO-SKYMED RANGE MEASUREMENTS FOR DISPLACEMENT MONITORING USING AMPLITUDE PERSISTENT SCATTERERS pg. 5242 FR2.R10.11 - LARGE SCALE ASSESSMENT OF FREE GLOBAL DEMS THROUGH THE GOOGLE EARTH ENGINE PLATFORM
Nashashibi, Adib	pg. 374 MO2.R19.9 - IMPROVED DETECTION TECHNIQUES FOR NEW MILLIMETER WAVE AUTOMOTIVE RADARS

Nastal, Jamie	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Nasuno, Tomoe	pg. 3600 WE2.R19.4 - EVALUATION OF CLOUD LIQUID WATER DATABASE USING GLOBAL CLOUD-SYSTEM RESOLVING MODEL FOR GPM/DPR ALGORITHMS
Nathan, Ran	pg. 4799 TH1.R6.6 - STABILITY CHARACTERIZATION OF THE RESPONSE OF WHITE STORKS' FORAGING BEHAVIOR TO VEGETATION DYNAMICS RETRIEVED FROM LANDSAT TIME SERIES
Natsuaki, Ryo	pg. 3770 TH2.R13.5 - SIMILARITY APPROACH FOR RADIO FREQUENCY INTERFERENCE DETECTION AND CORRECTION IN MULTI-RECEIVER SAR pg. 1157 WE1.R16.9 - SUPPRESSION OF ADDITIONAL AZIMUTH AMBIGUITIES UNDER MULTI-CHANNEL AND MULTI-WAVEFORM SAR pg. 429 TU1.R3.11 - COMPLEX-VALUED CONVOLUTIONAL NEURAL NETWORKS IN INTERFEROMETRIC SYNTHETIC APERTURE RADAR AND THEIR TEACHER-IMAGE POLLUTION INFLUENCE ON THE PERFORMANCE
Nattero, Cristiano	pg. 1707 TH1.R3.12 - CNN-BASED BUILDING FOOTPRINT DETECTION FROM SENTINEL-1 SAR IMAGERY
Navacchi, Claudio	pg. 140 MO2.R14.4 - CLASSIFICATION OF WHEAT AND BARLEY FIELDS USING SENTINEL-1 BACKSCATTER
Nazari, Rouzbeh	(pg. 2917) FR2.R18.11 - SPATIO-TEMPORAL STATISTICAL SEQUENTIAL ANALYSIS FOR TEMPERATURE CHANGE DETECTION IN SATELLITE IMAGERY
Ndjakou Njeunje, Franck Olivier	pg. 3680 TH2.R7.5 - ANALYSIS OF HYPERSPECTRAL DATA BY MEANS OF TRANSPORT MODELS AND MACHINE LEARNING
Ndyamboti, Kuhle	pg. 4501) WE1.R10.7 - A MULTI-SCALE REMOTE SENSING APPROACH TO UNDERSTANDING VEGETATION DYNAMICS IN THE NAMA KAROO-GRASSLAND ECOTONE OF SOUTH AFRICA
Neagoe, Iulia	pg. 3688 TH2.R7.7 - PHYSICALLY MEANINGFUL DICTIONARIES FOR EO CROWDSOURCING: A ML FOR BLOCKCHAIN ARCHITECTURE
Nearing, Grey	pg. 3668 TH2.R7.2 - COMBINING PARAMETRIC LAND SURFACE MODELS WITH MACHINE LEARNING
Nehrir, Amin	(pg. 6144) WE1.R7.12 - NASA INCUBATION STUDY ON PLANETARY BOUNDARY LAYER
Neigh, Christopher	pg. 3709 TH2.R11.3 - A MULTI-MODAL APPROACH FOR MONITORING CHANGES IN AGRICULTURE IN THE MEKONG RIVER DELTA
Nela, Bala Raju	pg. 2005 TH1.R18.8 - SNOW CHARACTERIZATION AND AVALANCHE DETECTION IN THE INDIAN HIMALAYA

	pg. 2999 TU1.R9.10 - SURGING GLACIER DYNAMICS IN TARIM BASIN USING SAR DATA pg. 3002 TU1.R9.11 - ESTIMATING DYNAMIC PARAMETERS OF BARA SHIGRI GLACIER AND DERIVATION OF MASS BALANCE
Nemani, Ramakrishna	PROM VELOCITY Pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS TH1.R6.9 - AN INTRODUCTION TO THE GEONEX LEVEL-1G PRODUCTS: TOP-OF-ATMOSPHERE REFLECTANCE AND BRIGHTNESS TEMPERATURE Pg. 4513 WE1.R10.10 - HOURLY GPP ESTIMATION IN AUSTRALIA USING HIMAWARI-8 AHI PRODUCTS
Nerem, Steve	pg. 6218 WE1.R13.10 - COHERENT GPS REFLECTIONS OVER OCEAN SURFACE
Nestoras, Ioannis	pg. 3762 TH2.R13.2 - GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS
Netanyahu, Nathan	pg. 6754 TU1.R17.8 - MULTI SEASONAL DEEP LEARNING CLASSIFICATION OF VENUS IMAGES
Neumann, Maxim	pg. 6730 TU1.R17.2 - TRAINING GENERAL REPRESENTATIONS FOR REMOTE SENSING USING IN-DOMAIN KNOWLEDGE
Nevavuori, Petteri	pg. 4661 WE2.R11.3 - ASSESSMENT OF CLOUD COVER IN SENTINEL-2 DATA USING RANDOM FOREST CLASSIFIER
Neves, Alana	pg. 2061 TH2.R3.11 - STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION
Ng, Alex Hay-Man	pg. 5139 FR1.R10.8 - DETECTION OF PRE-FAILURE DEFORMATION OF THE 2017 MAOXIAN LANDSLIDE WITH TIME- SERIES INSAR AND MULTI-TEMPORAL OPTICAL DATASETS
Ng, Alex Hay-man	pg. 1019 WE1.R3.7 - MONITORING DAM STABILITY USING NEW SAR INTERFEROMETRY TIME SERIES
Nghiem, Son	pg. 4485 WE1.R10.3 - INVESTIGATING THE LAGGED RELATIONSHIP BETWEEN SMAP SOIL MOISTURE AND LIVE FUEL MOISTURE IN CALIFORNIA, USA pg. 3023 TU2.R9.6 - OBSERVATIONS OF ARCTIC SEA ICE LEADS AND OPEN WATER DURING THE MICROBIOLOGICAL- OCEAN-CLOUD COUPLING IN THE HIGH ARCTIC CAMPAIGN
Nghiem, Son V	pg. 3428 TU2.R15.8 - POLARIMETRIC CHARACTERISTICS FOR SEA-ICE SURFACE TOPOGRAPHIC DERIVATION USING TANDEM-X INTERFEROMETRY DATA
Nghiem, Son.V.	pg. 367 MO2.R19.7 - A PHYSICAL PATCH MODEL FOR GNSS-R LAND APPLICATIONS WITH TOPOGRAPHY EFFECTS AND DDM SIMULATIONS

Ngo, Yen-Nhi	pg. 389 TU1.R3.1 - MEKONG SAR INTERFEROMETRY BIG DATA: PRELIMINARY RESULTS pg. 5085 FR1.R4.6 - STUDY FLOOD REGIME USING HIGH TEMPORAL RESOLUTION SENTINEL-1 IMAGES
Nguyen Tran, Ngoc	pg. 4516 WE1.R10.11 - EFFECTS OF TROPICAL FOREST DEGRADATION ON AMAZON FOREST PHENOLOGY
Nguyen, Cam Chi	pg. 389 TU1.R3.1 - MEKONG SAR INTERFEROMETRY BIG DATA: PRELIMINARY RESULTS
Nguyen, Cong T.	pg. 6702 TU1.R15.7 - COMPARATIVE ASSESSMENT OF SOLAR RADIATION BY SATELLITE-BASED AND REANALYSIS PRODUCTS OVER VIETNAM REGIONS
Nguyen, Han Van	pg. 617 TU1.R11.2 - ZERO-SHOT SENTINEL-2 SHARPENING USING A SYMMETRIC SKIPPED CONNECTION CONVOLUTIONAL NEURAL NETWORK pg. 1484 WE2.R12.2 - SURE BASED CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL IMAGE DENOISING
Nguyen, Hao T. P.	pg. 6702 TU1.R15.7 - COMPARATIVE ASSESSMENT OF SOLAR RADIATION BY SATELLITE-BASED AND REANALYSIS PRODUCTS OVER VIETNAM REGIONS
Nguyen, Kim-Anh	pg. 4959 TH2.R6.6 - EVALUATIING THE NDLI'S PERFORMANCE FOR IDENTIFYING WATER SURFACE USING SENTINEL-2 MSI DATA
Nguyen, Nguyen	TU2.R13.6 - CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY?
Nguyen, Phuong	pg. 2073 TH2.R5.3 - SATELLITE DATA FUSION OF MULTIPLE OBSERVED XCO2 USING COMPRESSIVE SENSING AND DEEP LEARNING
Nguyen, Tat Trung	pg. 3467) WE2.R4.4 - PROGRESS OF THE ISS BASED VEGETATION LIDAR MISSION, MOLI - JAPAN'S FIRST SPACE-BASED LIDAR
Ni, Jun	pg. 720 TU1.R16.6 - METRIC LEARNING BASED FINE-GRAINED CLASSIFICATION FOR POLSAR IMAGERY
Ni, Li	pg. 240 MO2.R16.7 - EVALUATION OF SPATIOTEMPORAL FUSION MODELS IN LAND SURFACE TEMPERATURE USING POLAR-ORBITING AND GEOSTATIONARY SATELLITE DATA
Ni, Wenjian	pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR
Ni, Yikai	pg. 545 TU1.R7.6 - SEMI-SUPERVISED LEARNING-BASED REMOTE SENSING IMAGE SCENE CLASSIFICATION VIA ADAPTIVE PERTURBATION TRAINING
Ni-Meister, Wenge	pg. 4999 TH2.R10.7 - ALLOMETRIC RELATIONSHIPS BETWEEN

	ABOVE-GROUND BIOMASS AND LIDAR FULL WAVEFORM MEASUREMENTS - POTENTIAL APPLICATIONS FOR GLOBAL ECOSYSTEM DYNAMICS INVESTIGATION (GEDI) MISSION
Nicholas, Sommer	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Nico, Giovanni	pg. 790 TU2.R3.2 - A TIME-SERIES CLUSTERING APPROACH FOR ATMOSPHERIC PROPAGATION DELAY COMPENSATION IN GROUND-BASED RADAR INTERFEROMETRY
Nicolini, Gianalfredo	pg. 2272 FR1.R5.8 - DETECTION OF SOLAR CORONAL MASS EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
Nie, Gaozhong	pg. 1193 WE1.R17.6 - CLASSIFICATION OF BUILDING STRUCTURE TYPES USING UAV OPTICAL IMAGES
Nie, Jing	pg. 5505 TH2.R19.7 - AEROSOL OPTICAL DEPTH ESTIMATE USING GROUND-MEASURED SPECTRAL SKYLIGHT RATIO METHOD
Nie, Pingjing	pg. 5624 MO2.R8.6 - MONITORING OF TIANWAN NUCLEAR POWER PLANT THERMAL POLLUTION BASED ON REMOTELY SENSED LANDSAT DATA
Nie, Sheng	pg. 6073 WE1.R4.1 - THE PERFORMANCE OF ICESAT-2'S STRONG AND WEAK BEAMS IN ESTIMATING GROUND ELEVATION AND FOREST HEIGHT
Nie, Xiangli	pg. 2727 FR2.R6.8 - POLSAR IMAGE FEATURE EXTRACTION BASED ON CO-REGULARIZATION
Nie, Xuan	pg. 738 TU1.R16.11 - PORT DETECTION IN POLARIMETRIC SAR IMAGES BASED ON THREE-COMPONENT DECOMPOSITION
Nilsson, Mats	pg. 4478 WE1.R10.1 - COMBINING TANDEM-X, SENTINEL-2 AND FIELD DATA FOR PREDICTION OF SPECIES-WISE STEM VOLUMES pg. 4822 TH1.R10.1 - NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING
Ning, Jifeng	pg. 2312 FR1.R6.6 - HYPERSPECTRAL IMAGE RESTORATION VIA GLOBAL TOTAL VARIATION REGULARIZED LOCAL NONCONVEX LOW-RANK MATRIX APPROXIMATION
Ning, Jue	pg. 5604 MO2.R8.1 - SPATIAL AND SEASONAL VARIATIONS OF THE UPPER OCEAN CHLOROPHYLL CONCENTRATION IN THE EASTERN NORTH PACIFIC
Ning, Silan	pg. 2787 FR2.R9.11 - TREE SPECIES CLASSIFICATION BASED ON AIRBORNE LIDAR AND HYPERSPECTRAL DATA
Ning, Yuanyong	pg. 2531 FR1.R17.5 - CHANGE DETECTION NETWORK OF NEARSHORE SHIPS FOR MULTI-TEMPORAL OPTICAL REMOTE SENSING IMAGES pg. 2328 FR1.R6.11 - FUSION OF SAR AND OPTICAL REMOTE

	SENSING IMAGES BASED ON DEEP CONVOLUTION GENERATIVE ADVERSARIAL NETWORKS
Nishii, Ryuei	pg. 1520 WE2.R12.11 - TWO STAGE ESTIMATION PROCEDURE OF NON-LINEAR REGRESSION FUNCTIONS FOR SPATIALLY- DEPENDENT DATA
	pg. 381 MO2.R19.11 - SOLAR ACTIVITY IS ONE OF TRIGGERS OF EARTHQUAKES WITH MAGNITUDES LESS THAN 6
Nishimura, Takeshi	pg. 3795 TH2.R15.4 - MONITORING OF FISHING BOATS BY ALOS-2/4 DATA
Nisi, Luca	pg. 5372 TU2.R19.9 - UNDERSTANDING SEVERE WEATHER EVENTS AT AIRPORT SPATIAL SCALE
Niu, Haonan	pg. 2847 FR2.R16.4 - A NOVEL SUPPORT VECTOR MACHINE BASED RADAR INDIVIDUAL RECOGNITION ALGORITHM UNDER INCONSISTENT NOISE CONDITION
Niu, Muqun	pg. 2615 FR2.R3.3 - SATELLITE ATTITUDE CHANGE RECOGNITION BASED ON MULTI-FRAME IMAGE BY 3D CONVOLUTIONAL NEURAL NETWORKS
Niu, Zhenguo	pg. 4754 TH1.R4.6 - RELIABILITY EVALUATION OF WETLAND SAMPLES BASED ON HISTORICAL THEMATIC MAPS
Nogués-Correig, Oleguer	TU2.R13.6 - CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY?
Nonaka, Takashi	pg. 4963 TH2.R6.7 - ESTIMATION OF REINFORCED SLOPE DYNAMICS USING ALOS-2/ PALSAR-2 AND VALIDATION BY TERRESTRIAL LASER SCANNER
Normand, Jonathan C.L	pg. 5143 FR1.R10.9 - RESOLVING GROUNDWATER CONDUITS IN HYPER-ARID ERODED KARSTS USING HIGH-RESOLUTION L-BAND SAR AND OPTICAL IMAGES
Norouzi, Hamid	pg. 2300 FR1.R6.3 - A GLOBAL ANALYSIS OF PASSIVE MICROWAVE BRIGHTNESS TEMPERATURE DIURNAL CYCLE
Norouzi, Hamidreza	pg. 3143 WE2.R14.3 - SERVICE-LEARNING: AN ENTRÉE TO INTRODUCE MINORITY STUDENTS TO REMOTE SENSING RESEARCH
	pg. 4407 TU2.R12.6 - URBAN HEAT ISLANDS AND REMOTE SENSING: CHARACTERIZING LAND SURFACE TEMPERATURE AT THE NEIGHBORHOOD SCALE
North, Heather	pg. 2751 FR2.R9.2 - CLASSIFICATION OF WINTER LAND COVER IN NEW ZEALAND HILL COUNTRY FOR RISKY PRACTICE IDENTIFICATION
Notarnicola, Claudia	pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES
Notter, Michael	pg. 6146) WE1.R12.1 - A KA-BAND ALONG TRACK INTERFEROMETRY AND GROUND MOVING TARGET

	IDENTIFICATION ARCHITECTURE BASED ON REFLECTARRAY ANTENNAS
Nukavarapu, Nivedita	pg. 6890 WE2.R2.8 - MULTI-AGENT DEEP REINFORCEMENT LEARNING BASED INTERDEPENDENT CRITICAL INFRASTRUCTURE SIMULATION MODEL FOR SITUATIONAL AWARENESS DURING A FLOOD EVENT
Numata, Kenji	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Nunez, Chase	pg. 3637 TH2.R2.8 - COMMUNITY REORGANIZATION RESPONSE TO CLIMATE CHANGE: SPECIES INTERACTIONS, STATE-SPACE MODELING AND FOOD WEBS
Nunn, Josh	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Nunn, Joshua	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Nunziata, Ferdinando	pg. 4019 FR2.R8.4 - MONITORING HARSH COASTAL ENVIRONMENTS USING POLARIMETRIC SAR DATA: THE CASE OF SOLWAY FIRTH WETLANDS pg. 6539 FR2.R13.9 - SPATIAL RESOLUTION ENHANCEMENT OF RADIOMETER MEASUREMENTS COLLECTED BY THE FUTURE MICROWAVE CIMR MISSION pg. 6543 FR2.R13.10 - AN ENHANCED PRODUCT FOR THE FSSCAT MICROWAVE RADIOMETER
Nurnberger, Michael	pg. 6547 FR2.R13.11 - MECHANICALLY-ACTUATED RECONFIGURABLE REFLECTARRAY (MARR) FOR MICROWAVE SINGLE PIXEL IMAGER (MSPI), pg. 6551 FR2.R13.12 - IMAGING ALGORITHM AND MEASUREMENT ERROR IMPACT ON RETRIEVALS FROM THE MICROWAVE SINGLE PIXEL IMAGER (MSPI).
Nurunnabi, Abdul	pg. 2771 FR2.R9.7 - A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR 3D POINT CLOUDS
Nyström, Kenneth	pg. 4822 TH1.R10.1 - NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING
Næsset, Erik	pg. 4327 TU2.R10.9 - GENERATION OF LIDAR-PREDICTED FOREST BIOMASS MAPS FROM RADAR BACKSCATTER WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
0	
O'Banion, Matthew	pg. 6460 FR1.R15.1 - DETECTION OF SEASONAL ARCTIC TERRAIN CHANGE USING A SMALL UNMANNED AIRCRAFT SYSTEM (SUAS) ON THE ALASKAN NORTH SLOPE
O'Brien, Andrew	pg. 7029 TU2.R20.2 - WIND VECTOR AND WAVE HEIGHT

	RETRIEVAL IN INLAND WATERS USING CYGNSS
	pg. 6270 WE2.R13.2 - ANALYSIS OF GNSS-R COVERAGE BY A
	REGIONAL AIRCRAFT FLEET
	pg. 5913 MO2.R13.3 - SIMULATION STUDY OF CYGNSS
	OBSERVABILITY OF DYNAMIC INUNDATION EVENTS
	pg. 3353 TU2.R13.4 - NEXT GENERATION GNSS-R
	INSTRUMENT
	pg. 5917 MO2.R13.4 - INVESTIGATION OF COHERENT AND
	INCOHERENT SCATTERING FROM LAKES USING CYGNSS
	OBSERVATIONS WELD BLACK AND AND OCEAN COMERCING DETECTION
	WE1.R13.5 - LAND AND OCEAN COHERENCE DETECTION USING THE CYCLONE GLOBAL NAVIGATION SATELLITE SYSTEM
	(CYGNSS) MISSION LEVEL-1 DELAY-DOPPLER MAPS
	pg. 5921 MO2.R13.5 - AN ADAPTIVE INTEGRATION
	ALGORITHM FOR IMPROVED COHERENT REFLECTION
	MEASUREMENT IN GNSS-R INSTRUMENTS
	(pg. 6289) WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
	pg. 6293 WE2.R13.8 - MONITORING GPS EIRP FOR CYGNSS
	LEVEL 1 CALIBRATION
	pg. 5847 TH2.R8.9 - IMPROVED ORBIT DETERMINATION OF
	THE CYGNSS SATELLITES AND ITS APPLICATION TO GNSS-R
	OCEAN ALTIMETRY
O'Connor, Michael	pg. 4934 TH2.R1.8 - MONITORING SOILWATER AND ORGANIC
	CARBON STORAGE PATTERNS AT THE ARCTIC FOOTHILLS,
	ALASKA, USING INSAR
O'Neill, Charles	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE
O'Neill, Charles	
O'Neill, Charles	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE
O'Neill, Charles	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS
O'Neill, Charles	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND
O'Neill, Charles	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE
O'Neill, Charles	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
O'Neill, Charles	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT
O'Neill, Charles	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
O'Neill, Charles O'Neill, Larry	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT
	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS
O'Neill, Larry	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN
O'Neill, Larry	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
O'Neill, Larry	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN pg. 3323 TU2.R1.2 - ASSESSMENT OF THE IMPACTS OF NEAR
O'Neill, Larry	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN pg. 3323 TU2.R1.2 - ASSESSMENT OF THE IMPACTS OF NEAR REAL-TIME VEGETATION CORRECTION ON PASSIVE SOIL
O'Neill, Larry	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN pg. 3323 TU2.R1.2 - ASSESSMENT OF THE IMPACTS OF NEAR REAL-TIME VEGETATION CORRECTION ON PASSIVE SOIL MOISTURE PRODUCT PERFORMANCE pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE
O'Neill, Larry	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN pg. 3323 TU2.R1.2 - ASSESSMENT OF THE IMPACTS OF NEAR REAL-TIME VEGETATION CORRECTION ON PASSIVE SOIL MOISTURE PRODUCT PERFORMANCE pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
O'Neill, Larry	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN pg. 3323 TU2.R1.2 - ASSESSMENT OF THE IMPACTS OF NEAR REAL-TIME VEGETATION CORRECTION ON PASSIVE SOIL MOISTURE PRODUCT PERFORMANCE pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND
O'Neill, Larry	Pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS Pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT Pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS Pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS Pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT Pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN Pg. 3323 TU2.R1.2 - ASSESSMENT OF THE IMPACTS OF NEAR REAL-TIME VEGETATION CORRECTION ON PASSIVE SOIL MOISTURE PRODUCT PERFORMANCE Pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY Pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL
O'Neill, Larry	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN pg. 3323 TU2.R1.2 - ASSESSMENT OF THE IMPACTS OF NEAR REAL-TIME VEGETATION CORRECTION ON PASSIVE SOIL MOISTURE PRODUCT PERFORMANCE pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND

Obanawa, Hiroyuki	pg. 6464 FR1.R15.2 - CONDITIONS OF AERIAL PHOTOGRAPHY TO REDUCE DOMING EFFECT pg. 5230 FR2.R10.8 - VOLUME MEASUREMENT OF COASTAL
	BEDROCK EROSION USING UAV AND TLS
Obata, Toshihiro	pg. 3578 WE2.R15.8 - THE LATEST STATUS OF OUR COMMERCIAL SMALL SYNTHETIC APERTURE RADAR SATELLITE CONSTELLATION
Oetjen, Hilke	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Ogushi, Fumitaka	pg. 6838 WE1.R2.6 - INTEGRATION OF INSAR AND GNSS DATA TO MONITOR VOLCANIC ACTIVITY OF SAKURAJIMA CALDERAS, JAPAN: FROM SMALL DISPLACEMENT MEASUREMENTS TO GEOPHYSICAL MODELING pg. 814 TU2.R3.8 - MONITORING COMPLEX SURFACE STRUCTURE BY SEVERAL INTERFEROMETRIC STACKING TEQUNIQUES WITH PALSAR-1 DATA
Ogut, Mehmet	FR1.R2.8 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT CONCEPT FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE STRATEGIES
Oh, Han	pg. 968 TU2.R18.5 - SHIP DETECTION FOR KOMPSAT-3A OPTICAL IMAGES USING BINARY FEATURES AND ADABOOST CLASSIFICATION
Oh, Kwan-Young	pg. 2851 FR2.R16.5 - DATA AUGMENTATION FOR SHIP DETECTION USING KOMPSAT-5 IMAGES AND DEEP LEARNING MODEL
Oh, Sangwoo	pg. 2165 TH2.R18.3 - HAZARDOUS NOXIOUS SUBSTANCE DETECTION BASED ON HYPERSPECTRAL REMOTE SENSING TECHNIQUE
Oh, Sungchan	pg. 4882 TH1.R11.5 - ESTIMATION OF VISUAL RATING OF TAR SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS (UAS) DATA AND MACHINE LEARNING TECHNIQUES pg. 5199 FR1.R11.11 - COMBINING UAS AND SENTINEL-2 DATA TO ESTIMATE CANOPY PARAMETERS OF A COTTON CROP USING MACHINE LEARNING
Ohki, Masato	pg. 6830 WE1.R2.4 - CO- AND POST-ERUPTIVE SURFACE DEFORMATION FOLLOWING THE 2018 ERUPTION OF KILAUEA VOLCANO REVEALED BY ALOS-2 MULTI-MODE IMAGES pg. 3259 MO2.R2.6 - A STUDY OF AUTOMATIC FLOOD-AREA DETECION USING ALOS-2 AND ANCILLARY DATA
Oikawa, Marcio	pg. 3231 TH2.R14.11 - CLASSIFICATION OF ERRORS IN GEOGRAPHIC DATA USING ISO 19157
Oikonomidou, Xanthi	pg. 1165 WE1.R16.11 - FIRST EXPERIENCES WITH ACTIVE

	C-BAND RADAR REFLECTORS AND SENTINEL-1
Oishi, Noboru	pg. 2109 TH2.R9.1 - A FOCUS STACKING ALGORITHM FOR AIRBORNE SAR IMAGES
	(pg. 1909) TH1.R16.6 - IMAGING OF MULTI-CHANNEL SLIDING SPOTLIGHT SAR WITH UP- AND DOWN-CHIRP MODULATION FOR RANGE AMBIGUITY SUPPRESSION
Okello, Tom Were	pg. 6646 TU1.R13.3 - SMALL SCALE SOIL EROSION SUSCEPTIBILITY MODELLING IN A PROTECTED MOUNTAINOUS GRASSLAND USING SENTINEL-2, FIELD, AND CLIMATE DATA
Oki, Riko	pg. 3600 WE2.R19.4 - EVALUATION OF CLOUD LIQUID WATER DATABASE USING GLOBAL CLOUD-SYSTEM RESOLVING MODEL FOR GPM/DPR ALGORITHMS
Okuda, Masahiro	pg. 2695 FR2.R5.11 - TOTAL NUCLEAR NORMS OF GRADIENTS FOR HYPERSPECTRAL IMAGE PANSHARPENING
Oldoni, Lucas Volochen	pg. 4100 MO2.R1.7 - SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER
Olea, Ana	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Olichon, V.	pg. 4715 TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV
Oliva, Patricia	pg. 6604 TU1.R2.4 - LANDSLIDE SUSCEPTIBILITY USING REMOTE SENSING DATA & GIS IN A HIGH ANDEAN AREA OF CENTRAL CHILE
Oliva, Roger	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
	pg. 3762 TH2.R13.2 - GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS
	(pg. 3766) TH2.R13.3 - RETRIEVAL OF RFI CHARACTERISTICS USING L-BAND SATELLITE DATA
	(pg. 3781) TH2.R13.8 - AGENDA ITEMS OF THE WORLD RADIOCOMMUNICATION CONFERENCE 2023 RELEVANT TO REMOTE SENSING
Oliveira Gonçalves, Larissa	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Ollivier, Annabelle	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Olson, Colin	pg. 3967 FR2.R4.5 - A NEW AUTOENCODER TRAINING PARADIGM FOR UNSUPERVISED HYPERSPECTRAL ANOMALY DETECTION
Olson, William	pg. 3608 WE2.R19.6 - RECENT ADVANCES TO THE OPENSSP

	PARTICLE AND SCATTERING DATABASE
	pg. 5469 TH1.R19.10 - TOWARDS A MASS-CONSISTENT METHODOLOGY FOR REALISTIC MELTING HYDROMETEOR RETRIEVAL
Olsson, Håkan	pg. 4822 TH1.R10.1 - NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING
Omand, Melissa	pg. 3533) WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Omari, Khalid	pg. 5737) WE1.R8.3 - INSAR FOR TIDAL ESTIMATION IN SUPPORT OF CVD, VIRTUAL GAUGES AND DYNAMIC PRODUCTS
Ong, Cindy	pg. 6417 TH1.R15.10 - AUSTRALIA, A HUB FOR SPACEBORNE IMAGING SPECTROSCOPY CALIBRATION AND VALIDATION
Onishi, Masaki	pg. 2069 TH2.R5.2 - GAN-BASED SAR-TO-OPTICAL IMAGE TRANSLATION WITH REGION INFORMATION
Ono, Shunsuke	pg. 1492 WE2.R12.4 - JOINT MIXED-NOISE REMOVAL AND COMPRESSED SENSING RECONSTRUCTION OF HYPERSPECTRAL IMAGES VIA CONVEX OPTIMIZATION
Onorato, Giovanni	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR CO-SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Onrubia, Raul	pg. 3762 TH2.R13.2 - GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS pg. 5925 MO2.R13.6 - UNTANGLING THE GNSS-R COHERENT AND INCOHERENT COMPONENTS: EXPERIMENTAL EVIDENCES OVER THE OCEAN pg. 3369 TU2.R13.8 - FIRST EXPERIMENTAL EVIDENCE OF WIND AND SWELL SIGNATURES IN L5 GPS AND E5A GALILEO GNSS-R WAVEFORMS
Onrubia, Raúl	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Oreopoulos, Lazaros	FR1.R2.1 - CLASSIFYING GLOBAL LOW CLOUD MORPHOLOGY WITH A DEEP LEARNING MODEL: RESULTS AND POTENTIAL USE
Origel-Gutiérrez, Gabriel	pg. 6786 TU2.R2.5 - MONITORING THE 2019 AGRICULTURAL DROUGHT IN THE STATE OF SAN LUIS POTOSI, MEXICO
Orlik, Philip	pg. 441 TU1.R5.2 - ROBUST 3D TOMOGRAPHIC IMAGING OF THE IONOSPHERIC ELECTRON DENSITY
Osadolor, Fortune	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY

TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE INCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON OINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2) 441 FR1.R13.7 - PRE-LAUNCH CALIBRATION OF THE INTROPICS CONSTELLATION MISSION 150 WE1.R12.2 - PERFORMANCE OF SWESARR'S MULTI-UENCY DUAL-POLARIMETRY SYNTHETIC APERTURE IN DURING NASA'S SNOWEX AIRBORNE CAMPAIGN
UENCY DUAL-POLARIMETRY SYNTHETIC APERTURE
TU1.R12.9 - GENERATING FLOOD PROBABILITY MAP D ON COMBINED USE OF SYNTHETIC APERTURE RADAR OPTICAL IMAGERY
692 TH2.R7.8 - QUANTUM ANNEALING APPROACH: URE EXTRACTION AND SEGMENTATION OF SYNTHETIC TURE RADAR IMAGE
FR2.R17.10 - SDR IMPLEMENTATION OF A TESTBED SYNCHRONIZATION OF COHERENT DISTRIBUTED REMOTE ING SYSTEMS
FR2.R12.11 - FUSARIUM WILT INSPECTION FOR AENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL D SELECTION TECHNIQUES
WE2.R7.2 - PHYSICALLY INFORMED NEURAL WORKS FOR THE SIMULATION AND DATA-ASSIMILATION OF PHYSICAL DYNAMICS
TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL EM REAL-TIME AUTONOMY
904 FR1.R7.4 - FILTERING INTERNAL TIDES FROM WIDE- TH ALTIMETER DATA USING CONVOLUTIONAL NEURAL VORKS
507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN INCED L-BAND RADIOMETER MISSION
FR2.R12.11 - FUSARIUM WILT INSPECTION FOR AENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL D SELECTION TECHNIQUES
797 TH1.R7.11 - CHARACTERIZATION OF THE WALKING /ITY WITHIN THE FOREST BY USING A DOPPLER ANALYSIS IE UHF-BAND
460 FR1.R15.1 - DETECTION OF SEASONAL ARCTIC AIN CHANGE USING A SMALL UNMANNED AIRCRAFT EM (SUAS) ON THE ALASKAN NORTH SLOPE 77 TU1.R5.11 - INVESTIGATION OF DIURNAL

P S, Prakash	pg. 1500 WE2.R12.6 - URBAN SURFACE SIMULATION THROUGH IMAGE-TO-IMAGE TRANSLATION DEEP LEARNING ALGORITHM USING OPTICAL AERIAL IMAGERY
	pg. 4239 MO2.R12.9 - ASSESSMENT OF URBAN BUILT-UP VOLUME USING GEOSPATIAL METHODS: A CASE STUDY OF BANGALORE
Pablos, Miriam	(pg. 5254) FR2.R11.2 - IMPROVING THE RICE YIELD ESTIMATION USING SMOS AND CYGNSS GNSS-R DATA
Pachot, Charlotte	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Pacifici, Fabio	(pg. 3727) TH2.R12.1 - ACCELERATING SUSTAINABLE DEVELOPMENT WITH EARTH INTELLIGENCE
Paden, John	pg. 2924 MO2.R9.2 - SNOW GRAIN SIZE ESTIMATES FROM AIRBORNE KA-BAND RADAR MEASUREMENTS
	pg. 92 MO2.R6.3 - ARRAY MANIFOLD CALIBRATION FOR MULTICHANNEL RADAR ICE SOUNDERS
	pg. 6934 FR1.R2.7 - MULTI-SCALE AND TEMPORAL TRANSFER LEARNING FOR AUTOMATIC TRACKING OF INTERNAL ICE LAYERS
	pg. 822 TU2.R3.10 - MULTIPASS SAR PROCESSING FOR RADAR DEPTH SOUNDER CLUTTER SUPPRESSION, TOMOGRAPHIC PROCESSING, AND DISPLACEMENT MEASUREMENTS
	pg. 2960 MO2.R9.12 - SNOW RADAR LAYER TRACKING USING
	pg. 7001 FR2.R2.12 - RADAR SENSOR SIMULATION WITH GENERATIVE ADVERSARIAL NETWORK
Padmanaban, Manikandan	(pg. 4657) WE2.R11.2 - SCOPE, EXTENT, AND CHALLENGES OF AN AUTOMATED GLOBAL CROP CLASSIFICATION MODEL
Padmanabhan, Sharmila	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Pagano, Thomas	pg. 3643 TH2.R4.2 - LESSONS LEARNED FROM AIRS FOR FUTURE GRATING IR SOUNDERS
Pagnutti, Maria	(pg. 3274) MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Pahnwar, Vengus	pg. 4116 MO2.R1.11 - IMPACT OF SMALL DAMS ON VEGETATION COVER IN THE POTOHAR REGION OF PAKISTAN
Paillou, Nathan	pg. 1767 TH1.R7.3 - INTEREST OF TEMPORAL METHODS OVER SPATIAL METHODS IN ORDER TO DETECT SMALL TARGETS
Pairman, David	pg. 2751 FR2.R9.2 - CLASSIFICATION OF WINTER LAND COVER IN NEW ZEALAND HILL COUNTRY FOR RISKY PRACTICE IDENTIFICATION
Pajot, Emmanuel	TH2.R16.1 - THE ENERGY SECTOR: AN OPPORTUNITY FOR ENVIRONMENT SOLUTIONS TO IDENTIFY AND TACKLE

	CHALLENGES ALL ALONG THE VALUE CHAIN
Pal, Mahendra Kumar	(pg. 5215) FR2.R10.4 - SURFICIAL IRON MINERAL POTENTIAL MAPPING FROM ASTER DATA IN MALMBERGET AND ADJOINING AREA IN NORRBOTTEN COUNTY SWEDEN
Pal, Mahesh	pg. 1933 TH1.R17.1 - PATCH BASED LAND COVER CLASSIFICATION: A COMPARISON OF DEEP LEARNING, SVM AND NN CLASSIFIERS
Palacin, Baptiste	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Palanisamy Vadivel, Suresh Krishnan	pg. 6670 TU1.R13.9 - MEASUREMENT OF COASTAL LAND MOTION OF TIDE GAUGES AT KOREAN PENINSULA USING SEQUENTIAL SBAS-INSAR TECHNIQUE
Palchetti, Enrico	pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES
Palladino, Massimo	pg. 6535 FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES
Palmisano, Davide	pg. 4069 FR2.R15.5 - OPERATIONAL SOIL MOISTURE MAPPING AT C-BAND AND PERSPECTIVES FOR L-BAND (pg. 2137) TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Palomar-Vazquez, Jesus	pg. 5769) WE1.R8.11 - INTRA-ANNUAL COASTAL DYNAMICS THROUGH REMOTE SENSORS AND MORPHOSEDIMENTARY PATTERNS, REÑACA BEACH AND CONCON BAY, CENTRAL CHILE.
Paloscia, Simonetta	pg. 4163 MO2.R11.1 - APPLICATION OF DEEP LEARNING TO OPTICAL AND SAR IMAGES FOR THE CLASSIFICATION OF AGRICULTURAL AREAS IN ITALY pg. 5905 MO2.R13.1 - SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL ON A GLOBAL SCALE BY USING CYGNSS DATA AND ARTIFICIAL NEURAL NETWORKS pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES pg. 4450 WE1.R1.5 - EVALUATION OF SOIL MOISTURE RETRIEVALS FROM ALOS-2, SENTINEL-1 DATA IN GENHE, CHINA
Pampanoni, Valerio	pg. 6010 TU1.R14.6 - ON-ORBIT IMAGE SHARPNESS ASSESSMENT USING THE EDGE METHOD: METHODOLOGICAL IMPROVEMENTS FOR AUTOMATIC EDGE IDENTIFICATION AND SELECTION FROM NATURAL TARGETS
Pan, Bin	pg. 1365 WE2.R5.5 - AN OPEN SET DOMAIN ADAPTATION NETWORK BASED ON ADVERSARIAL LEARNING FOR REMOTE

	SENSING IMAGE SCENE CLASSIFICATION
Pan, Chunhui	pg. 6258 WE1.R15.10 - LIFETIME PERFORMANCE ASSESSMENT OF SNPP OMPS NADIR MAPPER SDR DATA USING SIMULTANEOUS NADIR OVERPASS COLLOCATED OBSERVATIONS WITH GOME-2
Pan, Haiyan	pg. 4947 TH2.R6.3 - A 21-YEAR (1990-2011) RECORD OF LAND COVER CHANGES AND URBAN DYNAMICS OF SHANGHAI CITY DERIVED FROM LANDSAT IMAGES
Pan, Jianping	pg. 1632 TH1.R2.5 - USING POLAR GRID FOR BUILDING EXTRACTION IN TERRESTRIAL LASER SCANNING DATA
Pan, Jinmei	pg. 6871 WE2.R2.3 - THE APPLICATION OF REMOTE SENSING PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA
Pan, Lecheng	pg. 5167 FR1.R11.3 - A SATELLITE-BASED METHODOLOGY FOR HARVEST DATE DETECTION AND YIELD PREDICTION IN SUGARCANE
Pan, Ming	pg. 3334 TU2.R1.5 - SATELLITE FLOOD ASSESSMENT AND FORECASTS FROM SMAP AND LANDSAT
Pan, Ting	pg. 988 TU2.R18.10 - INSTANCE SEGMENTATION WITH ORIENTED PROPOSALS FOR AERIAL IMAGES
Pan, Yaozhong	pg. 3184 TH1.R14.6 - FINE-SCALE POPULATION DISTRIBUTIONS MAPPING BASED ON REMOTE SENSING AND SOCIAL SENSING DATA pg. 5183 FR1.R11.7 - USING NDVI TIME SERIES CURVE CHANGE RATE TO ESTIMATE WINTER WHEAT YIELD
Pan, Yiqun	pg. 2491 FR1.R16.6 - HIGH-RESOLUTION OPTICAL AND SAR IMAGE REGISTRATION USING LOCAL SELF-SIMILAR DESCRIPTOR BASED ON EDGE FEATURE
Pan, Yulin	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE
Pan, Zhihong	pg. 972 TU2.R18.6 - INSHORE SHIP DETECTION BASED ON MULTI-INFORMATION FUSION NETWORK AND INSTANCE SEGMENTATION
Pan, Zongxu	pg. 1727 TH1.R5.5 - A HYBRID AND EXPLAINABLE DEEP LEARNING FRAMEWORK FOR SAR IMAGES
Panambur, Tejas	pg. 1054 WE1.R5.5 - CLASSIFICATION OF MARTIAN TERRAINS VIA DEEP CLUSTERING OF MASTCAM IMAGES
Panda, Santosh	pg. 4735 TH1.R4.1 - MAPPING OF SHALLOW-WATER SITES TO AID NAVIGATION ON THE COLVILLE RIVER, NORTH SLOPE OF ALASKA pg. 1307 WE1.R20.11 - IMPROVED VEGETATION AND

	WILDFIRE FUEL TYPE MAPPING USING NASA AVIRIS-NG HYPERSPECTRAL DATA, INTERIOR AK
Pande, Shivam	pg. 2029 TH2.R3.3 - DIMENSIONALITY REDUCTION USING 3D RESIDUAL AUTOENCODER FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Pandey, A C	pg. 1500 WE2.R12.6 - URBAN SURFACE SIMULATION THROUGH IMAGE-TO-IMAGE TRANSLATION DEEP LEARNING ALGORITHM USING OPTICAL AERIAL IMAGERY
Pandit, Ankur	pg. 1941 TH1.R17.3 - INTEGRATION OF SENTINEL 1 AND 2 OBSERVATIONS FOR MAPPING EARLY AND LATE SOWING OF SOYBEAN AND COTTON CROP USING DEEP LEARNING pg. 3123 WE1.R14.9 - DEVELOPMENT OF GEOSPATIAL PROCESSING FRAMEWORKS FOR SENTINEL-1, -2 SATELLITE DATA
Panfilova, Maria	pg. 5709 TU2.R8.6 - RETRIEVAL OF MEAN SQUARE SLOPES OF SEA WAVES, SURFACE WIND SPEED, TOTAL WATER VAPOR CONTENT AND TOTAL CLOUD LIQUID WATER CONTENT IN HAGIBIS TYPHOON AREA FROM SATELLITE ACTIVE AND PASSIVE MICROWAVE DATA
Panfilova, Mariya	pg. 5693 TU2.R8.2 - APPLICATION OF DOPPLER RADAR FOR MEASUREMENT OF CURRENT VELOCITY AT SMALL INCIDENCE ANGLES: THE FIRST EXPERIMENTS AT THE RIVER (pg. 5713) TU2.R8.7 - BISTATIC DOPPLER SPECTRA OF THE SIGNAL REFLECTED BY ROUGH WATER SURFACE MEASURED BY MODIFIED MONOSTATIC RADAR
Pang, Lei	pg. 176 MO2.R15.2 - EVALUATION OF A_S1 FOR BUILDING DAMAGE MAPPING BASED ON TOUZI DECOMPOSITION
Pang, Long	pg. 944 TU2.R16.11 - SEMANTIC SEGMENTATION KNOWLEDGE BASED MMRF OPTIMAL METHOD FOR FINE- GRAINED URBAN INFRASTRUCTURE CLASSIFICATION MAPPING FROM OPTICAL VHR AERIAL IMAGERY
Pang, Ruifan	pg. 5945 TU1.R4.1 - YAW STEERING USING ADAPTIVE FILTERING FOR SPACEBORNE SAR SYSTEMS
Pang, Yalong	pg. 1628 TH1.R2.4 - A TARGET DETECTION ALGORITHM OF NEURAL NETWORK BASED ON HISTOGRAM STATISTICS
Panhwar, Vengus	pg. 4773 TH1.R4.11 - VALIDATION OF SENTINEL 3A ALTIMETRY DATA FOR RIVER LEVEL MONITORING AT TWO LOCATIONS ALONG THE LOWER INDUS RIVER
Panimboza, Jonathan	pg. 5473 TH1.R19.11 - VTEC AT LOW LATITUDE STATION USING GALILEO PSEUDORANGE
Panwar, Ekta	pg. 3712 TH2.R11.4 - EXPLORING THE POSSIBILITY OF ASSESSING BIOCHEMICAL VARIABLES IN SUGARCANE CROP WITH SENTINEL-2 DATA
Paoletti, Mercedes E.	pg. 40 MO2.R5.1 - TRAINING CAPSNETS VIA ACTIVE

	LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Paolieri, Marco	pg. 3849 TH2.R17.5 - EMULATING AND VERIFYING SENSING, COMPUTATION, AND COMMUNICATION IN DISTRIBUTED REMOTE SENSING SYSTEMS
Papadopoulou, Theodora	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016 HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM (GEP).
Papageorgiou, Dimitris	pg. 6329 WE2.R17.9 - PLASTIC LITTER PROJECT 2019: EXPLORING THE DETECTION OF FLOATING PLASTIC LITTER USING DRONES AND SENTINEL 2 SATELLITE IMAGES
Papakonstantinou, Apostolos	pg. 6329 WE2.R17.9 - PLASTIC LITTER PROJECT 2019: EXPLORING THE DETECTION OF FLOATING PLASTIC LITTER USING DRONES AND SENTINEL 2 SATELLITE IMAGES
Papathanassiou, Konstantinos	pg. 96 MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION pg. 3413 TU2.R15.4 - FOREST HEIGHT ESTIMATION FROM TANDEM-X INSAR COHERENCE MAGNITUDE TOWARDS LARGE SCALE APPLICATIONS
Papathanassiou, Kostas	TU2.R15.3 - TOWARDS PANTROPICAL STRUCTURE AND BIOMASS MAPPING FROM FUSION OF GEDI AND TANDEM-X DATA
Papco, Juraj	pg. 1026 WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)
Pappula, Srinivasu	pg. 1941 TH1.R17.3 - INTEGRATION OF SENTINEL 1 AND 2 OBSERVATIONS FOR MAPPING EARLY AND LATE SOWING OF SOYBEAN AND COTTON CROP USING DEEP LEARNING pg. 4538 WE1.R11.6 - MONITORING AND ANALYSIS OF VIIRS FIRE EVENTS DATA OVER INDIAN STATES OF PUNJAB AND HARYANA pg. 3123 WE1.R14.9 - DEVELOPMENT OF GEOSPATIAL PROCESSING FRAMEWORKS FOR SENTINEL-1, -2 SATELLITE DATA
Paradiso, Iole Federica	pg. 3166 TH1.R14.1 - THE CORDINET PROJECT: ANALYSIS OF THE BARRIERS LIMITING A MORE DIFFUSE AND SYSTEMATIC USE OF EARTH OBSERVATION COPERNICUS-BASED SOLUTIONS
Pardini, Matteo	TU2.R15.3 - TOWARDS PANTROPICAL STRUCTURE AND BIOMASS MAPPING FROM FUSION OF GEDI AND TANDEM-X DATA Pg. 96 MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION Pg. 3413 TU2.R15.4 - FOREST HEIGHT ESTIMATION FROM TANDEM-X INSAR COHERENCE MAGNITUDE TOWARDS LARGE SCALE APPLICATIONS
Pardo-Pascual, Josep	pg. 5769 WE1.R8.11 - INTRA-ANNUAL COASTAL DYNAMICS THROUGH REMOTE SENSORS AND MORPHOSEDIMENTARY

	PATTERNS, REÑACA BEACH AND CONCON BAY, CENTRAL CHILE.
Parente, Mario	pg. 1054) WE1.R5.5 - CLASSIFICATION OF MARTIAN TERRAINS VIA DEEP CLUSTERING OF MASTCAM IMAGES
	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE
	EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
De de la Alexander	
Parizzi, Alessandro	pg. 802 TU2.R3.5 - POTENTIAL OF AN AUTOMATIC GROUNDING ZONE CHARACTERIZATION USING WRAPPED INSAR PHASE
Park, Haemi	pg. 4777 TH1.R4.12 - DRAINAGE CANAL DETECTION USING MACHINE LEARNING ALGORITHM IN TROPICAL PEATLANDS
Park, Hotaek	pg. 4707 TH1.R1.5 - ESTIMATING GLOBAL EVAPOTRANSPIRATION USING SMAP SURFACE AND ROOT-ZONE MOISTURE CONTENT
Park, Hyuk	pg. 6977 FR2.R2.6 - RADIO-FREQUENCY INTERFERENCE LOCATION, DETECTION AND CLASSIFICATION USING DEEP NEURAL NETWORKS
	pg. 5925 MO2.R13.6 - UNTANGLING THE GNSS-R COHERENT AND INCOHERENT COMPONENTS: EXPERIMENTAL EVIDENCES OVER THE OCEAN
	pg. 3369 TU2.R13.8 - FIRST EXPERIMENTAL EVIDENCE OF WIND AND SWELL SIGNATURES IN L5 GPS AND E5A GALILEO GNSS-R WAVEFORMS
	pg. 5937 MO2.R13.9 - IONOSPHERIC SCINTILLATION MODEL LIMITATIONS AND IMPACT IN GNSS-R MISSIONS
	pg. 6065 TU2.R4.9 - CORRECTING IMAGE BLURRING INDUCED BY THE ADCS JITTER IN CUBESATS
Park, Jae-Jin	pg. 2165 TH2.R18.3 - HAZARDOUS NOXIOUS SUBSTANCE DETECTION BASED ON HYPERSPECTRAL REMOTE SENSING TECHNIQUE
Park, Jeonghwan	pg. 5434 TH1.R19.1 - MONITORING RAPID CHANGE IN THE ATMOSPHERE USING CYGNSS WIND SPEED MEASUREMENTS
	(pg. 5658) TU1.R8.4 - AN OVERVIEW OF NOAA CYGNSS WIND PRODUCT VERSION 1.0
	pg. 5794 TH1.R8.6 - SCATSAT-1 HIGH WINDS GEOPHYSICAL MODEL FUNCTION AND ITS WINDS APPLICATION IN OPERATIONAL MARINE FORECASTING AND WARNING
Park, Kyung-Ae	pg. 2165 TH2.R18.3 - HAZARDOUS NOXIOUS SUBSTANCE DETECTION BASED ON HYPERSPECTRAL REMOTE SENSING TECHNIQUE
	(pg. 3564) WE2.R15.4 - IMPROVEMENT OF KOMPSAT-5 SEA SURFACE WIND WITH CORRECTION EQUATION RRETRIEVAL AND APPLICATION
	pg. 5839 TH2.R8.7 - WAVE-CURRENT INTERACTION IN THE NORTHWEST PACIFIC OCEAN USING SATELLITE ALTIMETER DATA
Park, Sang-Eun	pg. 3877 FR1.R3.5 - ANALYSIS OF SINGLE-POL AND QUAD-POL

	DAMAGE INDICATORS FOR EXTRACTION OF BUILDING DAMAGES CAUSED BY 2016 KUMAMOTO EARTHQUAKE Pg. 3568 WE2.R15.5 - CHANGE DETECTION OF URBAN AREAS AFFECTED BY EARTHQUAKE USING KOMPSAT-5 DATA
Park, Young Soung	pg. 5628 MO2.R8.7 - DEBYE DIELECTRIC MODEL FUNCTION FOR SEAWATER BASED ON EXPANDED L-BAND MEASUREMENT DATA SET
Parker, Amy	pg. 5065 FR1.R4.1 - FIRST ASSESSMENT OF NOVASAR-1 S-BAND SAR BACKSCATTER CHARACTERISTICS OVER TROPICAL WETLANDS pg. 6154 WE1.R12.3 - INITIAL NOVASAR-1 DATA PROCESSING AND IMAGERY EVALUATION pg. 5971 TU1.R4.8 - NEW INSIGHTS FROM AUSTRALIA'S SYNTHETIC APERTURE RADAR CAPABILITY, NOVASAR-1
Parker, Jay	pg. 3615 TH2.R2.1 - THE QUAKES ANALYTIC CENTER FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL SCALES OF TECTONIC AND EARTHQUAKE PROCESSES
Parra, Hector	pg. 6627 TU1.R2.10 - SEISMIC ANALYSIS ON HISTORICAL BRIDGE USING PHOTOGRAMMETRY AND FINITE ELEMENTS
Parra, Victor	pg. 2093 TH2.R5.8 - AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI- SENSOR SATELLITE IMAGERY APPROACH
Parrao-Barrera, Maximiliano	pg. 5769 WE1.R8.11 - INTRA-ANNUAL COASTAL DYNAMICS THROUGH REMOTE SENSORS AND MORPHOSEDIMENTARY PATTERNS, REÑACA BEACH AND CONCON BAY, CENTRAL CHILE.
Parrens, Marie	pg. 5089 FR1.R4.7 - GLOBAL WEEKLY INLAND SURFACE WATER DYNAMICS FROM L-BAND MICROWAVE
Parrilli, Sara	pg. 6770 TU2.R2.1 - POST-FIRE ASSESSMENT OF BURNED AREAS WITH LANDSAT-8 AND SENTINEL-2 IMAGERY TOGETHER WITH MODIS AND VIIRS ACTIVE FIRE PRODUCTS
Parrinello, Tommaso	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Parsekian, Andrew	(Pg. 4606) WE2.R1.12 - JOINT RETRIEVAL OF SOIL MOISTURE AND PERMAFROST ACTIVE LAYER THICKNESS USING L-BAND INSAR AND P-BAND POLSAR
Pascazio, Vito	pg. 6563 FR2.R17.3 - SPACE TARGETS RESCALING BASED ON BISTATIC ISAR SYSTEM pg. 6922 FR1.R2.4 - COMPLEXITY ANALYSIS OF AN EDGE PRESERVING CNN SAR DESPECKLING ALGORITHM pg. 1917 TH1.R16.8 - AN EFFICIENT MEO SAR IMAGING ALGORITHM BASED ON OPTIMAL IMAGING COORDINATE SYSTEM
Pascu, Ionut	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR

	SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Pascual, Ananda	pg. 3490 WE2.R7.2 - PHYSICALLY INFORMED NEURAL NETWORKS FOR THE SIMULATION AND DATA-ASSIMILATION OF GEOPHYSICAL DYNAMICS
Pascual, Daniel	pg. 5925 MO2.R13.6 - UNTANGLING THE GNSS-R COHERENT AND INCOHERENT COMPONENTS: EXPERIMENTAL EVIDENCES OVER THE OCEAN pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
	(pg. 3369) TU2.R13.8 - FIRST EXPERIMENTAL EVIDENCE OF WIND AND SWELL SIGNATURES IN L5 GPS AND E5A GALILEO GNSS-R WAVEFORMS
Pascucci, Simone	pg. 4906 TH2.R1.1 - EFFECT OF SPATIAL RESOLUTION ON SOIL PROPERTIES RETRIEVAL FROM IMAGING SPECTROSCOPY: AN ASSESSMENT OF THE HYPERSPECTRAL CHIME MISSION POTENTIAL
Pashaei, Mohammad	pg. 6965 FR2.R2.3 - SPATIAL RESOLUTION ENHANCEMENT OF UNMANNED AIRCRAFT SYSTEM IMAGERY USING DEEP LEARNING-BASED SINGLE IMAGE SUPER-RESOLUTION
Pasquali, Paolo	pg. 6838) WE1.R2.6 - INTEGRATION OF INSAR AND GNSS DATA TO MONITOR VOLCANIC ACTIVITY OF SAKURAJIMA CALDERAS, JAPAN: FROM SMALL DISPLACEMENT MEASUREMENTS TO GEOPHYSICAL MODELING pg. 814) TU2.R3.8 - MONITORING COMPLEX SURFACE STRUCTURE BY SEVERAL INTERFEROMETRIC STACKING TEQUNIQUES WITH PALSAR-1 DATA
Pastena, Massimiliano	pg. 3341 TU2.R13.1 - FFSCAT MISSION: PRELIMINARY RESULTS AND ICE PRODUCTS VALIDATION WITH MOSAIC CAMPAIGN DATA
Patel, Dr. Chetan R.	pg. 4243 MO2.R12.10 - ASSESSING LAND SUITABILITY FOR MANAGING URBAN GROWTH: AN APPLICATION OF GIS AND RS
Patel, Jaldeep	pg. 4243 MO2.R12.10 - ASSESSING LAND SUITABILITY FOR MANAGING URBAN GROWTH: AN APPLICATION OF GIS AND RS
Patel, Jignesh	pg. 1512 WE2.R12.9 - A NOVEL APPROACH FOR HYPERSPECTRAL IMAGE SUPERRESOLUTION USING SPECTRAL UNMIXING AND TRANSFER LEARNING
Patel, Molini	pg. 5570 FR2.R19.2 - REVIEW OF GLOBAL NEAR REAL TIME PM2.5 ESTIMATES AND MODEL FORECASTS
Paterna, Stefano	pg. 5960 TU1.R4.5 - ENVISION MISSION TO VENUS: SUBSURFACE RADAR SOUNDING pg. 5967 TU1.R4.7 - AN AUTOMATIC PLANNING AND SCHEDULING METHOD BASED ON MULTI-OBJECTIVE GENETIC ALGORITHMS FOR PLANETARY RADAR SOUNDER OBSERVATIONS
Pathe, Carsten	pg. 4874 TH1.R11.3 - RADAR-CROP-MONITOR - MAPPING

	AGRICULTURAL CONDITIONS WITH SENTINEL-1 TIME SERIES
Patil, Akshay	pg. 2005 TH1.R18.8 - SNOW CHARACTERIZATION AND AVALANCHE DETECTION IN THE INDIAN HIMALAYA pg. 2999 TU1.R9.10 - SURGING GLACIER DYNAMICS IN TARIM BASIN USING SAR DATA pg. 3002 TU1.R9.11 - ESTIMATING DYNAMIC PARAMETERS OF BARA SHIGRI GLACIER AND DERIVATION OF MASS BALANCE FROM VELOCITY pg. 4335 TU2.R10.11 - FOREST ABOVE GROUND BIOMASS ESTIMATION USING MULTI-SENSOR GEOSTATISTICAL APPROACH
Patnaik, Kaushik	pg. 3501 WE2.R7.5 - EXPLORING THE RELATIONSHIPS BETWEEN SCATTERING PHYSICS AND AUTO-ENCODER LATENT- SPACE EMBEDDING pg. 3884 FR1.R3.7 - THE EFFECT OF HYBRID POLARIMETRIC DESCRIPTORS ON CLASSIFICATION ACCURACY OF VARIOUS LAND COVER TYPES
Pato, Miguel	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Pauciullo, Antonio	pg. 116 MO2.R6.9 - A MULTI-RESOLUTION GLRT TEST FOR THE DETECTION OF PERSISTENT SCATTERERS IN SAR TOMOGRAPHY
Pavelsky, Tamlin	pg. 3939 FR2.R1.5 - THE POTENTIAL OF SWOT RIVER DISCHARGE ESTIMATES TO CONSTRAIN HYDROLOGICAL PROCESSES GLOBALLY IN UNGAGED BASINS
Pavlick, Ryan	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Payne, Cole	pg. 4735 TH1.R4.1 - MAPPING OF SHALLOW-WATER SITES TO AID NAVIGATION ON THE COLVILLE RIVER, NORTH SLOPE OF ALASKA
Paynter, Ian	pg. 156 MO2.R14.8 - UNCERTAINTIES IN VIIRS NIGHTTIME LIGHT TIME SERIES ANALYSIS
Peacock, Annemarie	pg. 3247 MO2.R2.3 - FLOOD MAPPING USING UAVSAR AND CONVOLUTIONAL NEURAL NETWORKS
Pecce, Marisa	pg. 4235 MO2.R12.8 - APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC INFRASTRUCTURE MONITORING
Pei, Jifang	pg. 2639 FR2.R3.9 - A DEFORMABLE CONVOLUTION NEURAL NETWORK FOR SAR ATR pg. 2779 FR2.R9.9 - KERNEL LOCAL SAMPLE DIRECTIONAL DISCRIMINANT EMBEDDING FOR SAR AUTOMATIC TARGET RECOGNITION pg. 2467 FR1.R14.11 - HARBOR DETECTION IN SAR IMAGES BASED ON MULTIDIRECTIONAL ONE-DIMENSIONAL SCANNING

	pg. 1755 TH1.R5.12 - MULTI-VIEW CNN-LSTM NEURAL NETWORK FOR SAR AUTOMATIC TARGET RECOGNITION
Pei, Qingqi	pg. 2511 FR1.R16.11 - REMOTE SENSING DATA AUGMENTATION THROUGH ADVERSARIAL TRAINING
Pei, ZengCan	pg. 2819 FR2,R12.8 - EXPERIMENTAL RESULTS FOR GNSS-R BASED MOVING TARGET INDICATION
Pelich, Ramona	pg. 3251 MO2.R2.4 - SYSTEMATIC AND AUTOMATIC LARGE- SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA
	pg. 3255 MO2.R2.5 - THE ROLE OF CO- AND CROSS- POLARIZATIONS INSAR COHERENCES IN MAPPING FLOODED URBAN AREAS
	pg. 6666 TU1.R13.8 - MONITORING CHANGES IN THE COASTAL ENVIRONMENT BASED ON SAR SENTINEL-1 TIME- SERIES
	pg. 1707 TH1.R3.12 - CNN-BASED BUILDING FOOTPRINT DETECTION FROM SENTINEL-1 SAR IMAGERY
Pelissier, Craig	pg. 3668 TH2.R7.2 - COMBINING PARAMETRIC LAND SURFACE MODELS WITH MACHINE LEARNING
	pg. 3608 WE2.R19.6 - RECENT ADVANCES TO THE OPENSSP PARTICLE AND SCATTERING DATABASE
	pg. 3696 TH2.R7.9 - QUANTUM ASSISTED IMAGE REGISTRATION
Pellarin, Thierry	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR).
Pelletier, Charlotte	pg. 1074 WE1.R5.10 - UNSUPERVISED DOMAIN ADAPTATION TECHNIQUES FOR CLASSIFICATION OF SATELLITE IMAGE TIME SERIES
Pellikka, Petri	pg. 1319 WE2.R3.3 - PRODUCING A GAP-FREE LANDSAT TIME SERIES FOR THE TAITA HILLS, SOUTHEASTERN KENYA
Pelou, Sophie	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES
Pena Luque, Santiago	pg. 5089 FR1.R4.7 - GLOBAL WEEKLY INLAND SURFACE WATER DYNAMICS FROM L-BAND MICROWAVE
Peng, Dong	pg. 340 MO2.R18.10 - CHANGE DETECTION OF POLARIMETRIC SAR IMAGES USING MINKOWSKI LOG-RATIO DISTANCE
Peng, Dongliang	pg. 774 TU1.R18.9 - SHIP DETECTION BASED ON SUPERPIXELWISE LOCAL CONTRAST MEASUREMENT FOR POLSAR IMAGES
Peng, Jiangtao	pg. 2384 FR1.R12.1 - CAUCHY NMF FOR HYPERSPECTRAL UNMIXING
Peng, Jie	pg. 5450 TH1.R19.5 - APPLICATIONS OF QUALITY CONTROL

	PROCEDURES FOR TEMPERATURE AND HUMIDITY PROFILES RETRIEVED FROM GROUND-BASED MICROWAVE RADIOMETER
Peng, Jinzheng	pg. 3330 TU2.R1.4 - SMAP MICROWAVE RADIOMETER CALIBRATION REVISIT APPROACHES AND PERFORMAMNCE TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
Peng, Ling	pg. 1841 TH1.R9.11 - SPATIAL ATTENTION NETWORK FOR ROAD EXTRACTION
Peng, Qunnie	pg. 838 TU2.R5.3 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK pg. 541 TU1.R7.5 - REMOTE SENSING SCENE CLASSIFICATION BASED ON GLOBAL AND LOCAL CONSISTENT NETWORK
Peng, Shuying	pg. 244 MO2.R16.8 - OPTIMIZATION OF DSM PRODUCT GENERATION OF ZY-3 SATELLITE IMAGES BASED ON IMAGE FREQUENCY-DOMAIN FUSION AND FILTERING pg. 609 TU1.R10.11 - PARALLEL GENERATION OF A 3D DENSE POINT CLOUD BASED ON UAV IMAGING AND THE CMVS ALGORITHM
Peng, Yang	pg. 2053 TH2.R3.9 - META NETWORK FOR RADAR HRRP NONCOOPERATIVE TARGET RECOGNITION WITH MISSING ASPECTS
Peng, Yaxin	pg. 2264 FR1.R5.6 - LABEL SMOOTHING TECHNIQUE FOR ORDINAL CLASSIFICATION IN CLOUD ASSESSMENT
Peng, Zelin	pg. 1937 TH1.R17.2 - A LEARNABLE BLUR KERNEL FOR REMOTE SENSING IMAGE RETRIEVAL
Peng, Zhenming	(pg. 2611) FR2.R3.2 - AUTOMATIC SINGLE-IMAGE BASED CLOUD DETECTION METHOD WITHOUT PRIOR INFORMATION
Pepe, Antonio	pg. 798 TU2.R3.4 - A GENERALIZED-SVD-BASED TECHNIQUE FOR ENHANCING PERFORMANCE OF MULTI-TEMPORAL DINSAR ANALYSES: THE WEIGHTED ADAPTIVE VARIABLE-LENGTH (WAVE) TECHNIQUE pg. 32 MO2.R3.9 - AN ADAPTIVE STATISTICAL MULTI-GRID DINSAR TECHNIQUE FOR STUDYING MULTI-SCALE EARTH SURFACE DEFORMATION PHENOMENA pg. 818 TU2.R3.9 - THE CORRECTION OF PHASE UNWRAPPING ERRORS IN SEQUENCES OF MULTI-TEMPORAL DIFFERENTIAL SAR INTERFEROGRAMS pg. 818 TU2.R3.9 - THE CORRECTION OF PHASE UNWRAPPING ERRORS IN SEQUENCES OF MULTI-TEMPORAL DIFFERENTIAL SAR INTERFEROGRAMS
Pepe, Francesco V.	pg. 3700 TH2.R7.10 - QUANTUM IMAGING FOR SPACE OBJECTS
Pepe, Monica	pg. 4906) TH2.R1.1 - EFFECT OF SPATIAL RESOLUTION ON SOIL PROPERTIES RETRIEVAL FROM IMAGING SPECTROSCOPY: AN

	ASSESSMENT OF THE HYPERSPECTRAL CHIME MISSION POTENTIAL
Pepin, Karissa	pg. 1030 WE1.R3.10 - HIGH-PASS FILTERS TO REDUCE THE EFFECTS OF BROAD ATMOSPHERIC CONTRIBUTIONS IN SBAS INVERSIONS: A CASE STUDY IN THE DELAWARE BASIN
Percivall, George	pg. 605 TU1.R10.10 - EXPLOITATION OF EARTH OBSERVATIONS: OGC CONTRIBUTIONS TO GRSS EARTH SCIENCE INFORMATICS
Pereda, Julian	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY
Pereira do Carmo, João	pg. 3459 WE2.R4.2 - STATUS OF ESA'S EARTHCARE MISSION PREPARATION pg. 3475 WE2.R4.6 - FLIGHT LIDAR DEVELOPMENT AND QUALIFICATION FOR THE ESA EARTH CLOUD AEROSOL AND RADIATION EXPLORER (EARTHCARE) MISSION
Perera, Sachi	pg. 4642 WE2.R10.9 - FORECASTING VEGETATION HEALTH IN THE MENA REGION BY PREDICTING VEGETATION INDICATORS WITH MACHINE LEARNING MODELS
Peres, Emanuel	pg. 6309 WE2.R17.4 - VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY TH2.R11.6 - VIRTUAL ENVIRONMENTS & SUSTAINABLE AGRICULTURE: A CASE STUDY pg. 6487 FR1.R15.8 - TARGET INFLUENCE ON GROUND CONTROL POINTS (GCPS) IDENTIFICATION IN AERIAL IMAGES pg. 4195 MO2.R11.9 - MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE pg. 6503 FR1.R15.12 - ESTIMATION OF LEAF AREA INDEX IN CHESTNUT TREES USING MULTISPECTRAL DATA FROM AN UNMANNED AERIAL VEHICLE
Perez, Adrian	pg. 3341 TU2.R13.1 - FFSCAT MISSION: PRELIMINARY RESULTS AND ICE PRODUCTS VALIDATION WITH MOSAIC CAMPAIGN DATA pg. 6274 WE2.R13.3 - ANALYSIS ON THE FEASABILITY OF AIRBORNE GNSS-R RECEIVERS FOR WEATHER NOWCASTING AND TARGET DETECTION pg. 6977 FR2.R2.6 - RADIO-FREQUENCY INTERFERENCE LOCATION, DETECTION AND CLASSIFICATION USING DEEP NEURAL NETWORKS pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Perez-Martinez, Waldo	pg. 5769 WE1.R8.11 - INTRA-ANNUAL COASTAL DYNAMICS THROUGH REMOTE SENSORS AND MORPHOSEDIMENTARY PATTERNS, REÑACA BEACH AND CONCON BAY, CENTRAL CHILE.
Pergola, Nicola	pg. 3166 TH1.R14.1 - THE CORDINET PROJECT: ANALYSIS OF THE BARRIERS LIMITING A MORE DIFFUSE AND SYSTEMATIC

	USE OF EARTH OBSERVATION COPERNICUS-BASED SOLUTIONS
Perissin13, Daniele	pg. 1026 WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)
Perkovic-Martin, Dragana	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Perneel, Christiaan	FR2.R4.6 - MULTI-TEMPORAL UNMIXING FOR THE DETECTION AND CONCENTRATION OF CHEMICALS IN POLLUTED WATER
Perrie, William	pg. 5753 WE1.R8.7 - HIGH-RESOLUTION REMOTE SENSING, IN-SITU OBSERVATIONS, AND MODELING OF LOW-SALINITY LENSES IN THE PRESENCE OF OIL SLICK
Perrine, Martin	pg. 6150 WE1.R12.2 - PERFORMANCE OF SWESARR'S MULTI-FREQUENCY DUAL-POLARIMETRY SYNTHETIC APERTURE RADAR DURING NASA'S SNOWEX AIRBORNE CAMPAIGN pg. 4073 FR2.R15.6 - P-BAND SYNTHETIC APERTURE RADAR FOR PLANETARY SUBSURFACE IMAGING APPLICATIONS
Perroy, Ryan	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY
Persello, Claudio	pg. 3747 TH2.R12.6 - TOWARDS UNCOVERING SOCIO-ECONOMIC INEQUALITIES USING VHR SATELLITE IMAGES AND DEEP LEARNING pg. 3916 FR1.R7.7 - BUILDING INSTANCE SEGMENTATION AND BOUNDARY REGULARIZATION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES
Persson, Henrik	pg. 4478 WE1.R10.1 - COMBINING TANDEM-X, SENTINEL-2 AND FIELD DATA FOR PREDICTION OF SPECIES-WISE STEM VOLUMES pg. 4618 WE2.R10.3 - NORMALIZED PROJECTED RED & SWIR (NPRS): A NEW VEGETATION INDEX FOR FOREST HEALTH ESTIMATION AND ITS APPLICATION ON SPRUCE BARK BEETLE ATTACK DETECTION pg. 4152 MO2.R10.9 - ESTIMATION OF STEM DENSITY IN HEMI-BOREAL FORESTS USING AIRBORNE LOW-FREQUENCY SYNTHETIC APERTURE RADAR
Peters, Sean	pg. 1420 WE2.R6.8 - PROCESSING-BASED SYNCHRONIZATION APPROACH FOR BISTATIC RADAR GLACIAL TOMOGRAPHY WE1.R12.9 - PASSIVE RADAR INVESTIGATIONS OF EUROPA'S IONOSPHERE: A LOW-RESOURCE APPROACH FOR VHF DISPERSION CORRECTIONS AND IONOSPHERIC TOMOGRAPHY
Petersen, Walter	pg. 5356 TU2.R19.5 - EVALUATION OF GPM IMERG PRODUCTS OVER SOUTH KOREA
Peterson, Michael	pg. 5422 WE1.R19.10 - SUPPORTING LIGHTNING SAFETY AND DECISION SUPPORT AT THE NASA GLOBAL HYDROLOGY RESOURCE CENTER DISTRIBUTED ACTIVE ARCHIVE CENTER
Pethybridge, Sarah	pg. 5278 FR2.R11.8 - TOWARD MATURITY ASSESSMENT OF SNAP BEAN CROPS: A BEST-CASE GREENHOUSE SCENARIO

	pg. 469 TU1.R5.9 - TOWARD A STRUCTURAL DESCRIPTION OF ROW CROPS USING UAS-BASED LIDAR POINT CLOUDS
Petit, David	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY pg. 252 MO2.R16.10 - SHIP DETECTION ON SINGLE-BAND GRAYSCALE IMAGERY USING DEEP LEARNING AND AIS SIGNAL MATCHING USING NON-RIGID TRANSFORMATIONS
Petitjean, Francois	pg. 1074 WE1.R5.10 - UNSUPERVISED DOMAIN ADAPTATION TECHNIQUES FOR CLASSIFICATION OF SATELLITE IMAGE TIME SERIES
Petrila, Marius	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Pettersson, Mats	pg. 1985 TH1.R18.3 - ENHANCING CONVENTIONAL SAR CHANGE DETECTION PERFORMANCE WITH APODIZATION pg. 1997 TH1.R18.6 - CHANGE DETECTION AND SIGNATURE CLASSIFICATION FOR SAR GMTI pg. 332 MO2.R18.8 - UNSUPERVISED AUTOMATIC TARGET DETECTION FOR MULTITEMPORAL SAR IMAGES BASED ON ADAPTIVE K-MEANS ALGORITHM
Pettijohn, J. Cory	pg. 3618 TH2.R2.2 - GEODETIC DATA ASSIMILATION FOR EVALUATING VOLCANIC UNREST
Pettinato, Simone	pg. 4163 MO2.R11.1 - APPLICATION OF DEEP LEARNING TO OPTICAL AND SAR IMAGES FOR THE CLASSIFICATION OF AGRICULTURAL AREAS IN ITALY pg. 5905 MO2.R13.1 - SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL ON A GLOBAL SCALE BY USING CYGNSS DATA AND ARTIFICIAL NEURAL NETWORKS pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES pg. 4450 WE1.R1.5 - EVALUATION OF SOIL MOISTURE RETRIEVALS FROM ALOS-2, SENTINEL-1 DATA IN GENHE, CHINA
Petzke, Bill	pg. 3626 TH2.R2.5 - ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING
Pezzo, Giuseppe	pg. 810 TU2.R3.7 - SUBSIDENCE MONITORING ALONG RAVENNA COASTAL AREA (NORTHERN ITALY) BY INSAR AND GPS DATA
Pfeil, Isabella	pg. 140 MO2.R14.4 - CLASSIFICATION OF WHEAT AND BARLEY FIELDS USING SENTINEL-1 BACKSCATTER
Pham, Ha T.	pg. 6702 TU1.R15.7 - COMPARATIVE ASSESSMENT OF SOLAR RADIATION BY SATELLITE-BASED AND REANALYSIS PRODUCTS OVER VIETNAM REGIONS

Pham, Hoa V.	pg. 6702 TU1.R15.7 - COMPARATIVE ASSESSMENT OF SOLAR
	RADIATION BY SATELLITE-BASED AND REANALYSIS PRODUCTS OVER VIETNAM REGIONS
Pham, Hong V.	pg. 6702 TU1.R15.7 - COMPARATIVE ASSESSMENT OF SOLAR
	RADIATION BY SATELLITE-BASED AND REANALYSIS PRODUCTS
	OVER VIETNAM REGIONS
Pham, Minh-Tan	pg. 260 MO2.R17.1 - VEHICLE DETECTION AND COUNTING
,	FROM VHR SATELLITE IMAGES: EFFORTS AND OPEN ISSUES
	pg. 264 MO2.R17.2 - SMALL OBJECT DETECTION FROM
	REMOTE SENSING IMAGES WITH THE HELP OF OBJECT-
	FOCUSED SUPER-RESOLUTION USING WASSERSTEIN GANS
	pg. 320 MO2.R18.5 - A COMPOUND POLARIMETRIC-TEXTURAL
	APPROACH FOR UNSUPERVISED CHANGE DETECTION IN MULTI
	TEMPORAL FULL-POL SAR IMAGERY
Pham, Nga T. T.	pg. 6702 TU1.R15.7 - COMPARATIVE ASSESSMENT OF SOLAR
	RADIATION BY SATELLITE-BASED AND REANALYSIS PRODUCTS
	OVER VIETNAM REGIONS
Pham, Thanh An	pg. 389 TU1.R3.1 - MEKONG SAR INTERFEROMETRY BIG DATA
	PRELIMINARY RESULTS
Phartiyal, Gopal Singh	pg. 6475 FR1.R15.5 - COMPUTATIONAL-VISION BASED
	ORTHORECTIFICATION AND GEOREFRENCING FOR CORRECT
	LOCALIZATION OF RAILWAY TRACK IN UAV IMAGERY
Philips, Brenda	pg. 6483 FR1.R15.7 - REMOTE SENSING SYSTEMS FOR
	URBAN-SCALE DRONE AND AIR TAXI OPERATIONS
Phillips, Benjamin	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND
	GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Piard, Boby E.	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016
	HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA
	PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM
	(GEP)
Picard, Ghislain	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER
	FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Picarelli, Luciano	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL
	IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER
	<u>SENSORS</u>
Piccialli, Veronica	pg. 2225 TH2.R20.8 - OIL SPILL DETECTION FROM SAR
	IMAGES BY DEEP LEARNING
Picone, Daniele	pg. 2823 FR2.R12.9 - SUB-PIXEL MAPPING METHOD BASED
	ON K-SVD DICTIONARY LEARNING AND TOTAL VARIATION
	MINIMIZATION
Picot, Nicolas	pg. 3521 WE2.R8.1 - DETECTION OF INTERNAL SOLITARY
	WAVES WITH CONVENTIONAL AND ADVANCED SAR ALTIMETRY
Picot, Nicolas	

	PROCESSING METHODS: PRELIMINARY RESULTS
Piepmeier, Jeffrey	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION pg. 3330 TU2.R1.4 - SMAP MICROWAVE RADIOMETER
	CALIBRATION REVISIT APPROACHES AND PERFORMAMNCE TH2.R4.7 - REAL-TIME DETECTION AND FILTERING OF RADIO FREQUENCY INTERFERENCE ON-BOARD A SPACEBORNE MICROWAVE RADIOMETER: THE CUBERRT MISSION
	pg. 6144 WE1.R7.12 - NASA INCUBATION STUDY ON PLANETARY BOUNDARY LAYER
Pieraccini, Massimiliano	(pg. 4207) MO2.R12.1 - AN INTERFEROMETRIC W-BAND RADAR FOR LARGE STRUCTURES MONITORING
	pg. 794 TU2.R3.3 - A POLARIMETRIC APPROACH FOR MULTIPATH SUPPRESSION/ MITIGATION IN GROUND-BASED INTERFEROMETRIC RADAR IMAGING
Pieraccini, Stefano	pg. 6230) WE1.R15.3 - ONBOARD DATA REDUCTION FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGES VIA CLOUD SCREENING
Pierce, Leland	pg. 3108 WE1.R14.5 - SAR METADATA STANDARDS: SINGLE- LOOK COMPLEX DATA
	pg. 36 MO2.R3.10 - QUANTIFYING THE EFFECT OF THE WIND ON FOREST CANOPY HEIGHT ESTIMATION USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR SYSTEMS
Pierce, Marlon	pg. 3615 TH2.R2.1 - THE QUAKES ANALYTIC CENTER FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL SCALES OF TECTONIC AND EARTHQUAKE PROCESSES
Pierdicca, Nazzareno	pg. 6266 WE2.R13.1 - POTENTIAL OF GNSS REFLECTOMETRY FOR FREEZE-THAW MONITORING: A STUDY OF TECHDEMOSAT-1 DATA
	pg. 5905 MO2.R13.1 - SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL ON A GLOBAL SCALE BY USING CYGNSS DATA AND ARTIFICIAL NEURAL NETWORKS
	pg. 4061 FR2.R15.3 - ENHANCED LAND COVER AND FLOOD MAPPING AT C- AND L-BAND
	pg. 3447 TU2.R17.5 - ELECTROMAGNETIC MODELING OF SCATTERED GNSS SIGNALS pg. 3255 MO2.R2.5 - THE ROLE OF CO- AND CROSS-
	POLARIZATIONS INSAR COHERENCES IN MAPPING FLOODED URBAN AREAS
	WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION
Pignatti, Stefano	pg. 4906 TH2.R1.1 - EFFECT OF SPATIAL RESOLUTION ON SOIL PROPERTIES RETRIEVAL FROM IMAGING SPECTROSCOPY: AN ASSESSMENT OF THE HYPERSPECTRAL CHIME MISSION POTENTIAL
Piironen, Petri	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Piles, Maria	pg. 3991 FR2.R7.5 - INTERPRETABILITY OF RECURRENT

	NEURAL NETWORKS IN REMOTE SENSING
Pilewskie, Peter	pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS
Ping, Jinsong	pg. 6682 TU1.R15.2 - MOON-BASED EARTH RADIATION BUDGET EXPERIMENT SITE SELECTION ANALYSIS BASED ON EARTH OBSERVATION GEOMETRY
Pinheiro Ferreira, Matheus	(pg. 5115) FR1.R10.2 - USING UNSUPERVISED CLUSTERING FOR ANALYZING AIRBORNE GAMMA-RAY SPECTROMETRY DATA
Pinho, Tatiana	pg. 4195 MO2.R11.9 - MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE
Pinol Sole, Monteserrat	pg. 6535 FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES
Pinto, Andre Susano	pg. 6730 TU1.R17.2 - TRAINING GENERAL REPRESENTATIONS FOR REMOTE SENSING USING IN-DOMAIN KNOWLEDGE
Pinto, Naiara	pg. 96 MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION pg. 4136 MO2.R10.5 - MAPPING TREE CANOPY COVER AND CANOPY HEIGHT WITH L-BAND SAR USING LIDAR DATA AND RANDOM FORESTS
Piqueras, Miguel Angel	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Piras, Fanny	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Pirrone, Davide	pg. 320 MO2.R18.5 - A COMPOUND POLARIMETRIC-TEXTURAL APPROACH FOR UNSUPERVISED CHANGE DETECTION IN MULTI-TEMPORAL FULL-POL SAR IMAGERY
Pitar, Daniel	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Pitar, Diana	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Pittman, Rory	pg. 5018 FR1.R1.1 - IMPROVEMENT OF SOIL TEXTURE CLASSIFICATION WITH LIDAR DATA
Pla, Filiberto	pg. 4259 TU1.R1.3 - SENTINEL-2 MULTI-TEMPORAL DATA FOR RICE CROP CLASSIFICATION IN NEPAL pg. 1504 WE2.R12.7 - INTER-SENSOR REMOTE SENSING IMAGE ENHANCEMENT FOR OPERATIONAL SENTINEL-2 AND SENTINEL-3 DATA PRODUCTS
Platnick, Steven	FR1.R2.1 - CLASSIFYING GLOBAL LOW CLOUD MORPHOLOGY WITH A DEEP LEARNING MODEL: RESULTS AND POTENTIAL USE WE1.R19.5 - CLOUD OBSERVATIONS FROM THE DEEP SPACE

	CLIMATE OBSERVATORY (DSCOVR) AT THE EARTH LAGRANGE 1 POINT
	WE1.R19.6 - EXTENDING NASA'S MODIS/VIIRS CLOUD CLIMATE DATA RECORD TO THE ADVANCED GEOSTATIONARY IMAGERS
Plaza, Antonio	pg. 1436 WE2.R9.1 - ADAPTIVE SUPERPIXEL SEGMENTATION WITH FISHER VECTORS FOR SHIP DETECTION IN SAR IMAGES
	pg. 40 MO2.R5.1 - TRAINING CAPSNETS VIA ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 5348 TU2.R19.3 - SPATIAL DOWNSCALING FOR GLOBAL PRECIPITATION MEASUREMENT USING A GEOGRAPHICALLY AND TEMPORALLY WEIGHTED REGRESSION MODEL
	pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA
	pg. 7017 TU1.R20.4 - SPATIAL BIAS CORRECTION OF SOCIAL MEDIA DATA BY EXPLOITING REMOTE SENSING KNOWLEDGE IN DATA-DEFICIENT REGIONS
	pg. 2177 TH2.R18.6 - SPECTRAL-SPATIAL WEIGHTED SPARSE NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
	pg. 858 TU2.R5.8 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON TENSOR-TRAIN CONVOLUTIONAL LONG SHORT- TERM MEMORY
Plaza, Javier	(pg. 40) MO2.R5.1 - TRAINING CAPSNETS VIA ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 6109 WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA
	pg. 5348 TU2.R19.3 - SPATIAL DOWNSCALING FOR GLOBAL PRECIPITATION MEASUREMENT USING A GEOGRAPHICALLY AND TEMPORALLY WEIGHTED REGRESSION MODEL
	pg. 7017 TU1.R20.4 - SPATIAL BIAS CORRECTION OF SOCIAL MEDIA DATA BY EXPLOITING REMOTE SENSING KNOWLEDGE IN DATA-DEFICIENT REGIONS
Plermkamon, Vichian	pg. 6871 WE2.R2.3 - THE APPLICATION OF REMOTE SENSING PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND
	FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA
Poddar, Shaishab	pg. 4299 TU2.R10.2 - DEVELOPMENT OF GREENNESS ANALYSIS TOOL USING REMOTE SENSING SATELLITE IMAGES
Podder, Pritimoy	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY
Pogorzala, David	pg. 6051 TU2.R4.5 - GOES-17 ABI L1B PRODUCT PERFORMANCE WITH PREDICTIVE CALIBRATION
Poisson, Guylaine	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY
Poland, Micheal	pg. 6818 WE1.R2.1 - DETERMINING THE SOURCE LOCATION

	AND EVOLUTION OF THE MAY 2015 SUMMIT INFLATION EVENT AT KILAUEA VOLCANO HAWAI'I.
Polcari, Marco	(pg. 810) TU2.R3.7 - SUBSIDENCE MONITORING ALONG RAVENNA COASTAL AREA (NORTHERN ITALY) BY INSAR AND GPS DATA
Pollard, Jason	(pg. 5761) WE1.R8.9 - SURFZONE BATHYMETRY ESTIMATION USING WAVE CHARACTERISTICS OBSERVED BY UNMANNED AERIAL SYSTEMS
PopStefanija, Ivan	WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI-TEMPORAL STUDY
Popescu, Flaviu	pg. 4975 TH2.R10.1 - DEEP NEURAL NETWORKS FOR FOREST GROWING STOCK VOLUME RETRIEVAL: A COMPARATIVE ANALYSIS FOR L-BAND SAR DATA (pg. 2902) FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Porcar-Castell, Albert	pg. 4838) TH1.R10.5 - PRELIMINARY STUDY OF WAVELENGTH POSITIONS OF LEAF FLUORESCENCE PEAKS WITH EXPERIMENTAL DATA (pg. 4379) TU2.R11.10 - ON THE ESTIMATION OF THE LEAF ANGLE DISTRIBUTION FROM DRONE BASED PHOTOGRAMMETRY
Porfirio, Barbara	pg. 3231 TH2.R14.11 - CLASSIFICATION OF ERRORS IN GEOGRAPHIC DATA USING ISO 19157
Poriya, Akshay	(pg. 1933) TH1.R17.1 - PATCH BASED LAND COVER CLASSIFICATION: A COMPARISON OF DEEP LEARNING, SVM AND NN CLASSIFIERS
Portabella, Marcos	(pg. 5654) TU1.R8.3 - RAIN EFFECTS ON CFOSAT SCATTEROMETER: TOWARDS AN IMPROVED WIND QUALITY CONTROL
Portal, Gerard	(pg. 5254) FR2.R11.2 - IMPROVING THE RICE YIELD ESTIMATION USING SMOS AND CYGNSS GNSS-R DATA
Porter, Warren	TH1.R15.8 - SNPP AND NOAA-20 GLOBAL INTER-SENSOR BIAS ASSESSMENTS WITHIN ICVS FRAMEWORK USING 32-DAY AVERAGED DIFFERENCE METHOD
Posselt, Winfried	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Potnis, Abhishek	pg. 581 TU1.R10.4 - TOWARDS NATURAL LANGUAGE QUESTION ANSWERING OVER EARTH OBSERVATION LINKED DATA USING ATTENTION-BASED NEURAL MACHINE TRANSLATION pg. 4414 TU2.R12.8 - ONLINE POINT CLOUD SUPER RESOLUTION USING DICTIONARY LEARNING FOR 3D URBAN PERCEPTION

Poujade, Veronique	pg. 449 TU1.R5.4 - OPERATIONAL PIPELINE FOR LARGE-SCALE 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGES
Poulter, Benjamin	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Pourmohammadi, Pariya	PROCESSES USING DATA TRANSFORMATION AND CLUSTERING METHODS
Poutier, Laurent	pg. 5325 TU1.R19.9 - IMPROVEMENT OF A CIRRUS CORRECTION EMPIRICAL METHOD WITH SENTINEL-2 DATA
Pradhan, Omkar	pg. 5466 TH1.R19.9 - SUBMILLIMETER WAVE DIFFERENTIAL ABSORPTION RADAR FOR WATER VAPOR SOUNDING IN THE MARTIAN ATMOSPHERE
Prager, Samuel	pg. 7037 TU2.R20.4 - ARBITRARY NONLINEAR FM WAVEFORM CONSTRUCTION AND ULTRA-WIDEBAND SYNTHESIS pg. 3845 TH2.R17.4 - SPCTOR: SENSING POLICY CONTROLLER AND OPTIMIZER
Prakash, Anupma	pg. 4735 TH1.R4.1 - MAPPING OF SHALLOW-WATER SITES TO AID NAVIGATION ON THE COLVILLE RIVER, NORTH SLOPE OF ALASKA
Praks, Jaan	pg. 4738 TH1.R4.2 - INSAR COHERENCE FOR MONITORING GROUNDWATER TABLE FLUCTUATIONS IN NORTHERN PEATLANDS TU1.R4.3 - POTENTIAL OF MULTITEMPORAL ICEYE SAR DATA IN LAND COVER MAPPING APPLICATIONS pg. 4509 WE1.R10.9 - PREDICTING GROWING STOCK VOLUME OF BOREAL FORESTS USING VERY LONG TIME SERIES OF SENTINEL-1 DATA pg. 4283 TU1.R1.9 - CLASSIFICATION OF WIDE-AREA SAR MOSAICS: DEEP LEARNING APPROACH FOR CORINE BASED MAPPING OF FINLAND USING MULTITEMPORAL SENTINEL-1
Prasad, Saurabh	DATA Pg. 4003 FR2.R7.8 - JOINT SPATIAL AND GRAPH CONVOLUTIONAL NEURAL NETWORKS - A HYBRID MODEL FOR SPATIAL-SPECTRAL GEOSPATIAL IMAGE ANALYSIS
Prata de Moraes Frasson, Renato	pg. 3939 FR2.R1.5 - THE POTENTIAL OF SWOT RIVER DISCHARGE ESTIMATES TO CONSTRAIN HYDROLOGICAL PROCESSES GLOBALLY IN UNGAGED BASINS
Prata, Alfredo J.	pg. 6834 WE1.R2.5 - THE 2015 CALBUCO VOLCANIC CLOUD DETECTION USING GNSS RADIO OCCULTATION AND SATELLITE LIDAR
Prats-Iraola, Pau	pg. 3770 TH2.R13.5 - SIMILARITY APPROACH FOR RADIO FREQUENCY INTERFERENCE DETECTION AND CORRECTION IN MULTI-RECEIVER SAR pg. 1157 WE1.R16.9 - SUPPRESSION OF ADDITIONAL AZIMUTH AMBIGUITIES UNDER MULTI-CHANNEL AND MULTI-

	WAVEFORM SAR
Pratt, Kerri	pg. 3023 TU2.R9.6 - OBSERVATIONS OF ARCTIC SEA ICE LEADS AND OPEN WATER DURING THE MICROBIOLOGICAL-OCEAN-CLOUD COUPLING IN THE HIGH ARCTIC CAMPAIGN
Predina, Joe	TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT
Prette, Nicola	pg. 6230 WE1.R15.3 - ONBOARD DATA REDUCTION FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGES VIA CLOUD SCREENING
Price, Julie	pg. 3290 MO2.R7.1 - THE JOINT POLAR SATELLITE SYSTEM AND THE INTERNATIONAL CONSTELLATION: SUPPORTING ENVIRONMENTAL APPLICATIONS ACROSS THE GLOBE
Price, Rhiannan	pg. 3727 TH2.R12.1 - ACCELERATING SUSTAINABLE DEVELOPMENT WITH EARTH INTELLIGENCE
Prieto, Flavio	pg. 4902 TH1.R11.10 - A SUPERVOXEL-BASED APPROACH FOR LEAVES SEGMENTATION OF POTATO PLANTS FROM POINT CLOUDS
Priftis, George	pg. 2252 FR1.R5.3 - A QUANTITATIVE ANALYSIS ON THE USE OF SUPERVISED MACHINE LEARNING IN EARTH SCIENCE
Priftis, Georgios	pg. 2248 FR1.R5.2 - EMPLOYING DEEP LEARNING TO ENABLE VISUAL EXPLORATION OF EARTH SCIENCE EVENTS
Pritchard, Michael	pg. 3987 FR2.R7.3 - TOWARDS PHYSICALLY-CONSISTENT, DATA-DRIVEN MODELS OF CONVECTION
Priyanto, Irwan	pg. 6401 TH1.R15.6 - LAPAN'S MID WAVELENGTH INFRARED CAMERA MODULE
Procksch, Natália	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Prothon, Etienne	pg. 3817 TH2.R16.3 - USE OF SAR IMAGERY AND ARTIFICIAL INTELLIGENCE FOR A MULTI-COMPONENTS OCEAN MONITORING
	pg. 5380 TU2.R19.11 - COMBINATION OF GEOSTATIONARY AND POLAR SATELLITE SENSORS TO MONITOR CUMULONIMBUS AND THEIR WINDS AT THE OCEAN SURFACE
Proto, Monica	pg. 3166 TH1.R14.1 - THE CORDINET PROJECT: ANALYSIS OF THE BARRIERS LIMITING A MORE DIFFUSE AND SYSTEMATIC USE OF EARTH OBSERVATION COPERNICUS-BASED SOLUTIONS
Prudente, Victor	pg. 4787 TH1.R6.3 - DETECTION OF CHANGES IN IMPERVIOUS SURFACE USING SENTINEL-2 IMAGERY
Prudente, Victor Hugo Rohden	pg. 4100 MO2.R1.7 - SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT

	CLOUD COVER
Pryor, Ken	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG
Pu, Chunyu	pg. 2021 TH2.R3.1 - DEEP MANIFOLD LEARNING NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 2037 TH2.R3.5 - SPATIAL-SPECTRAL COMBINATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Pu, Fangling	pg. 1464] WE2.R9.8 - DBC: DEEP BOUNDARIES COMBINATION FOR FARMLAND BOUNDARY DETECTION BASED ON UAV IMAGERY pg. 1743] TH1.R5.9 - LEARNING RELATION BY GRAPH NEURAL NETWORK FOR SAR IMAGE FEW-SHOT LEARNING
Pu, Jiabin	pg. 3176 TH1.R14.4 - QUALITY ANALYSIS OF THE VIIRS LAI/FPAR TIME-SERIES
Puertolas, Montserrat	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Pulella, Andrea	pg. 359 MO2.R19.5 - MODELING TEMPORAL DECORRELATION AT X-BAND BY COMBINING TANDEM-X AND PAZ INSAR DATA
Puliero, Silvia	(pg. 6838) WE1.R2.6 - INTEGRATION OF INSAR AND GNSS DATA TO MONITOR VOLCANIC ACTIVITY OF SAKURAJIMA CALDERAS, JAPAN: FROM SMALL DISPLACEMENT MEASUREMENTS TO GEOPHYSICAL MODELING
Pullanagari, Reddy	pg. 1086] WE1.R6.2 - MAPPING ANTIMONY CONCENTRATION OVER GEOTHERMAL AREAS USING HYPERSPECTRAL AND THERMAL REMOTE SENSING pg. 5119 FR1.R10.3 - BIOGEOCHEMICAL EXPLORATION OF GOLD MINERALIZATION AND ITS PATHFINDER ELEMENTS USING HYPERSPECTRAL REMOTE SENSING
Pulvirenti, Luca	pg. 4061 FR2.R15.3 - ENHANCED LAND COVER AND FLOOD MAPPING AT C- AND L-BAND pg. 3255 MO2.R2.5 - THE ROLE OF CO- AND CROSS- POLARIZATIONS INSAR COHERENCES IN MAPPING FLOODED URBAN AREAS
Pun, Man-On	pg. 601 TU1.R10.9 - CONSTRUCTION OF AN INDOOR KNOWLEDGE GRAPH FOR POSITIONING
Purevtseren, Myagmartseren	pg. 2799 FR2.R12.3 - REMOTELY SENSED METHOD FOR DETECTION OF SPATIAL DISTRIBUTION PATTERN OF DRYLAND PLANTS IN WATER LIMITED ECOSYSTEM
Purohit, Neetesh	pg. 724 TU1.R16.7 - SYNERGIC USE OF SAR AND OPTICAL DATA FOR ESTIMATION OF SOIL MOISTURE IN VEGETATIVE REGION
Purri, Matthew	pg. 6746 TU1.R17.6 - ANGULAR LUMINANCE FOR MATERIAL

	SEGMENTATION
Pytharouli, Stella	pg. 1667 TH1.R3.2 - GRAPH-BASED MICRO-SEISMIC SIGNAL CLASSIFICATION WITH AN OPTIMISED FEATURE SPACE
Pádua, Luís	pg. 6309 WE2.R17.4 - VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY
	TH2.R11.6 - VIRTUAL ENVIRONMENTS & SUSTAINABLE AGRICULTURE: A CASE STUDY
	pg. 6487 FR1.R15.8 - TARGET INFLUENCE ON GROUND CONTROL POINTS (GCPS) IDENTIFICATION IN AERIAL IMAGES pg. 6491 FR1.R15.9 - THE NEW PARAMOTOR PROJECT: FLEXIBILITY AT LOW COST TO OVERCOME MAIN LIMITATIONS OF MULTI-COPTERS AND FIXED-WINGS UAVS
	pg. 4550 WE1.R11.9 - MONITORING OF OLIVE TREES TEMPERATURES UNDER DIFFERENT IRRIGATION STRATEGIES BY UAV THERMAL INFRARED IMAGERY
	pg. 4195 MO2.R11.9 - MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE
	pg. 6503 FR1.R15.12 - ESTIMATION OF LEAF AREA INDEX IN CHESTNUT TREES USING MULTISPECTRAL DATA FROM AN UNMANNED AERIAL VEHICLE
Pérez Martínez, Waldo	pg. 6604 TU1.R2.4 - LANDSLIDE SUSCEPTIBILITY USING REMOTE SENSING DATA & GIS IN A HIGH ANDEAN AREA OF CENTRAL CHILE
Pérez, Adrián	pg. 5986 TU1.R4.12 - RITA: REQUIREMENTS AND PRELIMINARY DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT
Pérez-Flores, Anabell	pg. 6786 TU2.R2.5 - MONITORING THE 2019 AGRICULTURAL DROUGHT IN THE STATE OF SAN LUIS POTOSI, MEXICO
Pérez-Suay, Adrián	pg. 3991 FR2.R7.5 - INTERPRETABILITY OF RECURRENT NEURAL NETWORKS IN REMOTE SENSING
	pg. 3999 FR2.R7.7 - DISCOVERING DIFFERENTIAL EQUATIONS FROM EARTH OBSERVATION DATA
Q	
Qi, Hairong	pg. 2404 FR1.R12.6 - HYPERSPECTRAL NONLINEAR UNMIXING VIA GENERATIVE ADVERSARIAL NETWORK
Qi, Jianbo	pg. 4128 MO2.R10.3 - STUDY ON UAV SENSED CANOPY LEAF DISTRIBUTION USING COMPUTER SIMULATION
	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL
	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Qi, Jianwei	pg. 5399 WE1.R19.4 - RESEARCH OF CLOUD DETECTION BASED ON MULTI-TEMPORAL THERMAL INFRARED DATA
	pg. 4426 TU2.R12.11 - RESEARCH ON THE DEVELOPMENT OF

	URBANIZATION IN YANGTZE RIVER ECONOMIC BELT BASED ON NIGHTTIME LIGHT REMOTE SENSING DATA
Qi, Kunlun	pg. 553 TU1.R7.8 - REMOTE SENSING SCENE CLASSIFICATION USING SPATIAL TRANSFORMER FUSING NETWORK
Qi, Lin	pg. 2396 FR1.R12.4 - SPATIAL-SPECTRAL AUTOENCODER NETWORKS FOR HYPERSPECTRAL UNMIXING pg. 2173 TH2.R18.5 - HYPERSPECTRAL UNMIXING VIA RECURRENT NEURAL NETWORK WITH CHAIN CLASSIFIER
Qi, Wang	[pg. 2683] FR2.R5.8 - HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION USING NON-CONVEX RELAXATION LOW RANK AND TOTAL VARIATION REGULARIZATION
Qi, Wenlu	TU2.R15.3 - TOWARDS PANTROPICAL STRUCTURE AND BIOMASS MAPPING FROM FUSION OF GEDI AND TANDEM-X DATA
Qi, Xin	pg. 6282 WE2.R13.5 - A NOVEL BISTATIC SAR IMAGING ALGORITHM BASED ON GNSS TRANSMITTERS AND LOW-ORBIT RECEIVERS
Qi, Yangqian	pg. 4995 TH2.R10.6 - WEAK RESPONSE OF VEGETATION PHOTOSYNTHESIS TO METEOROLOGICAL DROUGHTS IN SOUTHWEST CHINA: INSIGHTS FROM GOME-2 SOLAR-INDUCED FLUORESCENCE
Qian, Huan	pg. 2723 FR2.R6.7 - SUBPIXEL-LEVEL EDGE FEATURE MATCHING FOR SAR AND OPTICAL IMAGES BASED ON ZERNIKE MOMENTS
Qian, Jiang	pg. 401 TU1.R3.4 - PHASE UNWRAPPING VIA DEEP LEARNING BASED REGION SEGMENTATION
Qian, Kaijun	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY
Qian, Kun	pg. 2157 TH2.R18.1 - NONLOCAL LOW-RANK NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
Qian, Qipeng	pg. 842 TU2.R5.4 - IMPROVING HYPERSPECTRAL IMAGE CLASSIFICATION USING GRAPH WAVELETS
Qian, Yonggang	pg. 5543 FR1.R19.6 - RETRIEVAL OF TOTAL OZONE COLUMN USING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY (DOAS) ALGORITHM FROM ULTRAVIOLET SOLAR RADIATION DATA pg. 6250 WE1.R15.8 - BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION
Qian, Yuntao	pg. 2157 TH2.R18.1 - NONLOCAL LOW-RANK NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING pg. 525 TU1.R7.1 - MULTI-LABEL REMOTE SENSING IMAGE

	CLASSIFICATION WITH DEFORMABLE CONVOLUTIONS AND GRAPH NEURAL NETWORKS
Qiao, Hong	pg. 2727 FR2.R6.8 - POLSAR IMAGE FEATURE EXTRACTION BASED ON CO-REGULARIZATION
Qiao, Zhijun	TU2.R16.3 - DIFFERENTIAL MODEL FOR SAR IMAGING
Qin, Anyong	pg. 2843 FR2.R16.3 - ADAPTIVE FUSION AND MASK REFINEMENT INSTANCE SEGMENTATION NETWORK FOR HIGH RESOLUTION REMOTE SENSING IMAGES
Qin, Boxiong	pg. 4854 TH1.R10.9 - EVALUATION OF FOUR THERMAL INFRARED KERNEL-DRIVEN MODELS USING LIMITED OBSERVATIONS
Qin, Fei	pg. 1782 TH1.R7.7 - A NOVEL GOSD-CFAR FOR MILLIMETER WAVE RADAR DETECTION
Qin, Hanlin	pg. 2471 FR1.R16.1 - A NON-LINEARLY MOVING SHIP AUTOFOCUS METHOD UNDER HYBRID COORDINATE SYSTEM
Qin, Pan	pg. 381 MO2.R19.11 - SOLAR ACTIVITY IS ONE OF TRIGGERS OF EARTHQUAKES WITH MAGNITUDES LESS THAN 6
Qin, Qiming	pg. 5547 FR1.R19.7 - EVALUATION OF THE RELATIONSHIP BETWEEN IASI NH3R-I TOTAL COLUMN AND TERRESTRIAL VEGETATION CONDITIONS
Qin, Rongjun	TU2.R6.5 - LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS - IEEE DATA FUSION CONTEST 2020 TRACK 1 TU2.R6.6 - LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS WITH MULTI-RESOLUTION LABEL - IEEE DATA FUSION CONTEST 2020 TRACK 2 Pg. 2316 FR1.R6.7 - EFFECTS OF UNBALANCED DATA ON RADIOMETRIC TRANSFORMING MODEL FITTING FOR RELATIVE RADIOMETRIC NORMALIZATION
Qin, Zhenqiang	pg. 296 MO2.R17.10 - WEAK TARGET DETECTION IN HIGH- RESOLUTION REMOTE SENSING IMAGES BY COMBINING SUPER-RESOLUTION AND DEFORMABLE FPN
Qin, Zhihao	pg. 6714 TU1.R15.10 - ESTIMATION OF SURFACE ALBEDO BASED ON FY-3D MERSI-2 TOA DATA pg. 5430 WE1.R19.12 - EFFECTS OF CLOUD ON LAND SURFACE TEMPERATURE (LST) CHANGE IN THERMAL INFRARED REMOTE SENSING IMAGES: A CASE STUDY OF LANDSAT 8 DATA
Qing, Liyuan	pg. 1580 WE2.R18.3 - AUTOMATED DETECTION OF MANHOLE COVERS IN MLS POINT CLOUDS USING A DEEP LEARNING APPROACH
Qiu, Chunping	pg. 692 TU1.R12.10 - A NOVEL APPROACH TO UNSUPERVISED SEGMENTATION OF MULTITEMPORAL VHR IMAGES BASED ON

	DEEP LEARNING
Qiu, Lin	pg. 5262 FR2.R11.4 - WINTER WHEAT PHENOLOGY EXTRACTION BASED ON DENSE TIME SERIES OF SENYINEL-1A DATA
Qiu, Tong	pg. 3637 TH2.R2.8 - COMMUNITY REORGANIZATION RESPONSE TO CLIMATE CHANGE: SPECIES INTERACTIONS, STATE-SPACE MODELING AND FOOD WEBS
Qiu, Xiaolan	pg. 84 MO2.R6.1 - CHANNEL IMBALANCE CALIBRATION METHOD FOR AIRBORNE TOMOSAR SYSTEM
Qu, Chang	pg. 4183 MO2.R11.6 - WINTER WHEAT MAPPING FROM LANDSAT NDVI TIME SERIES DATA USING TIME-WEIGHTED DYNAMIC TIME WARPING AND PHENOLOGICAL RULES
Qu, Jiahui	pg. 2671 FR2.R5.5 - DEEP RESIDUAL SPATIAL ATTENTION NETWORK FOR HYPERSPECTRAL PANSHARPENING
Qu, Kewen	pg. 862 TU2.R5.9 - ADAPTIVE NEIGHBORHOOD STRATEGY BASED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Qu, Lele	pg. 1409 WE2.R6.5 - STOLT MIGRATION IMAGING FOR SHORT- PULSE GROUND-PENETRATING RADAR BASED ON COMPRESSIVE SENSING
Qu, Liqin	pg. 5885 FR1.R8.8 - VALIDATION OF SEA SURFACE TEMPERATURE FROM FY-3C VIRR
Qu, Qizhe	pg. 2372 FR1.R9.10 - LINEAR ARRAY 3-D SAR SPARSE IMAGING VIA CONVOLUTIONAL NEURAL NETWORK
Qu, Ying	pg. 2404 FR1.R12.6 - HYPERSPECTRAL NONLINEAR UNMIXING VIA GENERATIVE ADVERSARIAL NETWORK
Quan, Xingwen	pg. 6778 TU2.R2.3 - ASSESSMENT OF THE EFFECT OF PROSAILH FOR OPEN AND CLOSED SHRUBLANDS LIVE FUEL MOISTURE CONTENT RETRIEVAL pg. 6782 TU2.R2.4 - EVALUATION OF HIMAWARI-8 FOR LIVE FUEL MOISTURE CONTENT RETRIEVAL pg. 6798 TU2.R2.8 - A REMOTE SENSING AND METEOROLOGICAL DATA-BASED METHODOLOGY FOR WILDFIRE DANGER ASSESSMENT FOR CHINA
Quan, Yinghui	pg. 830 TU2.R5.1 - TWO-STEP ENSEMBLE BASED CLASS NOISE CLEANING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 489 TU1.R6.4 - SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 493 TU1.R6.5 - FEATURE SEPARATION BASED ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 2635 FR2.R3.8 - HIGH-RESOLUTION IMAGING BASED ON TEMPORAL-SPATIAL STOCHASTIC RADIATION FIELD AND COMPRESSIVE SENSING THEORY

Quang, An Vo	pg. 4251 TU1.R1.1 - ELASTIC MAPPING THROUGH THE COPERNICUS GLOBAL LAND COVER LAYERS
Querol, Jorge	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION pg. 6977 FR2.R2.6 - RADIO-FREQUENCY INTERFERENCE LOCATION, DETECTION AND CLASSIFICATION USING DEEP NEURAL NETWORKS pg. 6588 FR2.R17.10 - SDR IMPLEMENTATION OF A TESTBED FOR SYNCHRONIZATION OF COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS
Quevedo, Renata Pacheco	(pg. 1345) WE2.R3.10 - LAND COVER CLASSIFICATION OF AN AREA SUSCEPTIBLE TO LANDSLIDES USING RANDOM FOREST AND NDVI TIME SERIES DATA
Quintana, Joselin	pg. 4610 WE2.R10.1 - ESTIMATION OF NITROGEN IN THE SOIL OF BALSA TREES IN ECUADOR USING UNMANNED AERIAL VEHICLES
R	
R. Veronez, Mauricio	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Racette, Paul	(pg. 6150) WE1.R12.2 - PERFORMANCE OF SWESARR'S MULTI- FREQUENCY DUAL-POLARIMETRY SYNTHETIC APERTURE RADAR DURING NASA'S SNOWEX AIRBORNE CAMPAIGN
Racoviceanu, Tudor	pg. 4271 TU1.R1.6 - INTEGRATED PLATFORM FOR ECOSYSTEMS MONITORING BASED ON REMOTE AND IN SITU MEASUREMENTS
Radius, Andrea	pg. 3581 WE2.R15.9 - ICEYE MICROSATELLITE SAR CONSTELLATION STATUS UPDATE: EVALUATION OF FIRST COMMERCIAL IMAGING MODES
Rae, Andrew	pg. 1086 WE1.R6.2 - MAPPING ANTIMONY CONCENTRATION OVER GEOTHERMAL AREAS USING HYPERSPECTRAL AND THERMAL REMOTE SENSING
Rafique, M. Usman	pg. 1468 WE2.R9.9 - SINGLE IMAGE CLOUD DETECTION VIA MULTI-IMAGE FUSION
Rahman, Ashiqur	pg. 4665 WE2.R11.4 - USE OF REMOTE SENSING SATELLITE IMAGES IN RICE AREA MONITORING SYSTEM OF BANGLADESH
Rahman, Azbina	pg. 3931 FR2.R1.3 - INVESTIGATING THE ASSIMILATION OF LEAF AREA INDEX PRODUCTS AT DIFFERENT TEMPORAL RESOLUTIONS IN A LAND SURFACE MODEL
Rahman, Mahbubur	(pg. 2934) MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Rahman, Shahriar	pg. 1114 WE1.R6.9 - BUSHFIRE SEVERITY MAPPING USING SENTINEL-1 AND -2 IMAGERY

Rahnemoonfar, Maryam	pg. 6934 FR1.R2.7 - MULTI-SCALE AND TEMPORAL TRANSFER LEARNING FOR AUTOMATIC TRACKING OF INTERNAL ICE
	LAYERS Pg. 2960 MO2.R9.12 - SNOW RADAR LAYER TRACKING USING
	ITERATIVE NEURAL NETWORK APPROACH
	pg. 7001 FR2.R2.12 - RADAR SENSOR SIMULATION WITH
	GENERATIVE ADVERSARIAL NETWORK
Rai, Ajeet	pg. 5517 TH2.R19.10 - SOURCE CHARACTERIZATION OF
	AEROSOLS AND TRENDS DURING 2000-2019 OVER DELHI (INDIA)
Raines, Ethan	pg. 3444 TU2.R17.4 - CHARACTERIZING THE COHERENT
	REFLECTED POWER DEPENDENCE ON ROUGH SURFACE HEIGHT AT LOW SIGNAL LEVELS
Rainville, Luc	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Raj Adhikari, Basanta	pg. 5238 FR2.R10.10 - IDENTIFICATION OF LANDSLIDE
	SUSCEPTIBLE AREAS FOR THE PROPER SETTLEMENT
	PLANNING IN THE KALI GANDAKI ROAD CORRIDOR, NEPAL
Rajalakshmi, P.	pg. 1588 WE2.R18.5 - UAV BASED REMOTE SENSING FOR
	TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF
	MAIZE CROP USING MULTISPECTRAL IMAGES
Rajan, K. S.	pg. 1671 TH1.R3.3 - FEEDBACK NEURAL NETWORK BASED SUPER-RESOLUTION OF DEM FOR GENERATING HIGH FIDELITY FEATURES
Rajanayaka, Channa	pg. 4626 WE2.R10.5 - FOREST FLOWS - REAL TIME
	MONITORING OF WATER QUANTITY AND QUALITY SPATIO-
	TEMPORAL DYNAMICS IN PLANTED FORESTS
Rajashekara, H M	pg. 881 TU2.R7.3 - QUANTITATIVE ANALYSIS OF WATERSHED
	PARTITIONED FROM CARTOSAT DEM OF LOWER INDUS SUB-
	BASIN VIA MULTIFRACTAL SPECTRA
Raju, Dhandapani	pg. 5286 FR2.R11.10 - LEAF COUNTING IN RICE (ORYZA
	SATIVA L.) USING OBJECT DETECTION: A DEEP LEARNING
	<u>APPROACH</u>
Rajulapati, Parashuram	pg. 6890 WE2.R2.8 - MULTI-AGENT DEEP REINFORCEMENT
Shourya	LEARNING BASED INTERDEPENDENT CRITICAL
	INFRASTRUCTURE SIMULATION MODEL FOR SITUATIONAL
	AWARENESS DURING A FLOOD EVENT
Ramachandran, Rahul	pg. 3097 WE1.R14.2 - ADVANCING OPEN SCIENCE THROUGH
	INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA
	MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM (MAAP)'S DATA ECOSYSTEM
	pg. 2248 FR1.R5.2 - EMPLOYING DEEP LEARNING TO ENABLE
	VISUAL EXPLORATION OF EARTH SCIENCE EVENTS
	pg. 2252 FR1.R5.3 - A QUANTITATIVE ANALYSIS ON THE USE
	OF SUPERVISED MACHINE LEARNING IN EARTH SCIENCE

	pg. 3131 WE1.R14.11 - STANDARDIZED ALGORITHM DOCUMENTATION FOR IMPROVED SCIENTIFIC DATA UNDERSTANDING: THE ALGORITHM PUBLICATION TOOL PROTOTYPE
Ramasubramanian, Muthukumaran	pg. 2248 FR1.R5.2 - EMPLOYING DEEP LEARNING TO ENABLE VISUAL EXPLORATION OF EARTH SCIENCE EVENTS (pg. 2252) FR1.R5.3 - A QUANTITATIVE ANALYSIS ON THE USE OF SUPERVISED MACHINE LEARNING IN EARTH SCIENCE
Rambour, Clement	pg. 108 MO2.R6.7 - REGULARIZED SAR TOMOGRAPHY APPROACHES
Ramoelo, Abel	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1 pg. 4493 WE1.R10.5 - TESTING AND COMPARING THE APPLICABILITY OF SENTINEL-2 AND LANDSAT 8 REFLECTANCE DATA IN ESTIMATING MOUNTAINOUS HERBACEOUS BIOMASS BEFORE AND AFTER FIRE USING RANDOM FOREST MODELLING
Ramos, Fabio	TU1.R17.1 - MULTI-OBJECTIVE OPTIMIZATION FOR ACTIVE SENSOR FUSION
Ramos, Isaac	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Ramos, Juan José	pg. 5986 TU1.R4.12 - RITA: REQUIREMENTS AND PRELIMINARY DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT
Ramírez, Juan Ignacio	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Ran, Bohao	pg. 964 TU2.R18.4 - ARBITRARY-ORIENTED SHIP DETECTION METHOD BASED ON IMPROVED REGRESSION MODEL FOR TARGET DIRECTION DETECTION NETWORK
Ran, Jie	pg. 2843 FR2.R16.3 - ADAPTIVE FUSION AND MASK REFINEMENT INSTANCE SEGMENTATION NETWORK FOR HIGH RESOLUTION REMOTE SENSING IMAGES
Ran, Xueting	pg. 4854 TH1.R10.9 - EVALUATION OF FOUR THERMAL INFRARED KERNEL-DRIVEN MODELS USING LIMITED OBSERVATIONS
Randhawa, Sukanya	pg. 4657 WE2.R11.2 - SCOPE, EXTENT, AND CHALLENGES OF AN AUTOMATED GLOBAL CROP CLASSIFICATION MODEL
Rangel Pinagé, Ekena	pg. 4516 WE1.R10.11 - EFFECTS OF TROPICAL FOREST DEGRADATION ON AMAZON FOREST PHENOLOGY
Rankin, Blake	pg. 1790 TH1.R7.9 - SPECTRAL INFORMATION CONTENT ALGORITHM FOR AUTOMATED SIGNATURE ASSESSMENT
Ranyal, Eshta	pg. 2217 TH2.R20.6 - DETECTION OF RAIL FASTENERS FROM

	AERIAL IMAGES USING DEEP CONVOLUTION NEURAL NETWORKS
Rao, Shivanesh	pg. 5745 WE1.R8.5 - STORM SURGE INUNDATION MODELING OF FIVE WINTER STORMS IN SACO-CASCO BAYS: A FVCOM BASED NUMERICAL STUDY
Rao, Y. S.	pg. 4742 TH1.R4.3 - SPLIT-WINDOW BASED FLOOD MAPPING WITH L-BAND ALOS-2 SAR IMAGES: A CASE OF KERALA FLOOD EVENT IN 2018
Rao, Y.S.	pg. 4870 TH1.R11.2 - VEGETATION MONITORING USING A NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND DATA pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS
Raphael, Essence	pg. 5422 WE1.R19.10 - SUPPORTING LIGHTNING SAFETY AND DECISION SUPPORT AT THE NASA GLOBAL HYDROLOGY RESOURCE CENTER DISTRIBUTED ACTIVE ARCHIVE CENTER
Rapprich, Vladislav	pg. 4041 FR2.R14.5 - QUANTITATIVE PREDICTIONS OF REE ABUNDANCES IN CARBONATITES USING REFLECTANCE SPECTROSCOPY
Rapuzzi, Andrea	pg. 1707 TH1.R3.12 - CNN-BASED BUILDING FOOTPRINT DETECTION FROM SENTINEL-1 SAR IMAGERY
Rascher, Uwe	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Rashid, Mamoon	pg. 1 MO2.R3.1 - GULF STREAM DETECTION AND ESTIMATION WITH RADARSAT-2 ALONG-TRACK INTERFEROMETRY
Rasmussen, Thorkild Maack	pg. 5215 FR2.R10.4 - SURFICIAL IRON MINERAL POTENTIAL MAPPING FROM ASTER DATA IN MALMBERGET AND ADJOINING AREA IN NORRBOTTEN COUNTY SWEDEN
Rasp, Stephan	pg. 3987 FR2.R7.3 - TOWARDS PHYSICALLY-CONSISTENT, DATA-DRIVEN MODELS OF CONVECTION
Rasti, Behnood	pg. 2659 FR2.R5.2 - FUSION OF MULTISPECTRAL LIDAR AND HYPERSPECTRAL IMAGERY pg. 4035 FR2.R14.3 - TOWARDS 4D VIRTUAL OUTCROPS WITH HYPERSPECTRAL IMAGING pg. 3739 TH2.R12.4 - REMOTE SENSING AND DEEP LEARNING FOR SUSTAINABLE MINING
Ratajczak, Rémi	pg. 1813 TH1.R9.4 - SEMANTIC SEGMENTATION REFINEMENT WITH DEEP EDGE SUPERPIXELS TO ENHANCE HISTORICAL LAND COVER
Ratha, Debanshu	pg. 4870 TH1.R11.2 - VEGETATION MONITORING USING A NEW DUAL-POL RADAR VEGETATION INDEX: A PRELIMINARY

	STUDY WITH SIMULATED NASA-ISRO SAR (NISAR) L-BAND
	DATA (pg. 7021) TU1.R20.5 - A NON-MODEL BASED THREE COMPONENT SCATTERING POWER DECOMPOSITION FOR FULL POLARIMETRIC SAR DATA
Rattz, John	pg. 3387 TU2.R14.5 - A NOVEL ARCHITECTURE OF JUPYTERHUB ON AMAZON ELASTIC KUBERNETES SERVICE FOR OPEN DATA CUBE SANDBOX pg. 3391 TU2.R14.6 - SAR ANALYSIS READY DATA AND TOOLS FOR THE OPEN DATA CUBE pg. 3399 TU2.R14.8 - DATA CUBE APPLICATION ALGORITHMS FOR THE UNITED NATION SUSTAINABLE DEVELOPMENT GOALS (UN-SDGS)
Rauste, Yrjö	pg. 4509 WE1.R10.9 - PREDICTING GROWING STOCK VOLUME OF BOREAL FORESTS USING VERY LONG TIME SERIES OF SENTINEL-1 DATA pg. 4283 TU1.R1.9 - CLASSIFICATION OF WIDE-AREA SAR MOSAICS: DEEP LEARNING APPROACH FOR CORINE BASED MAPPING OF FINLAND USING MULTITEMPORAL SENTINEL-1 DATA
Rautiainen, Kimmo	WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION
Ravana, Xavier	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Ravanbakhsh, Mahdyar	pg. 2515 FR1.R17.1 - S2-CGAN: SELF-SUPERVISED ADVERSARIAL REPRESENTATION LEARNING FOR BINARY CHANGE DETECTION IN MULTISPECTRAL IMAGES
Ravanelli, Michela	pg. 6846 WE1.R2.8 - TIDS DETECTION FROM SHIP-BASED GNSS RECEIVER: FIRST TEST ON 2010 MAULE TSUNAMI
Ravanelli, Roberta	pg. 4779 TH1.R6.1 - LAND COVER AND SOIL CONSUMPTION MONITORING WITH A FOS GEOPORTAL IN FIVE ITALIAN BIG URBAN AREAS pg. 897 TU2.R7.7 - FIRST TEST OF AGISOFT METASHAPE SATELLITE IMAGE PROCESSING FOR DSM GENERATION: A CASE STUDY IN TRENTO WITH PLÉIADES IMAGERY pg. 2495 FR1.R16.7 - COSMO-SKYMED RANGE MEASUREMENTS FOR DISPLACEMENT MONITORING USING AMPLITUDE PERSISTENT SCATTERERS pg. 5242 FR2.R10.11 - LARGE SCALE ASSESSMENT OF FREE GLOBAL DEMS THROUGH THE GOOGLE EARTH ENGINE PLATFORM
Ravindra, Vinay	(pg. 3841) TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS

Rawlinson, Jonathan	pg. 6194 WE1.R13.4 - A TOPOGRAPHICALLY-ACCURATE GNSS-R REFLECTION POINT PREDICTOR FOR ON-BOARD OPERATIONAL PROCESSING
Raybaut, Myriam	pg. 3825 TH2.R16.5 - VALIDATION OF INNOVATIVE SYSTEMS OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION REDUCING EMISSIONS AND INCREASING SAFETY
Raymond, Juan	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION
Raynaud, Jean-Louis	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES
Rayon, Laura	pg. 5986 TU1.R4.12 - RITA: REQUIREMENTS AND PRELIMINARY DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT
Read, Jordan	pg. 3494 WE2.R7.3 - PROCESS GUIDED DEEP LEARNING FOR MODELING PHYSICAL SYSTEMS: AN APPLICATION IN LAKE TEMPERATURE MODELING
Reale, Anthony	pg. 3316 MO2.R7.8 - APPLYING THE NOAA UNIQUE COMBINED ATMOSPHERIC PROCESSING SYSTEM (NUCAPS) TO SUPPORT FORECASTERS AT THE US NAVY AND US AIR FORCE IN MONITORING IMPACTFUL PACIFIC WEATHER EVENTS
Reale, Diego	pg. 116 MO2.R6.9 - A MULTI-RESOLUTION GLRT TEST FOR THE DETECTION OF PERSISTENT SCATTERERS IN SAR TOMOGRAPHY
Realini, Eugenio	pg. 5372 TU2.R19.9 - UNDERSTANDING SEVERE WEATHER EVENTS AT AIRPORT SPATIAL SCALE
Redman, Brian	pg. 2097 TH2.R5.9 - OPTICAL AND POLARIMETRIC SAR DATA FUSION TERRAIN CLASSIFICATION USING PROBABILISTIC FEATURE FUSION
Reeves, Robert	pg. 1086 WE1.R6.2 - MAPPING ANTIMONY CONCENTRATION OVER GEOTHERMAL AREAS USING HYPERSPECTRAL AND THERMAL REMOTE SENSING
Regaieg, Omar	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Reiche, Johannes	pg. 704 TU1.R16.2 - DUAL POLARIMETRIC SAR COVARIANCE MATRIX ESTIMATION USING DEEP LEARNING
Reichstein, Markus	pg. 3979 FR2.R7.1 - ADVANCING DEEP LEARNING FOR EARTH SCIENCES: FROM HYBRID MODELING TO INTERPRETABILITY pg. 3999 FR2.R7.7 - DISCOVERING DIFFERENTIAL EQUATIONS FROM EARTH OBSERVATION DATA

Reid, Jeffrey	FR1.R19.1 - DETECTION OF NIGHTTIME FIRE COMBUSTION EFFICIENCY FOR WILDFIRES FROM VIIRS
	pg. 5588 FR2.R19.7 - DETECTING LAYER HEIGHT OF SMOKE
	AND DUST AEROSOLS OVER VEGETATED LAND AND WATER
	SURFACES VIA OXYGEN ABSORPTION BANDS
Reigber, Andreas	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY
	SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Reigstad, Marit	pg. 5881 FR1.R8.7 - OCEAN COLOR NET (OCN) FOR THE
	BARENTS SEA
Reinartz, Peter	pg. 5302 TU1.R19.3 - GAN-GENERATED ELEVATION MODELS
	IN COMPUTATIONAL FLUID DYNAMICS: A FEASIBILITY STUDY
	FOR COMPLEX URBAN TERRAIN
	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1
	TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION
	LABELS FOR EARTH OBSERVATION DATA: PART 2
Reising, Steve	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS
	FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Reitebuch, Oliver	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A
	BRIEF STATUS
Ren, Bo	pg. 1731 TH1.R5.6 - POLSAR SCENE CLASSIFICATION VIA
	LOW-RANK TENSOR-BASED MULTI-VIEW SUBSPACE
	REPRESENTATION
	pg. 1472 WE2.R9.10 - PANCHROMATIC IMAGE LAND COVER
	CLASSIFICATION VIA DCNN WITH UPDATING ITERATION
	<u>STRATEGY</u>
Ren, Christopher	pg. 6638 TU1.R13.1 - BUDD: MULTI-MODAL BAYESIAN
	UPDATING DEFORESTATION DETECTIONS
Ren, Fuhu	pg. 2535 FR1.R17.6 - GEOSOT GRID REMOTE SENSING
	INTELLIGENT INTERPRETATION MODEL BASED ON FINE-TUNING
	RESNET-18: A CASE STUDY OF CONSTRUCTION LAND
Ren, Guangbo	pg. 6586 FR2.R17.9 - THE RELATIONSHIP BETWEEN
	EMULSION FILM THICKNESS AND NORMALIZED RADAR CROSS
	SECTION CONSTRUCTED BY EXPERIMENT
Ren, Haohao	pg. 778 TU1.R18.10 - MULTI-VIEW FUSION BASED ON
	EXPECTATION MAXIMIZATION FOR SAR TARGET RECOGNITION
Ren, Huazhong	pg. 5266 FR2.R11.5 - PREDICTION OF GRAIN PROTEIN
	CONTENT OF WINTER WHEAT USING UAV BASED HYPERSPECTRAL DATA
	pg. 5505) TH2.R19.7 - AEROSOL OPTICAL DEPTH ESTIMATE USING GROUND-MEASURED SPECTRAL SKYLIGHT RATIO
	pg. 5505) TH2.R19.7 - AEROSOL OPTICAL DEPTH ESTIMATE USING GROUND-MEASURED SPECTRAL SKYLIGHT RATIO METHOD
	pg. 5505 TH2.R19.7 - AEROSOL OPTICAL DEPTH ESTIMATE USING GROUND-MEASURED SPECTRAL SKYLIGHT RATIO

Ren, Jinchang	pg. 76 MO2.R5.10 - 2D-SSA BASED MULTISCALE FEATURE FUSION FOR FEATURE EXTRACTION AND DATA CLASSIFICATION IN HYPERSPECTRAL IMAGERY
Ren, Juan	pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB- SAHARA AFRICA
Ren, Kaijun	pg. 4015 FR2.R8.3 - INVESTIGATION OF TROPICAL CYCLONE WIND ASYMMETRY FROM CROSS-POLARIZATION SAR IMAGERY
Ren, Li	pg. 3309 MO2.R7.6 - MONITORING HEAVY PRECIPITATION WITH THE CMORPH INTEGRATED SATELLITE PRECIPITATION ESTIMATES
Ren, Liyan	pg. 3195 TH2.R14.2 - DESIGN AND DEVELOPMENT OF SPATIO- TEMPORAL FUSION AND OPERATION PLATFORM FOR ANCIENT AND MODERN MAPS
Ren, Peng	pg. 3055 WE1.R9.3 - SEA-ICE CLASSIFICATION BASED ON OPTICAL IMAGE USING MORPHOLOGICAL PROFILE FEATURES pg. 60 MO2.R5.6 - SELF-PACED LEARNING WITH SUPERPIXELWISE FEATURES FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 4967 TH2.R6.8 - MULTI-SCALE DEEP RESIDUAL LEARNING FOR CLOUD REMOVAL
Ren, Ruilong	pg. 268 MO2.R17.3 - AIRPLANE RECOGNITION FROM REMOTE SENSING IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORK
Ren, Shijie	pg. 1715 TH1.R5.2 - SEMI-SUPERVISED CLASSIFICATION OF POLSAR DATA WITH MULTI-SCALE WEIGHTED GRAPH CONVOLUTIONAL NETWORK
Ren, Yahua	pg. 1335 WE2.R3.7 - AZIMUTH VELOCITY ESTIMATION IN MULTI-CHANNEL SAR BASED ON VARIABLE-BORESIGHT MODE
Ren, Yibin	pg. 3051 WE1.R9.2 - SEA ICE AND OPEN WATER CLASSIFICATION OF SAR IMAGES USING A DEEP LEARNING MODE pg. 6762 TU1.R17.10 - A DEEP LEARNING MODEL FOR OCEANIC MESOSCALE EDDY DETECTION BASED ON MULTI- SOURCE REMOTE SENSING IMAGERY
Ren, Yu	pg. 4371 TU2.R11.8 - MONITORING OF VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT BY MULTIANGULAR CANOPY REFLECTANCE SPECTRA IN MAIZE
Rengarajan, Rajagopalan	pg. 6137 WE1.R7.10 - THE NEW LANDSAT GLOBAL LAND SURVEY (GLS) DEM
Renker, Matthias	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Rennie, Michael	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS

Reth, Alan	pg. 6405 TH1.R15.7 - SEASONAL VARIATION IN THE MEASUREMENT OF GOES-16 ABI CHANNEL-TO-CHANNEL REGISTRATION
Reuß, Felix	pg. 140 MO2.R14.4 - CLASSIFICATION OF WHEAT AND BARLEY FIELDS USING SENTINEL-1 BACKSCATTER
Revercomb, Henry	pg. 3640 TH2.R4.1 - THE NEXT GENERATION US LEO HYPERSPECTRAL INFRARED SOUNDER pg. 3657 TH2.R4.6 - EXPEDITIOUS IMPLEMENTATION OF A HYPERSPECTRAL IMAGING INFRARED SOUNDER (HIIS) IN GEOSTATIONARY ORBIT
Reyhani, Omid	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Reynolds, Jennifer	pg. 6289 WE2,R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Rhee, Paul	pg. 948 TU2.R16.12 - DESIGNING SYNTHETIC OVERHEAD IMAGERY TO MATCH A TARGET GEOGRAPHIC REGION: PRELIMINARY RESULTS TRAINING DEEP LEARNING MODELS
Rhinane, Hassan	pg. 5038 FR1.R1.6 - EVALUATING LAND SURFACE MOISTURE CONDITIONS BEFORE AND AFTER FLASH-FLOOD STORM FROM OPTICAL AND THERMAL DATA: MODELS COMPARISON AND VALIDATION
Rialland, Ronan	pg. 4918 TH2.R1.4 - OMP-BASED ALGORITHM FOR MINERAL REFLECTANCE SPECTRA DECONVOLUTION FROM HYPERSPECTRAL IMAGES
Ribalta, Angel	pg. 2001 TH1.R18.7 - EXTENDING THE FOLKI-PIV ALGORITHM FOR THE COHERENT COREGISTRATION OF SAR IMAGES
Ribo, Serni	pg. 3341 TU2.R13.1 - FFSCAT MISSION: PRELIMINARY RESULTS AND ICE PRODUCTS VALIDATION WITH MOSAIC CAMPAIGN DATA pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Ribó, Serni	TU2.R13.6 - CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY?
Ricciardulli, Lucrezia	pg. 5651 TU1.R8.2 - TRAINING OF TROPICAL CYCLONE WIND SPEED ALGORITHMS FOR THE WINDSAT AND AMSR SENSORS
Riccio, Daniele	pg. 352 MO2.R19.3 - POLARIMETRIC TWO-SCALE MODEL FOR THE EVALUATION OF BISTATIC SCATTERING FROM ANISOTROPIC SEA SURFACES pg. 1536 WE2.R16.4 - ASSESSING PERFORMANCE OF MULTITEMPORAL SAR IMAGE DESPECKLING FILTERS VIA A BENCHMARKING TOOL pg. 6806 TU2.R2.10 - FIRE RISK ANALYSIS BY USING SENTINEL-2 DATA: THE CASE STUDY OF THE VESUVIUS IN

	CAMPANIA, ITALY
Rice, Marlon	pg. 3143 WE2.R14.3 - SERVICE-LEARNING: AN ENTRÉE TO INTRODUCE MINORITY STUDENTS TO REMOTE SENSING RESEARCH
Richaume, Philippe	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Richter, Rudolf	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Riedel, Morris	pg. 1058 WE1.R5.6 - SCALING UP A MULTISPECTRAL RESNET-50 TO 128 GPUS pg. 1973 TH1.R17.11 - APPROACHING REMOTE SENSING IMAGE CLASSIFICATION WITH ENSEMBLES OF SUPPORT VECTOR MACHINES ON THE D-WAVE QUANTUM ANNEALER
Riedlinger, Torsten	pg. 3243 MO2.R2.2 - AUTOMATIC NEAR-REAL TIME FLOOD EXTENT AND DURATION MAPPING BASED ON MULTI-SENSOR EARTH OBSERVATION DATA
Riel, Stefanie	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Rieu, Pierre	pg. 3521 WE2.R8.1 - DETECTION OF INTERNAL SOLITARY WAVES WITH CONVENTIONAL AND ADVANCED SAR ALTIMETRY PROCESSING METHODS: PRELIMINARY RESULTS
Riga, Su	pg. 2799 FR2.R12.3 - REMOTELY SENSED METHOD FOR DETECTION OF SPATIAL DISTRIBUTION PATTERN OF DRYLAND PLANTS IN WATER LIMITED ECOSYSTEM
Rikka, Sander	pg. 4750 TH1.R4.5 - METHODOLOGY FOR MAPPING FLOOD EXTENT ON ESTONIAN FLOODPLAINS
Rilee, Michael	pg. 901 TU2.R7.8 - STARE TOWARDS INTEGRATIVE ANALYSIS WITH MINIMIZED DATA WRANGLING HASSLE
Rinaldi, Michele	pg. 4534 WE1.R11.5 - A EUROPEAN TEST SITE FOR GROUND DATA MEASUREMENT AND EARTH OBSERVATION SERVICES VALIDATION
Rincon, Rafael	pg. 6150 WE1.R12.2 - PERFORMANCE OF SWESARR'S MULTI-FREQUENCY DUAL-POLARIMETRY SYNTHETIC APERTURE RADAR DURING NASA'S SNOWEX AIRBORNE CAMPAIGN (pg. 4073) FR2.R15.6 - P-BAND SYNTHETIC APERTURE RADAR FOR PLANETARY SUBSURFACE IMAGING APPLICATIONS
Rishmawi, Khaldoun	TH1.R6.8 - DEVELOPMENT OF A HARMONIZED MULTI-SENSOR GLOBAL ACTIVE FIRE DATA SET: CURRENT STATUS AND MULTI- PRODUCT VALIDATION RESULTS
Risholm, Petter	pg. 3483 WE2.R4.8 - DEVELOPMENT OF A FLASH-LIDAR ELEGANT BREADBOARD MODEL FOR RENDEZVOUS

	APPLICATIONS
Ritter, Christoph	(pg. 5584) FR2.R19.6 - RETRIEVAL OF ARCTIC PARTICLE MICROPHYSICS FROM AIR-BORNE LIDAR AND SUN- PHOTOMETER DATA
Rius, Antonio	TU2.R13.6 - CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY?
Rivera, Julia	(pg. 3143) WE2.R14.3 - SERVICE-LEARNING: AN ENTRÉE TO INTRODUCE MINORITY STUDENTS TO REMOTE SENSING RESEARCH
Rizaev, Igor	pg. 1568 WE2.R16.12 - A SIMULATION STUDY TO EVALUATE THE PERFORMANCE OF THE CAUCHY PROXIMAL OPERATOR IN DESPECKLING SAR IMAGES OF THE SEA SURFACE
Rizvi, Syed	pg. 3387 TU2.R14.5 - A NOVEL ARCHITECTURE OF JUPYTERHUB ON AMAZON ELASTIC KUBERNETES SERVICE FOR OPEN DATA CUBE SANDBOX pg. 3399 TU2.R14.8 - DATA CUBE APPLICATION ALGORITHMS FOR THE UNITED NATION SUSTAINABLE DEVELOPMENT GOALS (UN-SDGS)
Rizzoli, Paola	pg. 359 MO2.R19.5 - MODELING TEMPORAL DECORRELATION AT X-BAND BY COMBINING TANDEM-X AND PAZ INSAR DATA
Robinson, Caleb	TU2.R6.2 - WEAKLY SUPERVISED SEMANTIC SEGMENTATION IN THE 2020 IEEE GRSS DATA FUSION CONTEST
Robinson, Dale	pg. 3302 MO2.R7.4 - OVERCOMING BARRIERS TO THE USE OF SATELLITE DATA IN FISHERIES MANAGEMENT pg. 3207 TH2.R14.5 - ERDDAP: PROVIDING EASY ACCESS TO REMOTE SENSING DATA FOR SCIENTISTS AND STUDENTS
Robinson, Nathaniel	pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Rocadenbosch, Francesc	pg. 6077 WE1.R4.2 - FLOATING DOPPLER WIND LIDAR MEASUREMENT OF WIND TURBULENCE: A CLUSTER ANALYSIS pg. 6081 WE1.R4.3 - OFFSHORE DOPPLER WIND LIDAR ASSESSMENT OF ATMOSPHERIC STABILITY pg. 5682 TU1.R8.10 - MOTIONAL BEHAVIOR ESTIMATION USING SIMPLE SPECTRAL ESTIMATION: APPLICATION TO THE OFF-SHORE WIND LIDAR.
Rocha, Cesar	(pg. 3533) WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Roda-Robles, Encarnación	pg. 5226 FR2.R10.7 - MULTI-SCALE APPROACH USING REMOTE SENSING TECHNIQUES FOR LITHIUM PEGMATITE EXPLORATION: FIRST RESULTS (pg. 561) TU1.R7.11 - LITHIUM (LI) PEGMATITE MAPPING USING ARTIFICIAL NEURAL NETWORKS (ANNS): PRELIMINARY RESULTS

Rodell, Matthew	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Rodger, Maximilian	pg. 2077 TH2.R5.4 - SAR AND AIS DATA FUSION FOR DENSE SHIPPING ENVIRONMENTS
Rodrigues, Marcos	pg. 168 MO2.R14.11 - ASSESSING DIFFERENTIATION BETWEEN PASTURE AND CROPLANDS USING REMOTE SENSING IMAGE TIME SERIES METRICS pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT- BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO
Rodriguez Suquet, Raquel	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Rodriguez, Ernesto	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Rodriguez, Jorge	pg. 5111 FR1.R10.1 - DEVELOPMENT OF LOW-COST GROUND CONTROL SYSTEM FOR UAV-BASED MAPPING pg. 4902 TH1.R11.10 - A SUPERVOXEL-BASED APPROACH FOR LEAVES SEGMENTATION OF POTATO PLANTS FROM POINT CLOUDS
Rodriguez-Fernandez, Nemesio	pg. 4830 TH1.R10.3 - MONITORING THE GLOBAL BIOMASS THANKS TO 10 YEARS OF SMOS VEGETATION OPTICAL DEPTH pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Rodriguez-Gomez, Cecilia	pg. 1086 WE1.R6.2 - MAPPING ANTIMONY CONCENTRATION OVER GEOTHERMAL AREAS USING HYPERSPECTRAL AND THERMAL REMOTE SENSING
Rodriguez-Gutierrez, Fabian	(pg. 6353) TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2)
Rodriguez-Morales, Fernando	pg. 2924 MO2.R9.2 - SNOW GRAIN SIZE ESTIMATES FROM AIRBORNE KA-BAND RADAR MEASUREMENTS pg. 3019 TU2.R9.5 - AIRBORNE ALTIMETRY MEASUREMENTS IN THE ARCTIC USING A COMPACT MULTI-BAND RADAR SYSTEM: INITIAL RESULTS
Rodriguez-Suquet, Raquel	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR).
Roesler, Carolyn	pg. 6206 WE1.R13.7 - GPS SIGNAL LAND REFLECTION COHERENCE DEPENDENCE ON WATER EXTENT AND SURFACE

	TOPOGRAPHY USING CYGNSS MEASUREMENTS [pg. 6210] WE1.R13.8 - DETECTION OF COHERENT GNSS-R MEASUREMENTS USING A SUPPORT VECTOR MACHINE [pg. 6218] WE1.R13.10 - COHERENT GPS REFLECTIONS OVER OCEAN SURFACE
Rogass, Christian	FR2.R14.7 - GEOLOGICAL CHARACTERIZATION OF NIAQORNARSSUIT COMPLEX BASED ON AIRBORNE HYPERSPECTRAL AND MAGNETIC DATA FUSION
Roger, Jean-Claude	pg. 3723 TH2.R11.7 - CAPTURING CORN AND SOYBEAN YIELD VARIABILITY AT FIELD SCALE USING VERY HIGH SPATIAL RESOLUTION SATELLITE DATA
Rogers, Erick	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE
Rohilla, Himanshu	pg. 1933 TH1.R17.1 - PATCH BASED LAND COVER CLASSIFICATION: A COMPARISON OF DEEP LEARNING, SVM AND NN CLASSIFIERS
Rolland, Amandine	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES
Rolland, Jean-François	pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS
Rollins, Chris	pg. 6857 WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING
Romaniello, Vito	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY) pg. 6055 TU2.R4.6 - SCIENTIFIC REQUIREMENTS FOR A NEW EO MISSION IN THE MWIR-LWIR SPECTRAL RANGE
Romero-Puig, Noelia	pg. 3420 TU2.R15.6 - COMPARING INSAR METHODOLOGIES FOR THE RETRIEVAL OF PADDY RICE HEIGHT WITH TANDEM-X DATA pg. 4148 MO2.R10.8 - INITIAL TESTS FOR THE GENERATION OF A SPANISH NATIONAL MAP OF FOREST HEIGHT FROM TANDEM-X DATA
Romero-Wolf, Andrew	WE1.R12.9 - PASSIVE RADAR INVESTIGATIONS OF EUROPA'S IONOSPHERE: A LOW-RESOURCE APPROACH FOR VHF DISPERSION CORRECTIONS AND IONOSPHERIC TOMOGRAPHY
Rommen, Bjorn	pg. 1913 TH1.R16.7 - TIME-DOMAIN SAR PROCESSOR FOR SENTINEL-1 TOPS DATA pg. 124 MO2.R6.11 - SINGLE-PASS SPACEBORNE TRANSMITTER-STATIONARY RECEIVER BISTATIC SAR TOMOGRAPHY - NOVEL SOLUTION WITH 3 IMAGING CHANNELS
Román, Miguel	pg. 156 MO2.R14.8 - UNCERTAINTIES IN VIIRS NIGHTTIME LIGHT TIME SERIES ANALYSIS

Ronci, Federico	pg. 2225 TH2.R20.8 - OIL SPILL DETECTION FROM SAR IMAGES BY DEEP LEARNING
Rong, Tuotuo	pg. 1472 WE2.R9.10 - PANCHROMATIC IMAGE LAND COVER CLASSIFICATION VIA DCNN WITH UPDATING ITERATION STRATEGY
Rosas Elguera, José Guadalupe	pg. 3223 TH2.R14.9 - GEONOTE: A FIELD NOTEBOOK AND DATABASE FOR GEOLOGY
Rose, Shannon	pg. 731 TU1.R16.9 - ISCE DOCKER TOOLS: AUTOMATED RADIOMETRIC TERRAIN CORRECTION AND IMAGE COREGISTRATION OF UAVSAR MLC DATA
Rosello, Josep	pg. 5941 MO2.R13.10 - NOC GNSS-R GLOBAL OCEAN WIND SPEED AND SEA-ICE PRODUCTS USING DATA FROM THE TECHDEMOSAT-1 MISSION
Rosen, Paul	pg. 3139 WE2.R14.2 - SAR/INSAR IMAGING GEODESY TRAINING CURRICULUM FOR SOLID EARTH SCIENTISTS pg. 5949 TU1.R4.2 - THE CASE FOR 6-HOUR REPEAT INSAR WE1.R1.7 - DEVELOPMENT OF NISAR SOIL MOISTURE PRODUCT
Rosenberg, Robert	pg. 6381 TH1.R15.1 - OCO-2 CALIBRATION REFINEMENT ACROSS VERSIONS AND PLANS FOR OCO-3 pg. 6101 WE1.R7.1 - ESTABLISHING LAUNCH READINESS OF NASA ISS INSTRUMENT OCO-3
Rosenqvist, Ake	pg. 5065 FR1.R4.1 - FIRST ASSESSMENT OF NOVASAR-1 S-BAND SAR BACKSCATTER CHARACTERISTICS OVER TROPICAL WETLANDS pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS pg. 6154 WE1.R12.3 - INITIAL NOVASAR-1 DATA PROCESSING AND IMAGERY EVALUATION pg. 3383 TU2.R14.4 - ANALYSIS READY DATA FOR INSAR APPLICATIONS pg. 5081 FR1.R4.5 - AN ANALYSIS OF ICESAT-2, PALSAR-2 AND SENTINEL-1 DATA FOR THE ASSESSMENT OF INUNDATION CHARACTERISTICS IN THE AMAZON BASIN pg. 3391 TU2.R14.6 - SAR ANALYSIS READY DATA AND TOOLS FOR THE OPEN DATA CUBE pg. 5971 TU1.R4.8 - NEW INSIGHTS FROM AUSTRALIA'S SYNTHETIC APERTURE RADAR CAPABILITY, NOVASAR-1
Rosenqvist, Jessica	pg. 5081 FR1.R4.5 - AN ANALYSIS OF ICESAT-2, PALSAR-2 AND SENTINEL-1 DATA FOR THE ASSESSMENT OF INUNDATION CHARACTERISTICS IN THE AMAZON BASIN
Ross, Jonathon	pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS
Rossa, Pedro	pg. 2619 FR2.R3.4 - HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN

	REMOTE SENSING IMAGES?
Rossner, Godela	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES
Roth, Keely	pg. 3703 TH2.R11.1 - END-USER DRIVEN REMOTE SENSING FOR AGRICULTURAL APPLICATIONS
Rotics, Shay	pg. 4799 TH1.R6.6 - STABILITY CHARACTERIZATION OF THE RESPONSE OF WHITE STORKS' FORAGING BEHAVIOR TO VEGETATION DYNAMICS RETRIEVED FROM LANDSAT TIME SERIES
Roudinin, Sepehr	FR1.R19.1 - DETECTION OF NIGHTTIME FIRE COMBUSTION EFFICIENCY FOR WILDFIRES FROM VIIRS
Rougé, Bernard	pg. 5978) TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Routray, Aurobinda	pg. 2221 TH2.R20.7 - SEISMIC FAULT ANALYSIS USING CURVATURE ATTRIBUTE AND VISUAL SALIENCY
Roux, Emile	pg. 6491 FR1.R15.9 - THE NEW PARAMOTOR PROJECT: FLEXIBILITY AT LOW COST TO OVERCOME MAIN LIMITATIONS OF MULTI-COPTERS AND FIXED-WINGS UAVS
Roy, Alexandre	pg. 3338) TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
Roy, Richard	pg. 5466 TH1.R19.9 - SUBMILLIMETER WAVE DIFFERENTIAL ABSORPTION RADAR FOR WATER VAPOR SOUNDING IN THE MARTIAN ATMOSPHERE
Roy, Sudip	pg. 4191 MO2.R11.8 - AN ADAPTIVE NEURO-FUZZY APPROACH FOR DECOMPOSITION OF MIXED PIXELS TO IMPROVE CROP AREA ESTIMATION USING SATELLITE IMAGES pg. 1699 TH1.R3.10 - A HYBRID MODEL BASED ON FUSED FEATURES FOR DETECTION OF NATURAL DISASTERS FROM SATELLITE IMAGES
Rozenstein, Offer	pg. 5274 FR2.R11.7 - SENTINEL-2 AND PLANETSCOPE DATA FUSION INTO DAILY 3 M IMAGES FOR LEAF AREA INDEX MONITORING
Ruan, Zhimin	pg. 889 TU2.R7.5 - RESEARCH ON 3D REAL SCENE PLANNING METHOD FOR MINE REFORESTATION
Rubino, Roselena	pg. 6431 FR1.R13.4 - CHARACTERIZING SYSTEMATIC ERRORS IN THE FARADAY ROTATION RETRIEVAL FROM SMOS MEASUREMENTS
Rud, Ronit	pg. 6754 TU1.R17.8 - MULTI SEASONAL DEEP LEARNING CLASSIFICATION OF VENUS IMAGES
Rudari, Roberto	pg. 3251 MO2.R2.4 - SYSTEMATIC AND AUTOMATIC LARGE-

	SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA
Rudolph, Scott	pg. 6547 FR2.R13.11 - MECHANICALLY-ACTUATED RECONFIGURABLE REFLECTARRAY (MARR) FOR MICROWAVE SINGLE PIXEL IMAGER (MSPI) pg. 6551 FR2.R13.12 - IMAGING ALGORITHM AND MEASUREMENT ERROR IMPACT ON RETRIEVALS FROM THE MICROWAVE SINGLE PIXEL IMAGER (MSPI)
Rudolph, Tobias	pg. 6535 FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES
Ruello, Giuseppe	pg. 1536 WE2.R16.4 - ASSESSING PERFORMANCE OF MULTITEMPORAL SAR IMAGE DESPECKLING FILTERS VIA A BENCHMARKING TOOL pg. 6806 TU2.R2.10 - FIRE RISK ANALYSIS BY USING SENTINEL-2 DATA: THE CASE STUDY OF THE VESUVIUS IN CAMPANIA, ITALY
Ruf, Chris	pg. 6270 WE2.R13.2 - ANALYSIS OF GNSS-R COVERAGE BY A REGIONAL AIRCRAFT FLEET pg. 6202 WE1.R13.6 - INVESTIGATING THE IMPACT OF COHERENT AND INCOHERENT SCATTERING TERMS IN GNSS-R DELAY DOPPLER MAPS pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY pg. 5042 FR1.R1.7 - SOILSCAPE WIRELESS IN SITU NETWORKS IN SUPPORT OF CYGNSS LAND APPLICATIONS pg. 5805 TH1.R8.9 - PERFORMANCE ASSESSMENT OF CYGNSS HIGH WIND RETRIEVAL FOR THE IMPROVED EIRP CALIBRATION
Ruf, Christopher	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE pg. 3353 TU2.R13.4 - NEXT GENERATION GNSS-R INSTRUMENT pg. 6293 WE2.R13.8 - MONITORING GPS EIRP FOR CYGNSS LEVEL 1 CALIBRATION
Rufin, Philippe	pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO
Ruggieri, Sergio	pg. 4534 WE1.R11.5 - A EUROPEAN TEST SITE FOR GROUND DATA MEASUREMENT AND EARTH OBSERVATION SERVICES VALIDATION
Ruiz, Marco	pg. 6854 WE1.R2.10 - INSAR DEFORMATION ANALYSIS AND SOURCE MODELLING OF THE GUAGUA PICHINCHA VOLCANO (ECUADOR)
Ruiz-Armenteros, Antonio M.	TU2.R3.6 - PS-INSAR TARGET CLASSIFICATION USING DEEP LEARNING

	pg. 1026 WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)
Ruiz-de-Azua, Joan A.	pg. 363 MO2.R19.6 - EVALUATION OF LORA FOR DATA RETRIEVAL OF OCEAN MONITORING SENSORS WITH LEO SATELLITES
	pg. 3574 WE2.R15.7 - DEMONSTRATION OF THE FEDERATED SATELLITE SYSTEMS CONCEPT FOR FUTURE EARTH OBSERVATION SATELLITE MISSIONS
Rundle, John	pg. 3615 TH2.R2.1 - THE QUAKES ANALYTIC CENTER FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL SCALES OF TECTONIC AND EARTHQUAKE PROCESSES
Running, Steven W.	pg. 2320 FR1.R6.9 - DOWN-SCALING MODIS VEGETATION PRODUCTS WITH LANDSAT GAP FILLED SURFACE REFLECTANCE IN GOOGLE EARTH ENGINE
Rupp, Danielle	pg. 5073 FR1.R4.3 - TRACKING CHANGES IN INUNDATION EXTENT OF A BOREAL WETLAND IN ALASKA USING L-BAND SAR
Russo, Ilaria Mara	pg. 6214 WE1.R13.9 - WAVE COHERENCE IN GNSS REFLECTOMETRY: A SIGNAL PROCESSING POINT OF VIEW
Rußwurm, Marc	pg. 7025 TU2.R20.1 - MODEL AND DATA UNCERTAINTY FOR SATELLITE TIME SERIES FORECASTING WITH DEEP RECURRENT MODELS pg. 7041 TU2.R20.5 - META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION
Ryabkova, Maria	pg. 5713 TU2.R8.7 - BISTATIC DOPPLER SPECTRA OF THE SIGNAL REFLECTED BY ROUGH WATER SURFACE MEASURED BY MODIFIED MONOSTATIC RADAR
Ryabkova, Mariya	pg. 5693 TU2.R8.2 - APPLICATION OF DOPPLER RADAR FOR MEASUREMENT OF CURRENT VELOCITY AT SMALL INCIDENCE ANGLES: THE FIRST EXPERIMENTS AT THE RIVER
Ryan, Robert	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Ryckman, Mason	pg. 6321 WE2.R17.7 - DUCK NEST DETECTION THROUGH REMOTE SENSING
Ryu, Dongryeol	pg. 3552 WE2.R15.1 - STATUS OF THE KOMPSAT-5 SAR MISSION, UTILIZATION AND FUTURE PLANS pg. 3556 WE2.R15.2 - MULTI-TEMPORAL ASSESSMENT OF X-BAND SAR SOIL MOISTURE RETRIEVALS ACROSS GROWTH STAGES OF A DRYLAND WHEAT FIELD pg. 3560 WE2.R15.3 - INTERCOMPARISON OF X- AND C-BANDS ACTIVE MICROWAVE SOIL MOISTURE RETRIEVALS OVER DRYLAND WHEAT FIELDS
Ryu, Geun-Hyeok	pg. 5356 TU2.R19.5 - EVALUATION OF GPM IMERG PRODUCTS OVER SOUTH KOREA

Ryu, Joo-Hyung	pg. 5612 MO2.R8.3 - MAPPING RED TIDE INTENSITY USING MULTISPECTRAL CAMERA ON UNMANNED AERIAL VEHICLE: A CASE STUDY IN KOREAN SOUTH COAST
Rättich, Michaela	pg. 3243 MO2.R2.2 - AUTOMATIC NEAR-REAL TIME FLOOD EXTENT AND DURATION MAPPING BASED ON MULTI-SENSOR EARTH OBSERVATION DATA
Réjichi, Safa	pg. 144 MO2.R14.5 - COMPARISON BETWEEN MULTITEMPORAL GRAPH BASED CLASSICAL LEARNING AND LSTM MODEL CLASSIFICATIONS FOR SITS ANALYSIS
Rüdiger, Chris	pg. 3369 TU2.R13.8 - FIRST EXPERIMENTAL EVIDENCE OF WIND AND SWELL SIGNATURES IN L5 GPS AND E5A GALILEO GNSS-R WAVEFORMS
Rüdiger, Christopher	pg. 5925 MO2.R13.6 - UNTANGLING THE GNSS-R COHERENT AND INCOHERENT COMPONENTS: EXPERIMENTAL EVIDENCES OVER THE OCEAN
S	
S, Mohamed Musthafa	pg. 4335) TU2.R10.11 - FOREST ABOVE GROUND BIOMASS ESTIMATION USING MULTI-SENSOR GEOSTATISTICAL APPROACH
S. Silva, Vanessa	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Sacaleanu, Dragos Ioan	pg. 4271 TU1.R1.6 - INTEGRATED PLATFORM FOR ECOSYSTEMS MONITORING BASED ON REMOTE AND IN SITU MEASUREMENTS
Sacco, Nicola	pg. 4080 MO2.R1.2 - URBAN LAND-USE AND LAND-COVER MAPPING BASED ON THE CLASSIFICATION OF TRANSPORT DEMAND AND REMOTE SENSING DATA
Sacco, Patrizia	pg. 3282 MO2.R4.5 - THE HYPERSPECTRAL PRISMA MISSION IN OPERATIONS
Sadeh, Yuval	pg. 5274] FR2.R11.7 - SENTINEL-2 AND PLANETSCOPE DATA FUSION INTO DAILY 3 M IMAGES FOR LEAF AREA INDEX MONITORING
Sagan, Vasit	pg. 1117) WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Saha, Jayasree	pg. 1719 TH1.R5.3 - UNSUPERVISED LAND COVER CLASSIFICATION OF HYBRID POLSAR IMAGES USING DEEP NETWORK pg. 1965 TH1.R17.9 - FROM SUPERVISED TO UNSUPERVISED LEARNING FOR LAND COVER ANALYSIS OF SENTINEL-2 MULTISPECTRAL IMAGES.
Saha, Sudipan	pg. 692 TU1.R12.10 - A NOVEL APPROACH TO UNSUPERVISED

	SEGMENTATION OF MULTITEMPORAL VHR IMAGES BASED ON DEEP LEARNING
Sahl, Remi	pg. 3817 TH2.R16.3 - USE OF SAR IMAGERY AND ARTIFICIAL INTELLIGENCE FOR A MULTI-COMPONENTS OCEAN MONITORING
Sahl, Rémi	(pg. 5380) TU2.R19.11 - COMBINATION OF GEOSTATIONARY AND POLAR SATELLITE SENSORS TO MONITOR CUMULONIMBUS AND THEIR WINDS AT THE OCEAN SURFACE
Sahoo, Rabi Narayan	pg. 5286 FR2.R11.10 - LEAF COUNTING IN RICE (ORYZA SATIVA L.) USING OBJECT DETECTION: A DEEP LEARNING APPROACH
Said, Faozi	pg. 5658 TU1.R8.4 - AN OVERVIEW OF NOAA CYGNSS WIND PRODUCT VERSION 1.0 pg. 5794 TH1.R8.6 - SCATSAT-1 HIGH WINDS GEOPHYSICAL MODEL FUNCTION AND ITS WINDS APPLICATION IN OPERATIONAL MARINE FORECASTING AND WARNING
Saillant, Stephane	pg. 1797 TH1.R7.11 - CHARACTERIZATION OF THE WALKING ACTIVITY WITHIN THE FOREST BY USING A DOPPLER ANALYSIS IN THE UHF-BAND
Saini, Aradhya	pg. 2237 TH2.R20.11 - FEATURE-BASED TEMPLATE MATCHING FOR JOGGLED FISHPLATE DETECTION IN RAILROAD TRACK WITH DRONE IMAGES
Saito, Hirobumi	pg. 3578 WE2.R15.8 - THE LATEST STATUS OF OUR COMMERCIAL SMALL SYNTHETIC APERTURE RADAR SATELLITE CONSTELLATION
Saito, Takashi	pg. 5159 FR1.R11.1 - ASSESSING CROP PRODUCTIVITY IN DECONTAMINATED FARMLAND IN FUKUSHIMA USING MICROSATELLITE VENMS AND HYPERSPECTRAL SENSING
Saitoh, Sei-Ichi	pg. 6222 WE1.R15.1 - INFLIGHT RADIOMETRIC CALIBRATION FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON
Sakaiya, Eiji	pg. 5159 FR1.R11.1 - ASSESSING CROP PRODUCTIVITY IN DECONTAMINATED FARMLAND IN FUKUSHIMA USING MICRO- SATELLITE VENMS AND HYPERSPECTRAL SENSING
Sakaizawa, Daisuke	(pg. 3467) WE2.R4.4 - PROGRESS OF THE ISS BASED VEGETATION LIDAR MISSION, MOLI - JAPAN'S FIRST SPACE- BASED LIDAR
Sakamoto, Yuji	pg. 6222 WE1.R15.1 - INFLIGHT RADIOMETRIC CALIBRATION FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON
Sakanoue, Seiichi	pg. 6464 FR1.R15.2 - CONDITIONS OF AERIAL PHOTOGRAPHY TO REDUCE DOMING EFFECT
Sakurada, Ken	pg. 2069 TH2.R5.2 - GAN-BASED SAR-TO-OPTICAL IMAGE

	TRANSLATION WITH REGION INFORMATION
Salberg, Arnt B.	pg. 1877 TH1.R12.9 - LARGE-SCALE VEGETATION HEIGHT MAPPING FROM SENTINEL DATA USING DEEP LEARNING
Salberg, Arnt-Børre	pg. 1801 TH1.R9.1 - SELF-CONSTRUCTING GRAPH CONVOLUTIONAL NETWORKS FOR SEMANTIC LABELING
Salcedo-Bosch, Andreu	pg. 6077 WE1.R4.2 - FLOATING DOPPLER WIND LIDAR MEASUREMENT OF WIND TURBULENCE: A CLUSTER ANALYSIS pg. 6081 WE1.R4.3 - OFFSHORE DOPPLER WIND LIDAR ASSESSMENT OF ATMOSPHERIC STABILITY pg. 5682 TU1.R8.10 - MOTIONAL BEHAVIOR ESTIMATION USING SIMPLE SPECTRAL ESTIMATION: APPLICATION TO THE OFF-SHORE WIND LIDAR.
Salehi, Sara	FR2.R14.7 - GEOLOGICAL CHARACTERIZATION OF NIAQORNARSSUIT COMPLEX BASED ON AIRBORNE HYPERSPECTRAL AND MAGNETIC DATA FUSION
Salepci, Nesrin	pg. 4874 TH1.R11.3 - RADAR-CROP-MONITOR - MAPPING AGRICULTURAL CONDITIONS WITH SENTINEL-1 TIME SERIES
Sales, Vinicius	pg. 5207 FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA
Salgado, Sandra	pg. 5325 TU1.R19.9 - IMPROVEMENT OF A CIRRUS CORRECTION EMPIRICAL METHOD WITH SENTINEL-2 DATA
Salim, Maryam	pg. 6369 TH1.R13.7 - RFI MITIGATION USING A NEW COMB FILTER FOR WIDEBAND AUTOCORRELATION RADIOMETRY
Salinas, Santo V.	pg. 5533 FR1.R19.3 - CHARACTERIZATION OF BIOMASS BURNING AEROSOLS DURING THE 2019 FIRE EVENT: SINGAPORE AND KUCHING CITIES pg. 5578 FR2.R19.4 - WRF-CHEM SIMULATIONS OF AEROSOL TRANSPORT DURING THE ATTIKA FOREST FIRE EVENT OF JULY 2018
Salmon, Brian	pg. 2244 FR1.R5.1 - UNSUPERVISED SEQUENTIAL CLASSIFICATION OF MODIS TIME-SERIES
Saluja, Rohit	pg. 5286 FR2.R11.10 - LEAF COUNTING IN RICE (ORYZA SATIVA L.) USING OBJECT DETECTION: A DEEP LEARNING APPROACH
Salvagio, Carl	pg. 6321 WE2.R17.7 - DUCK NEST DETECTION THROUGH REMOTE SENSING
Salvatore, Stramondo	pg. 810 TU2.R3.7 - SUBSIDENCE MONITORING ALONG RAVENNA COASTAL AREA (NORTHERN ITALY) BY INSAR AND GPS DATA
Salvucci, Guido	pg. 3947 FR2.R1.7 - OBSERVATION-DRIVEN ESTIMATION OF SURFACE WATER BALANCE COMPONENTS FROM SMAP MEASUREMENTS

Salze, Pascal	pg. 2952 MO2.R9.10 - CHARACTERIZATION OF ALPINE SNOWPACKS USING A LOW COMPLEXITY PORTABLE MIMO RADAR SYSTEM
Samaniego, Pablo	pg. 6854) WE1.R2.10 - INSAR DEFORMATION ANALYSIS AND SOURCE MODELLING OF THE GUAGUA PICHINCHA VOLCANO (ECUADOR)
Samelson, Roger	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Samiappan, Sathishkumar	pg. 1271 WE1.R20.2 - HYPERSPECTRAL BAND SELECTION USING MOTH-FLAME METAHEURISTIC OPTIMIZATION pg. 497 TU1.R6.6 - HYPERSPECTRAL IMAGE CLASSIFICATION USING FISHER'S LINEAR DISCRIMINANT ANALYSIS FEATURE REDUCTION WITH GABOR FILTERING AND CNN pg. 6662 TU1.R13.7 - STRATEGIC CONSERVATION OF GULF COAST LANDSCAPES USING MULTI-CRITERIA DECISION ANALYSIS AND OPEN SOURCE REMOTE SENSING AND GIS DATA
Sammons, Matt	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2).
Sammons, Matthew	pg. 6449 FR1.R13.9 - ON STUDY OF ERROR SOURCES IN MICROWAVE THERMAL VACUUM NON-LINEARITY TEST AND ON-ORBIT VERIFICATION
Sampson, Charles	TH1.R8.10 - CYGNSS-BASED TROPICAL CYCLONE GALE WIND RADII ESTIMATES: A RETROSPECTIVE EVALUATION
Samuel, Abrado Blankson	pg. 4279 TU1.R1.8 - LAND USE AND LAND COVER CHANGE OF GHANA
Sanches, leda	pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO
Sanches, leda Del'Arco	pg. 4100 MO2.R1.7 - SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER
Sanchez-García, Elena	pg. 5769 WE1.R8.11 - INTRA-ANNUAL COASTAL DYNAMICS THROUGH REMOTE SENSORS AND MORPHOSEDIMENTARY PATTERNS, REÑACA BEACH AND CONCON BAY, CENTRAL CHILE.
Sanchis Muñoz, J.	pg. 4715 TH1.R1.7 - ASSESSMENT OF THE TRIANGLE METHOD (T-VI) FOR DETECTION OF WATER LEAKS FROM AIRPLANE AND UAV
Sandoval, Sarahi	pg. 6313 WE2.R17.5 - IMAGE ANALYSIS OF A SEA TURTLE NESTING BEACH USING UNMANNED AERIAL VEHICLES (UAVS) pg. 5093 FR1.R4.8 - CHANGES IN WATER SURFACE AREA DURING THE PAST 30 YEARS IN A RAMSAR WETLAND IN

	DURANGO, MEXICO USING LANDSAT DATA
Sandström, Emma	pg. 4822 TH1.R10.1 - NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING
Sang, Bernhard	pg. 6230 WE1.R15.3 - ONBOARD DATA REDUCTION FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGES VIA CLOUD SCREENING
Sangucho, Carmen	pg. 2093 TH2.R5.8 - AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI- SENSOR SATELLITE IMAGERY APPROACH
Sano, Itaru	pg. 5489 TH2.R19.3 - DETECTION OF AEROSOLS ABOVE CLOUDS BASED ON GCOM-C/SGLI MEASUREMENTS
Santella, Carla	pg. 6010 TU1.R14.6 - ON-ORBIT IMAGE SHARPNESS ASSESSMENT USING THE EDGE METHOD: METHODOLOGICAL IMPROVEMENTS FOR AUTOMATIC EDGE IDENTIFICATION AND SELECTION FROM NATURAL TARGETS
Santi, Emanuele	pg. 4163 MO2.R11.1 - APPLICATION OF DEEP LEARNING TO OPTICAL AND SAR IMAGES FOR THE CLASSIFICATION OF AGRICULTURAL AREAS IN ITALY pg. 5905 MO2.R13.1 - SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL ON A GLOBAL SCALE BY USING CYGNSS DATA AND ARTIFICIAL NEURAL NETWORKS pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES pg. 4450 WE1.R1.5 - EVALUATION OF SOIL MOISTURE RETRIEVALS FROM ALOS-2, SENTINEL-1 DATA IN GENHE, CHINA WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION
Santilli, Giancarlo	pg. 2009 TH1.R18.9 - AN AUTOMATIC SPECTRAL RULE-BASED SYSTEM FOR REAL-TIME THERMAL ANOMALIES DETECTION USING GOES-16 ABI DATA
Santoni, Massimo	pg. 5960 TU1.R4.5 - ENVISION MISSION TO VENUS: SUBSURFACE RADAR SOUNDING pg. 5967 TU1.R4.7 - AN AUTOMATIC PLANNING AND SCHEDULING METHOD BASED ON MULTI-OBJECTIVE GENETIC ALGORITHMS FOR PLANETARY RADAR SOUNDER OBSERVATIONS
Santoro, Maurizio	pg. 4987 TH2.R10.4 - ESTIMATION OF FOREST ABOVE- GROUND BIOMASS WITH C-BAND SCATTEROMETER BACKSCATTER OBSERVATIONS
Santos, Maria J.	pg. 2735 FR2.R6.10 - ADVANCING TEXTURE METRICS TO MODEL LANDSCAPE HETEROGENEITY
Santos, Patricia	pg. 5218 FR2.R10.5 - EVALUATION OF TEMPERATURE IN A SELF-BURNING COAL WASTE PILE CONSIDERING UAV DATA

	AND IN SITU MEASUREMENTS
Santos, Xavier	pg. 4255 TU1.R1.2 - MODELLING TERRESTRIAL TORTOISES RESPONSE TO FIRE EVENTS
Santos-Ferreira, Adriana M.	pg. 3521 WE2.R8.1 - DETECTION OF INTERNAL SOLITARY WAVES WITH CONVENTIONAL AND ADVANCED SAR ALTIMETRY PROCESSING METHODS: PRELIMINARY RESULTS pg. 3525 WE2.R8.2 - CAN WE RETRIEVE INTERNAL SOLITON AMPLITUDES IN THE OCEAN WITH SAR ALTIMETRY? WHAT WOULD THIS BE GOOD FOR?
Santos-Rodriguez, Raul	(pg. 712) TU1.R16.4 - POLSAR IMAGE CLASSIFICATION VIA ROBUST LOW-RANK FEATURE EXTRACTION AND MARKOV RANDOM FIELD
Sapp, Joe	pg. 5794) TH1.R8.6 - SCATSAT-1 HIGH WINDS GEOPHYSICAL MODEL FUNCTION AND ITS WINDS APPLICATION IN OPERATIONAL MARINE FORECASTING AND WARNING (pg. 5982) TU1.R4.11 - AMSR-2 OBSERVATIONS OF HURRICANE DORIAN
Sapp, Joseph	pg. 5647 TU1.R8.1 - C-BAND CROSS-POLARIZATION AIRBORNE OCEAN SURFACE NRCS OBSERVATIONS IN HURRICANES: 20152019
Sarabandi, Kamal	TIME DELAY USING WIDEBAND AUTOCORRELATION RADIOMETRY pg. 6369 TH1.R13.7 - RFI MITIGATION USING A NEW COMB FILTER FOR WIDEBAND AUTOCORRELATION RADIOMETRY pg. 370 MO2.R19.8 - ELECTROMAGNETIC SCATTERING COMPUTATION OF A SNOW LAYER OVER ROUGH SURFACE USING SSWAP-SD TECHNIQUE pg. 374 MO2.R19.9 - IMPROVED DETECTION TECHNIQUES FOR NEW MILLIMETER WAVE AUTOMOTIVE RADARS pg. 36 MO2.R3.10 - QUANTIFYING THE EFFECT OF THE WIND ON FOREST CANOPY HEIGHT ESTIMATION USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR SYSTEMS pg. 1432 WE2.R6.11 - AN ACCURATE LOW-COST METHOD FOR Q-FACTOR AND RESONANCE FREQUENCY MEASUREMENTS OF RF AND MICROWAVE RESONATORS pg. 2241 TH2.R20.12 - AN ALGORITHM FOR BURIED PIPELINE DETECTION USING A 3-D BISTATIC IMAGING RADAR
Saranathan, Arun	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
Sarrazin, Emmanuelle	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
Sasaki, Yuka	(pg. 5195) FR1.R11.10 - ESTIMATION OF LEAF ANGLE DISTRIBUTION BASED ON STATISTICAL PROPERTIES OF LEAF SHADING DISTRIBUTION
Satalino, Giuseppe	pg. 4534 WE1.R11.5 - A EUROPEAN TEST SITE FOR GROUND

	DATA MEASUREMENT AND EARTH OBSERVATION SERVICES VALIDATION
	(pg. 4069) FR2.R15.5 - OPERATIONAL SOIL MOISTURE MAPPING AT C-BAND AND PERSPECTIVES FOR L-BAND
Satalino, Guiseppe	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Sato, Motoyuki	pg. 790 TU2.R3.2 - A TIME-SERIES CLUSTERING APPROACH FOR ATMOSPHERIC PROPAGATION DELAY COMPENSATION IN GROUND-BASED RADAR INTERFEROMETRY
Satoh, Masaki	pg. 3600) WE2.R19.4 - EVALUATION OF CLOUD LIQUID WATER DATABASE USING GLOBAL CLOUD-SYSTEM RESOLVING MODEL FOR GPM/DPR ALGORITHMS
Sauber, Jeanne	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Savakis, Andreas	pg. 3497 WE2.R7.4 - VISUALIZATION OF DEEP TRANSFER LEARNING IN SAR IMAGERY
Sawada, Yoshito	pg. 3467 WE2.R4.4 - PROGRESS OF THE ISS BASED VEGETATION LIDAR MISSION, MOLI - JAPAN'S FIRST SPACE-BASED LIDAR
Sawant, Suryakant	pg. 1941 TH1.R17.3 - INTEGRATION OF SENTINEL 1 AND 2 OBSERVATIONS FOR MAPPING EARLY AND LATE SOWING OF SOYBEAN AND COTTON CROP USING DEEP LEARNING pg. 4538 WE1.R11.6 - MONITORING AND ANALYSIS OF VIIRS FIRE EVENTS DATA OVER INDIAN STATES OF PUNJAB AND HARYANA pg. 3123 WE1.R14.9 - DEVELOPMENT OF GEOSPATIAL PROCESSING FRAMEWORKS FOR SENTINEL-1, -2 SATELLITE DATA
Saytov, Kadambay	pg. 4546 WE1.R11.8 - OBSERVATION OF CROP GROWTH CONDITION IN DIFFERENT REGIONS OF UZBEKISTAN
Saúce Rangel, Víctor Manuel	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Sbalchiero, Elisa	pg. 5960 TU1.R4.5 - ENVISION MISSION TO VENUS: SUBSURFACE RADAR SOUNDING
Scagliola, Alessio	pg. 3700 TH2.R7.10 - QUANTUM IMAGING FOR SPACE OBJECTS
Scarpa, Giuseppe	pg. 649 TU1.R11.10 - A CROSS-SCALE LOSS FOR CNN-BASED PANSHARPENING
Scavuzzo, Carlos Marcelo	pg. 3755 TH2.R12.8 - HIGH SPECTRAL AND TEMPORAL RESOLUTION IMAGING ANALYSIS FOR MONITORING ALGAL

	BLOOM IN WATER RESERVOIR IN THE WARM SEASON
Scepanovic, Sanja	TU1.R4.3 - POTENTIAL OF MULTITEMPORAL ICEYE SAR DATA IN LAND COVER MAPPING APPLICATIONS
Scepanovic, Sanjaaa	pg. 4283 TU1.R1.9 - CLASSIFICATION OF WIDE-AREA SAR MOSAICS: DEEP LEARNING APPROACH FOR CORINE BASED MAPPING OF FINLAND USING MULTITEMPORAL SENTINEL-1 DATA
Schaefer, Kevin	pg. 4606) WE2.R1.12 - JOINT RETRIEVAL OF SOIL MOISTURE AND PERMAFROST ACTIVE LAYER THICKNESS USING L-BAND INSAR AND P-BAND POLSAR
Schaepman, Michael	pg. 2735 FR2.R6.10 - ADVANCING TEXTURE METRICS TO MODEL LANDSCAPE HETEROGENEITY
Schaepman, Michael E.	pg. 4842 TH1.R10.6 - GENETICALLY CONSTRAINED TEMPORAL TRAJECTORIES OF TEMPERATE FOREST AIRBORNE REFLECTANCE SPECTRA
Schartel, Markus	pg. 746 TU1.R18.2 - TRIPWIRE DETECTION IN SAR IMAGES USING A MODIFIED RADON TRANSFORM
Schaum, Alan	pg. 3951 FR2.R4.1 - HYPERSTRING CONSTRUCTION OF SUB- PIXEL DETECTORS pg. 1786 TH1.R7.8 - SOME CLOSED-FORM EXPRESSIONS FOR ABSORPTIVE PLUME DETECTION
Scheiber, Rolf	pg. 3059 WE1.R9.4 - UNSUPERVISED CLUSTERING OF C-BAND POLSAR DATA OVER SEA ICE pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Scheibler, Friedemann	pg. 4874 TH1.R11.3 - RADAR-CROP-MONITOR - MAPPING AGRICULTURAL CONDITIONS WITH SENTINEL-1 TIME SERIES
Schellenberg, Konstantin	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
Schenkel, Fabian	pg. 52 MO2.R5.4 - HYPERSPECTRAL BAND SELECTION WITHIN A DEEP REINFORCEMENT LEARNING FRAMEWORK pg. 1448 WE2.R9.4 - DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION OF AERIAL IMAGERY USING CYCLE- CONSISTENT ADVERSARIAL NETWORKS
Scher, Lane	pg. 3637 TH2.R2.8 - COMMUNITY REORGANIZATION RESPONSE TO CLIMATE CHANGE: SPECIES INTERACTIONS, STATE-SPACE MODELING AND FOOD WEBS
Schiavon, Giovanni	pg. 2085 TH2.R5.6 - MULTI-POL SAR DATA FUSION FOR COASTLINE EXTRACTION BY NEURAL NETWORKS CHAINING
Schickling, Anke	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS

	OF RECENT PREPARATORY ACTIVITIES
Schillinger, Marc	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Schimel, David	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Schindler, Jan	pg. 2751 FR2.R9.2 - CLASSIFICATION OF WINTER LAND COVER IN NEW ZEALAND HILL COUNTRY FOR RISKY PRACTICE IDENTIFICATION
Schippers, Patricia	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Schirinzi, Gilda	pg. 108 MO2.R6.7 - REGULARIZED SAR TOMOGRAPHY APPROACHES
Schlecht, Erich	FR1.R2.8 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT CONCEPT
	FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE STRATEGIES
Schlund, Michael	pg. 312 MO2.R18.3 - POTENTIAL OF FOREST MONITORING WITH MULTI-TEMPORAL TANDEM-X HEIGHT MODELS
Schmid, Bernhard	pg. 4842 TH1.R10.6 - GENETICALLY CONSTRAINED TEMPORAL TRAJECTORIES OF TEMPERATE FOREST AIRBORNE REFLECTANCE SPECTRA
Schmid, Christopher	pg. 746 TU1.R18.2 - TRIPWIRE DETECTION IN SAR IMAGES USING A MODIFIED RADON TRANSFORM
Schmidt, Andrew	pg. 3849 TH2.R17.5 - EMULATING AND VERIFYING SENSING, COMPUTATION, AND COMMUNICATION IN DISTRIBUTED REMOTE SENSING SYSTEMS
Schmidt, Daniel	pg. 1074 WE1.R5.10 - UNSUPERVISED DOMAIN ADAPTATION TECHNIQUES FOR CLASSIFICATION OF SATELLITE IMAGE TIME SERIES
Schmidt, Marius	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Schmit, Timothy	pg. 3313 MO2.R7.7 - TAILORING NATIONAL WEATHER SERVICE TRAINING TO SERVE THE PACIFIC'S MOST REMOTE LOCATIONS
Schmitt, Michael	pg. 2065 TH2.R5.1 - CLOUD REMOVAL IN UNPAIRED SENTINEL-2 IMAGERY USING CYCLE-CONSISTENT GAN AND SAR-OPTICAL DATA FUSION pg. 2081 TH2.R5.5 - ON THE FUSION STRATEGIES OF SENTINEL-1 AND SENTINEL-2 DATA FOR LOCAL CLIMATE ZONE CLASSIFICATION
Schmullius, Christiane	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR

	DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
	pg. 4874 TH1.R11.3 - RADAR-CROP-MONITOR - MAPPING AGRICULTURAL CONDITIONS WITH SENTINEL-1 TIME SERIES
	pg. 5222 FR2.R10.6 - LOCAL VALIDATION AND COMPARISON OF GLOBAL DIGITAL ELEVATION MODELS USING A LARGE ASSEMBLY OF GNSS GROUND MEASUREMENTS
	pg. 4501 WE1.R10.7 - A MULTI-SCALE REMOTE SENSING APPROACH TO UNDERSTANDING VEGETATION DYNAMICS IN THE NAMA KAROO-GRASSLAND ECOTONE OF SOUTH AFRICA
	pg. 4323 TU2.R10.8 - ANNUAL GRASS BIOMASS MAPPING WITH LANDSAT-8 AND SENTINEL-2 DATA OVER KRUGER NATIONAL PARK, SOUTH AFRICA
Schnase, John	pg. 2017 TH1.R18.11 - MERRAMAX: A MACHINE LEARNING APPROACH TO STOCHASTIC CONVERGENCE WITH A MULTI- VARIATE DATASET
Schneider, Fabian	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Schobert, Dennis	pg. 6146 WE1.R12.1 - A KA-BAND ALONG TRACK INTERFEROMETRY AND GROUND MOVING TARGET IDENTIFICATION ARCHITECTURE BASED ON REFLECTARRAY ANTENNAS
Schodlok, Martin C.	(pg. 5135) FR1.R10.7 - LWIR HYPERSPECTRAL MAPPING OF THE GAMSBERG DEPOSIT, AGGENEYS , SOUTH AFRICA
Schollaert Uz, Stephanie	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS pg. 3629 TH2.R2.6 - SUPPORTING AQUACULTURE IN THE CHESAPEAKE BAY USING ARTIFICIAL INTELLIGENCE TO DETECT POOR WATER QUALITY WITH REMOTE SENSING
Schreiner, Bill	pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Schreiner, Simon	pg. 664 TU1.R12.3 - A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM DESIGN TO FIRST RESULTS pg. 1303 WE1.R20.10 - FEATURE CONCATENATION OF HYPERSPECTRAL AND DEM DATA FOR LAND COVER CLASSIFICATION
Schroeder, Dustin	pg. 3731 TH2.R12.2 - PATHWAYS TO MULTITEMPORAL RADAR SOUNDING IN TERRESTRIAL GLACIOLOGY pg. 1420 WE2.R6.8 - PROCESSING-BASED SYNCHRONIZATION APPROACH FOR BISTATIC RADAR GLACIAL TOMOGRAPHY pg. 2991 TU1.R9.8 - GEOSTATISTICALLY SIMULATING SUBGLACIAL TOPOGRAPHY WITH SYNTHETIC TRAINING DATA WE1.R12.9 - PASSIVE RADAR INVESTIGATIONS OF EUROPA'S IONOSPHERE: A LOW-RESOURCE APPROACH FOR VHF DISPERSION CORRECTIONS AND IONOSPHERIC TOMOGRAPHY pg. 1428 WE2.R6.10 - A NARROWBAND MULTI-FREQUENCY RADAR SOUNDING ARCHITECTURE TO CORRECT SUBSURFACE

INTERFACE ROUGHNESS EFFECTS

Schroeder, Dustin M.	pg. 7033 TU2.R20.3 - STRONG POTENTIAL FOR THE DETECTION OF REFROZEN ICE LAYERS IN GREENLAND'S FIRN BY AIRBORNE RADAR SOUNDING
Schroeder, Wilfrid	TH1.R6.8 - DEVELOPMENT OF A HARMONIZED MULTI-SENSOR GLOBAL ACTIVE FIRE DATA SET: CURRENT STATUS AND MULTI- PRODUCT VALIDATION RESULTS
Schrom, Robert	pg. 3608 WE2.R19.6 - RECENT ADVANCES TO THE OPENSSP PARTICLE AND SCATTERING DATABASE (pg. 5469 TH1.R19.10 - TOWARDS A MASS-CONSISTENT METHODOLOGY FOR REALISTIC MELTING HYDROMETEOR RETRIEVAL
Schuettemeyer, Dirk	(pg. 6035) TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Schuh, Leila	pg. 2735 FR2.R6.10 - ADVANCING TEXTURE METRICS TO MODEL LANDSCAPE HETEROGENEITY
Schuler, Paul	(pg. 5753) WE1.R8.7 - HIGH-RESOLUTION REMOTE SENSING, IN-SITU OBSERVATIONS, AND MODELING OF LOW-SALINITY LENSES IN THE PRESENCE OF OIL SLICK
Schultz, Christopher	pg. 4179 MO2.R11.5 - A SATELLITE AGNOSTIC APPROACH TO QUANTIFYING HAIL DAMAGE SWATHS ACROSS THE CENTRAL UNITED STATES AND OTHER AGRICULTURAL REGIONS
Schumacher, Maike	(pg. 2137) TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Schumann, Guy JP.	pg. 3239 MO2.R2.1 - APPLYING REMOTE SENSING TO SUPPORT FLOOD RISK ASSESSMENT AND RELIEF AGENCIES: A GLOBAL TO LOCAL APPROACH
Schwank, Mike	pg. 2983 TU1.R9.6 - COMPARISON OF PASSIVE MICROWAVE MELT DETECTION OF GREENLAND: L-BAND AND XPGR pg. 6531 FR2.R13.7 - A COST-EFFECTIVE PORTABLE L-BAND RADIOMETER FOR DRONE AND GROUND-BASED APPLICATIONS
Schwantes, Amanda M.	(pg. 3637) TH2.R2.8 - COMMUNITY REORGANIZATION RESPONSE TO CLIMATE CHANGE: SPECIES INTERACTIONS, STATE-SPACE MODELING AND FOOD WEBS
Schwartzkopf, Wade	pg. 750 TU1.R18.3 - CASE STUDIES WITH SAR DATA FOR ASSESSING THE UTILITY OF MANUAL FEATURE SELECTION IN MACHINE LEARNING
Schwarz, Egbert	(pg. 5753) WE1.R8.7 - HIGH-RESOLUTION REMOTE SENSING, IN-SITU OBSERVATIONS, AND MODELING OF LOW-SALINITY LENSES IN THE PRESENCE OF OIL SLICK
Schweisshelm, Barbara	pg. 3416 TU2.R15.5 - AN ADAPTIVE FILTERING APPROACH FOR

	THE NEW TANDEM-X CHANGE DEM
Schwieder, Marcel	pg. 1078 WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO
Schüttemeyer, Dirk	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Scott, Andrea	pg. 3035 TU2.R9.9 - A MULTI-SCALE TECHNIQUE TO DETECT MARGINAL ICE ZONES USING CONVOLUTIONAL NEURAL NETWORKS.
Scott, K Andrea	pg. 6930 FR1.R2.6 - IDENTIFYING SEA ICE RIDGING IN SAR IMAGERY USING CONVOLUTIONAL NEURAL NETWORKS
Scott, Waymond	pg. 1401 WE2.R6.3 - DIFFERENTIAL ELECTROMAGNETIC INDUCTION SENSOR USING A SPINNING MAGNET EXCITATION pg. 1405 WE2.R6.4 - AN UNBALANCED SINUOUS ANTENNA FOR ULTRA-WIDEBAND POLARIMETRIC GROUND-PENETRATING RADAR
Searson, Hunter	pg. 6317 WE2.R17.6 - HIGH-RESOLUTION UAV MAPPING FOR INVESTIGATING EELGRASS BEDS ALONG THE WEST COAST OF NORTH AMERICA pg. 6337 WE2.R17.11 - IMPLEMENTING DRONE MAPPING ALONG THE US WEST COAST FOR EELGRASS MEADOW EXTENT AND DYNAMICS
Sebacher, Bogdan	pg. 4227 MO2.R12.6 - DEFORMATION PROFILE ANALYSIS USING UNIFORM MANIFOLD APPROXIMATION AND PROJECTION
Sebastian, Elizabeth	pg. 4407 TU2.R12.6 - URBAN HEAT ISLANDS AND REMOTE SENSING: CHARACTERIZING LAND SURFACE TEMPERATURE AT THE NEIGHBORHOOD SCALE
Sebastian, Ilse	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Sebastianelli, Alessandro	pg. 4235 MO2.R12.8 - APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC INFRASTRUCTURE MONITORING
Secreti, Valeria	pg. 810 TU2.R3.7 - SUBSIDENCE MONITORING ALONG RAVENNA COASTAL AREA (NORTHERN ITALY) BY INSAR AND GPS DATA
Sedona, Rocco	pg. 1058 WE1.R5.6 - SCALING UP A MULTISPECTRAL RESNET-50 TO 128 GPUS
Segal-Rozenhaimer, Michal	pg. 3633 TH2.R2.7 - NASA NEMO-NET - A NEURAL MULTIMODAL OBSERVATION & TRAINING NETWORK FOR MARINE ECOSYSTEM MAPPING AT DIVERSE SPATIOTEMPORAL SCALES

Segl, Karl	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES
Seidu, Omar	pg. 3379 TU2.R14.3 - AFRICA REGIONAL DATA CUBE (ARDC) IS HELPING COUNTRIES IN AFRICA REPORT ON THE SUSTAINABLE DEVELOPMENT GOALS
Sellé, Arnaud	pg. 3154 WE2.R14.6 - THE FRENCH LAND DATA AND SERVICES CENTER: THEIA
Selva, Daniel	pg. 3841) TH2.R17.3 - D-SHIELD: DISTRIBUTED SPACECRAFT WITH HEURISTIC INTELLIGENCE TO ENABLE LOGISTICAL DECISIONS pg. 6941) FR1.R2.9 - SCHEDULING MISSION RECONFIGURATION FOR AN INTERFEROMETRY SYNTHETIC APERTURE RADAR USING DEEP REINFORCEMENT LEARNING
Semela, Mmathapelo	pg. 4493 WE1.R10.5 - TESTING AND COMPARING THE APPLICABILITY OF SENTINEL-2 AND LANDSAT 8 REFLECTANCE DATA IN ESTIMATING MOUNTAINOUS HERBACEOUS BIOMASS BEFORE AND AFTER FIRE USING RANDOM FOREST MODELLING
Semmling, Maximilian	pg. 3345 TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION
Senyurek, Volkan	pg. 4470 WE1.R1.10 - MACHINE-LEARNING BASED RETRIEVAL OF SOIL MOISTURE AT HIGH SPATIO-TEMPORAL SCALES USING CYGNSS AND SMAP OBSERVATIONS
Seo, Won-Woo	pg. 4156 MO2.R10.10 - DAMAGED TREES DETECTION USING THE EXPANSION OF DEEP LEARNING MODEL FROM UAV RGB IMAGES TO MULTISPECTRAL IMAGES
Serbin, Shawn	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Sergievskazya, Irina	pg. 3545 WE2.R8.7 - FILM SLICKS ON THE SEA SURFACE: THEIR DYNAMICS AND REMOTE SENSING
Serio, Carmine	pg. 798 TU2.R3.4 - A GENERALIZED-SVD-BASED TECHNIQUE FOR ENHANCING PERFORMANCE OF MULTI-TEMPORAL DINSAR ANALYSES: THE WEIGHTED ADAPTIVE VARIABLE-LENGTH (WAVE) TECHNIQUE
Serizawa, Jin	pg. 3795 TH2.R15.4 - MONITORING OF FISHING BOATS BY ALOS-2/4 DATA
Serpelloni, Enrico	pg. 810 TU2.R3.7 - SUBSIDENCE MONITORING ALONG RAVENNA COASTAL AREA (NORTHERN ITALY) BY INSAR AND GPS DATA
Serpico, Sebastiano	pg. 3892 FR1.R7.1 - CHANGE DETECTION WITH HETEROGENEOUS REMOTE SENSING DATA: FROM SEMI- PARAMETRIC REGRESSION TO DEEP LEARNING (pg. 2089) TH2.R5.7 - AUTOMATIC AREA-BASED REGISTRATION OF OPTICAL AND SAR IMAGES THROUGH GENERATIVE

	ADVERSARIAL NETWORKS AND A CORRELATION-TYPE METRIC
Sethi, Amit	pg. 2280 FR1.R5.10 - SATELLITE-DERIVED BATHYMETRY USING DEEP CONVOLUTIONAL NEURAL NETWORK
Seto, Shinta	pg. 3593 WE2.R19.2 - PRELIMINARY ANALYSIS OF EXPERIMENTAL PRODUCT FOR THE NEW SCAN PATTERN OF GPM/DPR pg. 3600 WE2.R19.4 - EVALUATION OF CLOUD LIQUID WATER DATABASE USING GLOBAL CLOUD-SYSTEM RESOLVING MODEL FOR GPM/DPR ALGORITHMS
Seufert, Steve	pg. 6150 WE1.R12.2 - PERFORMANCE OF SWESARR'S MULTI- FREQUENCY DUAL-POLARIMETRY SYNTHETIC APERTURE RADAR DURING NASA'S SNOWEX AIRBORNE CAMPAIGN
Sha, Zhengchuan	pg. 2771 FR2.R9.7 - A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR 3D POINT CLOUDS
Shabanov, Nikolay	pg. 4614 WE2.R10.2 - EXTENDING STOCHASTIC RADIATIVE TRANSFER THEORY TO SIMULATE BRF OVER FORESTS CONTAINING TREES WITH HETEROGENEOUS DAMAGED FOLIAGE
Shah, Pooja B.	pg. 4243 MO2.R12.10 - ASSESSING LAND SUITABILITY FOR MANAGING URBAN GROWTH: AN APPLICATION OF GIS AND RS
Shah, Rashmi	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION pg. 3357 TU2.R13.5 - DIGITAL BACK END FOR P-BAND REFLECTIONS CONCEPTS pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY pg. 6206 WE1.R13.7 - GPS SIGNAL LAND REFLECTION COHERENCE DEPENDENCE ON WATER EXTENT AND SURFACE TOPOGRAPHY USING CYGNSS MEASUREMENTS pg. 2950 MO2.R9.9 - OBSERVING SYSTEM SIMULATION EXPERIMENT FOR REMOTE SENSING OF SNOW AT P-BAND
Shah, Vishwa	pg. 3833 TH2.R17.1 - LEVERAGING SPACE AND GROUND ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE
Shahbazi, Abolghasem	pg. 4199 MO2.R11.10 - WEED AND CROP DISCRIMINATION USING U-NET LEARNING
Shaman, Hussein	pg. 374 MO2.R19.9 - IMPROVED DETECTION TECHNIQUES FOR NEW MILLIMETER WAVE AUTOMOTIVE RADARS
Shamaskin, Andrew	pg. 6662 TU1.R13.7 - STRATEGIC CONSERVATION OF GULF COAST LANDSCAPES USING MULTI-CRITERIA DECISION ANALYSIS AND OPEN SOURCE REMOTE SENSING AND GIS DATA
Shams, Maleeha	pg. 1331 WE2.R3.6 - A DEEP GAUSSIAN PROCESS FOR FORECASTING CROP YIELD AND TIME SERIES ANALYSIS OF PRECIPITATION BASED IN MUNSHIGANJ, BANGLADESH

Shan, Shuai	pg. 5321 TU1.R19.8 - AN ALGORITHM TO REMOVE THIN CLOUDS BUT TO PRESERVE GROUND FEATURES IN VISIBLE BANDS
Shan, Tao	pg. 1655 TH1.R2.11 - HYPERSPECTRAL TARGET DETECTION BY FRACTIONAL FOURIER TRANSFORM
Shan, Wei	pg. 236 MO2.R16.6 - SPATIO-TEMPORAL FUSION OF NIGHT- TIME LIGHT IMAGES WITH DEEP LEARNING
Shang, Fang	pg. 184 MO2.R15.4 - DISCUSSION ON BUILDING ORIENTATION ESTIMATION USING POLARIMETRIC SYNTHETIC APERTURE RADAR DATA
Shang, Xiaodi	pg. 481 TU1.R6.2 - HYPERSPECTRAL CLASSIFICATION USING LOW RANK AND SPARSITY MATRICES DECOMPOSITION pg. 2033 TH2.R3.4 - HYPERSPECTRAL TARGET DETECTION BASED ON TARGET-CONSTRAINED INTERFERENCE-MINIMIZED BAND SELECTION pg. 2807 FR2.R12.5 - GO DECOMPOSITION (GODEC) APPROACH TO FINDING LOW RANK AND SPARSITY MATRICES FOR HYPERSPECTRAL TARGET DETECTION
Shangguan, Boyi	(pg. 3127) WE1.R14.10 - GEOCUBE: TOWARDS THE MULTI- SOURCE GEOSPATIAL DATA CUBE IN BIG DATA ERA
Shao, Changkun	pg. 4586) WE2.R1.7 - SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
Shao, Puyang	pg. 2447 FR1.R14.6 - IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE ON SAR IMAGE SHIP DETECTION BASED ON DEEP LEARNING
Shao, Xi	pg. 6047 TU2.R4.4 - NOAA-20 VISIBLE INFRARED IMAGING RADIOMETER SUITE (VIIRS) DAY-NIGHT BAND CALIBRATION USING THE SCHEDULED LUNAR COLLECTIONS pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS pg. 6058 TU2.R4.7 - ENHANCING LEGACY AND SMALL SATELLITE CALIBRATION/VALIDATION SYSTEMS WITH 3D GLOBE CONTEXTUAL VISUALIZATION
Shao, Yun	pg. 4566) WE2.R1.2 - SOIL MOISTURE MAPPING WITH POLARIMETRIC SAR IN HUANGHE DELTA OF CHINA pg. 176 MO2.R15.2 - EVALUATION OF A_S1 FOR BUILDING DAMAGE MAPPING BASED ON TOUZI DECOMPOSITION
Sharifnezhad, Zahra	pg. 2300 FR1.R6.3 - A GLOBAL ANALYSIS OF PASSIVE MICROWAVE BRIGHTNESS TEMPERATURE DIURNAL CYCLE
Sharma, Anupama	pg. 6993 FR2.R2.10 - RTC-GAN: REAL-TIME CLASSIFICATION OF SATELLITE IMAGERY USING DEEP GENERATIVE ADVERSARIAL NETWORKS WITH INFUSED SPECTRAL INFORMATION
Sharma, Ashwini Kumar	pg. 3712 TH2.R11.4 - EXPLORING THE POSSIBILITY OF

	ASSESSING BIOCHEMICAL VARIABLES IN SUGARCANE CROP WITH SENTINEL-2 DATA
Sharma, Astha	pg. 1853 TH1.R12.3 - FLIGHT DATA OF AIRPLANE FOR WIND FORECASTING
Sharma, Avinash	pg. 1671 TH1.R3.3 - FEEDBACK NEURAL NETWORK BASED SUPER-RESOLUTION OF DEM FOR GENERATING HIGH FIDELITY FEATURES
Sharma, Nimmi	pg. 3135 WE2.R14.1 - AN INSTITUTIONAL PARTNERSHIP MODEL TO PROVIDE UNDERGRADUATE STUDENTS REMOTE SENSING EDUCATION/RESEARCH EXPERIENCES USING NOVEL INEXPENSIVE LIDAR INSTRUMENTATION
Sharma, Shakti	pg. 6953 FR1.R2.12 - PENALTY DRIVEN TRAINING SAMPLE REFINEMENT TECHNIQUE FOR HYPERSPECTRAL IMAGES CLASSIFICATION USING ANT COLONY OPTIMIZATION
Sharma, Shreya	pg. 304 MO2.R18.1 - SMALL OBJECT CHANGE DETECTION BASED ON MULTITASK SIAMESE NETWORK
Sharma, Shubham	pg. 3637 TH2.R2.8 - COMMUNITY REORGANIZATION RESPONSE TO CLIMATE CHANGE: SPECIES INTERACTIONS, STATE-SPACE MODELING AND FOOD WEBS
Shcherbina, Andrey	pg. 3533) WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Shea, Yolanda	pg. 6385 TH1.R15.2 - DEVELOPMENT OF A HIGH-FIDELITY CLARREO PATHFINDER SIMULATOR pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS
Sheehan, Nathaniel	pg. 5026 FR1.R1.3 - USE OF X-RAY FLUORESCENCE TO EXPEDITE SAMPLING TO EVALUATE AND VISUALIZE SOIL LEAD CONCENTRATIONS AT WEST POINT, NY
Sheevam, Pooja	pg. 4037 FR2.R14.4 - USING LONG WAVE INFRARED SPECTROSCOPY TO DETERMINE CHANGES IN THE MAFIC MINERALOGY OF DRILL CORE SAMPLES FROM THE HUMU'ULA GROUNDWATER RESEARCH PROJECT.
Sheffield, Justin	pg. 3334 TU2.R1.5 - SATELLITE FLOOD ASSESSMENT AND FORECASTS FROM SMAP AND LANDSAT
Shehaj, Endrit	pg. 461 TU1.R5.7 - TOTAL REFRACTIVITY FIELDS FROM GNSS TROPOSPHERIC DELAYS RECONSTRUCTED WITH COLLOCATION METHODS
Sheladiya, Kaushik P.	pg. 4243 MO2.R12.10 - ASSESSING LAND SUITABILITY FOR MANAGING URBAN GROWTH: AN APPLICATION OF GIS AND RS
Shelestov, Andrii	pg. 1050 WE1.R5.4 - SATELLITE AGRICULTURAL MONITORING IN UKRAINE AT COUNTRY LEVEL: WORLD BANK PROJECT pg. 4971 TH2.R6.9 - ASSESSMENT OF LAND CONSUMPTION FOR SDG INDICATOR 11.3.1 USING GLOBAL AND LOCAL BUILT-

	UP AREA MAPS
Shen, Chaomin	pg. 2264 FR1.R5.6 - LABEL SMOOTHING TECHNIQUE FOR ORDINAL CLASSIFICATION IN CLOUD ASSESSMENT
Shen, Guozhuang	pg. 4762 TH1.R4.8 - WATER BODY EXTRACTION USING GF-3 POLSAR DATA A CASE STUDY IN POYANG LAKE pg. 5100 FR1.R4.10 - POYANG LAKE VEGETATION BIOMASS INVERSION USING RADARSAT-2 POLSAR DATA AND SIMPLIFIED WATER-CLOUD MODEL
Shen, Haoran	pg. 2921 MO2.R9.1 - SNOW SIZE DISTRIBUTION AND AGGREGATION MODELING BASED ON THE BICONTINUOUS MODEL pg. 3436 TU2.R17.2 - MODELING MULTI-FREQUENCY TOMOGRAMS FOR SNOW STRATIGRAPHY
Shen, Huanfeng	pg. 2667 FR2.R5.4 - COMBINED THE DATA-DRIVEN WITH MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED NOISE REMOVAL IN HYPERSPECTRAL IMAGE pg. 589 TU1.R10.6 - LUNAR HYPERSPECTRAL IMAGE DESTRIPING METHOD USING LOW-RANK MATRIX RECOVERY AND GUIDED PROFILE
Shen, Jianxiu	pg. 5258 FR2.R11.3 - EMPIRICAL COMBINATION OF LANDSAT 7 AND 8 IMAGERY TO DETECT THE PHENOLOGICAL CHANGES IN RAINFED CROPLAND VEGETATION
Shen, Qian	pg. 2197 TH2.R20.1 - RISK ASSESSMENT OF DRINKING WATER SOURCE BASED ON HIGH SPATIAL RESOLUTION REMOTE SENSING
Shen, Qianrong	pg. 4383 TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Shen, Wei	pg. 3066 WE1.R9.6 - SHIP NAVIGATION ROUTE PLANNING USING TOPOLOGY OF SEA ICE CHANNELS EXTRACTED FROM HIGH RESOLUTION SATELLITE IMAGES
Shen, Wenjie	pg. 782 TU1.R18.11 - MULTI-ANGULAR SAR STATISTICAL PROPERTIES ANALYSIS AND MAN-MADE TARGET DETECTION
Shen, Xiaobo	pg. 1723 TH1.R5.4 - COMPLEX-VALUED SPATIAL-SCATTERING SEPARATED ATTENTION NETWORK FOR POLSAR IMAGE CLASSIFICATION
Shen, Xiaofeng	pg. 778 TU1.R18.10 - MULTI-VIEW FUSION BASED ON EXPECTATION MAXIMIZATION FOR SAR TARGET RECOGNITION
Shen, Xiaoji	Pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI- TEMPORAL STUDY Pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER

	<u>OBSERVATIONS</u>
Shen, Yuan	pg. 1311 WE2.R3.1 - A SPATIALIZATION METHOD OF POPULATION DATA CONSIDERING SPATIAL HETEROGENEITY
Shendryk, Yuri	pg. 5167 FR1.R11.3 - A SATELLITE-BASED METHODOLOGY FOR HARVEST DATE DETECTION AND YIELD PREDICTION IN SUGARCANE
Sheng, Hui	pg. 5477 TH1.R19.12 - SPATIAL AND TEMPORAL CHARACTERISTICS OF SEA FOG IN YELLOW SEA AND BOHAL SEA BASED ON ACTIVE AND PASSIVE REMOTE SENSING
Shepherd, James	pg. 2751 FR2.R9.2 - CLASSIFICATION OF WINTER LAND COVER IN NEW ZEALAND HILL COUNTRY FOR RISKY PRACTICE IDENTIFICATION
Shermeyer, Jacob	pg. 3920 FR1.R7.8 - ROAD NETWORK AND TRAVEL TIME EXTRACTION FROM MULTIPLE LOOK ANGLES WITH SPACENET DATA
Shew, Brandon	pg. 4590) WE2.R1.8 - ASSESSMENT OF SMAP AND ESA CCI SOIL MOISTURE OVER THE GREAT LAKES BASIN
Shi, Hao	pg. 1639 TH1.R2.7 - FEATURE ENHANCED CENTERNET FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Shi, Huifeng	pg. 344 MO2.R19.1 - RESEARCH ON COMPOSITE ELECTROMAGNETIC SCATTERING COMPUTATION OF SEA SURFACE AND SHIP TARGET pg. 4231 MO2.R12.7 - A DYNAMIC END-TO-END FUSION FILTER FOR LOCAL CLIMATE ZONE CLASSIFICATION USING SAR AND MULTI-SPECTRUM REMOTE SENSING DATA
Shi, Jiancheng	pg. 6871 WE2.R2.3 - THE APPLICATION OF REMOTE SENSING PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA pg. 4922 TH2.R1.5 - SOIL MOISTURE ESTIMATION BASED ON LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER BASIN, CHINA pg. 5045 FR1.R1.8 - SOIL MOISTURE ESTIMATION BY USING MULTI-ANGULAR AND MULTI-TEMPORAL OBSERVATIONS FROM SMOS
Shi, Jibao	pg. 2894 FR2.R18.5 - CHANGE OF IMPERVIOUS SURFACE OF CHENGDU CITY, CHINA pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK
Shi, Jun	pg. 1221 WE1.R18.1 - SHIPDENET-18: AN ONLY 1 MB WITH ONLY 18 CONVOLUTION LAYERS LIGHT-WEIGHT DEEP LEARNING NETWORK FOR SAR SHIP DETECTION pg. 393 TU1.R3.2 - A NOVEL GROUND MOVING TARGET RADIAL VELOCITY ESTIMATION METHOD FOR DUAL-BEAM ALONG-TRACK INTERFEROMETRIC SAR pg. 2483 FR1.R16.4 - ISAR COMPRESSIVE SENSING IMAGING

	USING CONVOLUTION NEURAL NETWORK WITH INTERPRETABLE OPTIMIZATION
	(pg. 2763) FR2.R9.5 - KERNEL ROTATIONAL NETWORK FOR SYNTHETIC APERTURE RADAR TARGET RECOGNITION
	pg. 545 TU1.R7.6 - SEMI-SUPERVISED LEARNING-BASED REMOTE SENSING IMAGE SCENE CLASSIFICATION VIA ADAPTIVE PERTURBATION TRAINING
	pg. 413 TU1.R3.7 - A DEM FUSION METHOD OF MULTI- BASELINE INSAR BASED ON PRIOR TERRAIN AND GUIDED FILTER
	pg. 112 MO2.R6.8 - 3D HIGH-RESOLUTION IMAGING OF MB- TOMOSAR BASED ON SBRIM ALGORITHM
	(pg. 2372) FR1.R9.10 - LINEAR ARRAY 3-D SAR SPARSE IMAGING VIA CONVOLUTIONAL NEURAL NETWORK
Shi, Lukui	pg. 1365 WE2.R5.5 - AN OPEN SET DOMAIN ADAPTATION NETWORK BASED ON ADVERSARIAL LEARNING FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION
Shi, Mengyang	pg. 1413 WE2.R6.6 - INVERSION OF UNDERGROUND STRUCTURE BASED ON GA_RLPSO TIME-DOMAIN FULL WAVEFORM CONJUGATE GRADIENT METHOD
Shi, Qian	pg. 5348 TU2.R19.3 - SPATIAL DOWNSCALING FOR GLOBAL PRECIPITATION MEASUREMENT USING A GEOGRAPHICALLY AND TEMPORALLY WEIGHTED REGRESSION MODEL (pg. 2543) FR1.R17.9 - SIAMESE GENERATIVE ADVERSARIAL NETWORK FOR CHANGE DETECTION UNDER DIFFERENT SCALES
Shi, Te	pg. 1385 WE2.R5.10 - UNSUPERVISED STYLE TRANSFER VIA DUALGAN FOR CROSS-DOMAIN AERIAL IMAGE CLASSIFICATION
Shi, Tongguang	pg. 2747 FR2.R9.1 - POTENTIAL OF LAND COVER CLASSIFICATION BASED ON GF-1 AND GF-3 DATA
Shi, Wei	pg. 4681 WE2.R11.8 - USE NIGHT TIME LIGHT REMOTE SENSING TO DISCOVER DRAGON FRUIT PLANTATIONS IN VIETNAM
Shi, Wenxuan	pg. 1413 WE2.R6.6 - INVERSION OF UNDERGROUND STRUCTURE BASED ON GA_RLPSO TIME-DOMAIN FULL WAVEFORM CONJUGATE GRADIENT METHOD
Shi, Xiaolei	pg. 4395 TU2.R12.3 - AN ACCURATE EXTRACTION ALGORITHM OF THE INDOOR BOUNDARY FEATURES BASED ON POINT CLOUD DATA
Shi, Yanxiang	(pg. 5131) FR1.R10.6 - RE-EVALUATING BASALTIC DEPOSITS IN MARE NUBIUM WITH CE-2 CELMS DATA
Shi, Yanzi	pg. 2671 FR2.R5.5 - DEEP RESIDUAL SPATIAL ATTENTION NETWORK FOR HYPERSPECTRAL PANSHARPENING (pg. 2193) TH2.R18.10 - HYPERSPECTRAL TARGET DETECTION WITH ROI FEATURE TRANSFORMATION
Shi, Yibing	pg. 597 TU1.R10.8 - DEEP RECONSTRUCTION-ARRIVAL

	PICKING NETWORKS: TRANSFER LEARNING FROM SEISMIC P-WAVE TO ULTRASONIC LOGGING IMAGING
Shi, Yilei	pg. 1452 WE2.R9.5 - INSTANCE SEGMENTATION OF BUILDINGS USING KEYPOINTS
	(pg. 3509) WE2.R7.7 - BUILDING EXTRACTION BY GATED GRAPH CONVOLUTIONAL NEURAL NETWORK WITH DEEP STRUCTURED FEATURE EMBEDDING
Shie, Ming-Hwang	pg. 1548 WE2.R16.7 - RECURRENT DEEP LEARNING FOR RICE FIELDS DETECTION FROM SAR IMAGES
Shih, I-Liang	pg. 3162 WE2.R14.8 - DEVELOPMENT OF OPEN DATA CUBE TO FACILITATE DISASTER RISK REDUCTION
Shih, Min-Shao	pg. 2831 FR2.R12.11 - FUSARIUM WILT INSPECTION FOR PHALAENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL BAND SELECTION TECHNIQUES
Shima, Keita	pg. 2799 FR2.R12.3 - REMOTELY SENSED METHOD FOR DETECTION OF SPATIAL DISTRIBUTION PATTERN OF DRYLAND PLANTS IN WATER LIMITED ECOSYSTEM
Shimabukuro, Yosio	pg. 4263 TU1.R1.4 - FIRE OCCURRENCE IN THE BRAZILIAN SAVANNA CONSERVATION UNITS AND THEIR BUFFER ZONES
Shimabukuro, Yosio Edemir	(pg. 4291) TU1.R1.11 - LAND USE AND LAND COVER MAPPING USING FRACTION IMAGES DERIVED FROM ANNUAL VIIRS-NPP DATASET
Shimada, Masanobu	pg. 3784 TH2.R15.1 - TRIAL OF DEFORESTATION DETECTION BY USING 25M RESOLUTION PALSAR-2/SCANSAR DATA pg. 3799 TH2.R15.5 - RAINFALL-INDUCED CHANGES IN
	L-BAND BACKSCATTER OVER TROPICAL FORESTS AND THEIR IMPACT ON DEFORESTATION MONITORING
	pg. 3803 TH2.R15.6 - DETECTION OF SLOW MOVEMENT AREAS IN THE FOREST AREA USING THE TIME SERIES L-BAND SAR INTERFEROMETRY
	pg. 3807 TH2.R15.7 - SEASONAL CHANGE ANALYSIS FOR ALOS-2 PALSAR-2 DEFORESTATION DETECTION
Shimazaki, Yasunobu	pg. 676 TU1.R12.6 - BUILDING CHANGE DETECTION USING MODIFIED SIAMESE NEURAL NETWORKS
Shimizu, Daiki	pg. 4777 TH1.R4.12 - DRAINAGE CANAL DETECTION USING MACHINE LEARNING ALGORITHM IN TROPICAL PEATLANDS
Shimoni, Michal	FR2.R4.6 - MULTI-TEMPORAL UNMIXING FOR THE DETECTION AND CONCENTRATION OF CHEMICALS IN POLLUTED WATER (pg. 3755) TH2.R12.8 - HIGH SPECTRAL AND TEMPORAL RESOLUTION IMAGING ANALYSIS FOR MONITORING ALGAL BLOOM IN WATER RESERVOIR IN THE WARM SEASON
Shinde, Rajat	pg. 581 TU1.R10.4 - TOWARDS NATURAL LANGUAGE QUESTION ANSWERING OVER EARTH OBSERVATION LINKED DATA USING ATTENTION-BASED NEURAL MACHINE

	TRANSLATION [pg. 4414] TU2.R12.8 - ONLINE POINT CLOUD SUPER RESOLUTION USING DICTIONARY LEARNING FOR 3D URBAN PERCENTION
Shinoda, Koichi	PERCEPTION (pg. 5195) FR1.R11.10 - ESTIMATION OF LEAF ANGLE DISTRIBUTION BASED ON STATISTICAL PROPERTIES OF LEAF SHADING DISTRIBUTION
Shirasaka, Seiko	pg. 3578 WE2.R15.8 - THE LATEST STATUS OF OUR COMMERCIAL SMALL SYNTHETIC APERTURE RADAR SATELLITE CONSTELLATION
Shirey, Ashlyn	pg. 2252 FR1.R5.3 - A QUANTITATIVE ANALYSIS ON THE USE OF SUPERVISED MACHINE LEARNING IN EARTH SCIENCE
Shirokov, Igor	pg. 6125 WE1.R7.7 - GEOMAGNETIC ANOMALIES IN O+ CONCENTRATION CONSIDERING THE SUN SEASONAL POSITION ACCORDING TO THE DATA FROM THE COMPLEX "RIMS"
Shiroma, Gustavo	pg. 3861 FR1.R3.1 - ASSESSMENT OF POLSAR AND INSAR TIME-SERIES FROM THE 2019 NASA AM-PM CAMPAIGN FOR ABOVE-GROUND BIOMASS ESTIMATION
Shiroma, Gustavo H. X.	pg. 1897 TH1.R16.3 - AN EFFICIENT AREA-BASED ALGORITHM FOR SAR RADIOMETRIC TERRAIN CORRECTION AND MAP PROJECTION
Shitole, Sanjay	pg. 1524 WE2.R16.1 - DE-SPECKLING OF SYNTHETIC APERTURE RADAR USING DISCRETE FOURIER TRANSFORM pg. 4742 TH1.R4.3 - SPLIT-WINDOW BASED FLOOD MAPPING WITH L-BAND ALOS-2 SAR IMAGES: A CASE OF KERALA FLOOD EVENT IN 2018 pg. 3884 FR1.R3.7 - THE EFFECT OF HYBRID POLARIMETRIC DESCRIPTORS ON CLASSIFICATION ACCURACY OF VARIOUS LAND COVER TYPES
Shivadekar, Samit	pg. 2073 TH2.R5.3 - SATELLITE DATA FUSION OF MULTIPLE OBSERVED XCO2 USING COMPRESSIVE SENSING AND DEEP LEARNING
Shokirov, Shukhrat	pg. 6097 WE1.R4.7 - COMPARISON OF TLS AND ULS DATA FOR WILDLIFE HABITAT ASSESSMENTS IN TEMPERATE WOODLANDS
Shomina, Olga	pg. 3545 WE2.R8.7 - FILM SLICKS ON THE SEA SURFACE: THEIR DYNAMICS AND REMOTE SENSING
Shoshany, Maxim	pg. 6754 TU1.R17.8 - MULTI SEASONAL DEEP LEARNING CLASSIFICATION OF VENUS IMAGES
Shotwell, S. Kalei	pg. 3302 MO2.R7.4 - OVERCOMING BARRIERS TO THE USE OF SATELLITE DATA IN FISHERIES MANAGEMENT
Shrestha, Alok	pg. 6341 WE2.R17.12 - CURRENT STATUS OF NEON'S AOP
Shrestha, Ranjay	pg. 156 MO2.R14.8 - UNCERTAINTIES IN VIIRS NIGHTTIME LIGHT TIME SERIES ANALYSIS

Shroff, Urvi	pg. 734 TU1.R16.10 - SYNERGETIC USE OF MORPHOLOGICAL AND RADAR PARAMETER FOR LUNAR WATER ICE DETECTION
Shu, Chuanzeng	pg. 1023 WE1.R3.8 - SURFACE DEFORMATION OF HIGH-SPEED RAILWAY BETWEEN CHANGCHUN AND HARBIN BASED ON TIME-SERIES INSAR TECHNIQUE
Shuai, Guanyuan	pg. 4669 WE2.R11.5 - AUTUMN CROP MAPPING BASED ON DEEP LEARNING METHOD DRIVEN BY HISTORICAL LABELLED DATASET
Shukla, Anoop Kumar	(SPES) AND THEIR VALIDATION USING GROUND-BASED MEASURMENTS: A CASE STUDY IN UTTARAKHAND STATE, INDIA
Shukla, Anugya	pg. 4267 TU1.R1.5 - COMPARISON OF SPATIAL MODELLING APPROACHES TO PREDICT URBAN GROWTH OF LUCKNOW CITY, INDIA
Shukla, Dericks P.	(pg. 5234) FR2.R10.9 - DATA IMBALANCE IN LANDSLIDE SUSCEPTIBILITY ZONATION: A CASE STUDY OF MANDAKINI RIVER BASIN, UTTARAKHAND, INDIA
Shukla, Dericks Praise	pg. 5517 TH2.R19.10 - SOURCE CHARACTERIZATION OF AEROSOLS AND TRENDS DURING 2000-2019 OVER DELHI (INDIA)
Shukla, Satyavati	(SPES) AND THEIR VALIDATION USING GROUND-BASED MEASURMENTS: A CASE STUDY IN UTTARAKHAND STATE, INDIA
Shuman, Christopher	pg. 2972 TU1.R9.3 - MELT DETECTION OVER GREENLAND USING SMAP RADIOMETER OBSERVATIONS
Shumilo, Leonid	pg. 6914] FR1.R2.2 - DEEP RECURRENT NEURAL NETWORK FOR CROP CLASSIFICATION TASK BASED ON SENTINEL-1 AND SENTINEL-2 IMAGERY pg. 4971 TH2.R6.9 - ASSESSMENT OF LAND CONSUMPTION FOR SDG INDICATOR 11.3.1 USING GLOBAL AND LOCAL BUILT- UP AREA MAPS pg. 2913 FR2.R18.10 - ACTIVE FIRE MONITORING SERVICE FOR UKRAINE BASED ON SATELLITE DATA
Si, Yu	pg. 3199 TH2.R14.3 - ROAD VECTORIZATION BASED ON IMAGE PIXEL TRACKING AND ATTRIBUTE MATCHING METHOD pg. 2268 FR1.R5.7 - NEW NETWORK BASED ON UNET++ AND DENSENET FOR BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGERY
Sica, Francescopaolo	pg. 359 MO2.R19.5 - MODELING TEMPORAL DECORRELATION AT X-BAND BY COMBINING TANDEM-X AND PAZ INSAR DATA
Sica, Stefania	pg. 4235 MO2.R12.8 - APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC

	INFRASTRUCTURE MONITORING
Siddiqi, Afreen	pg. 3158) WE2.R14.7 - ERROR AND UNCERTAINTY IN EARTH OBSERVATION VALUE CHAINS
	pg. 1600 WE2.R18.8 - CONVOLUTIONAL NEURAL NETWORK FOR DETECTION OF RESIDENTIAL PHOTOVOLTAIC SYSTEMS IN SATELLITE IMAGERY
Siddique, Shahnewaz	pg. 1331 WE2.R3.6 - A DEEP GAUSSIAN PROCESS FOR FORECASTING CROP YIELD AND TIME SERIES ANALYSIS OF PRECIPITATION BASED IN MUNSHIGANJ, BANGLADESH
Sidike, Paheding	pg. 1117 WE1.R6.10 - MODELING EARLY INDICATORS OF GRAPEVINE PHYSIOLOGY USING HYPERSPECTRAL IMAGING AND PARTIAL LEAST SQUARES REGRESSION (PLSR)
Siebert, Stefan	pg. 5163 FR1.R11.2 - CROP YIELD ESTIMATION USING MULTI- SOURCE SATELLITE IMAGE SERIES AND DEEP LEARNING
Siedentop, Stefan	pg. 4219 MO2.R12.4 - DERIVING URBAN MASS CONCENTRATIONS USING TANDEM-X AND SENTINEL-2 DATA
	FOR THE ASSESSMENT OF MORPHOLOGICAL POLYCENTRICITY
Sieger, Stefan	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Siegfried, Matthew	pg. 1420 WE2.R6.8 - PROCESSING-BASED SYNCHRONIZATION APPROACH FOR BISTATIC RADAR GLACIAL TOMOGRAPHY
Siems-Anderson, Amanda	pg. 3626 TH2.R2.5 - ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING
Sierk, Bernd	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Sigurdsson, Jakob	pg. 617 TU1.R11.2 - ZERO-SHOT SENTINEL-2 SHARPENING USING A SYMMETRIC SKIPPED CONNECTION CONVOLUTIONAL NEURAL NETWORK
	pg. 2045 TH2.R3.7 - CREATING RGB IMAGES FROM HYPERSPECTRAL IMAGES USING A COLOR MATCHING FUNCTION
Sikorska, Daria	pg. 4430 TU2.R12.12 - ALGORITHM FOR URBAN SPONTANEOUS GREEN SPACE DETECTION BASED ON OPTICAL SATELLITE REMOTE SENSING
Sikorski, Piotr	pg. 4430 TU2.R12.12 - ALGORITHM FOR URBAN SPONTANEOUS GREEN SPACE DETECTION BASED ON OPTICAL SATELLITE REMOTE SENSING
Siles, Jose	pg. 5466 TH1.R19.9 - SUBMILLIMETER WAVE DIFFERENTIAL ABSORPTION RADAR FOR WATER VAPOR SOUNDING IN THE MARTIAN ATMOSPHERE
Sillero, Neftallí	pg. 4255 TU1.R1.2 - MODELLING TERRESTRIAL TORTOISES

	RESPONSE TO FIRE EVENTS
Silva, Agnelo	pg. 3845 TH2.R17.4 - SPCTOR: SENSING POLICY CONTROLLER AND OPTIMIZER pg. 5042 FR1.R1.7 - SOILSCAPE WIRELESS IN SITU NETWORKS
	IN SUPPORT OF CYGNSS LAND APPLICATIONS
Silva, Carlos	pg. 4991 TH2.R10.5 - A REGIONAL L-BAND HIGH BIOMASS
	ESTIMATION FRAMEWORK LEVERAGING SPACEBORNE LIDAR AND INTERFEROMETRIC DATA TO OVERCOME BACKSCATTER
	SATURATION
Silva, Cristiano Rosa	pg. 1596 WE2.R18.7 - CENTER PIVOT CLASSIFICATION WITH
	DEEP RESIDUAL U-NET
Silva, Erivaldo	pg. 533 TU1.R7.3 - COMPARING THE PERFORMANCE OF MATHEMATICAL MORPHOLOGY AND BHATTACHARYYA
	DISTANCE FOR AIRPORT EXTRACTION
Silva-Perez, Cristian	pg. 4894 TH1.R11.8 - USING C-BAND SAR AND TEMPERATURE
	TO MONITOR TROPICAL AGRICULTURAL FIELDS (pg. 4554) WE1.R11.10 - AGRICULTURAL FIELDS MONITORING
	WITH MULTI-TEMPORAL POLARIMETRIC SAR (MT-POLSAR) CHANGE DETECTION
Cit at a Late of Lit	
Silveira Junior, Luiz	(pg. 2619) FR2.R3.4 - HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN
	REMOTE SENSING IMAGES?
Silveira, Margarida	pg. 2503 FR1.R16.9 - SHIP DETECTION IN SAR IMAGES USING
	CONVOLUTIONAL VARIATIONAL AUTOENCODERS
Silvestri, Malvina	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS
	OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY).
	pg. 6055 TU2.R4.6 - SCIENTIFIC REQUIREMENTS FOR A NEW EO MISSION IN THE MWIR-LWIR SPECTRAL RANGE
Simard, Marc	TU2.R15.2 - GLOBAL MAPPING OF MANGROVE FORESTS WITH
Silitara, Piare	TANDEM-X
	pg. 4991 TH2.R10.5 - A REGIONAL L-BAND HIGH BIOMASS ESTIMATION FRAMEWORK LEVERAGING SPACEBORNE LIDAR
	AND INTERFEROMETRIC DATA TO OVERCOME BACKSCATTER
	SATURATION (pg. 5964) TU1.R4.6 - EVALUATING CURRENT AND FUTURE
	SENSOR-SPECIFIC BIOMASS CALIBRATION IN THE TALLEST
	MANGROVE FOREST ON EARTH (pg. 4766) TH1.R4.9 - MANGROVE MAPPING WITH THE
	FREEMAN-DURDEN POLARIMETRIC DECOMPOSITION AND INSAR COHERENCE FROM ALOS-2
C'araba la ca	
Simonis, Ingo	pg. 605 TU1.R10.10 - EXPLOITATION OF EARTH OBSERVATIONS: OGC CONTRIBUTIONS TO GRSS EARTH
	SCIENCE INFORMATICS
Simonoko, Hope	pg. 3975 FR2.R4.7 - TEMPORAL ANOMALY DETECTION IN
	MULTISPECTRAL IMAGERY

Simons, John	pg. 4914 TH2.R1.3 - SENTINEL-1 IMAGERY INCORPORATING MACHINE LEARNING FOR DRYLAND SALINITY MONITORING: A CASE STUDY IN ESPERANCE, WESTERN AUSTRALIA
Simons, Robert A.	pg. 3207 TH2.R14.5 - ERDDAP: PROVIDING EASY ACCESS TO REMOTE SENSING DATA FOR SCIENTISTS AND STUDENTS
Simpson, Christopher	pg. 1417) WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Simpson, Christopher D.	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Sinclair, Leigh	pg. 5422 WE1.R19.10 - SUPPORTING LIGHTNING SAFETY AND DECISION SUPPORT AT THE NASA GLOBAL HYDROLOGY RESOURCE CENTER DISTRIBUTED ACTIVE ARCHIVE CENTER
Singh, Abhra	pg. 1217) WE1.R17.12 - IDENTIFYING SETTLEMENTS USING SVM AND U-NET
Singh, Anand	pg. 2280 FR1.R5.10 - SATELLITE-DERIVED BATHYMETRY USING DEEP CONVOLUTIONAL NEURAL NETWORK
Singh, Arun Kumar	pg. 6475 FR1.R15.5 - COMPUTATIONAL-VISION BASED ORTHORECTIFICATION AND GEOREFRENCING FOR CORRECT LOCALIZATION OF RAILWAY TRACK IN UAV IMAGERY
Singh, Dharmendra	pg. 3712 TH2.R11.4 - EXPLORING THE POSSIBILITY OF ASSESSING BIOCHEMICAL VARIABLES IN SUGARCANE CROP WITH SENTINEL-2 DATA pg. 6475 FR1.R15.5 - COMPUTATIONAL-VISION BASED ORTHORECTIFICATION AND GEOREFRENCING FOR CORRECT LOCALIZATION OF RAILWAY TRACK IN UAV IMAGERY pg. 4578 WE2.R1.5 - OPTIMIZATION OF MODEL PARAMETERS FOR SM ESTIMATION USING SENTINEL-1 DATA WITH EFFICIENT ANALYSIS OF WHEAT GROWTH CYCLE pg. 4191 MO2.R11.8 - AN ADAPTIVE NEURO-FUZZY APPROACH FOR DECOMPOSITION OF MIXED PIXELS TO IMPROVE CROP AREA ESTIMATION USING SATELLITE IMAGES pg. 1747 TH1.R5.10 - A NEURAL NETWORK APPROACH TO CLASSIFY MIXED CLASSES USING MULTI FREQUENCY SAR DATA pg. 1209 WE1.R17.10 - AN APPROACH FOR FAULT DETECTION IN METALLIC STRUCTURES USING MILLIMETER WAVE IMAGING pg. 2237 TH2.R20.11 - FEATURE-BASED TEMPLATE MATCHING FOR JOGGLED FISHPLATE DETECTION IN RAILROAD TRACK WITH DRONE IMAGES
Singh, Dineshkumar	pg. 4538 WE1.R11.6 - MONITORING AND ANALYSIS OF VIIRS FIRE EVENTS DATA OVER INDIAN STATES OF PUNJAB AND HARYANA
Singh, Gagandeep	pg. 2221 TH2.R20.7 - SEISMIC FAULT ANALYSIS USING CURVATURE ATTRIBUTE AND VISUAL SALIENCY
Singh, Gulab	pg. 2005 TH1.R18.8 - SNOW CHARACTERIZATION AND

Sjoberg, Bill	pg. 3294 MO2.R7.2 - NOAA SATELLITES: PROVIDING CRITICAL
Sixsmith, Joshua	pg. 3383 TU2.R14.4 - ANALYSIS READY DATA FOR INSAR APPLICATIONS
	pg. 731 TU1.R16.9 - ISCE DOCKER TOOLS: AUTOMATED RADIOMETRIC TERRAIN CORRECTION AND IMAGE COREGISTRATION OF UAVSAR MLC DATA
	pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY
Siqueira, Paul	pg. 96 MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION THE RIES OF SMARK AND THE PROPERTY OF THE PRO
	pg. 3383 TU2.R14.4 - ANALYSIS READY DATA FOR INSAR APPLICATIONS
	pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS
Siqueira, Andreia	pg. 3373 TU2.R14.1 - ADVANCEMENTS IN THE OPEN DATA CUBE AND ANALYSIS READY DATA - PAST, PRESENT AND FUTURE
Sipelgas, Liis	pg. 4750 TH1.R4.5 - METHODOLOGY FOR MAPPING FLOOD EXTENT ON ESTONIAN FLOODPLAINS
Sinha, Abhijit	pg. 4167 MO2.R11.2 - EARLY-SEASON CROP CLASSIFICATION WITH RADARSAT-2 POLARIMETRIC SYNTHETIC APERTURE RADAR IMAGERY
	DECISION TREE ALGORITHM FOR MIXED CLASS CLASSIFICATION WITH SENTINEL-2 DATA
Singh, Vatsala	pg. 2304 FR1.R6.4 - DEVELOPMENT OF STATISTICAL BASED
Singh, Rohit	pg. 1217 WE1.R17.12 - IDENTIFYING SETTLEMENTS USING SVM AND U-NET
Singh, Ramesh P.	pg. 5517 TH2.R19.10 - SOURCE CHARACTERIZATION OF AEROSOLS AND TRENDS DURING 2000-2019 OVER DELHI (INDIA).
	PARAMETERS ALONG THE TRACK OF TROPICAL CYCLONE FANI
Singh, Ramesh P	pg. 5554 FR1.R19.9 - CHANGE IN LAND AND OCEAN
Singh, Keshava P	pg. 2304 FR1.R6.4 - DEVELOPMENT OF STATISTICAL BASED DECISION TREE ALGORITHM FOR MIXED CLASS CLASSIFICATION WITH SENTINEL-2 DATA
	ESTIMATION USING MULTI-SENSOR GEOSTATISTICAL APPROACH
	FROM VELOCITY (pg. 4335) TU2.R10.11 - FOREST ABOVE GROUND BIOMASS
	pg. 3002 TU1.R9.11 - ESTIMATING DYNAMIC PARAMETERS OF BARA SHIGRI GLACIER AND DERIVATION OF MASS BALANCE
	pg. 2999 TU1.R9.10 - SURGING GLACIER DYNAMICS IN TARIM BASIN USING SAR DATA
	AVALANCHE DETECTION IN THE INDIAN HIMALAYA

Sjögren, Thomas	GLOBAL DATA FOR LOCAL ENVIRONMENTAL CHALLENGES (pg. 1985) TH1.R18.3 - ENHANCING CONVENTIONAL SAR CHANGE DETECTION PERFORMANCE WITH APODIZATION (pg. 1997) TH1.R18.6 - CHANGE DETECTION AND SIGNATURE CLASSIFICATION FOR SAR GMTI
Skakun, Sergii	pg. 5163 FR1.R11.2 - CROP YIELD ESTIMATION USING MULTI-SOURCE SATELLITE IMAGE SERIES AND DEEP LEARNING pg. 4787 TH1.R6.3 - DETECTION OF CHANGES IN IMPERVIOUS SURFACE USING SENTINEL-2 IMAGERY pg. 3723 TH2.R11.7 - CAPTURING CORN AND SOYBEAN YIELD VARIABILITY AT FIELD SCALE USING VERY HIGH SPATIAL RESOLUTION SATELLITE DATA pg. 4100 MO2.R1.7 - SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER
Skofronick-Jackson, Gail	pg. 3589 WE2.R19.1 - THE GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION
Skowronski, Nicholas	MO2.R10.6 - DOES REPEATED PRESCRIBED BURNING RESULT IN FOREST STRUCTURE SIMILAR TO THAT OF WILDFIRE? INSIGHT FROM ANALYSIS OF LIDAR DATA OF THE NEW JERSEY PINELANDS NATIONAL RESERVE
Sleeman, Jennifer	pg. 3676 TH2.R7.4 - A DEEP MACHINE LEARNING APPROACH FOR LIDAR BASED BOUNDARY LAYER HEIGHT DETECTION
Smets, Bruno	pg. 4251 TU1.R1.1 - ELASTIC MAPPING THROUGH THE COPERNICUS GLOBAL LAND COVER LAYERS
Smirnov, Dmitriy	pg. 1805 TH1.R9.2 - REGULARIZED BUILDING SEGMENTATION BY FRAME FIELD LEARNING
Smit, Izak	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1 pg. 4323 TU2.R10.8 - ANNUAL GRASS BIOMASS MAPPING WITH LANDSAT-8 AND SENTINEL-2 DATA OVER KRUGER NATIONAL PARK, SOUTH AFRICA
Smith Jr., William	pg. 2956 MO2.R9.11 - ESTIMATING EFFECTIVE SNOW GRAIN SIZE USING NORMALIZED CHANNEL RATIOS OF MODIS 0.86 AND 1.64 MICRON BANDS
Smith Sr, William	(pg. 3657) TH2.R4.6 - EXPEDITIOUS IMPLEMENTATION OF A HYPERSPECTRAL IMAGING INFRARED SOUNDER (HIIS) IN GEOSTATIONARY ORBIT
Smith, Christopher	pg. 4735 TH1.R4.1 - MAPPING OF SHALLOW-WATER SITES TO AID NAVIGATION ON THE COLVILLE RIVER, NORTH SLOPE OF ALASKA pg. 1307 WE1.R20.11 - IMPROVED VEGETATION AND WILDFIRE FUEL TYPE MAPPING USING NASA AVIRIS-NG HYPERSPECTRAL DATA, INTERIOR AK

Smith, Craig	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2)
Smith, Deborah	pg. 3131 WE1.R14.11 - STANDARDIZED ALGORITHM DOCUMENTATION FOR IMPROVED SCIENTIFIC DATA UNDERSTANDING: THE ALGORITHM PUBLICATION TOOL PROTOTYPE
Smith, Joseph	pg. 6460 FR1.R15.1 - DETECTION OF SEASONAL ARCTIC TERRAIN CHANGE USING A SMALL UNMANNED AIRCRAFT SYSTEM (SUAS) ON THE ALASKAN NORTH SLOPE
Smith, Paul	pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS
Smith, Ryan	pg. 5061 FR1.R1.12 - TOWARDS SUSTAINABLE GROUNDWATER MANAGEMENT: PREDICTING DEFORMATION SCENARIOS WITH COUPLED HYDROGEOPHYSICAL MODELS
Smith, William	pg. 3640 TH2.R4.1 - THE NEXT GENERATION US LEO HYPERSPECTRAL INFRARED SOUNDER
Soareas, Anderson	pg. 168 MO2.R14.11 - ASSESSING DIFFERENTIATION BETWEEN PASTURE AND CROPLANDS USING REMOTE SENSING IMAGE TIME SERIES METRICS
Soares, Abel	pg. 4195 MO2,R11.9 - MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE
Soares, Anderson	pg. 2061) TH2.R3.11 - STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION pg. 1078) WE1.R5.11 - APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO
Soares, Anderson Reis	pg. 1345 WE2.R3.10 - LAND COVER CLASSIFICATION OF AN AREA SUSCEPTIBLE TO LANDSLIDES USING RANDOM FOREST AND NDVI TIME SERIES DATA
Sobrino, Marco	pg. 5986 TU1.R4.12 - RITA: REQUIREMENTS AND PRELIMINARY DESIGN OF AN L-BAND MICROWAVE RADIOMETER, OPTICAL IMAGER, AND RFI DETECTION PAYLOAD FOR A 3U CUBESAT
Soisuvarn, Seubson	pg. 5794 TH1.R8.6 - SCATSAT-1 HIGH WINDS GEOPHYSICAL MODEL FUNCTION AND ITS WINDS APPLICATION IN OPERATIONAL MARINE FORECASTING AND WARNING
Sola, Daniel	pg. 6930 FR1.R2.6 - IDENTIFYING SEA ICE RIDGING IN SAR IMAGERY USING CONVOLUTIONAL NEURAL NETWORKS
Solana, Andrés	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Solano-Correa, Yady Tatiana	pg. 2288 FR1.R5.12 - LARGE-SCALE PRECISE MAPPING OF

	AGRICULTURAL FIELDS IN SENTINEL-2 SATELLITE IMAGE TIME SERIES
Solarna, David	pg. 2089 TH2.R5.7 - AUTOMATIC AREA-BASED REGISTRATION OF OPTICAL AND SAR IMAGES THROUGH GENERATIVE ADVERSARIAL NETWORKS AND A CORRELATION-TYPE METRIC
Solazzo, Enrico	pg. 5372 TU2.R19.9 - UNDERSTANDING SEVERE WEATHER EVENTS AT AIRPORT SPATIAL SCALE
Soldo, Yan	pg. 3766 TH2.R13.3 - RETRIEVAL OF RFI CHARACTERISTICS USING L-BAND SATELLITE DATA FR1.R13.11 - MONITORING IN THE RFI ENVIRONMENT USING SMAP DATA FROM 2015-2020
Solish, Benjamin	pg. 6101 WE1.R7.1 - ESTABLISHING LAUNCH READINESS OF NASA ISS INSTRUMENT OCO-3
Solomon, Justin	pg. 1805 TH1.R9.2 - REGULARIZED BUILDING SEGMENTATION BY FRAME FIELD LEARNING
Soloviev, Alexander	pg. 5753 WE1.R8.7 - HIGH-RESOLUTION REMOTE SENSING, IN-SITU OBSERVATIONS, AND MODELING OF LOW-SALINITY LENSES IN THE PRESENCE OF OIL SLICK
Song, Chen	pg. 2368 FR1.R9.9 - A FAST 3-D IMAGING METHOD FOR CIRCULAR SAR BASED ON 3-D BACK-PROJECTION ALGORITHM
Song, Conghe	pg. 4826 TH1.R10.2 - LEAF AGING AFFECTS THE VARIABILITY OF CANOPY REFLECTANCE WITH STAND DEVELOPMENT IN EVERGREEN CHINESE FIR PLANTATION
Song, Hongjun	pg. 1440 WE2.R9.2 - MAPPING OF URBAN AREAS FROM SAR IMAGES VIA SEMANTIC SEGMENTATION
Song, Hua	FR1.R2.1 - CLASSIFYING GLOBAL LOW CLOUD MORPHOLOGY WITH A DEEP LEARNING MODEL: RESULTS AND POTENTIAL USE
Song, Jinling	pg. 4826 TH1.R10.2 - LEAF AGING AFFECTS THE VARIABILITY OF CANOPY REFLECTANCE WITH STAND DEVELOPMENT IN EVERGREEN CHINESE FIR PLANTATION pg. 2909 FR2.R18.9 - MONITORING AND RISK ASSESSMENT OF HIGH-TEMPERATURE HEAT DAMAGE FOR SUMMER MAIZE BASED ON REMOTE SENSING DATA pg. 4646 WE2.R10.10 - SIMULATING AIRBORNE FULL- WAVEFORM LIDAR DATA IN VARYING MUTILAYERD FOREST THROUGH THE DART MODEL
Song, Juyoung	pg. 1624 TH1.R2.3 - FINE ACQUISITION OF VESSEL TRAINING DATA FOR MACHINE LEARNING FROM SENTINEL-1 SAR IMAGES ACCOMPANIED BY AIS IMFORMATION
Song, Meiping	pg. 481 TU1.R6.2 - HYPERSPECTRAL CLASSIFICATION USING LOW RANK AND SPARSITY MATRICES DECOMPOSITION pg. 2033 TH2.R3.4 - HYPERSPECTRAL TARGET DETECTION BASED ON TARGET-CONSTRAINED INTERFERENCE-MINIMIZED

	BAND SELECTION (pg. 56) MO2.R5.5 - SUPERPIXEL-LEVEL CONSTRAINT
	REPRESENTATION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION
	pg. 2807] FR2.R12.5 - GO DECOMPOSITION (GODEC), APPROACH TO FINDING LOW RANK AND SPARSITY MATRICES FOR HYPERSPECTRAL TARGET DETECTION
	pg. 2324 FR1.R6.10 - HYPERSPECTRAL ANOMALY DETECTION VIA BAND FUSION
Song, Peilan	pg. 5994 TU1.R14.2 - A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER
Song, Qianqian	pg. 5574 FR2.R19.3 - SATELLITE REMOTE SENSING OBSERVATIONS OF TRANS-ATLANTIC DUST TRANSPORT AND DEPOSITION: A MULTI-SENSOR ANALYSIS
Song, Rui	pg. 1857 TH1.R12.4 - SPECTRAL SUPER-RESOLUTION USING HYBRID 2D-3D STRUCTURE TENSOR ATTENTION NETWORKS WITH CAMERA SPECTRAL SENSITIVITY PRIOR
	pg. 1825 TH1.R9.7 - DILATED RESIDUAL NETWORK BASED ON DUAL EXPECTATION MAXIMIZATION ATTENTION FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES
Song, Wanying	pg. 1460 WE2.R9.7 - HIGH-ORDER TRIPLET CRF-PCANET FOR UNSUPERVISED SEGMENTATION OF SAR IMAGE
Song, Yang	
Sorig, raing	pg. 1869 TH1.R12.7 - ROBUST ESTIMATION APPROACH FOR PLANE FITTING IN 3D LASER SCANNING DATA pg. 6499 FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING
Song, Yiyao	PLANE FITTING IN 3D LASER SCANNING DATA (pg. 6499) FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE
	PLANE FITTING IN 3D LASER SCANNING DATA (pg. 6499) FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING (pg. 7009) TU1.R20.2 - REMOTE SENSING IMAGE SPATIO-TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL
Song, Yiyao	PLANE FITTING IN 3D LASER SCANNING DATA (pg. 6499) FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING (pg. 7009) TU1.R20.2 - REMOTE SENSING IMAGE SPATIOTEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR (pg. 6313) WE2.R17.5 - IMAGE ANALYSIS OF A SEA TURTLE
Song, Yiyao Sosa-Cornejo, Ingmar	PLANE FITTING IN 3D LASER SCANNING DATA pg. 6499 FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING pg. 7009 TU1.R20.2 - REMOTE SENSING IMAGE SPATIO-TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR pg. 6313 WE2.R17.5 - IMAGE ANALYSIS OF A SEA TURTLE NESTING BEACH USING UNMANNED AERIAL VEHICLES (UAVS) MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE:
Song, Yiyao Sosa-Cornejo, Ingmar Soukup, Tomas	PLANE FITTING IN 3D LASER SCANNING DATA pg. 6499 FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING pg. 7009 TU1.R20.2 - REMOTE SENSING IMAGE SPATIO-TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR pg. 6313 WE2.R17.5 - IMAGE ANALYSIS OF A SEA TURTLE NESTING BEACH USING UNMANNED AERIAL VEHICLES (UAVS). MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT pg. 6503 FR1.R15.12 - ESTIMATION OF LEAF AREA INDEX IN CHESTNUT TREES USING MULTISPECTRAL DATA FROM AN
Song, Yiyao Sosa-Cornejo, Ingmar Soukup, Tomas Sousa, António	PLANE FITTING IN 3D LASER SCANNING DATA pg. 6499 FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING pg. 7009 TU1.R20.2 - REMOTE SENSING IMAGE SPATIO-TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR pg. 6313 WE2.R17.5 - IMAGE ANALYSIS OF A SEA TURTLE NESTING BEACH USING UNMANNED AERIAL VEHICLES (UAVS) MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT pg. 6503 FR1.R15.12 - ESTIMATION OF LEAF AREA INDEX IN CHESTNUT TREES USING MULTISPECTRAL DATA FROM AN UNMANNED AERIAL VEHICLE pg. 6309 WE2.R17.4 - VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV
Song, Yiyao Sosa-Cornejo, Ingmar Soukup, Tomas Sousa, António	PLANE FITTING IN 3D LASER SCANNING DATA (Pg. 6499) FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING (Pg. 7009) TU1.R20.2 - REMOTE SENSING IMAGE SPATIO-TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR (Pg. 6313) WE2.R17.5 - IMAGE ANALYSIS OF A SEA TURTLE NESTING BEACH USING UNMANNED AERIAL VEHICLES (UAVS). MO2.R12.5 - COPERNICUS FOR URBAN RESILIENCE IN EUROPE: THE CURE PROJECT (Pg. 6503) FR1.R15.12 - ESTIMATION OF LEAF AREA INDEX IN CHESTNUT TREES USING MULTISPECTRAL DATA FROM AN UNMANNED AERIAL VEHICLE (Pg. 6309) WE2.R17.4 - VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY TU2.R3.6 - PS-INSAR TARGET CLASSIFICATION USING DEEP

	pg. 6491 FR1.R15.9 - THE NEW PARAMOTOR PROJECT: FLEXIBILITY AT LOW COST TO OVERCOME MAIN LIMITATIONS OF MULTI-COPTERS AND FIXED-WINGS UAVS pg. 4550 WE1.R11.9 - MONITORING OF OLIVE TREES TEMPERATURES UNDER DIFFERENT IRRIGATION STRATEGIES BY UAV THERMAL INFRARED IMAGERY pg. 1026 WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN). pg. 4195 MO2.R11.9 - MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE pg. 6503 FR1.R15.12 - ESTIMATION OF LEAF AREA INDEX IN CHESTNUT TREES USING MULTISPECTRAL DATA FROM AN
Soussen, Charles	UNMANNED AERIAL VEHICLE (pg. 4918) TH2.R1.4 - OMP-BASED ALGORITHM FOR MINERAL REFLECTANCE SPECTRA DECONVOLUTION FROM HYPERSPECTRAL IMAGES
Souverijns, Niels	pg. 4251 TU1.R1.1 - ELASTIC MAPPING THROUGH THE COPERNICUS GLOBAL LAND COVER LAYERS pg. 4489 WE1.R10.4 - APPLICATION OF RANDOM FOREST CLASSIFICATION TO DETECT THE PINE WILT DISEASE FROM HIGH RESOLUTION SPECTRAL IMAGES
Souza Filho, Carlos	FR2.R14.8 - PETROLEUM HYDROCARBON SWIR- LWIR SPECTRAL SIGNATURES & REMOTE SENSING DETECTION: PROSPECTS AND CONSTRAINTS
Souza, Eniuce	pg. 5207 FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA pg. 2619 FR2.R3.4 - HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN REMOTE SENSING IMAGES?
Sowmya, Arcot	pg. 1683 TH1.R3.6 - SELF-SUPERVISED REMOTE SENSING IMAGE RETRIEVAL
Sox, Leda	pg. 6085 WE1.R4.4 - LOW-SWAP ELASTIC BACKSCATTER LIDAR FOR CLOSE-RANGE AEROSOL DETECTION
Specht, Bernard	pg. 6113 WE1.R7.4 - MULTI-THEMATIC EARTH MONITORING CAPABILITIES USING VENMS OPTICAL TIME SERIES
Spencer, David	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION
Spigai, Marc	(pg. 1961) TH1.R17.8 - A CYCLE GAN APPROACH FOR HETEROGENEOUS DOMAIN ADAPTATION IN LAND USE CLASSIFICATION
Sreevalsan-Nair, Jaya	pg. 1066 WE1.R5.8 - INFLUENCE OF ALEATORIC UNCERTAINTY ON SEMANTIC CLASSIFICATION OF AIRBORNE LIDAR POINT CLOUDS: A CASE STUDY WITH RANDOM FOREST CLASSIFIER USING MULTISCALE FEATURES
Srinivasan, MS	pg. 4626 WE2.R10.5 - FOREST FLOWS - REAL TIME

	MONITORING OF WATER QUANTITY AND QUALITY SPATIO- TEMPORAL DYNAMICS IN PLANTED FORESTS
Sriroth, Klanarong	pg. 4684 WE2.R11.9 - YIELD AND COMMERCIAL CANE SUGAR ESTIMATION FOR SUGARCANE IN THAILAND - A CASE STUDY
Srivastava, Priyanka	pg. 6101 WE1.R7.1 - ESTABLISHING LAUNCH READINESS OF NASA ISS INSTRUMENT OCO-3
Srokosz, Meric	pg. 5941 MO2.R13.10 - NOC GNSS-R GLOBAL OCEAN WIND SPEED AND SEA-ICE PRODUCTS USING DATA FROM THE TECHDEMOSAT-1 MISSION
Stachura, Maciej	pg. 4474 WE1.R1.11 - L-BAND HIGH SPATIAL RESOLUTION SOIL MOISTURE MAPPING USING A SMALL UNMANNED AERIAL SYSTEM
Standfuß, Ines	pg. 4219 MO2.R12.4 - DERIVING URBAN MASS CONCENTRATIONS USING TANDEM-X AND SENTINEL-2 DATA FOR THE ASSESSMENT OF MORPHOLOGICAL POLYCENTRICITY pg. 4799 TH1.R6.6 - STABILITY CHARACTERIZATION OF THE RESPONSE OF WHITE STORKS' FORAGING BEHAVIOR TO VEGETATION DYNAMICS RETRIEVED FROM LANDSAT TIME SERIES
Stanek, Marek	pg. 870 TU2.R5.11 - SEGMENTING HYPERSPECTRAL IMAGES USING SPECTRAL CONVOLUTIONAL NEURAL NETWORKS IN THE PRESENCE OF NOISE
Staniewicz, Scott	pg. 6790 TU2.R2.6 - ACCURATE INSAR SURFACE DEFORMATION MAPPING OVER THE OIL-PRODUCING PERMIAN BASIN WITH AUTOMATED TROPOSPHERIC OUTLIER REMOVAL
Stanko, Stephan	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Stankovic, Lina	pg. 1667] TH1.R3.2 - GRAPH-BASED MICRO-SEISMIC SIGNAL CLASSIFICATION WITH AN OPTIMISED FEATURE SPACE
Stankovic, Vladimir	pg. 1667 TH1.R3.2 - GRAPH-BASED MICRO-SEISMIC SIGNAL CLASSIFICATION WITH AN OPTIMISED FEATURE SPACE
Stano, Geoffrey	pg. 5422 WE1.R19.10 - SUPPORTING LIGHTNING SAFETY AND DECISION SUPPORT AT THE NASA GLOBAL HYDROLOGY RESOURCE CENTER DISTRIBUTED ACTIVE ARCHIVE CENTER
Staples, Gordon	pg. 4027 FR2.R8.6 - COMPARISON OF RADARSAT-2 AND RCM SIMULATED DATA FOR THE DETECTION OF ACTIONABLE OCEAN SURFACE OIL
Starek, Michael	pg. 1873 TH1.R12.8 - EXTRACTING CAMERA POSE USING SINGLE IMAGE SUPER RESOLUTION NETWORKS
Starek, Michael J.	pg. 6965 FR2.R2.3 - SPATIAL RESOLUTION ENHANCEMENT OF UNMANNED AIRCRAFT SYSTEM IMAGERY USING DEEP LEARNING-BASED SINGLE IMAGE SUPER-RESOLUTION pg. 5870 FR1.R8.4 - MOBILE AND AIRBORNE LIDAR SCANNING

	OF BEACH ELEVATION CHANGE DUE TO HURRICANE HARVEY (pg. 5761) WE1.R8.9 - SURFZONE BATHYMETRY ESTIMATION USING WAVE CHARACTERISTICS OBSERVED BY UNMANNED AERIAL SYSTEMS
Stasolla, Mattia	pg. 5167 FR1.R11.3 - A SATELLITE-BASED METHODOLOGY FOR HARVEST DATE DETECTION AND YIELD PREDICTION IN SUGARCANE
Stavros, Natasha	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Stein, Alfred	pg. 3916 FR1.R7.7 - BUILDING INSTANCE SEGMENTATION AND BOUNDARY REGULARIZATION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES
Steinbach, Michael	pg. 3494 WE2.R7.3 - PROCESS GUIDED DEEP LEARNING FOR MODELING PHYSICAL SYSTEMS: AN APPLICATION IN LAKE TEMPERATURE MODELING
Steiner, Andrea K.	pg. 6834 WE1.R2.5 - THE 2015 CALBUCO VOLCANIC CLOUD DETECTION USING GNSS RADIO OCCULTATION AND SATELLITE LIDAR
Steinhage, Daniel	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Stempliuk, Sergio	pg. 4108 MO2.R1.9 - AGRICULTURE MULTISPECTRAL UAV IMAGE REGISTRATION USING SALIENT FEATURES AND MUTUAL INFORMATION
Stephen, Mark	pg. 3471 WE2.R4.5 - INTEGRATED PHOTONICS TECHNOLOGY FOR SPACE-BASED REMOTE-SENSING pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Stern, Gary	pg. 3031 TU2.R9.8 - MODELING BACKSCATTER FROM OIL- CONTAMINATED SEA ICE USING A MULTI-LAYERED SCATTERING MODEL
Stern, Jordan	pg. 3837 TH2.R17.2 - COORDINATING OBSERVATION AT GLOBAL AND LOCAL SCALES: SERVICE-ORIENTED PLATFORM TO EVALUATE MISSION ARCHITECTURES
Steventon, Matthew	pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS
Stoffelen, Ad	pg. 5787 TH1.R8.4 - GENERALIZATION OF KU-BAND FALSE-ALARM REDUCTION METHOD AND APPLICATION TO CSCAT pg. 5313 TU1.R19.6 - ASSIMILATION OF GNSS-R DELAY-DOPPLER MAPS INTO WEATHER MODELS pg. 5798 TH1.R8.7 - A STUDY ON COMBINED C- AND KU-BAND RAIN EFFECTS FOR WIND SCATTEROMETRY QUALITY CONTROL

Stoian, Razvan	pg. 6028 TU1.R14.11 - LIGHTGUIDE, INTEGRAL FIELD SNAPSHOT IMAGING SPECTROMETER FOR ENVIRONMENTAL IMAGING AND EARTH OBSERVATIONS
Stokes, Eleanor	pg. 156 MO2.R14.8 - UNCERTAINTIES IN VIIRS NIGHTTIME LIGHT TIME SERIES ANALYSIS
Storch, Tobias	pg. 3278 MO2.R4.4 - THE ENMAP GERMAN SPACEBORNE IMAGING SPECTROSCOPY MISSION: UPDATE AND HIGHLIGHTS OF RECENT PREPARATORY ACTIVITIES
Storey, James	pg. 6137 WE1.R7.10 - THE NEW LANDSAT GLOBAL LAND SURVEY (GLS) DEM
Stovall, Atticus	TU2.R15.2 - GLOBAL MAPPING OF MANGROVE FORESTS WITH TANDEM-X Pg. 5964 TU1.R4.6 - EVALUATING CURRENT AND FUTURE SENSOR-SPECIFIC BIOMASS CALIBRATION IN THE TALLEST MANGROVE FOREST ON EARTH
Strager, Michael	pg. 2775 FR2.R9.8 - MAPPING THE LAND DEVELOPMENT PROCESSES USING DATA TRANSFORMATION AND CLUSTERING METHODS
Straka, William	pg. 3294 MO2.R7.2 - NOAA SATELLITES: PROVIDING CRITICAL GLOBAL DATA FOR LOCAL ENVIRONMENTAL CHALLENGES
Stratoulias, Dimitris	pg. 6069 TU2.R4.10 - LAND COVER FEATURE EXTRACTION FROM CORONA SPY SATELLITE IMAGES DURING THE COLD WAR - 1968
Stringham, Craig	pg. 3571 WE2.R15.6 - OPERATIONAL READINESS OF THE CAPELLA SPACE SAR SYSTEM
Strollo, Andrea	pg. 4779 TH1.R6.1 - LAND COVER AND SOIL CONSUMPTION MONITORING WITH A FOS GEOPORTAL IN FIVE ITALIAN BIG URBAN AREAS
Strong, Savannah	pg. 2017 TH1.R18.11 - MERRAMAX: A MACHINE LEARNING APPROACH TO STOCHASTIC CONVERGENCE WITH A MULTI-VARIATE DATASET
Strow, Larrabee	pg. 6043 TU2.R4.3 - DERIVATION OF JPSS-2 CRIS PRE-LAUNCH SPECTRAL CALIBRATION PARAMETERS FROM THE THERMAL VACUUM TEST DATA TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT
Strube, Alexandre	pg. 1058 WE1.R5.6 - SCALING UP A MULTISPECTRAL RESNET-50 TO 128 GPUS
Strydom, Tercia	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1

Stysley, Paul	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Su, Hao	pg. 2483 FR1.R16.4 - ISAR COMPRESSIVE SENSING IMAGING USING CONVOLUTION NEURAL NETWORK WITH INTERPRETABLE OPTIMIZATION
Su, Hongbo	pg. 4594) WE2.R1.9 - COMPARISON OF SMAP AND NLDAS-2 SOIL MOISTURE DATA SETS OVER THE SOUTHERN GREAT PLAINS
Su, Jia	pg. 3774 TH2.R13.6 - WIDEBAND INTERFERENCE SUPPRESSION FOR SAR BY TIME-FREQUENCY-PULSE JOINT DOMAIN PROCESSING
Su, Jie	pg. 3012 TU2.R9.3 - RETRIEVAL OF ARCTIC SEA ICE SURFACE MELT ONSET IN 2016 FROM FY-3B/MWRI DATA
Su, Jing	pg. 5477 TH1.R19.12 - SPATIAL AND TEMPORAL CHARACTERISTICS OF SEA FOG IN YELLOW SEA AND BOHAL SEA BASED ON ACTIVE AND PASSIVE REMOTE SENSING
Su, Lihong	pg. 2567 FR1.R18.3 - AN EMPIRICAL STUDY ON FULLY CONVOLUTIONAL NETWORK AND HYPERCOLUMN METHODS FOR UAV REMOTE SENSING IMAGERY CLASSIFICATION
Su, Nan	pg. 1763 TH1.R7.2 - DICTIONARY LEARNING HYPERSPECTRAL TARGET DETECTION ALGORITHM BASED ON TUCKER TENSOR DECOMPOSITION pg. 4211 MO2.R12.2 - A NOVEL BUILDING RECONSTRUCTION FRAMEWORK USING SINGLE-VIEW REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORKS pg. 2209 TH2.R20.4 - SPECTRAL-SPATIAL STACKED AUTOENCODERS BASED ON THE BILATERAL FILTER FOR HYPERSPECTRAL ANOMALY DETECTION pg. 3063 WE1.R9.5 - A DISTRIBUTION CONTROLLABLE SIMULATION METHOD OF REMOTE SENSING SEA-ICE IMAGES
Su, Weimin	pg. 4509 WE1.R10.9 - PREDICTING GROWING STOCK VOLUME OF BOREAL FORESTS USING VERY LONG TIME SERIES OF SENTINEL-1 DATA
Su, Xu	pg. 2946 MO2.R9.8 - THE VALIDATION OF SNOW COVER PRODUCT OVER HIGH MOUNTAIN ASIA
Su, Yang	pg. 3203 TH2.R14.4 - JOINT NODE SELECTION AND SPACE- TIME RESOURCE ALLOCATION STRATEGY FOR MULTIPLE TARGETS TRACKING IN NETTED RADAR SYSTEM
Su, Yuanchao	pg. 2416 FR1.R12.9 - HYPERSPECTRAL ANOMALY DETECTION BASED ON ISOLATION FOREST WITH BAND CLUSTERING
Su, Zhonghua	pg. 4395 TU2.R12.3 - AN ACCURATE EXTRACTION ALGORITHM OF THE INDOOR BOUNDARY FEATURES BASED ON POINT CLOUD DATA pg. 2787 FR2.R9.11 - TREE SPECIES CLASSIFICATION BASED

	ON AIRBORNE LIDAR AND HYPERSPECTRAL DATA
Suere, Christophe	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Suess, Martin	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Sugimura, Toshiro	pg. 4963 TH2.R6.7 - ESTIMATION OF REINFORCED SLOPE DYNAMICS USING ALOS-2/ PALSAR-2 AND VALIDATION BY TERRESTRIAL LASER SCANNER
Sugumar, Prethiga	pg. 2995 TU1.R9.9 - MULTI-FREQUENCY PASSIVE REMOTE SENSING OF ICE SHEETS FROM L-BAND TO W-BAND
Sullivan, Taylor	pg. 4606) WE2.R1.12 - JOINT RETRIEVAL OF SOIL MOISTURE AND PERMAFROST ACTIVE LAYER THICKNESS USING L-BAND INSAR AND P-BAND POLSAR
Sullivan, Timothy	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY
Sumbul, Gencer	pg. 1349) WE2.R5.1 - A COMPARATIVE STUDY OF DEEP LEARNING LOSS FUNCTIONS FOR MULTI-LABEL REMOTE SENSING IMAGE CLASSIFICATION
Sun, Bin	pg. 292 MO2.R17.9 - VEHICLE DETECTION WITH PARTIAL ANCHORS IN REMOTE SENSING IMAGES
Sun, Bing	pg. 1229 WE1.R18.3 - SHIP DETECTION IN RADAR IMAGE SERIES BASED ON THE LONG SHORT-TERM MEMORY NETWORK pg. 1161 WE1.R16.10 - ISAR IMAGING OF SPACE STATION BASED ON EPHEMERIS DATA ERROR COMPENSATION
Sun, Chunling	pg. 4522) WE1.R11.2 - RICE MONITORING WITH TIME SERIES SAR BASED ON DEEP LEARNING MODEL
Sun, Fujun	pg. 2667 FR2.R5.4 - COMBINED THE DATA-DRIVEN WITH MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED NOISE REMOVAL IN HYPERSPECTRAL IMAGE
Sun, Genyun	pg. 1279 WE1.R20.4 - LOCAL CORRELATION BASED DATA GRAVITATION CLASSIFICATION FOR HYPERSPECTRAL IMAGE pg. 5262 FR2.R11.4 - WINTER WHEAT PHENOLOGY EXTRACTION BASED ON DENSE TIME SERIES OF SENYINEL-1A DATA pg. 2308 FR1.R6.5 - SUPERPIXEL BASED SPATIAL AND TEMPORAL ADAPTIVE REFLECTANCE FUSION MODEL pg. 64 MO2.R5.7 - MULTISCALE CONVOLUTION NETWORK WITH REGION-BASED MAX VOTING FOR HYPERSPECTRAL IMAGES CLASSIFICATION pg. 76 MO2.R5.10 - 2D-SSA BASED MULTISCALE FEATURE FUSION FOR FEATURE EXTRACTION AND DATA CLASSIFICATION IN HYPERSPECTRAL IMAGERY
Sun, Guang-Cai	pg. 2340 FR1.R9.2 - SHIP POSITIONING AND RADIAL VELOCITY

	ESTIMATION FOR SPACEBORNE SAR BASED ON ENERGY
	CENTER EXTRACTION (pg. 6563) FR2.R17.3 - SPACE TARGETS RESCALING BASED ON
	BISTATIC ISAR SYSTEM
	pg. 2348 FR1.R9.4 - AN OPTIMIZATION ALGORITHM OF
	MOVING TARGETS REFOCUSING VIA PARAMETER ESTIMATION
	DEPENDENCE OF MAXIMUM SHARPNESS PRINCIPLE AFTER BP INTEGRAL
	pg. 2125 TH2.R9.5 - UNAMBIGUOUS SIGNAL
	RECONSTRUCTION ALGORITHM FOR HIGH SQUINT
	MULTICHANNEL SAR MOUNTED ON HIGH SPEED MANEUVERING PLATFORMS
	pg. 2356 FR1.R9.6 - CLUTTER SUPPRESSION AND MOVING
	TARGET RADIAL VELOCITY ESTIMATION METHOD FOR HRWS
	MULTICHANNEL SYSTEM BASED ON SUBSPACE PROJECTION
	(pg. 1917) TH1.R16.8 - AN EFFICIENT MEO SAR IMAGING ALGORITHM BASED ON OPTIMAL IMAGING COORDINATE
	SYSTEM
Sun, Guang-cai	THE DIS 7 LONG SYNTHETIC ADEDTIDE DASSIVE
oun, ouung ou	pg. 928 TU2.R16.7 - LONG SYNTHETIC APERTURE PASSIVE LOCALIZATION USING AZIMUTH CHIRP-RATE CONTOUR MAP
Cur. Currenti	
Sun, Guangcai	pg. 7013 TU1.R20.3 - NEW ALGORITHM FOR NEAR-FIELD ISAR IMAGING
	pg. 6567 FR2.R17.4 - AN IMAGE-DOMAIN BASELINE ERROR
	ESTIMATION METHOD FOR AZIMUTH MULTI-CHANNEL SAR
	pg. 1905 TH1.R16.5 - A REAL-TIME IMAGING PROCESSING
	METHOD BASED ON MODIFIED RMA WITH SUB-APERTURE IMAGES FUSION FOR SPACEBORNE SPOTLIGHT SAR
	pg. 2360 FR1.R9.7 - A SIDELOBE REDUCTION ALGORITHM FOR
	SAR IMAGERY FORMED BY FAST BACK PROJECTION
	ALGORITHM BASED ON SPECTRUM COMPRESSION
	pg. 1251 WE1.R18.9 - A SVA BASED SIDELOBE SUPPRESSION METHOD FOR SEA-LAND SEGMENTATION AND SHIP
	DETECTION IN SAR IMAGES
Sun, liayi	THE DATE OF DEMOTE CENTING TARGET TRACKING
Sun, jiuyi	(pg. 956) TU2.R18.2 - REMOTE SENSING TARGET TRACKING FOR UAV AERIAL VIDEOS BASED ON MULTI-FREQUENCY
	FEATURE ENHANCEMENT
Sun, Jin	pg. 521 TU1.R6.12 - MULTI-GPU PARALLEL IMPLEMENTATION
	OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR
	HYPERSPECTRAL IMAGE CLASSIFICATION
Sun, Jun	pg. 292 MO2.R17.9 - VEHICLE DETECTION WITH PARTIAL
	ANCHORS IN REMOTE SENSING IMAGES
C I I'	
Sun, Junling	(pg. 2412) FR1.R12.8 - A BACKGROUND REFINEMENT COLLABORATIVE REPRESENTATION METHOD WITH SALIENCY
	WEIGHT FOR HYPERSPECTRAL ANOMALY DETECTION
Sun lungiang	
Sun, Junqiang	pg. 6397 TH1.R15.5 - NOAA-20 VIIRS REFLECTIVE SOLAR BANDS ON-ORBIT CALIBRATION USING A HYBRID APPROACH
	pg. 6242 WE1.R15.6 - CROSSTALK EFFECT IN NOAA 20 VIIRS
	THERMAL EMISSIVE BANDS

Sun, Kun	pg. 2292 FR1.R6.1 - A ROBUST MATCHING METHOD FOR OPTICAL AND SAR IMAGES BASED ON COARSE-TO-FINE MECHANISM
	pg. 2811 FR2.R12.6 - A TWO-STEP SHIP TARGET DETECTION METHOD IN HIGH-RESOLUTION SAR IMAGE BASED ON COARSE-TO-FINE MECHANISM
Sun, Li	pg. 2284 FR1.R5.11 - HUMAN IDENTIFICATION USING MICRO- MOTION AND LIGHTWEIGHT NEURAL NETWORKS
Sun, Lijuan	pg. 2623 FR2.R3.5 - REDUCING THE RECEIVING ARRAY COMPLEXITY BY USING THE PARALLEL STOCHASTIC RESONANCE SYSTEM
Sun, Lin	pg. 5493 TH2.R19.4 - RETRIEVAL OF AEROSOL OPTICAL DEPTH (AOD) FROM THE LANDSAT8 OLI OBSERVATIONS OVER BEIJING pg. 5521 TH2.R19.11 - AEROSOL INVERSION FOR LANDSAT 8 OLI DATA USING DEEP LEARNING ALGORITHM
Sun, Lu	pg. 1251 WE1.R18.9 - A SVA BASED SIDELOBE SUPPRESSION METHOD FOR SEA-LAND SEGMENTATION AND SHIP DETECTION IN SAR IMAGES
Sun, Luyao	Pg. 5352 TU2.R19.4 - CROSS VALIDATION OF GOES-R AND NOAA MULTI-RADAR MULTI-SENSOR (MRMS) QPE OVER THE CONTINENTAL UNITED STATES
Sun, Ninghai	pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2). pg. 6393 TH1.R15.4 - MONITORING OF THE CROSS-CALIBRATION BIASES BETWEEN THE S-NPP AND NOAA-20 VIIRS SENSOR DATA RECORDS USING GOES ADVANCED BASELINE IMAGER AS A TRANSFER TH1.R15.8 - SNPP AND NOAA-20 GLOBAL INTER-SENSOR BIAS ASSESSMENTS WITHIN ICVS FRAMEWORK USING 32-DAY AVERAGED DIFFERENCE METHOD
	pg. 6449 FR1.R13.9 - ON STUDY OF ERROR SOURCES IN MICROWAVE THERMAL VACUUM NON-LINEARITY TEST AND ON-ORBIT VERIFICATION pg. 6258 WE1.R15.10 - LIFETIME PERFORMANCE ASSESSMENT OF SNPP OMPS NADIR MAPPER SDR DATA USING SIMULTANEOUS NADIR OVERPASS COLLOCATED OBSERVATIONS WITH GOME-2
Sun, Qiaoyue	pg. 758 TU1.R18.5 - SALIENCY-DRIVEN TARGET DETECTION BASED ON COMMON VISUAL FEATURE CLUSTERING FOR MULTIPLE SAR IMAGES
Sun, Quansen	pg. 834 TU2.R5.2 - A SUPERPIXEL-BASED FRAMEWORK FOR NOISY HYPERSPECTRAL IMAGE CLASSIFICATION pg. 1723 TH1.R5.4 - COMPLEX-VALUED SPATIAL-SCATTERING SEPARATED ATTENTION NETWORK FOR POLSAR IMAGE CLASSIFICATION

Sun, Rui	pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH
	RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION
	pg. 4331 TU2.R10.10 - ESTIMATION OF GLOBAL NET PRIMARY
	PRODUCTIVITY FROM 1981 TO 2018 WITH REMOTE SENSING DATA
Sun, Shihao	pg. 1236 WE1.R18.5 - FAST SINGLE-SHOT SHIP INSTANCE
	SEGMENTATION BASED ON POLAR TEMPLATE MASK IN
	REMOTE SENSING IMAGES
Sun, Weifeng	pg. 300 MO2.R17.11 - VESSEL TARGET MONITORING WITH
	BISTATIC COMPACT HF SURFACE WAVE RADAR
Sun, Weilun	pg. 4938 TH2.R6.1 - URBAN RESIDENTIAL AREA SPRAWL
	SIMULATION OF METROPOLITAN "SUBURBANIZATION" TREND IN BEIJING
Sun, Weiwei	pg. 2384 FR1.R12.1 - CAUCHY NMF FOR HYPERSPECTRAL
	UNMIXING
	pg. 5104 FR1.R4.11 - CONVOLUTIONAL NEURAL NETWORK
	FOR COASTAL WETLAND CLASSIFICATION IN HYPERSPECTRAL IMAGE
	pg. 565 TU1.R7.12 - A WAVELET DOMAIN BASED CNN SHIP
	CLASSIFICATION METHOD FOR HIGH RESOLUTION OPTICAL
	SATELLITE REMOTE SENSING IMAGES
Sun, Wenliang	pg. 1635 TH1.R2.6 - ADAPTIVE FEATURE AGGREGATION
	NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Sun, Xiaodi	pg. 956 TU2.R18.2 - REMOTE SENSING TARGET TRACKING
	FOR UAV AERIAL VIDEOS BASED ON MULTI-FREQUENCY
	FEATURE ENHANCEMENT
Sun, Xindong	pg. 2803 FR2.R12.4 - SHADOW DETECTION IN SAR IMAGES:
	AN OTSU- AND CFAR-BASED METHOD
Sun, Xu	pg. 1480 WE2.R12.1 - REMOTE SENSING IMAGE SUPER-
	RESOLUTION VIA ENHANCED BACK-PROJECTION NETWORKS
Sun, Yao	pg. 1452 WE2.R9.5 - INSTANCE SEGMENTATION OF
	BUILDINGS USING KEYPOINTS
Sun, Yishan	pg. 6333 WE2.R17.10 - CO-OBSERVATION AND ANALYSIS OF
	UAV AND MULTISPECTRAL REMOTE SENSING
Sun, Yixuan	pg. 5874 FR1.R8.5 - FEASIBILITY ANALYSIS AND SUITABLE
	ANTENNA DIRECTIONS OF IGNSS-R ALTIMETRY MEASUREMENT
	FOR AVOIDING THE INTERSATELLITE INTERFERENCE
Sun, Yiyuan	pg. 6957 FR2.R2.1 - IMPROVED GENETIC ALGORITHM FOR
	BUNDLE ADJUSTMENT IN PHOTOGRAMMETRY
Sun, Yuan	pg. 4311 TU2.R10.5 - THE RESEARCH OF LEAF AREA INDEX
	ANALYZER BASED ON EMBEDDED PLATFORM

	pg. 4319 TU2.R10.7 - RESEARCH ON THE OPTICAL METHOD OF LEAF AREA INDEX MEASUREMENT BASE ON THE HEMISPHERICAL IMAGE
	pg. 5592 FR2.R19.8 - A HIGH-SPATIAL-RESOLUTION AEROSOL RETRIEVAL ALGORITHM FOR SENTINEL-2 IMAGES OVER BRIGHT URBAN SURFACES
	(pg. 5596) FR2.R19.9 - HIGH RESOLUTION AEROSOL RETRIEVAL OVER URBAN SURFACES USING LANDSAT 8 OLI
	pg. 940 TU2.R16.10 - DEEP LEARNING FOR VEGETATION IMAGE SEGMENTATION IN LAI MEASUREMENT
Sun, Yuli	pg. 256 MO2.R16.11 - ADAPTIVE-WEIGHT FUSION NETWORK FOR LAND COVER CLASSIFICATION USING HETEROGENEOUS REMOTE SENSING IMAGES
Sun, Zhe	pg. 4955 TH2.R6.5 - AN AUTOMATIC METHOD FOR MAPPING PEN AQUACULTURE IN A SHALLOW LAKE
Sun, Zhichao	pg. 2791 FR2.R12.1 - AN EFFICIENT COHERENT INTEGRATION APPROACH FOR BISTATIC SAR MOVING TARGET DETECTION AND PARAMETER ESTIMATION BASED ON 2-D DERAMP PROCESSING
Sun, Zhongyong	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY
Sun-Mack, Sunny	pg. 2956 MO2.R9.11 - ESTIMATING EFFECTIVE SNOW GRAIN SIZE USING NORMALIZED CHANNEL RATIOS OF MODIS 0.86 AND 1.64 MICRON BANDS
Sunaga, Yuki	pg. 429 TU1.R3.11 - COMPLEX-VALUED CONVOLUTIONAL NEURAL NETWORKS IN INTERFEROMETRIC SYNTHETIC APERTURE RADAR AND THEIR TEACHER-IMAGE POLLUTION INFLUENCE ON THE PERFORMANCE
Sundberg, Robert	pg. 3432 TU2.R17.1 - INVESTIGATION OF THE FMASK CLOUD MASKING ALGORITHM USING SIMULATED MULTISPECTRAL DATA
Sundelius, Carl	pg. 1070 WE1.R5.9 - GLOBAL SEMANTIC LAND USE/LAND COVER BASED ON HIGH RESOLUTION SATELLITE IMAGERY USING ENSEMBLE NETWORKS
Suo, Zhiyong	pg. 2113 TH2.R9.2 - AN IMPROVED IMAGING ALGORITHM FOR AIRBORNE NEAR-NADIR TOPS SAR WITH YAW ANGLE ERROR pg. 708 TU1.R16.3 - ANALYSIS OF POLARIZATION ORIENTATION ANGLE ESTIMATION OF X-BAND POLSAR DATA AND EXPERIMENT INVESTIGATION pg. 180 MO2.R15.3 - X-BAND POLINSAR VEGETATION CANOPY HEIGHT INVERSION STRATEGY BASED ON FREQUENCY SEGMENTATION
Susino, Roberto	pg. 2272 FR1.R5.8 - DETECTION OF SOLAR CORONAL MASS EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS

Suwa, Kei	pg. 2109 TH2.R9.1 - A FOCUS STACKING ALGORITHM FOR AIRBORNE SAR IMAGES
	pg. 5 MO2.R3.2 - EXPERIMENTAL STUDY ON ALONG TRACK
	TARGET VELOCITY ESTIMATION FOR MULTIPLE APERTURE SAR- MTI CONFIGURATION
	pg. 1909 TH1.R16.6 - IMAGING OF MULTI-CHANNEL SLIDING
	SPOTLIGHT SAR WITH UP- AND DOWN-CHIRP MODULATION
	FOR RANGE AMBIGUITY SUPPRESSION
Suwinski, Lawrence	pg. 6043 TU2.R4.3 - DERIVATION OF JPSS-2 CRIS PRE-LAUNCH
	SPECTRAL CALIBRATION PARAMETERS FROM THE THERMAL VACUUM TEST DATA
	pg. 6022 TU1.R14.9 - PROGRESS TOWARD EVALUATING
	PRELAUNCH THERMAL VACUUM TESTS OF THE JPSS-2 CRIS INSTRUMENT
	TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE
	ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS
	INSTRUMENT
Suzuki, Shinichi	pg. 3792 TH2.R15.3 - ALOS-4 L-BAND SAR OBSERVATION
	CONCEPT AND DEVELOPMENT STATUS
Sveinsson, Johannes R	pg. 2045 TH2.R3.7 - CREATING RGB IMAGES FROM
	HYPERSPECTRAL IMAGES USING A COLOR MATCHING
	<u>FUNCTION</u>
Sveinsson, Johannes R.	pg. 1488 WE2.R12.3 - LOCAL SPATIAL-SPECTRAL
	CORRELATION BASED MIXTURES OF FACTOR ANALYZERS FOR
	HYPERSPECTRAL DENOISING
	pg. 1516 WE2.R12.10 - HYPERSPECTRAL IMAGES DENOISING BASED ON MIXTURES OF FACTOR ANALYZERS
Sveinsson, Jóhannes Rúnar	pg. 617 TU1.R11.2 - ZERO-SHOT SENTINEL-2 SHARPENING
	USING A SYMMETRIC SKIPPED CONNECTION CONVOLUTIONAL
	NEURAL NETWORK (pg. 1484) WE2.R12.2 - SURE BASED CONVOLUTIONAL NEURAL
	NETWORKS FOR HYPERSPECTRAL IMAGE DENOISING
Swantek, Elizabeth	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL
	SYSTEM REAL-TIME AUTONOMY
Swarup, Anushka	pg. 6475 FR1.R15.5 - COMPUTATIONAL-VISION BASED
	ORTHORECTIFICATION AND GEOREFRENCING FOR CORRECT
	LOCALIZATION OF RAILWAY TRACK IN UAV IMAGERY
Swayze, Gregg	pg. 4031 FR2.R14.1 - IMAGING SPECTROSCOPY APPLIED TO
	MINERAL MAPPING OVER LARGE AREAS: USGS ANALYSIS OF
	AVIRIS-CLASSIC DATA COVERING CALIFORNIA AND NEVADA
Swenson, Jennifer J.	pg. 3637 TH2.R2.8 - COMMUNITY REORGANIZATION
	RESPONSE TO CLIMATE CHANGE: SPECIES INTERACTIONS,
	STATE-SPACE MODELING AND FOOD WEBS
Szantoi, Zoltan	STATE-SPACE MODELING AND FOOD WEBS [pg. 3376] TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND IMPLEMENTATION PHASE AND NEXT STEPS

Sánchez Villanueva, Carlos Rodolfo	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Sánchez-Ballesteros, Vanesa	pg. 1026 WE1.R3.9 - MULTI-TEMPORAL INSAR MONITORING OF THE BENINAR DAM (SE SPAIN)
Т	
T. Conrado, Guilherme	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Tabatabaeenejad, Alireza	pg. 4136 MO2.R10.5 - MAPPING TREE CANOPY COVER AND CANOPY HEIGHT WITH L-BAND SAR USING LIDAR DATA AND RANDOM FORESTS pg. 4930 TH2.R1.7 - ELECTROMAGNETIC SCATTERING BEHAVIOR OF A NEW ORGANIC SOIL DIELECTRIC MODEL FOR LONG-WAVELENGTH RADAR RETRIEVAL OF PERMAFROST ACTIVE LAYER SOIL PROPERTIES
Tacconi, Chiara	pg. 4080 MO2.R1.2 - URBAN LAND-USE AND LAND-COVER MAPPING BASED ON THE CLASSIFICATION OF TRANSPORT DEMAND AND REMOTE SENSING DATA
Tachikawa, Tetsushi	pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) : ITS LAUNCH AND CURRENT STATUS
Tadono, Takeo	pg. 3784 TH2.R15.1 - TRIAL OF DEFORESTATION DETECTION BY USING 25M RESOLUTION PALSAR-2/SCANSAR DATA pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND IMPLEMENTATION PHASE AND NEXT STEPS pg. 6830 WE1.R2.4 - CO- AND POST-ERUPTIVE SURFACE DEFORMATION FOLLOWING THE 2018 ERUPTION OF KILAUEA VOLCANO REVEALED BY ALOS-2 MULTI-MODE IMAGES pg. 3799 TH2.R15.5 - RAINFALL-INDUCED CHANGES IN L-BAND BACKSCATTER OVER TROPICAL FORESTS AND THEIR IMPACT ON DEFORESTATION MONITORING pg. 3259 MO2.R2.6 - A STUDY OF AUTOMATIC FLOOD-AREA DETECION USING ALOS-2 AND ANCILLARY DATA pg. 3807 TH2.R15.7 - SEASONAL CHANGE ANALYSIS FOR ALOS-2 PALSAR-2 DEFORESTATION DETECTION
Tadros, Antoine	pg. 2233 TH2.R20.10 - OIL TANK DETECTION IN SATELLITE IMAGES VIA A CONTRARIO CLUSTERING
Tahir, Andi Mukhtar	pg. 6401 TH1.R15.6 - LAPAN'S MID WAVELENGTH INFRARED CAMERA MODULE
Tai, Xiaoxiao	pg. 60 MO2.R5.6 - SELF-PACED LEARNING WITH SUPERPIXELWISE FEATURES FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Tai, Yuan	pg. 1173 WE1.R17.1 - VEHICLE DETECTION WITH BOTTOM ENHANCED RETINANET IN AERIAL IMAGES

Taillade, Thibault	pg. 3880 FR1.R3.6 - A NEW WAY FOR DETECTING MAN-MADE TARGETS AND STRUCTURES WITHIN FORESTS USING TIME SERIES OF POLARIMETRIC SAR IMAGES.
Tailor, Dr. Ravin M.	pg. 4243 MO2.R12.10 - ASSESSING LAND SUITABILITY FOR MANAGING URBAN GROWTH: AN APPLICATION OF GIS AND RS
Takahashi, Koya	pg. 3803 TH2.R15.6 - DETECTION OF SLOW MOVEMENT AREAS IN THE FOREST AREA USING THE TIME SERIES L-BAND SAR INTERFEROMETRY
Takahashi, Nobuhiro	pg. 3593 WE2.R19.2 - PRELIMINARY ANALYSIS OF EXPERIMENTAL PRODUCT FOR THE NEW SCAN PATTERN OF GPM/DPR
Takahashi, Yukihiro	pg. 6222 WE1.R15.1 - INFLIGHT RADIOMETRIC CALIBRATION FOR A MULTI-BAND SENSOR ONBOARD RISESAT WITH THE MOON
Takala, Matias	pg. 2938 MO2.R9.6 - ASSESSING THE PERFORMANCES OF FY-3D/MWRI AND DMSP SSMIS IN GLOBSNOW-2 ASSIMILATION SYSTEM FOR SWE ESTIMATION
Takaoka, Shun-Ichi	pg. 826 TU2.R3.11 - THE STUDY OF PLATFORM FLUCTUATION EFFECT FOR HIGH SQUINT FMCW SAR AND ISAR
Takenaka, Hideaki	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS TH1.R6.9 - AN INTRODUCTION TO THE GEONEX LEVEL-1G PRODUCTS: TOP-OF-ATMOSPHERE REFLECTANCE AND BRIGHTNESS TEMPERATURE pg. 4513 WE1.R10.10 - HOURLY GPP ESTIMATION IN AUSTRALIA USING HIMAWARI-8 AHI PRODUCTS
Takeuchi, Wataru	pg. 4777 TH1.R4.12 - DRAINAGE CANAL DETECTION USING MACHINE LEARNING ALGORITHM IN TROPICAL PEATLANDS
Takeyama, Saori	pg. 1492 WE2.R12.4 - JOINT MIXED-NOISE REMOVAL AND COMPRESSED SENSING RECONSTRUCTION OF HYPERSPECTRAL IMAGES VIA CONVEX OPTIMIZATION
Talon, Patrick	pg. 252 MO2.R16.10 - SHIP DETECTION ON SINGLE-BAND GRAYSCALE IMAGERY USING DEEP LEARNING AND AIS SIGNAL MATCHING USING NON-RIGID TRANSFORMATIONS
Tamkin, Glenn	pg. 2017 TH1.R18.11 - MERRAMAX: A MACHINE LEARNING APPROACH TO STOCHASTIC CONVERGENCE WITH A MULTI-VARIATE DATASET
Tampari, Leslie	pg. 5466 TH1.R19.9 - SUBMILLIMETER WAVE DIFFERENTIAL ABSORPTION RADAR FOR WATER VAPOR SOUNDING IN THE MARTIAN ATMOSPHERE
Tampuu, Tauri	pg. 4738 TH1.R4.2 - INSAR COHERENCE FOR MONITORING

	GROUNDWATER TABLE FLUCTUATIONS IN NORTHERN PEATLANDS
Tan, Bin	pg. 6405 TH1.R15.7 - SEASONAL VARIATION IN THE MEASUREMENT OF GOES-16 ABI CHANNEL-TO-CHANNEL REGISTRATION
Tan, Changyi	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG
Tan, Huangyuan	pg. 877 TU2.R7.2 - ESTIMATING MULTIPLE-SCALE GDP DISTRIBUTION USING NIGHTTIME LIGHT AND SPATIAL METHODS pg. 1205 WE1.R17.9 - STREET VIEW IMAGE RETRIEVAL WITH AVERAGE POOLING FEATURES
Tan, Kun	pg. 5034 FR1.R1.5 - ASSESSMENT OF HEAVY METAL POLLUTION IN AGRICULTURAL SOIL AROUND A GOLD MINE AREA IN YITONG COUNTY pg. 1299 WE1.R20.9 - ACTIVE DEEP FEATURES EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON DICTIONARY LEARNING
Tan, Li	pg. 5533 FR1.R19.3 - CHARACTERIZATION OF BIOMASS BURNING AEROSOLS DURING THE 2019 FIRE EVENT: SINGAPORE AND KUCHING CITIES pg. 5578 FR2.R19.4 - WRF-CHEM SIMULATIONS OF AEROSOL TRANSPORT DURING THE ATTIKA FOREST FIRE EVENT OF JULY 2018
Tan, Longfei	pg. 6774 TU2.R2.2 - THE ACTIVE MICROWAVE DATA-BASED ANALYSIS OF FIRE RISK IN THE WILDLAND-URBAN INTERFACE pg. 4203 MO2.R11.11 - RESEARCH OF METHANE EMISSIONS BASED ON BIOGEOCHEMICAL MODEL AND ACTIVE MICROWAVE MEASUREMENT
Tan, Qian	pg. 5574 FR2.R19.3 - SATELLITE REMOTE SENSING OBSERVATIONS OF TRANS-ATLANTIC DUST TRANSPORT AND DEPOSITION: A MULTI-SENSOR ANALYSIS
Tan, Shurun	pg. 356 MO2.R19.4 - EFFECTS OF ROUGHNESS SCALE ON OCEAN RADAR SCATTERING USING NUMERICAL SIMULATIONS pg. 4582 WE2.R1.6 - OBSERVATION OF SOIL MOISTURE VERTICAL PROFILES FROM GNSS SIGNAL MULTI-PATH INTERFERENCES
Tan, Songxin	pg. 1929 TH1.R16.11 - AN IMPROVED SPECKLE FILTER FOR SENTINEL-1 SAR IMAGE PROCESSING
Tan, Weikai	pg. 4167 MO2.R11.2 - EARLY-SEASON CROP CLASSIFICATION WITH RADARSAT-2 POLARIMETRIC SYNTHETIC APERTURE RADAR IMAGERY pg. 1580 WE2.R18.3 - AUTOMATED DETECTION OF MANHOLE COVERS IN MLS POINT CLOUDS USING A DEEP LEARNING APPROACH

Tan, Weixian	pg. 1560 WE2.R16.10 - AMPLITUDE AND PHASE ERROR CORRECTION METHOD FOR ARRAY SAR PROCESSED IN TIME DOMAIN
Tan, Xicheng	pg. 6642 TU1.R13.2 - A RISK ASSESSMENT FRAMEWORK OF CYANOBACTERIA BLOOM USING LANDSAT DATA: A CASE STUDY OF LAKE LONGGAN (CHINA)
Tanaka, Kenji	pg. 4951 TH2.R6.4 - DETECTING IRRIGATION EFFECT ON SURFACE TEMPERATURE USING MODIS AND LAND SURFACE MODEL IN WHOLE UZBEKISTAN
Tanaka, Shojiro	pg. 1520 WE2.R12.11 - TWO STAGE ESTIMATION PROCEDURE OF NON-LINEAR REGRESSION FUNCTIONS FOR SPATIALLY- DEPENDENT DATA
Tanase, Mihai	pg. 4975 TH2.R10.1 - DEEP NEURAL NETWORKS FOR FOREST GROWING STOCK VOLUME RETRIEVAL: A COMPARATIVE ANALYSIS FOR L-BAND SAR DATA pg. 4630 WE2.R10.6 - ARE HIGH SEVERITY FIRES INCREASING IN SOUTHERN AUSTRALIA?
Tanase, Mihai A.	pg. 4858 TH1.R10.10 - OPTIMUM SENTINEL-1 PIXEL SPACING FOR BURNED AREA MAPPING
Tanase, Mihai Andrei	pg. 2902 FR2.R18.7 - SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
Tang, Bin	pg. 2871 FR2.R16.10 - A DETECTION METHOD OF MULTI- SENSOR FOR RADAR COUNTERMEASURE NETWORK
Tang, Fanyi	pg. 180 MO2.R15.3 - X-BAND POLINSAR VEGETATION CANOPY HEIGHT INVERSION STRATEGY BASED ON FREQUENCY SEGMENTATION
Tang, Feifei	pg. 1632 TH1.R2.5 - USING POLAR GRID FOR BUILDING EXTRACTION IN TERRESTRIAL LASER SCANNING DATA pg. 889 TU2.R7.5 - RESEARCH ON 3D REAL SCENE PLANNING METHOD FOR MINE REFORESTATION
Tang, Hongzhao	pg. 6014 TU1.R14.7 - EVALUATION OF THE GF1-B/C/D SATELLITE RADIOMETRIC PERFORMANCE USING RADCALNET BAOTOU SITE
Tang, Jianlong	pg. 2783 FR2.R9.10 - RADAR SIGNAL INTRA-PULSE MODULATION RECOGNITION BASED ON CONTOUR EXTRACTION
Tang, Jianyang	pg. 2711 FR2.R6.4 - RESEARCH OF HILBERT HUANG TRANSFORM ALGORITHM AND ITS IMPROVEMENT
Tang, Lingli	pg. 5994 TU1.R14.2 - A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER pg. 5543 FR1.R19.6 - RETRIEVAL OF TOTAL OZONE COLUMN

	USING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY (DOAS) ALGORITHM FROM ULTRAVIOLET SOLAR RADIATION DATA
	pg. 4688) WE2.R11.10 - JOINT ESTIMATION OF GRASSLAND LEAF AREA INDEX AND LEAF CHLOROPHYLL CONTENT FROM UNMANNED AERIAL VEHICLE HYPERSPECTRAL DATA
Tang, Maofeng	pg. 2404 FR1.R12.6 - HYPERSPECTRAL NONLINEAR UNMIXING VIA GENERATIVE ADVERSARIAL NETWORK
Tang, Ronglin	pg. 4926 TH2.R1.6 - SPATIAL DOWNSCALING OF LAND SURFACE TEMPERATURE BASED ON SURFACE ENERGY BALANCE
	pg. 1865 TH1.R12.6 - IMPROVEMENTS TO AN END-MEMBER-BASED TWO-SOURCE APPROACH FOR ESTIMATING GLOBAL
	EVAPOTRANSPIRATION (pg. 4558) WE1.R11.11 - ASSESSING THE DIRECTIONAL EFFECTS OF REMOTELY SENSED LAND SURFACE TEMPERATURE ON EVAPOTRANSPIRATION ESTIMATION
Tang, Tianjun	pg. 889 TU2.R7.5 - RESEARCH ON 3D REAL SCENE PLANNING METHOD FOR MINE REFORESTATION
Tang, Wanru	pg. 6555 FR2.R17.1 - FOCUSING OF SPACEBORNE SAR DATA USING THE IMPROVED NONLINEAR CHIRP SCALING ALGORITHM
Tang, Wenchao	pg. 1949 TH1.R17.5 - PYRAMID CONVOLUTIONAL NEURAL NETWORKS AND BOTTLENECK RESIDUAL MODULES FOR CLASSIFICATION OF MULTISPECTRAL IMAGES
Tang, Wenqing	pg. 5639 MO2.R8.10 - AN EMPIRICAL SEA ICE CORRECTION ALGORITHM FOR SMAP SSS RETRIEVAL IN THE ARCTIC OCEAN
Tang, Xinming	pg. 6014 TU1.R14.7 - EVALUATION OF THE GF1-B/C/D SATELLITE RADIOMETRIC PERFORMANCE USING RADCALNET BAOTOU SITE
	TU2.R4.8 - GYROSCOPE DATA DE-NOISING BASED ON INHERENT FREQUENCY FOR EARTH OBSERVATION SATELLITE
	pg. 4723 TH1.R1.9 - SOIL MOISTURE ESTIMATION BASED ON THE AIEM FOR BARE AGRICULTURAL AREA
Tang, Xinxin	pg. 393 TU1.R3.2 - A NOVEL GROUND MOVING TARGET RADIAL VELOCITY ESTIMATION METHOD FOR DUAL-BEAM ALONG-TRACK INTERFEROMETRIC SAR
Tang, Xu	pg. 1267 WE1.R20.1 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON SEMI-SUPERVISED DUAL-BRANCH CONVOLUTIONAL AUTOENCODER WITH SELF-ATTENTION pg. 1937 TH1.R17.2 - A LEARNABLE BLUR KERNEL FOR
	REMOTE SENSING IMAGE RETRIEVAL Pg. 838 TU2.R5.3 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK
	pg. 276 MO2.R17.5 - SMALL OBJECT DETECTION IN OPTICAL REMOTE SENSING VIDEO WITH MOTION GUIDED R-CNN pg. 541 TU1.R7.5 - REMOTE SENSING SCENE CLASSIFICATION

	BASED ON GLOBAL AND LOCAL CONSISTENT NETWORK (pg. 1283) WE1.R20.5 - HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER
	NETWORK (pg. 1635) TH1.R2.6 - ADAPTIVE FEATURE AGGREGATION NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
	pg. 2057 TH2.R3.10 - REMOTE SENSING IMAGES FEATURE LEARNING BASED ON MULTI-BRANCH NETWORKS pg. 2647 FR2.R3.11 - SUPERVISED ADAPTIVE-RPN NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Tang, Yanli	pg. 2871 FR2.R16.10 - A DETECTION METHOD OF MULTI- SENSOR FOR RADAR COUNTERMEASURE NETWORK
Tang, Ying	pg. 1945 TH1.R17.4 - END-TO-END DEEP LEARNING SEMANTIC CLASSIFICATION ARCHITECTURE FOR REMOTE SENSING IMAGERY
Tang, Yixian	pg. 1015 WE1.R3.6 - PERMOFROST OBERVATION USING ALOS-2 PALSAR-2 DATA IN THE NORTHREN QINGHAI-TIBET PLATEAU
Tang, Yuqi	pg. 2898 FR2.R18.6 - ANALYSIS OF TRAFFIC FLOW IN URBAN AREA FOR SATELLITE VIDEO
Tang, Zhipeng	pg. 1319 WE2.R3.3 - PRODUCING A GAP-FREE LANDSAT TIME SERIES FOR THE TAITA HILLS, SOUTHEASTERN KENYA
Tang, Zhizhan	pg. 4582 WE2.R1.6 - OBSERVATION OF SOIL MOISTURE VERTICAL PROFILES FROM GNSS SIGNAL MULTI-PATH INTERFERENCES
Tanii, Jun	pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) : ITS LAUNCH AND CURRENT STATUS
Tanner, Alan	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Tao, Chen-Song	pg. 208 MO2.R15.10 - COMPARISON STUDY OF MULTITEMPORAL POLSAR CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS
Tao, Haihong	pg. 3774 TH2.R13.6 - WIDEBAND INTERFERENCE SUPPRESSION FOR SAR BY TIME-FREQUENCY-PULSE JOINT DOMAIN PROCESSING
Tao, Hongyuan	pg. 629 TU1.R11.5 - SUPER-RESOLUTION OF REMOTE SENSING IMAGES BASED ON A DEEP PLUG-AND-PLAY FRAMEWORK
Tao, Lei	pg. 742 TU1.R18.1 - FUSION OF LINEAR AND NONLINEAR CLASSIFIERS FOR KERNEL DICTIONARY LEARNING: APPLICATION TO SAR TARGET RECOGNITION
Tao, Liangliang	pg. 3556 WE2.R15.2 - MULTI-TEMPORAL ASSESSMENT OF X-BAND SAR SOIL MOISTURE RETRIEVALS ACROSS GROWTH

	STAGES OF A DRYLAND WHEAT FIELD
	pg. 3560 WE2.R15.3 - INTERCOMPARISON OF X- AND
	C-BANDS ACTIVE MICROWAVE SOIL MOISTURE RETRIEVALS
	OVER DRYLAND WHEAT FIELDS
Tao, Mingliang	THE DATE OF THE PARTY OF THE PA
iao, Minghang	pg. 3774 TH2.R13.6 - WIDEBAND INTERFERENCE
	SUPPRESSION FOR SAR BY TIME-FREQUENCY-PULSE JOINT
	DOMAIN PROCESSING
Tao, Ran	pg. 3055 WE1.R9.3 - SEA-ICE CLASSIFICATION BASED ON
	OPTICAL IMAGE USING MORPHOLOGICAL PROFILE FEATURES
	pg. 5104 FR1.R4.11 - CONVOLUTIONAL NEURAL NETWORK
	FOR COASTAL WETLAND CLASSIFICATION IN HYPERSPECTRAL
	IMAGE
	pg. 1655 TH1.R2.11 - HYPERSPECTRAL TARGET DETECTION
	BY FRACTIONAL FOURIER TRANSFORM
Tao, Rongshu	pg. 6742 TU1.R17.5 - STEREO MATCHING OF VHR REMOTE
	SENSING IMAGES VIA BIDIRECTIONAL PYRAMID NETWORK
Tao, Shikang	pg. 2197 TH2.R20.1 - RISK ASSESSMENT OF DRINKING WATER
	SOURCE BASED ON HIGH SPATIAL RESOLUTION REMOTE
	SENSING
Tao, Xin	
180, AIII	pg. 625 TU1.R11.4 - IMPROVING SATELLITE ESTIMATES OF
	THE FRACTION OF ABSORBED PHOTOSYNTHETICALLY ACTIVE
	RADIATION THROUGH INTEGRATION
Tao, Zhu	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART
	MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE,
	CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Taoum, Sam	pg. 445 TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV
	DRONE REMOTE SENSING USING PYTHON MODELLING
	ELECTRICAL RESISTIVITY IMAGING (PYMERI)
Taparia, Mahesh	WES DAS ELLINABLED DEMOTE SENSING FOR
іарапа, мапезіі	pg. 1588 WE2.R18.5 - UAV BASED REMOTE SENSING FOR
	TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF MAIZE CROP USING MULTISPECTRAL IMAGES
	MAIZE CROP USING MULTISPECTRAL IMAGES
Tapete, Deodato	pg. 4163 MO2.R11.1 - APPLICATION OF DEEP LEARNING TO
	OPTICAL AND SAR IMAGES FOR THE CLASSIFICATION OF
	AGRICULTURAL AREAS IN ITALY
	pg. 6867 WE2.R2.2 - SUPPORTING RECOVERY AFTER 2016
	HURRICANE MATTHEW IN HAITI WITH BIG SAR DATA
	PROCESSING IN THE GEOHAZARDS EXPLOITATION PLATFORM
	<u>(GEP)</u>
	pg. 4215 MO2.R12.3 - SENTINEL-1 INSAR ASSESSMENT OF
	PRESENT-DAY LAND SUBSIDENCE DUE TO EXPLOITATION OF
	GROUNDWATER RESOURCES IN CENTRAL MEXICO
	pg. 2930 MO2.R9.4 - MULTI-FREQUENCY SAR IMAGES FOR
	SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE
	LEARNING APPROACHES
T. 0 :	
Tapper, Gustav	pg. 1070 WE1.R5.9 - GLOBAL SEMANTIC LAND USE/LAND
	COVER BASED ON HIGH RESOLUTION SATELLITE IMAGERY
	USING ENSEMBLE NETWORKS

Tarabalka, Yuliya	pg. 1805 TH1.R9.2 - REGULARIZED BUILDING SEGMENTATION BY FRAME FIELD LEARNING
	pg. 449 TU1.R5.4 - OPERATIONAL PIPELINE FOR LARGE-SCALI
	3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGE
	pg. 1837 TH1.R9.10 - SEMI2I: SEMANTICALLY CONSISTENT
	IMAGE-TO-IMAGE TRANSLATION FOR DOMAIN ADAPTATION OF
	REMOTE SENSING DATA
Tasar, Onur	pg. 1837 TH1.R9.10 - SEMI2I: SEMANTICALLY CONSISTENT
	IMAGE-TO-IMAGE TRANSLATION FOR DOMAIN ADAPTATION OF
	REMOTE SENSING DATA
Taubenböck, Hannes	pg. 4219 MO2.R12.4 - DERIVING URBAN MASS
	CONCENTRATIONS USING TANDEM-X AND SENTINEL-2 DATA
	FOR THE ASSESSMENT OF MORPHOLOGICAL POLYCENTRICITY
	pg. 4799 TH1.R6.6 - STABILITY CHARACTERIZATION OF THE
	RESPONSE OF WHITE STORKS' FORAGING BEHAVIOR TO
	VEGETATION DYNAMICS RETRIEVED FROM LANDSAT TIME
	<u>SERIES</u>
Taufique, Abu Md Niamul	pg. 3497 WE2.R7.4 - VISUALIZATION OF DEEP TRANSFER
	LEARNING IN SAR IMAGERY
Taylor, Drew	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE
	RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
	pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT
	SPORT AIRCRAFT FOR POLAR SURVEYS
Taylor, Joe	pg. 3640 TH2.R4.1 - THE NEXT GENERATION US LEO
	HYPERSPECTRAL INFRARED SOUNDER
Taylor, Joe K.	pg. 3657 TH2.R4.6 - EXPEDITIOUS IMPLEMENTATION OF A
	HYPERSPECTRAL IMAGING INFRARED SOUNDER (HIIS) IN
	GEOSTATIONARY ORBIT
Taylor, Ryan	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE
	SHEET MEASUREMENTS
	pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND
	DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE
	SHEETS
Taşkın, Gülşen	pg. 1675 TH1.R3.4 - MANIFOLD LEARNING WITH HIGH
	DIMENSIONAL MODEL REPRESENTATIONS
Tebaldini, Stefano	pg. 88 MO2.R6.2 - RADIOMETRIC ISSUES IN BIOMASS
	TOMOGRAPHIC IMAGING
	pg. 104 MO2.R6.6 - PROCESSING OPTIONS FOR HIGH-
	RESOLUTION SAR TOMOGRAPHY FROM IRREGULAR
	TRAJECTORIES
	pg. 433 TU1.R3.12 - GEOMETRICAL CORRECTIONS FOR
	GROUND CANCELED SAR IMAGES
Teggi, Sergio	pg. 6002 TU1.R14.4 - MULTISCALE AND MULTISENSOR
	OBSERVATIONS ON GEOTHERMAL AREA: 2019 ACQUISITIONS
	OVER PARCO DELLE BIANCANE AND SASSO PISANO (ITALY)

Tegler, Mirco	pg. 3274 MO2.R4.3 - DATA VALIDATION OF THE DLR EARTH SENSING IMAGING SPECTROMETER DESIS
Teixeira, Joao	pg. 6144 WE1.R7.12 - NASA INCUBATION STUDY ON PLANETARY BOUNDARY LAYER
Teixeira, João	TH2.R11.6 - VIRTUAL ENVIRONMENTS & SUSTAINABLE AGRICULTURE: A CASE STUDY
Teleaga, Delia	(pg. 4227) MO2.R12.6 - DEFORMATION PROFILE ANALYSIS USING UNIFORM MANIFOLD APPROXIMATION AND PROJECTION
Telenko, Darcy	pg. 4882 TH1.R11.5 - ESTIMATION OF VISUAL RATING OF TAR SPOT DISEASE OF CORN USING UNMANNED AERIAL SYSTEMS (UAS) DATA AND MACHINE LEARNING TECHNIQUES
Telloni, Daniele	pg. 2272 FR1.R5.8 - DETECTION OF SOLAR CORONAL MASS EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
Teng, Fei	pg. 782 TU1.R18.11 - MULTI-ANGULAR SAR STATISTICAL PROPERTIES ANALYSIS AND MAN-MADE TARGET DETECTION
Teng, Zhu	pg. 960 TU2.R18.3 - AN END-TO-END SCALABLE OBJECT DETECTION NETWORK FOR REMOTE SENSING IMAGES
Teodoro, Ana	pg. 4610 WE2.R10.1 - ESTIMATION OF NITROGEN IN THE SOIL OF BALSA TREES IN ECUADOR USING UNMANNED AERIAL VEHICLES pg. 5218 FR2.R10.5 - EVALUATION OF TEMPERATURE IN A SELF-BURNING COAL WASTE PILE CONSIDERING UAV DATA AND IN SITU MEASUREMENTS
Teodoro, Ana Cláudia	pg. 4255 TU1.R1.2 - MODELLING TERRESTRIAL TORTOISES RESPONSE TO FIRE EVENTS pg. 5226 FR2.R10.7 - MULTI-SCALE APPROACH USING REMOTE SENSING TECHNIQUES FOR LITHIUM PEGMATITE EXPLORATION: FIRST RESULTS pg. 561 TU1.R7.11 - LITHIUM (LI) PEGMATITE MAPPING USING ARTIFICIAL NEURAL NETWORKS (ANNS): PRELIMINARY RESULTS
Terashima, Shota	pg. 766 TU1.R18.7 - HUMAN BODY RECOGNITION METHOD USING DIFFRACTION SIGNAL IN NLOS SCENARIO FOR MILLIMETER WAVE RADAR
Tessari, Giulia	pg. 6838) WE1.R2.6 - INTEGRATION OF INSAR AND GNSS DATA TO MONITOR VOLCANIC ACTIVITY OF SAKURAJIMA CALDERAS, JAPAN: FROM SMALL DISPLACEMENT MEASUREMENTS TO GEOPHYSICAL MODELING
Thakur, Mainak	pg. 1102 WE1.R6.6 - HIGH RESOLUTION SPATIAL MAPPING OF SOIL NUTRIENTS USING K - NEAREST NEIGHBOR BASED CNN APPROACH
Thakur, Sanchari	pg. 5960 TU1.R4.5 - ENVISION MISSION TO VENUS:

	SUBSURFACE RADAR SOUNDING
Thankappan, Medhavy	pg. 3376 TU2.R14.2 - CEOS ANALYSIS READY DATA FOR LAND: IMPLEMENTATION PHASE AND NEXT STEPS pg. 3383 TU2.R14.4 - ANALYSIS READY DATA FOR INSAR APPLICATIONS
Theiler, James	pg. 1786 TH1.R7.8 - SOME CLOSED-FORM EXPRESSIONS FOR ABSORPTIVE PLUME DETECTION
Theys, Nicolas	pg. 6039 TU2.R4.2 - TOTAL COLUMN RETRIEVAL OF SO2 AND HCHO FROM SENTINEL-4 MEASUREMENTS pg. 6859 WE1.R2.12 - PROTOTYPING OF A MULTI-HAZARD EARLY WARNING SYSTEM FOR AVIATION AND DEVELOPMENT OF NRT ALERT PRODUCTS WITHIN THE EUNADICS-AV AND OPAS PROJECTS
Thiel, Christian	pg. 4501 WE1.R10.7 - A MULTI-SCALE REMOTE SENSING APPROACH TO UNDERSTANDING VEGETATION DYNAMICS IN THE NAMA KAROO-GRASSLAND ECOTONE OF SOUTH AFRICA pg. 4323 TU2.R10.8 - ANNUAL GRASS BIOMASS MAPPING WITH LANDSAT-8 AND SENTINEL-2 DATA OVER KRUGER NATIONAL PARK, SOUTH AFRICA
Thielemann, Jens T.	(pg. 3483) WE2.R4.8 - DEVELOPMENT OF A FLASH-LIDAR ELEGANT BREADBOARD MODEL FOR RENDEZVOUS APPLICATIONS
Thill, Matthew	pg. 3247 MO2.R2.3 - FLOOD MAPPING USING UAVSAR AND CONVOLUTIONAL NEURAL NETWORKS
Thirion-Lefevre, Laetitia	pg. 3880 FR1.R3.6 - A NEW WAY FOR DETECTING MAN-MADE TARGETS AND STRUCTURES WITHIN FORESTS USING TIME SERIES OF POLARIMETRIC SAR IMAGES. pg. 1797 TH1.R7.11 - CHARACTERIZATION OF THE WALKING ACTIVITY WITHIN THE FOREST BY USING A DOPPLER ANALYSIS IN THE UHF-BAND
Thirion-Lefèvre, Laetitia	pg. 1767 TH1.R7.3 - INTEREST OF TEMPORAL METHODS OVER SPATIAL METHODS IN ORDER TO DETECT SMALL TARGETS
Thomas, Nathan	TU2.R15.2 - GLOBAL MAPPING OF MANGROVE FORESTS WITH TANDEM-X pg. 3709 TH2.R11.3 - A MULTI-MODAL APPROACH FOR MONITORING CHANGES IN AGRICULTURE IN THE MEKONG RIVER DELTA pg. 5964 TU1.R4.6 - EVALUATING CURRENT AND FUTURE SENSOR-SPECIFIC BIOMASS CALIBRATION IN THE TALLEST MANGROVE FOREST ON EARTH pg. 4766 TH1.R4.9 - MANGROVE MAPPING WITH THE FREEMAN-DURDEN POLARIMETRIC DECOMPOSITION AND INSAR COHERENCE FROM ALOS-2
Thomas, Ryan	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Thomas, Winnie	pg. 2523 FR1.R17.3 - A GPU ACCELERATED CONTOURLET

	METHOD FOR DETECTING CHANGES DUE TO FIRE USING REMOTE SENSING
Thome, Kurtis	pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS pg. 6246 WE1.R15.7 - PRELIMINARY JPSS-3 VIIRS POLARIZATION SENSITIVITY AND COMPARISON WITH S-NPP. JPSS-1 AND -2 pg. 6413 TH1.R15.9 - RAILROAD VALLEY RADIOMETRIC CALIBRATION TEST SITE (RADCATS) AS PART OF A GLOBAL RADIOMETRIC CALIBRATION NETWORK (RADCALNET).
Thompson, Andrew	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Thompson, David	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT pg. 6262 WE1.R15.11 - AN EARTH SCIENCE IMAGING SPECTROSCOPY MISSION: THE EARTH SURFACE MINERAL DUST SOURCE INVESTIGATION (EMIT)
Thompson, David R	pg. 3955) FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS
Thorburn, Peter	pg. 5167 FR1.R11.3 - A SATELLITE-BASED METHODOLOGY FOR HARVEST DATE DETECTION AND YIELD PREDICTION IN SUGARCANE
Thorpe, Andrew	pg. 3955) FR2.R4.2 - REGIONAL SURVEYS OF CH4 POINT SOURCES ACROSS NORTH AMERICA: CAMPAIGNS, ALGORITHMS, AND RESULTS
Tian, Bingwei	pg. 5238 FR2.R10.10 - IDENTIFICATION OF LANDSLIDE SUSCEPTIBLE AREAS FOR THE PROPER SETTLEMENT PLANNING IN THE KALI GANDAKI ROAD CORRIDOR, NEPAL
Tian, Feng	pg. 6886 WE2.R2.7 - INTRODUCTION OF SPATIAL AND TEMPORAL DISTRIBUTION OF TYPHOONS FROM 1989 TO 2018 AND TYPICAL CASES OF DISASTER IMPACT ANALYSIS
Tian, Jiaojiao	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Tian, Jinchuan	pg. 2803 FR2.R12.4 - SHADOW DETECTION IN SAR IMAGES: AN OTSU- AND CFAR-BASED METHOD
Tian, Jingxian	pg. 6989 FR2.R2.9 - CORRELATION ATTENTION FOR REMOTE SENSING IMAGE CAPTIONING
Tian, Jinwen	pg. 1173 WE1.R17.1 - VEHICLE DETECTION WITH BOTTOM ENHANCED RETINANET IN AERIAL IMAGES pg. 2859 FR2.R16.7 - SHIP DETECTION AND FINE-GRAINED

	RECOGNITION IN LARGE-FORMAT REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORK
Tian, Long	pg. 1038 WE1.R5.1 - L0-MOTIVATED LOW RANK SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGERY pg. 2053 TH2.R3.9 - META NETWORK FOR RADAR HRRP NONCOOPERATIVE TARGET RECOGNITION WITH MISSING ASPECTS
Tian, Luyun	pg. 344 MO2.R19.1 - RESEARCH ON COMPOSITE ELECTROMAGNETIC SCATTERING COMPUTATION OF SEA SURFACE AND SHIP TARGET
Tian, Miao	pg. 2260 FR1.R5.5 - IMPROVED CLOUD DETECTION MODEL USING S-NPP CRIS FSR DATA VIA MACHINE LEARNING
Tian, Qing	pg. 846 TU2.R5.5 - JOINT GROUP SPARSE COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Tian, Tian	pg. 537 TU1.R7.4 - SE-HRNET: A DEEP HIGH-RESOLUTION NETWORK WITH ATTENTION FOR REMOTE SENSING SCENE CLASSIFICATION pg. 6926 FR1.R2.5 - A DECEPTIVE JAMMING TEMPLATE SYNTHESIS METHOD FOR SAR USING GENERATIVE ADVERSARIAL NETS pg. 972 TU2.R18.6 - INSHORE SHIP DETECTION BASED ON MULTI-INFORMATION FUSION NETWORK AND INSTANCE SEGMENTATION
Tian, Xiaoyue	pg. 1177 WE1.R17.2 - RESEARCH ON VEHICLE DETECTION BASED ON FASTER R-CNN FOR UAV IMAGES
Tian, Xin	pg. 228 MO2.R16.4 - MULTISCALE INFRARED AND VISIBLE IMAGE FUSION BASED ON PHASE CONGRUENCY AND SALIENCY pg. 1993 TH1.R18.5 - DEFORMATION VELOCITY MONITORING IN KUNMING CITY USING ASCENDING AND DESCENDING SENTINEL-1A DATA WITH SBAS-INSAR TECHNIQUE pg. 696 TU1.R12.11 - SPARSE REPRESENTATION-BASED IMAGE FUSION FOR MULTI-SOURCE NDVI CHANGE DETECTION pg. 4649 WE2.R10.11 - DOMINANT TREES ANALYSIS USING UAV LIDAR AND PHOTOGRAMMETRY pg. 6814 TU2.R2.12 - ADAPTING 3-PG MODEL TO SIMULATE EARLY FOREST GROWTH DYNAMICS IN HIGHLY BURNT AREAS ACROSS DAXING ANLING MOUNTAIN IN CHINA
Tian, Ying	pg. 2799 FR2.R12.3 - REMOTELY SENSED METHOD FOR DETECTION OF SPATIAL DISTRIBUTION PATTERN OF DRYLAND PLANTS IN WATER LIMITED ECOSYSTEM
Tian, Yu	pg. 1263 WE1.R18.12 - SHIP DETECTION IN LARGE SCALE SAR IMAGES BASED ON BIAS CLASSIFICATION
Tian, Yuhong	pg. 5537 FR1.R19.4 - ANALYZING METEOROLOGICAL AND CHEMICAL CONDITIONS FOR TWO HIGH OZONE EVENTS OVER

	THE NEW YORK CITY AND LONG ISLAND REGION
Tian, Zhichao	pg. 2284 FR1.R5.11 - HUMAN IDENTIFICATION USING MICRO-MOTION AND LIGHTWEIGHT NEURAL NETWORKS
Tian, Zhuangzhuang	pg. 2631 FR2.R3.7 - OBJECT DETECTION FOR REMOTE SENSING IMAGES BASED ON GUIDED ANCHORING AND FEATURE FUSION
Tiana-Alsina, Jordi	pg. 6077 WE1.R4.2 - FLOATING DOPPLER WIND LIDAR MEASUREMENT OF WIND TURBULENCE: A CLUSTER ANALYSIS pg. 5682 TU1.R8.10 - MOTIONAL BEHAVIOR ESTIMATION USING SIMPLE SPECTRAL ESTIMATION: APPLICATION TO THE OFF-SHORE WIND LIDAR.
Ticehurst, Catherine	pg. 5167 FR1.R11.3 - A SATELLITE-BASED METHODOLOGY FOR HARVEST DATE DETECTION AND YIELD PREDICTION IN SUGARCANE
Tie, Bo	pg. 244 MO2.R16.8 - OPTIMIZATION OF DSM PRODUCT GENERATION OF ZY-3 SATELLITE IMAGES BASED ON IMAGE FREQUENCY-DOMAIN FUSION AND FILTERING pg. 609 TU1.R10.11 - PARALLEL GENERATION OF A 3D DENSE POINT CLOUD BASED ON UAV IMAGING AND THE CMVS ALGORITHM
Tierra, Alfonso	pg. 5473 TH1.R19.11 - VTEC AT LOW LATITUDE STATION USING GALILEO PSEUDORANGE
Tings, Björn	pg. 1233 WE1.R18.4 - SHIP WAKE COMPONENT DETECTABILITY ON SYNTHETIC APERTURE RADAR (SAR)
Tison, Céline	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Titchenko, Yuriy	pg. 5713 TU2.R8.7 - BISTATIC DOPPLER SPECTRA OF THE SIGNAL REFLECTED BY ROUGH WATER SURFACE MEASURED BY MODIFIED MONOSTATIC RADAR
Titchenko, Yury	pg. 5693 TU2.R8.2 - APPLICATION OF DOPPLER RADAR FOR MEASUREMENT OF CURRENT VELOCITY AT SMALL INCIDENCE ANGLES: THE FIRST EXPERIMENTS AT THE RIVER pg. 5709 TU2.R8.6 - RETRIEVAL OF MEAN SQUARE SLOPES OF SEA WAVES, SURFACE WIND SPEED, TOTAL WATER VAPOR CONTENT AND TOTAL CLOUD LIQUID WATER CONTENT IN HAGIBIS TYPHOON AREA FROM SATELLITE ACTIVE AND PASSIVE MICROWAVE DATA
Tituana, Karen	pg. 4610 WE2.R10.1 - ESTIMATION OF NITROGEN IN THE SOIL OF BALSA TREES IN ECUADOR USING UNMANNED AERIAL VEHICLES
Tiwari, Surya	pg. 5620 MO2.R8.5 - OCEAN COLOR MODELING IN THE CENTRAL RED SEA USING OCEANOGRAPHICAL OBSERVATION AND SIMULATED PARAMETERS
Tjuatja, Saibun	pg. 2968 TU1.R9.2 - A STUDY OF COMBINED ACTIVE PASSIVE

	MICROWAVE SOUNDING OF ICE SHEET INTERNAL TEMPERATURE PROFILING
	pg. 5783 TH1.R8.3 - A STUDY ON MICROWAVE EMISSIVITY FROM WIND-INDUCED SEA FOAM
	pg. 4144 MO2.R10.7 - MULTISCALE MODEL OF MOVING VEGETATIVE CLUTTER IN ISAR IMAGING
	pg. 5798 TH1.R8.7 - A STUDY ON COMBINED C- AND KU-BAND RAIN EFFECTS FOR WIND SCATTEROMETRY QUALITY CONTROL
Tkaczyk, Tomasz	pg. 6028 TU1.R14.11 - LIGHTGUIDE, INTEGRAL FIELD SNAPSHOT IMAGING SPECTROMETER FOR ENVIRONMENTAL IMAGING AND EARTH OBSERVATIONS
Tobin, Dave	pg. 6043 TU2.R4.3 - DERIVATION OF JPSS-2 CRIS PRE-LAUNCH SPECTRAL CALIBRATION PARAMETERS FROM THE THERMAL VACUUM TEST DATA
Tobin, David	pg. 3640 TH2.R4.1 - THE NEXT GENERATION US LEO HYPERSPECTRAL INFRARED SOUNDER
	pg. 3657 TH2.R4.6 - EXPEDITIOUS IMPLEMENTATION OF A HYPERSPECTRAL IMAGING INFRARED SOUNDER (HIIS) IN GEOSTATIONARY ORBIT
	TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT
Toctaguano, Daniel	pg. 2093 TH2.R5.8 - AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI- SENSOR SATELLITE IMAGERY APPROACH
Toda, Masato	pg. 304 MO2.R18.1 - SMALL OBJECT CHANGE DETECTION BASED ON MULTITASK SIAMESE NETWORK
Tohidi, Ali	pg. 6802 TU2.R2.9 - A MACHINE LEARNING SOLUTION FOR OPERATIONAL REMOTE SENSING OF ACTIVE WILDFIRES
Tokunaga, Mitsuharu	pg. 4497 WE1.R10.6 - EXTRACTION OF DEGRADED STREET TREES BY BLOCKED VEGETATION INDEX
Tolomei, Cristiano	WE1.R2.9 - DEFORMATION MONITORING AND SOURCE MODELLING BY INSAR OF THE WOLF VOLCANO (GALAPAGOS, ECUADOR) Pg. 6854 WE1.R2.10 - INSAR DEFORMATION ANALYSIS AND SOURCE MODELLING OF THE GUAGUA PICHINCHA VOLCANO (ECUADOR)
Toma, Stefan-Adrian	pg. 4227 MO2.R12.6 - DEFORMATION PROFILE ANALYSIS USING UNIFORM MANIFOLD APPROXIMATION AND PROJECTION
Toma, Ștefan-Adrian	pg. 2376 FR1.R9.11 - SYNTHETIC APERTURE RADAR FOCUSING BASED ON BACK-PROJECTION AND COMPRESSIVE SENSING
Tomenotti, Federico Figari	pg. 684 TU1.R12.8 - HETEROGENEOUS CHANGE DETECTION WITH SELF-SUPERVISED DEEP CANONICALLY CORRELATED AUTOENCODERS

Tomita, Eiichi	pg. 3459 WE2.R4.2 - STATUS OF ESA'S EARTHCARE MISSION PREPARATION
Tomkins, Kerrie	pg. 1114 WE1.R6.9 - BUSHFIRE SEVERITY MAPPING USING SENTINEL-1 AND -2 IMAGERY
Tommy, Charlie	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY
Tomppo, Erkki	pg. 4509 WE1.R10.9 - PREDICTING GROWING STOCK VOLUME OF BOREAL FORESTS USING VERY LONG TIME SERIES OF SENTINEL-1 DATA
Ton That, Dai-Hai	pg. 3097 WE1.R14.2 - ADVANCING OPEN SCIENCE THROUGH INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM (MAAP)'S DATA ECOSYSTEM
Tong, Alan	pg. 6592 TU1.R2.1 - INCREASING SMALL UNMANNED AERIAL SYSTEM REAL-TIME AUTONOMY
Tong, Fei	pg. 4159 MO2.R10.11 - DELINEATION OF INDIVIDUAL TREE CROWNS IN WORLDVIEW-3 SATELLITE IMAGERY WITH MULTISCALE FITTING METHOD
Tong, Ling	Pg. 6774 TU2.R2.2 - THE ACTIVE MICROWAVE DATA-BASED ANALYSIS OF FIRE RISK IN THE WILDLAND-URBAN INTERFACE Pg. 6515 FR2.R13.3 - A NOVEL IF RECEIVER STRUCTURE IN HYPERSPECTRAL RADIOMETER Pg. 1444 WE2.R9.3 - SEGMENTATION OF SAR IMAGES BASED ON THE OPTIMAL LEVEL SETS USING CWOA pg. 3199 TH2.R14.3 - ROAD VECTORIZATION BASED ON IMAGE PIXEL TRACKING AND ATTRIBUTE MATCHING METHOD pg. 6519 FR2.R13.4 - STUDY ON THE IMPROVEMENT OF THE HYPERSPECTRUM RADIOMETER DIGITAL INTERMEDIATE FREQUENCY MODULE pg. 4311 TU2.R10.5 - THE RESEARCH OF LEAF AREA INDEX ANALYZER BASED ON EMBEDDED PLATFORM pg. 2491 FR1.R16.6 - HIGH-RESOLUTION OPTICAL AND SAR IMAGE REGISTRATION USING LOCAL SELF-SIMILAR DESCRIPTOR BASED ON EDGE FEATURE pg. 4319 TU2.R10.7 - RESEARCH ON THE OPTICAL METHOD OF LEAF AREA INDEX MEASUREMENT BASE ON THE HEMISPHERICAL IMAGE pg. 1552 WE2.R16.8 - RADIOMETRIC CORRECTION OF DUAL-POLARIZATION SAR DATA OVER STEEP TERRAIN pg. 5053 FR1.R1.10 - DESIGN AND EXPERIMENT OF MICROWAVE SOIL MOISTURE SENSOR pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE pg. 5562 FR1.R19.11 - LONG-TERM SPATIOTEMPORAL TREND ANALYSIS (1998-2016) OF PM2.5 IN CHINA USING SATELLITE PRODUCT pg. 2599 FR1.R18.11 - NEW NETWORK BASED ON D-LINKNET

	AND RESNEXT FOR HIGH RESOLUTION SATELLITE IMAGERY ROAD EXTRACTION
	(pg. 6722) TU1.R15.12 - 3D FDTD INVESTIGATION ON BISTATIC SCATTERING FROM 2D ROUGH SURFACE WITH CPML ABSORBING CONDITION
Tong, Shun	pg. 553 TU1.R7.8 - REMOTE SENSING SCENE CLASSIFICATION USING SPATIAL TRANSFORMER FUSING NETWORK
Tong, Xiaohua	pg. 4947 TH2.R6.3 - A 21-YEAR (1990–2011) RECORD OF LAND COVER CHANGES AND URBAN DYNAMICS OF SHANGHAI CITY DERIVED FROM LANDSAT IMAGES
	pg. 284 MO2.R17.7 - GEOSPATIAL OBJECT DETECTION WITH SINGLE SHOT ANCHOR-FREE NETWORK
	pg. 5855 TH2.R8.11 - PHOTON-COUNTING LIDAR: LINEAR DENSITY MULTI-LEVEL CLASSIFICATION METHOD FOR OFFSHORE AREAS
Tong, Xuyao	pg. 2348 FR1.R9.4 - AN OPTIMIZATION ALGORITHM OF MOVING TARGETS REFOCUSING VIA PARAMETER ESTIMATION DEPENDENCE OF MAXIMUM SHARPNESS PRINCIPLE AFTER BP INTEGRAL
Tong, Yingping	pg. 493 TU1.R6.5 - FEATURE SEPARATION BASED ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Tong, Zhonggui	pg. 2268 FR1.R5.7 - NEW NETWORK BASED ON UNET++ AND DENSENET FOR BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGERY
Tonnoir, Antoine	pg. 445 TU1.R5.3 - COASTLINE EROSION STUDY VIA UAV DRONE REMOTE SENSING USING PYTHON MODELLING ELECTRICAL RESISTIVITY IMAGING (PYMERI)
Tonooka, Hideyuki	pg. 3047 WE1.R9.1 - MONITORING ICE COVERING LAKE SAROMA BY USING SENTINEL-1 C-BAND SAR DATA
Toporkov, Jakov	pg. 5674 TU1.R8.8 - IMPACT OF SCALE SEPARATION IN THE COHERENT TWO-SCALE MODEL ON DOPPLER AND NORMALIZED CROSS SECTION PREDICTIONS FOR SEA BACKSCATTER - A NUMERICAL STUDY
Topouzelis, Konstantinos	pg. 4023 FR2.R8.5 - IMPACT OF INTENSE AQUACULTURE ON COASTAL ENVIRONMENTS SEEN BY SAR
	pg. 6329 WE2.R17.9 - PLASTIC LITTER PROJECT 2019: EXPLORING THE DETECTION OF FLOATING PLASTIC LITTER USING DRONES AND SENTINEL 2 SATELLITE IMAGES
Torres Gómez, Aura Citlalli	pg. 5250 FR2.R11.1 - CALIBRATION OF A SVAT MODEL IN THE CENTRAL ZONE OF MEXICO WITH IN-SITU DATA OVER A CORN FIELD REGION
	(pg. 4526) WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Torres, Francesc	pg. 6431 FR1.R13.4 - CHARACTERIZING SYSTEMATIC ERRORS

	IN THE FARADAY ROTATION RETRIEVAL FROM SMOS MEASUREMENTS
Torres, Omar	pg. 5588 FR2.R19.7 - DETECTING LAYER HEIGHT OF SMOKE AND DUST AEROSOLS OVER VEGETATED LAND AND WATER SURFACES VIA OXYGEN ABSORPTION BANDS
Torres, Ramon	(pg. 4055) FR2.R15.1 - COPERNICUS SENTINEL MISSION AT C-AND L-BAND: CURRENT STATUS AND FUTURE PERSPECTIVES
Torres-Perez, Juan	pg. 3633) TH2.R2.7 - NASA NEMO-NET - A NEURAL MULTIMODAL OBSERVATION & TRAINING NETWORK FOR MARINE ECOSYSTEM MAPPING AT DIVERSE SPATIOTEMPORAL SCALES
Tossaint, Michel	WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION
Touge, Yoshiya	pg. 4951) TH2.R6.4 - DETECTING IRRIGATION EFFECT ON SURFACE TEMPERATURE USING MODIS AND LAND SURFACE MODEL IN WHOLE UZBEKISTAN (pg. 6794) TU2.R2.7 - EVALUATING TREES CROWNS DAMAGE FOR THE 2017 LARGEST WILDFIRE IN JAPAN USING SENTINEL-2A NDMI
Tougne, Laure	pg. 1813) TH1.R9.4 - SEMANTIC SEGMENTATION REFINEMENT WITH DEEP EDGE SUPERPIXELS TO ENHANCE HISTORICAL LAND COVER
Tourain, Cédric	pg. 5678 TU1.R8.9 - CAL/VAL PHASE FOR THE SWIM INSTRUMENT ONBOARD CFOSAT
Tournadre, Jean	(pg. 3541)_WE2.R8.6 - ALTIMETER AS AN IMAGER OF THE SEA SURFACE ROUGHNESS: COMPARISON OF SAR AND LRM MODES
Tournigand, Pierre-Yves	pg. 6834) WE1.R2.5 - THE 2015 CALBUCO VOLCANIC CLOUD DETECTION USING GNSS RADIO OCCULTATION AND SATELLITE LIDAR pg. 5372 TU2.R19.9 - UNDERSTANDING SEVERE WEATHER EVENTS AT AIRPORT SPATIAL SCALE
Towfic, Zaid	pg. 3247 MO2.R2.3 - FLOOD MAPPING USING UAVSAR AND CONVOLUTIONAL NEURAL NETWORKS
Townsend, Philip	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Tran, Ba-Huy	pg. 3104) WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS pg. 3115) WE1.R14.7 - AN APPROACH FOR INTEGRATING EARTH OBSERVATION, CHANGE DETECTION AND CONTEXTUAL DATA FOR SEMANTIC SEARCH
Tran, Bang Nguyen	pg. 4630 WE2.R10.6 - ARE HIGH SEVERITY FIRES INCREASING IN SOUTHERN AUSTRALIA?

Tran-Vu, La	pg. 3817 TH2.R16.3 - USE OF SAR IMAGERY AND ARTIFICIAL INTELLIGENCE FOR A MULTI-COMPONENTS OCEAN MONITORING
Trasatti, Elisa	WE1.R2.9 - DEFORMATION MONITORING AND SOURCE MODELLING BY INSAR OF THE WOLF VOLCANO (GALAPAGOS, ECUADOR) Pg. 6854 WE1.R2.10 - INSAR DEFORMATION ANALYSIS AND SOURCE MODELLING OF THE GUAGUA PICHINCHA VOLCANO (ECUADOR)
Trastour, Frederic	pg. 449 TU1.R5.4 - OPERATIONAL PIPELINE FOR LARGE-SCALE 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGES
Tremblay, Denis	pg. 6043 TU2.R4.3 - DERIVATION OF JPSS-2 CRIS PRE-LAUNCH SPECTRAL CALIBRATION PARAMETERS FROM THE THERMAL VACUUM TEST DATA pg. 6022 TU1.R14.9 - PROGRESS TOWARD EVALUATING PRELAUNCH THERMAL VACUUM TESTS OF THE JPSS-2 CRIS INSTRUMENT TU1.R14.10 - A METHOD TO PROVIDE REDUNDANCY FOR THE ON-BOARD SPECTRAL CALIBRATION REFERENCE OF THE CRIS INSTRUMENT
Trettin, Carl	pg. 5964 TU1.R4.6 - EVALUATING CURRENT AND FUTURE SENSOR-SPECIFIC BIOMASS CALIBRATION IN THE TALLEST MANGROVE FOREST ON EARTH
Treuhaft, Robert	pg. 4979 TH2.R10.2 - TROPICAL FOREST HEIGHT AND UNDERLYING TOPOGRAPHY FROM TANDEM-X SAR INTERFEROMETRY pg. 96 MO2.R6.4 - BOREAL FOREST RADAR TOMOGRAPHY AT P, L AND S-BANDS AT BERMS AND DELTA JUNCTION
Trier, Øivind Due	pg. 1877 TH1.R12.9 - LARGE-SCALE VEGETATION HEIGHT MAPPING FROM SENTINEL DATA USING DEEP LEARNING
Trimble, Zachary	pg. 6495 FR1.R15.10 - MULTI-AGENTS PATH PLANNING FOR A SWARM OF UNMANNED AERIAL VEHICLES
Tripodi, Sebastien	pg. 449 TU1.R5.4 - OPERATIONAL PIPELINE FOR LARGE-SCALE 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGES
Trojahn, Cassia	pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS pg. 3115 WE1.R14.7 - AN APPROACH FOR INTEGRATING EARTH OBSERVATION, CHANGE DETECTION AND CONTEXTUAL DATA FOR SEMANTIC SEARCH
Tromba, Andrea	pg. 6035 TU2.R4.1 - THE FAR-INFRARED OUTGOING RADIATION UNDERSTANDING AND MONITORING (FORUM) MISSION. ESA'S 9TH EARTH EXPLORER
Troupaki, Elisavet	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS

Trouvé, Emmanuel	pg. 132 MO2.R14.2 - TEMPORAL CONSOLIDATION STRATEGY FOR GROUND BASED IMAGE DISPLACEMENT TIME SERIES
Trujillo, Alejandro	pg. 1600 WE2.R18.8 - CONVOLUTIONAL NEURAL NETWORK FOR DETECTION OF RESIDENTIAL PHOTOVOLTAIC SYSTEMS IN SATELLITE IMAGERY
Tsagkatakis, Grigorios	pg. 4602 WE2.R1.11 - MULTI-TEMPORAL CONVOLUTIONAL NEURAL NETWORKS FOR SATELLITE-DERIVED SOIL MOISTURE OBSERVATION ENHANCEMENT
Tsakalides, Panagiotis	pg. 4602 WE2.R1.11 - MULTI-TEMPORAL CONVOLUTIONAL NEURAL NETWORKS FOR SATELLITE-DERIVED SOIL MOISTURE OBSERVATION ENHANCEMENT
Tsang, Leung	pg. 5690 TU2.R8.1 - A MLSD-SMCG METHOD FOR SCATTERING AND EMISSION FROM OCEAN-SURFACES WITH FULL OCEAN SPECTRUM AND LARGE RMS HEIGHTS pg. 2921 MO2.R9.1 - SNOW SIZE DISTRIBUTION AND AGGREGATION MODELING BASED ON THE BICONTINUOUS MODEL pg. 3436 TU2.R17.2 - MODELING MULTI-FREQUENCY TOMOGRAMS FOR SNOW STRATIGRAPHY MO2.R9.3 - VALIDATION OF THE COMBINED ACTIVE AND PASSIVE MICROWAVE SNOW RETRIEVAL ALGORITHM USING ESA SNOWSAR APPLIED TO CANADA AND US pg. 4704 TH1.R1.4 - FULL-WAVE SIMULATIONS OF SCATTERING IN VEGETATION FOR MICROWAVE REMOTE SENSING OF SOIL MOISTURE pg. 367 MO2.R19.7 - A PHYSICAL PATCH MODEL FOR GNSS-R LAND APPLICATIONS WITH TOPOGRAPHY EFFECTS AND DDM SIMULATIONS
Tsaoussi, Lucia	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Tsendbazar, Nandin-Erdene	pg. 4251 TU1.R1.1 - ELASTIC MAPPING THROUGH THE COPERNICUS GLOBAL LAND COVER LAYERS
Tsuchida, Masayoshi	pg. 1909 TH1.R16.6 - IMAGING OF MULTI-CHANNEL SLIDING SPOTLIGHT SAR WITH UP- AND DOWN-CHIRP MODULATION FOR RANGE AMBIGUITY SUPPRESSION
Tsuchida, Satoshi	pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) : ITS LAUNCH AND CURRENT STATUS
Tsuruta, Aki	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Tsutsumida, Narumasa	pg. 874 TU2.R7.1 - A GEOGRAPHICALLY WEIGHTED TOTAL COMPOSITE ERROR ANALYSIS FOR SOFT CLASSIFICATION
Tucek, John	FR1.R2.11 - THE SMART ICE CLOUD SENSING (SMICES) SMALLSAT INSTRUMENT ARTIFICIAL INTELLIGENCE

	STRATEGIES
Tuia, Devis	pg. 3979 FR2.R7.1 - ADVANCING DEEP LEARNING FOR EARTH SCIENCES: FROM HYBRID MODELING TO INTERPRETABILITY pg. 529 TU1.R7.2 - LEARNING MULTI-LABEL AERIAL IMAGE CLASSIFICATION UNDER LABEL NOISE: A REGULARIZATION APPROACH USING WORD EMBEDDINGS pg. 3983 FR2.R7.2 - INTERPRETABLE SCENICNESS FROM SENTINEL-2 IMAGERY
Tulczyjew, Lukasz	pg. 866 TU2.R5.10 - HYPERSPECTRAL IMAGE CLASSIFICATION USING SPECTRAL-SPATIAL CONVOLUTIONAL NEURAL NETWORKS
Tupin, Florence	pg. 144 MO2.R14.5 - COMPARISON BETWEEN MULTITEMPORAL GRAPH BASED CLASSICAL LEARNING AND LSTM MODEL CLASSIFICATIONS FOR SITS ANALYSIS pg. 108 MO2.R6.7 - REGULARIZED SAR TOMOGRAPHY APPROACHES
Turkar, Varsha	pg. 3884 FR1.R3.7 - THE EFFECT OF HYBRID POLARIMETRIC DESCRIPTORS ON CLASSIFICATION ACCURACY OF VARIOUS LAND COVER TYPES
Turner, Woody	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Turpie, Kevin	pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
Tuscano, Maria Pia	pg. 4080 MO2.R1.2 - URBAN LAND-USE AND LAND-COVER MAPPING BASED ON THE CLASSIFICATION OF TRANSPORT DEMAND AND REMOTE SENSING DATA
Tuttle, Mark	pg. 6826 WE1.R2.3 - RAPID STRUCTURE DETECTION IN SUPPORT OF DISASTER RESPONSE : A CASE STUDY OF THE 2018 KILAUEA VOLCANO ERUPTION
Twedt, Kevin	pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Tyc, George	pg. 3585 WE2.R15.10 - THE SAR-XL MULTI-APERTURE X AND L BAND SAR SYSTEM WITH DIGITAL BEAMFORMING AND ITS CORRESPONDING DUAL-BAND APPLICATIONS
Tzeremes, Georgios	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS pg. 3483 WE2.R4.8 - DEVELOPMENT OF A FLASH-LIDAR ELEGANT BREADBOARD MODEL FOR RENDEZVOUS APPLICATIONS
U	
Uchida, Yuki	pg. 4963] TH2.R6.7 - ESTIMATION OF REINFORCED SLOPE DYNAMICS USING ALOS-2/ PALSAR-2 AND VALIDATION BY TERRESTRIAL LASER SCANNER

Uehara, Tatiana	pg. 2061 TH2.R3.11 - STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION
Uehara, Tatiana Dias Tardelli	pg. 1345 WE2.R3.10 - LAND COVER CLASSIFICATION OF AN AREA SUSCEPTIBLE TO LANDSLIDES USING RANDOM FOREST AND NDVI TIME SERIES DATA
Uematsu, Akihisa	pg. 5957 TU1.R4.4 - CONCEPT STUDY OF FUTURE LAND OBSERVATION SATELLITE TECHNIQUES WHEN UTILIZING KHATRI-RAO (KR) PRODUCT ARRAY PROCESSING
Uemoto, Jyunpei	pg. 2755 FR2.R9.3 - SEMI-SUPERVISED LAND COVER CLASSIFICATION USING PI-SAR2 OBSERVATION DATA pg. 324 MO2.R18.6 - PARAMETER OPTIMIZATION FOR DETECTING SEISMIC GROUND DEFORMATION FROM AIRBORNE SAR IMAGES
Ugalde-Peralta, Raul	pg. 5769 WE1.R8.11 - INTRA-ANNUAL COASTAL DYNAMICS THROUGH REMOTE SENSORS AND MORPHOSEDIMENTARY PATTERNS, REÑACA BEACH AND CONCON BAY, CENTRAL CHILE.
Uiboupin, Rivo	pg. 4750 TH1.R4.5 - METHODOLOGY FOR MAPPING FLOOD EXTENT ON ESTONIAN FLOODPLAINS
Ulander, Lars	pg. 4152 MO2.R10.9 - ESTIMATION OF STEM DENSITY IN HEMI-BOREAL FORESTS USING AIRBORNE LOW-FREQUENCY SYNTHETIC APERTURE RADAR
Ulfarsson, Magnus O.	pg. 1488 WE2.R12.3 - LOCAL SPATIAL-SPECTRAL CORRELATION BASED MIXTURES OF FACTOR ANALYZERS FOR HYPERSPECTRAL DENOISING pg. 1516 WE2.R12.10 - HYPERSPECTRAL IMAGES DENOISING BASED ON MIXTURES OF FACTOR ANALYZERS
Ulfarsson, Magnus Orn	pg. 2045 TH2.R3.7 - CREATING RGB IMAGES FROM HYPERSPECTRAL IMAGES USING A COLOR MATCHING FUNCTION
Ulfsax, Karly	pg. 5631 MO2.R8.8 - SEA SURFACE SALINITY SUBFOOTPRINT VARIABILITY FROM A GLOBAL HIGH-RESOLUTION MODEL
Ullah, Asmat	pg. 4116 MO2.R1.11 - IMPACT OF SMALL DAMS ON VEGETATION COVER IN THE POTOHAR REGION OF PAKISTAN
Ullo, Silvia Liberata	pg. 6770 TU2.R2.1 - POST-FIRE ASSESSMENT OF BURNED AREAS WITH LANDSAT-8 AND SENTINEL-2 IMAGERY TOGETHER WITH MODIS AND VIIRS ACTIVE FIRE PRODUCTS pg. 4235 MO2.R12.8 - APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC INFRASTRUCTURE MONITORING pg. 992 TU2.R18.11 - SEMI-AUTOMATIC CLASSIFICATION OF BUILDING FROM LOW-DENSITY LIDAR DATA AND WORLDVIEW-2 IMAGES THROUGH OBIA TECHNIQUE
Underwood, Craig	pg. 6194 WE1.R13.4 - A TOPOGRAPHICALLY-ACCURATE

	GNSS-R REFLECTION POINT PREDICTOR FOR ON-BOARD OPERATIONAL PROCESSING
Unwin, Martin	pg. 6194 WE1.R13.4 - A TOPOGRAPHICALLY-ACCURATE GNSS-R REFLECTION POINT PREDICTOR FOR ON-BOARD OPERATIONAL PROCESSING
	WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION
	pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
	pg. 5941 MO2.R13.10 - NOC GNSS-R GLOBAL OCEAN WIND SPEED AND SEA-ICE PRODUCTS USING DATA FROM THE TECHDEMOSAT-1 MISSION
Uprety, Sirish	pg. 6389 TH1.R15.3 - NOAA-20/S-NPP VIIRS SENSOR DATA RECORD ON-ORBIT PERFORMANCE UPDATES AND RECENT IMPROVEMENTS
	pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS
Urban, Marcel	pg. 4783 TH1.R6.2 - EARTH OBSERVATION STRATEGIES FOR DEGRADATION MONITORING IN SOUTH AFRICA WITH SENTINELS - RESULTS FROM THE SPACES 2 SALDI-PROJECT YEAR 1
	pg. 4874 TH1.R11.3 - RADAR-CROP-MONITOR - MAPPING AGRICULTURAL CONDITIONS WITH SENTINEL-1 TIME SERIES pg. 4501 WE1.R10.7 - A MULTI-SCALE REMOTE SENSING
	APPROACH TO UNDERSTANDING VEGETATION DYNAMICS IN THE NAMA KAROO-GRASSLAND ECOTONE OF SOUTH AFRICA
	pg. 4323 TU2.R10.8 - ANNUAL GRASS BIOMASS MAPPING WITH LANDSAT-8 AND SENTINEL-2 DATA OVER KRUGER NATIONAL PARK, SOUTH AFRICA
Usabal, Gabriela	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
Ushio, Tomoo	WE2.R19.3 - ON THE OPTIMIZATION OF PARAMETERS IN THE GSMAP_GAUGE ALGORITHM
Uto, Kuniaki	pg. 5195 FR1.R11.10 - ESTIMATION OF LEAF ANGLE DISTRIBUTION BASED ON STATISTICAL PROPERTIES OF LEAF SHADING DISTRIBUTION
Utomo, Darmawan	pg. 3119 WE1.R14.8 - DEEP NEURAL NETWORK-BASED DATA RECONSTRUCTION FOR LANDSLIDE DETECTION
V	
Valade, Sébastien	pg. 3908 FR1.R7.5 - REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK
Valenta, Christopher	pg. 6085 WE1.R4.4 - LOW-SWAP ELASTIC BACKSCATTER LIDAR FOR CLOSE-RANGE AEROSOL DETECTION
Valerio, Emanuela	pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR CO-

	SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Valero, M. Miguel	pg. 6802 TU2.R2.9 - A MACHINE LEARNING SOLUTION FOR OPERATIONAL REMOTE SENSING OF ACTIVE WILDFIRES
Vall-llossera, Mercè	pg. 5254 FR2.R11.2 - IMPROVING THE RICE YIELD ESTIMATION USING SMOS AND CYGNSS GNSS-R DATA
Valsesia, Diego	pg. 613 TU1.R11.1 - DEEPSUM++: NON-LOCAL DEEP NEURAL NETWORK FOR SUPER-RESOLUTION OF UNREGISTERED MULTITEMPORAL IMAGES. pg. 2272 FR1.R5.8 - DETECTION OF SOLAR CORONAL MASS EJECTIONS FROM RAW IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS pg. 2507 FR1.R16.10 - TOWARDS DEEP UNSUPERVISED SAR DESPECKLING WITH BLIND-SPOT CONVOLUTIONAL NEURAL NETWORKS
Van Aardt, Jan	pg. 6321 WE2.R17.7 - DUCK NEST DETECTION THROUGH REMOTE SENSING
Van Dijk, Albert	pg. 4983 TH2.R10.3 - HIGH-RESOLUTION WOODY VEGETATION COVER, HEIGHT AND BIOMASS MAPPING ACROSS AUSTRALIA
Van Etten, Adam	pg. 3920 FR1.R7.8 - ROAD NETWORK AND TRAVEL TIME EXTRACTION FROM MULTIPLE LOOK ANGLES WITH SPACENET DATA
Van Roozendael, Michel	pg. 6039 TU2.R4.2 - TOTAL COLUMN RETRIEVAL OF SO2 AND HCHO FROM SENTINEL-4 MEASUREMENTS pg. 6859 WE1.R2.12 - PROTOTYPING OF A MULTI-HAZARD EARLY WARNING SYSTEM FOR AVIATION AND DEVELOPMENT OF NRT ALERT PRODUCTS WITHIN THE EUNADICS-AV AND OPAS PROJECTS
Van de Voorde, Tim	pg. 268 MO2.R17.3 - AIRPLANE RECOGNITION FROM REMOTE SENSING IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORK
Vanama, Venkata Sai Krishna	pg. 1524) WE2.R16.1 - DE-SPECKLING OF SYNTHETIC APERTURE RADAR USING DISCRETE FOURIER TRANSFORM pg. 4742) TH1.R4.3 - SPLIT-WINDOW BASED FLOOD MAPPING WITH L-BAND ALOS-2 SAR IMAGES: A CASE OF KERALA FLOOD EVENT IN 2018
Vandal, Thomas	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS
Vanderbilt, Vern	(pg. 4375) TU2.R11.9 - REFLECTANCE PRI DOES NOT EQUAL TRANSMITTANCE PRI
Vanderplow, Breanna	pg. 5753 WE1.R8.7 - HIGH-RESOLUTION REMOTE SENSING, IN-SITU OBSERVATIONS, AND MODELING OF LOW-SALINITY LENSES IN THE PRESENCE OF OIL SLICK

Vanin, Felice M.	pg. 6535 FR2.R13.8 - COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR): SYSTEM ASPECTS AND TECHNOLOGICAL CHALLENGES
Vanthof, Victoria	pg. 3716 TH2.R11.5 - EARTH OBSERVATION AT FINER SCALES IS CRITICAL TO FARMING COMMUNITIES FACING INCREASED WATER SHORTAGES OVER THE NEXT DECADE
Vasile, Gabriel	pg. 3869 FR1.R3.3 - SPACEBORNE TRANSMITTER - STATIONARY RECEIVER BISTATIC SAR POLARIMETRY - EXPERIMENTAL RESULTS
Vasilyev, Aleksey	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Vassallo, Roberto	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS
Vaughan, Chris	pg. 6826 WE1.R2.3 - RAPID STRUCTURE DETECTION IN SUPPORT OF DISASTER RESPONSE : A CASE STUDY OF THE 2018 KILAUEA VOLCANO ERUPTION
Vaz, Daiane	pg. 2061 TH2.R3.11 - STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION
Veerachit, Vorraveerukorn	pg. 5175 FR1.R11.5 - CROP EVAPOTRANSPIRATION ESTIMATES FOR SUGARCANE BASED ON REMOTE SENSING AND LAND SURFACE MODEL IN THAILAND
Vega, Manuel	pg. 3349 TU2.R13.3 - ANALYSES SUPPORTING SNOOPI: A P-BAND REFLECTOMETRY DEMONSTRATION
Venegas, Alejandro	pg. 4803 TH1.R6.7 - IMPACT OF MEGADROUGHT ON VEGETATION PRODUCTIVITY IN CHILE: FOREST LESSER RESISTANT THAN CROPS AND GRASSLAND
Venkatachalam, Chandrasekaran	TH2.R4.5 - NEXT GENERATION MICROWAVE SPECTROMETERS FOR ATMOSPHERIC SOUNDING: CUBESATS AND BEYOND
Venkitasubramony, Aravind	pg. 6523 FR2.R13.5 - HIGH SPECTRAL RESOLUTION V-BAND DIGITAL CORRELATING SPECTROMETER FOR CLIMATE MONITORING pg. 4474 WE1.R1.11 - L-BAND HIGH SPATIAL RESOLUTION SOIL MOISTURE MAPPING USING A SMALL UNMANNED AERIAL SYSTEM
Verde, Simona	pg. 116 MO2.R6.9 - A MULTI-RESOLUTION GLRT TEST FOR THE DETECTION OF PERSISTENT SCATTERERS IN SAR TOMOGRAPHY
Vereecken, Harry	pg. 2137 TH2.R9.8 - SARSENSE: A C- AND L-BAND SAR REHEARSAL CAMPAIGN IN GERMANY IN PREPARATION FOR ROSE-L
Vergara-Diaz, Omar	pg. 4359 TU2.R11.5 - OPEN-SOURCE SOFTWARE FOR CROP

	PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB IMAGES
Verma, Nidhi	pg. 724 TU1.R16.7 - SYNERGIC USE OF SAR AND OPTICAL DATA FOR ESTIMATION OF SOIL MOISTURE IN VEGETATIVE REGION
Vermote, Eric	pg. 3723 TH2.R11.7 - CAPTURING CORN AND SOYBEAN YIELD VARIABILITY AT FIELD SCALE USING VERY HIGH SPATIAL RESOLUTION SATELLITE DATA
Vernier, Flavien	pg. 132 MO2.R14.2 - TEMPORAL CONSOLIDATION STRATEGY FOR GROUND BASED IMAGE DISPLACEMENT TIME SERIES
Veronez, Mauricio	pg. 5207 FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA
Veronez, Maurício	pg. 2619 FR2.R3.4 - HOW MUCH WAVELET DECOMPOSITION CAN IMPROVE THE DETECTION OF SURFACE FRACTURES IN REMOTE SENSING IMAGES?
Vialard, Jerome	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Vidal Páez, Paulina	pg. 6604 TU1.R2.4 - LANDSLIDE SUSCEPTIBILITY USING REMOTE SENSING DATA & GIS IN A HIGH ANDEAN AREA OF CENTRAL CHILE
Vidal-Paez, Paulina	pg. 5769) WE1.R8.11 - INTRA-ANNUAL COASTAL DYNAMICS THROUGH REMOTE SENSORS AND MORPHOSEDIMENTARY PATTERNS, REÑACA BEACH AND CONCON BAY, CENTRAL CHILE.
Vidal-Páez, Paulina	pg. 4803 TH1.R6.7 - IMPACT OF MEGADROUGHT ON VEGETATION PRODUCTIVITY IN CHILE: FOREST LESSER RESISTANT THAN CROPS AND GRASSLAND
Viegas, Fabio	pg. 573 TU1.R10.2 - PROPOSAL OF A METHOD FOR WILDLIFE- VEHICLE COLLISIONS RISK ASSESSMENT BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND DEEP LEARNING
Viers, Joshua	pg. 4598 WE2.R1.10 - MACHINE LEARNING BASED SOIL MOISTURE RETRIEVAL FROM UNMANNED AIRCRAFT SYSTEM MULTISPECTRAL REMOTE SENSING
Vignudelli, Stefano	pg. 5843 TH2.R8.8 - ANALYSIS OF SENTINEL-3A SYNTHETIC APERTURE RADAR (SAR) ALTIMETRY WAVEFORMS OVER THE SOUTHEAST ASIA REGION pg. 4773 TH1.R4.11 - VALIDATION OF SENTINEL 3A ALTIMETRY DATA FOR RIVER LEVEL MONITORING AT TWO LOCATIONS ALONG THE LOWER INDUS RIVER
Vilaseca, Roger	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Viljanen, Niko	pg. 4379 TU2.R11.10 - ON THE ESTIMATION OF THE LEAF

	ANGLE DISTRIBUTION FROM DRONE BASED PHOTOGRAMMETRY
Villalobos Martínez, Roberto Ivan	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Villalon-Turrubiates, Ivan	pg. 6766 TU1.R17.11 - IDENTIFICATION OF ARCHAEOLOGICAL LAND USE EMPLOYING DEEP LEARNING TECHNIQUES: PROSPECTIVE STUDY WITHIN MEXICO
Villalon-Turrubiates, Ivan E.	pg. 6471 FR1.R15.4 - KALMAN FILTER-BASED TRAJECTORY ESTIMATION USING A LOW-COST SENSOR AND AERIAL IMAGES
Vinayaraj, Poliyapram	pg. 2655 FR2.R5.1 - DENSIFICATION OF AIRBORNE LIDAR POINT CLOUD WITH FUSED ENCODER-DECODER NETWORKS
Viros-i-Martin, Antoni	pg. 6941 FR1.R2.9 - SCHEDULING MISSION RECONFIGURATION FOR AN INTERFEROMETRY SYNTHETIC APERTURE RADAR USING DEEP REINFORCEMENT LEARNING
Virts, Katrina	pg. 3097 WE1.R14.2 - ADVANCING OPEN SCIENCE THROUGH INNOVATIVE DATA SYSTEM SOLUTIONS: THE JOINT ESA-NASA MULTI-MISSION ALGORITHM AND ANALYSIS PLATFORM (MAAP)'S DATA ECOSYSTEM pg. 2252 FR1.R5.3 - A QUANTITATIVE ANALYSIS ON THE USE OF SUPERVISED MACHINE LEARNING IN EARTH SCIENCE
Viswanathan, Chinnusamy	pg. 5286 FR2.R11.10 - LEAF COUNTING IN RICE (ORYZA SATIVA L.) USING OBJECT DETECTION: A DEEP LEARNING APPROACH
Vitale, Sergio	pg. 6922 FR1.R2.4 - COMPLEXITY ANALYSIS OF AN EDGE PRESERVING CNN SAR DESPECKLING ALGORITHM pg. 649 TU1.R11.10 - A CROSS-SCALE LOSS FOR CNN-BASED PANSHARPENING
Vittaldev, Vivek	pg. 3833 TH2.R17.1 - LEVERAGING SPACE AND GROUND ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE
Vivier, Frederic	pg. 5978 TU1.R4.10 - A NEW L-BAND PASSIVE RADIOMETER FOR EARTH OBSERVATION: SMOS-HIGH RESOLUTION (SMOS-HR)
Vollrath, Andreas	pg. 1877 TH1.R12.9 - LARGE-SCALE VEGETATION HEIGHT MAPPING FROM SENTINEL DATA USING DEEP LEARNING
Voreiter, Claire	pg. 1961 TH1.R17.8 - A CYCLE GAN APPROACH FOR HETEROGENEOUS DOMAIN ADAPTATION IN LAND USE CLASSIFICATION
Vreugdenhil, Mariette	pg. 140 MO2.R14.4 - CLASSIFICATION OF WHEAT AND BARLEY FIELDS USING SENTINEL-1 BACKSCATTER
Vu, Hang T.	pg. 6702 TU1.R15.7 - COMPARATIVE ASSESSMENT OF SOLAR

	RADIATION BY SATELLITE-BASED AND REANALYSIS PRODUCTS OVER VIETNAM REGIONS
Vu, Viet	pg. 332 MO2.R18.8 - UNSUPERVISED AUTOMATIC TARGET DETECTION FOR MULTITEMPORAL SAR IMAGES BASED ON ADAPTIVE K-MEANS ALGORITHM
Vu, Viet Thuy	pg. 1985 TH1.R18.3 - ENHANCING CONVENTIONAL SAR CHANGE DETECTION PERFORMANCE WITH APODIZATION (pg. 1997) TH1.R18.6 - CHANGE DETECTION AND SIGNATURE CLASSIFICATION FOR SAR GMTI
Vögtli, Marius	pg. 664 TU1.R12.3 - A MULTI-SCALE AND MULTI-TEMPORAL HYPERSPECTRAL TARGET DETECTION EXPERIMENT — FROM DESIGN TO FIRST RESULTS
W	
Wagner, Wolfgang	pg. 140 MO2.R14.4 - CLASSIFICATION OF WHEAT AND BARLEY FIELDS USING SENTINEL-1 BACKSCATTER TH2.R9.7 - EXPLAINING ANOMALIES IN SAR AND SCATTEROMETER SOIL MOISTURE RETRIEVALS FROM DRY SOILS WITH SUB-SURFACE SCATTERING
Wakabayashi, Hiroyuki	pg. 3047 WE1.R9.1 - MONITORING ICE COVERING LAKE SAROMA BY USING SENTINEL-1 C-BAND SAR DATA
Wakamori, Koji	pg. 4542 WE1.R11.7 - COMBINED USE OF SENTINEL-1, SENTINEL-2 AND LANDSAT 7 & 8 DATA FOR ESTIMATING HEADING DATE OF RICE WITH DIFFERENT CULM LENGTHS
Wakayama, Toshio	pg. 5 MO2.R3.2 - EXPERIMENTAL STUDY ON ALONG TRACK TARGET VELOCITY ESTIMATION FOR MULTIPLE APERTURE SAR- MTI CONFIGURATION
Waldeland, Anders Ueland	pg. 1877 TH1.R12.9 - LARGE-SCALE VEGETATION HEIGHT MAPPING FROM SENTINEL DATA USING DEEP LEARNING
Waldschmidt, Christian	pg. 746 TU1.R18.2 - TRIPWIRE DETECTION IN SAR IMAGES USING A MODIFIED RADON TRANSFORM
Walker, Jeffrey	Pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI-TEMPORAL STUDY Pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS Pg. 5925 MO2.R13.6 - UNTANGLING THE GNSS-R COHERENT AND INCOHERENT COMPONENTS: EXPERIMENTAL EVIDENCES OVER THE OCEAN Pg. 3369 TU2.R13.8 - FIRST EXPERIMENTAL EVIDENCE OF WIND AND SWELL SIGNATURES IN L5 GPS AND E5A GALILEO GNSS-R WAVEFORMS
Walker, Jeffrey P.	pg. 5274 FR2.R11.7 - SENTINEL-2 AND PLANETSCOPE DATA

	FUSION INTO DAILY 3 M IMAGES FOR LEAF AREA INDEX MONITORING
Walker, Nick	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY
Walker, Roger	pg. 3345 TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION
Walker, Victoria	TH2.R10.9 - VICARIOUS VALIDATION OF L-BAND VEGETATION OPTICAL DEPTH
Wallace, Kotska	pg. 3459 WE2.R4.2 - STATUS OF ESA'S EARTHCARE MISSION PREPARATION pg. 3475 WE2.R4.6 - FLIGHT LIDAR DEVELOPMENT AND QUALIFICATION FOR THE ESA EARTH CLOUD AEROSOL AND RADIATION EXPLORER (EARTHCARE) MISSION
Wallen, Benjamin	pg. 5026 FR1.R1.3 - USE OF X-RAY FLUORESCENCE TO EXPEDITE SAMPLING TO EVALUATE AND VISUALIZE SOIL LEAD CONCENTRATIONS AT WEST POINT, NY pg. 477 TU1.R5.11 - INVESTIGATION OF DIURNAL FLUCTUATIONS OF HEAT AND WATER DISTRIBUTIONS AROUND LANDMINES IMPACTED BY SOIL HETEROGENEITY
Wallerman, Jörgen	pg. 4822 TH1.R10.1 - NATION-WIDE MAPPING OF TREE GROWTH USING REPEATED AIRBORNE LASER SCANNING pg. 4152 MO2.R10.9 - ESTIMATION OF STEM DENSITY IN HEMI-BOREAL FORESTS USING AIRBORNE LOW-FREQUENCY SYNTHETIC APERTURE RADAR
Walter, Kane	pg. 1683 TH1.R3.6 - SELF-SUPERVISED REMOTE SENSING IMAGE RETRIEVAL
Walters, Richard	pg. 6857 WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING
Walthall, Steffi	pg. 3169 TH1.R14.2 - CONTINUING EDUCATION UNITS (CEUS) FOR NASA'S GLOBAL LEARNING AND OBSERVATIONS TO BENEFIT THE ENVIRONMENT (GLOBE) WORLD WIDE PROGRAM
Wan, Cheng	pg. 2543 FR1.R17.9 - SIAMESE GENERATIVE ADVERSARIAL NETWORK FOR CHANGE DETECTION UNDER DIFFERENT SCALES
Wan, Hong	pg. 5282 FR2.R11.9 - IMPROVED DROUGHT MONITORING METHOD BASED ON MULTISOURCE REMOTE SENSING DATA
Wan, Jiangqin	pg. 1373 WE2.R5.7 - TOPIC MODEL FOR REMOTE SENSING DATA: A COMPREHENSIVE REVIEW
Wan, Jianhua	pg. 5477 TH1.R19.12 - SPATIAL AND TEMPORAL CHARACTERISTICS OF SEA FOG IN YELLOW SEA AND BOHAI SEA BASED ON ACTIVE AND PASSIVE REMOTE SENSING
Wan, Jun	pg. 2352 FR1.R9.5 - A NOVEL SAR IMAGE DOMAIN-GROUND MOVING TARGET IMAGING METHOD

	(pg. 2141) TH2.R9.9 - GROUND MOVING TARGET IMAGING BASED ON MSOKT AND KT FOR SYNTHETIC APERTURE RADAR
Wan, Luoma	pg. 6650 TU1.R13.4 - ANALYZING MANGROVE ZONATION DYNAMICS USING TIME-SERIES HIGH-RESOLUTION SATELLITE IMAGES
Wan, Minghui	pg. 2360 FR1.R9.7 - A SIDELOBE REDUCTION ALGORITHM FOR SAR IMAGERY FORMED BY FAST BACK PROJECTION ALGORITHM BASED ON SPECTRUM COMPRESSION
Wan, Qi	(pg. 1849) TH1.R12.2 - DRONE IMAGE STITCHING USING LOCAL LEAST SQUARE ALIGNMENT
Wan, Qun	pg. 778 TU1.R18.10 - MULTI-VIEW FUSION BASED ON EXPECTATION MAXIMIZATION FOR SAR TARGET RECOGNITION
Wan, Tao	pg. 2871 FR2.R16.10 - A DETECTION METHOD OF MULTI- SENSOR FOR RADAR COUNTERMEASURE NETWORK
Wan, Yi	pg. 465 TU1.R5.8 - DEM EXTRACTION FROM AIRBORNE LIDAR POINT CLOUD IN THICK-FORESTED AREAS VIA CONVOLUTIONAL NEURAL NETWORK
Wan, Yishuang	pg. 1735 TH1.R5.7 - POLSAR IMAGE CLASSIFICATION BASED ON OPTIMAL FEATURE AND CONVOLUTION NEURAL NETWORK
Wan, Yuting	pg. 1369 WE2.R5.6 - RSSM-NET: REMOTE SENSING IMAGE SCENE CLASSIFICATION BASED ON MULTI-OBJECTIVE NEURAL ARCHITECTURE SEARCH
Wang, Bingnan	pg. 6089 WE1.R4.5 - TIME-FREQUENCY DOMAIN NONLINEAR PHASE COMPENSATION FOR FMCW LADAR SIGNALS
Wang, Caixia	pg. 3549 WE2.R8.8 - STUDIES OF INTERNAL WAVES IN THE STRAIT OF GEORGIA BASED ON REMOTE SENSING IMAGES
Wang, Caiyun	pg. 5819 TH2.R8.2 - IN-ORBIT CALIBRATION AND VALIDATION OF HY-2B ALTIMETER USING AN IMPROVED TRANSPONDER pg. 5862 FR1.R8.2 - DEVELOPMENT AND INTEGRATION TEST OF AN IMPROVED TRANSPONDER FOR HY-2B ALTIMETER
Wang, Chao	pg. 4522 WE1.R11.2 - RICE MONITORING WITH TIME SERIES SAR BASED ON DEEP LEARNING MODEL pg. 4171 MO2.R11.3 - FINE CLASSIFICATION OF RICE IN NORTHEAST THAILAND USING C- AND L-BAND TIME-SERIES SAR IMAGES pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK pg. 1015 WE1.R3.6 - PERMOFROST OBERVATION USING ALOS-2 PALSAR-2 DATA IN THE NORTHREN QINGHAI-TIBET PLATEAU
Wang, Chen	pg. 2763 FR2.R9.5 - KERNEL ROTATIONAL NETWORK FOR SYNTHETIC APERTURE RADAR TARGET RECOGNITION pg. 545 Tul.R7.6 - SEMI-SUPERVISED LEARNING-BASED

	REMOTE SENSING IMAGE SCENE CLASSIFICATION VIA ADAPTIVE PERTURBATION TRAINING
Wang, Cheng	pg. 6073 WE1.R4.1 - THE PERFORMANCE OF ICESAT-2'S STRONG AND WEAK BEAMS IN ESTIMATING GROUND ELEVATION AND FOREST HEIGHT pg. 2767 FR2.R9.6 - EXTRACTION OF POWER LINES AND PYLONS FROM LIDAR POINT CLOUDS USING A GCN-BASED METHOD pg. 2771 FR2.R9.7 - A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR 3D POINT CLOUDS pg. 385 MO2.R19.12 - SCATTERING MECHANISM OF LARGE- FOOTPRINT FULL-WAVEFORM LIDAR OVER MOUNTAINOUS FOREST AREAS
Wang, Chengze	pg. 980 TU2.R18.8 - INSTANCE-AWARE REMOTE SENSING IMAGE CAPTIONING WITH CROSS-HIERARCHY ATTENTION
Wang, Chenwei	pg. 2639 FR2.R3.9 - A DEFORMABLE CONVOLUTION NEURAL NETWORK FOR SAR ATR pg. 1755 TH1.R5.12 - MULTI-VIEW CNN-LSTM NEURAL NETWORK FOR SAR AUTOMATIC TARGET RECOGNITION
Wang, Chenxu	pg. 5878 FR1.R8.6 - COMPARISON OF QUASI-ANALYTICAL ALGORITHMS BASED ON IOCCG DATA
Wang, Chisheng	pg. 6301 WE2.R17.2 - VOLUNTEERED REMOTE SENSING USING HANDHELD CAMERAS IN A PASSENGER AIRCRAFT
Wang, Chong	pg. 5811 TH1.R8.11 - CNN-BASED TROPICAL CYCLONE TRACK FORECASTING FROM SATELLITE INFRARED IMAGES
Wang, Chunle	pg. 172 MO2.R15.1 - FOUR-COMPONENT DECOMPOSITION METHOD OF POLARIMETRIC SAR INTERFEROMETRY USING REFINED VOLUME SCATTERING MODELS
Wang, Cuizhen	pg. 6758 TU1.R17.9 - TRANSLATING MULTISPECTRAL IMAGERY TO NIGHTTIME IMAGERY VIA CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
Wang, Dacheng	pg. 885 TU2.R7.4 - EVALUATION OF THE ENVIRONMENTAL QUALITY OF HUMAN SETTLEMENTS IN FUZHOU BASED ON MULTI-SOURCE DATA
Wang, Daniel	pg. 3833 TH2.R17.1 - LEVERAGING SPACE AND GROUND ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE
Wang, Danyang	pg. 2539 FR1.R17.8 - CHANGE OF GLACIAL LAKE IN KARAKORAM RANGE pg. 6499 FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING
Wang, Dingchen	pg. 509 TU1.R6.9 - DECOUPLED NETWORK WITH ACTIVE LEARNING STRATEGY FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Wang, Feng	pg. 1869 TH1.R12.7 - ROBUST ESTIMATION APPROACH FOR PLANE FITTING IN 3D LASER SCANNING DATA
Wang, Fenjuan	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Wang, Futao	pg. 6631 TU1.R2.11 - CONSTRUCTION AND APPLICATION OF A POST-QUAKE HOUSE DAMAGE MODEL BASED ON MULTISCALE SELF-ADAPTIVE FUSION OF SPECTRAL TEXTURES IMAGES
Wang, Gongxue	pg. 4450 WE1.R1.5 - EVALUATION OF SOIL MOISTURE RETRIEVALS FROM ALOS-2, SENTINEL-1 DATA IN GENHE, CHINA pg. 2946 MO2.R9.8 - THE VALIDATION OF SNOW COVER PRODUCT OVER HIGH MOUNTAIN ASIA
Wang, Guanchun	pg. 1937 TH1.R17.2 - A LEARNABLE BLUR KERNEL FOR REMOTE SENSING IMAGE RETRIEVAL
Wang, Guanghui	pg. 2747 FR2.R9.1 - POTENTIAL OF LAND COVER CLASSIFICATION BASED ON GF-1 AND GF-3 DATA pg. 5399 WE1.R19.4 - RESEARCH OF CLOUD DETECTION BASED ON MULTI-TEMPORAL THERMAL INFRARED DATA pg. 5057 FR1.R1.11 - EVALUATION OF THE EFFECTS OF HETEROGENEOUS SOIL MOISTURE ON MEASURED BRIGHTNESS TEMPERATURE BY A MICROWAVE RADIOMETER pg. 4426 TU2.R12.11 - RESEARCH ON THE DEVELOPMENT OF URBANIZATION IN YANGTZE RIVER ECONOMIC BELT BASED ON NIGHTTIME LIGHT REMOTE SENSING DATA
Wang, Guangjun	pg. 513 TU1.R6.10 - PARTICLE SWARM OPTIMIZATION BASED DEEP LEARNING ARCHITECTURE SEARCH FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Wang, Guangxing	pg. 60 MO2.R5.6 - SELF-PACED LEARNING WITH SUPERPIXELWISE FEATURES FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 4967 TH2.R6.8 - MULTI-SCALE DEEP RESIDUAL LEARNING FOR CLOUD REMOVAL
Wang, Guanqun	pg. 1639 TH1.R2.7 - FEATURE ENHANCED CENTERNET FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Wang, Guojun	pg. 176 MO2,R15.2 - EVALUATION OF A_S1 FOR BUILDING DAMAGE MAPPING BASED ON TOUZI DECOMPOSITION
Wang, Guoqian	pg. 932 TU2.R16.8 - CIRCULAR EXPERIMENT WITH P-BAND ULTRA-WIDEBAND SYNTHETIC APERTURE RADAR SYSTEM
Wang, Hao	pg. 6981 FR2.R2.7 - UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA
Wang, Haoyu	pg. 2491 FR1.R16.6 - HIGH-RESOLUTION OPTICAL AND SAR IMAGE REGISTRATION USING LOCAL SELF-SIMILAR

	DESCRIPTOR BASED ON EDGE FEATURE
Wang, He	pg. 6345 TH1.R13.1 - ANALYSIS OF FIVE-YEAR AMSR2 BRIGHTNESS TEMPERATURE USING THE HISTOGRAMS OF COLD MEASUREMENTS
Wang, Heshun	pg. 6129 WE1.R7.8 - NOAA20 AND S-NPP VIIRS LAND SURFACE TEMPERATURE PRODUCT VALIDATION AND INTER- COMPARISON
Wang, Hong	pg. 1759 TH1.R7.1 - DEEP LEARNING-BASED HYPERSPECTRAL TARGET DETECTION WITHOUT EXTRA LABELED DATA
Wang, Hongmiao	pg. 196 MO2.R15.7 - A MODIFIED SIFT ALGORITHM FOR POLSAR IMAGE REGISTRATION
Wang, Hongyan	pg. 5897 FR1.R8.11 - EVALUATION OF SEA SURFACE TEMPERATURE FROM HY-1C DATA
Wang, Hongyu	pg. 2863 FR2.R16.8 - SAR IMAGE SHIP DETECTION BASED ON SCENE INTERPRETATION
Wang, Hua	pg. 6857 WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING
Wang, Hui	pg. 2256 FR1.R5.4 - CLOUD DETECTION USING GABOR FILTERS AND ATTENTION-BASED CONVOLUTIONAL NEURAL NETWORK FOR REMOTE SENSING IMAGES pg. 2627 FR2.R3.6 - RESEARCH ON C&I JAMMING BASED ON FREQUENCY DIVERSE ARRAY ANTENNA pg. 2583 FR1.R18.7 - DEEP ENCODER-DECODER NETWORK BASED ON THE UP AND DOWN BLOCKS USING WAVELET TRANSFORM FOR CLOUD DETECTION
Wang, Jiakun	pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE
Wang, Jiaming	pg. 5866 FR1.R8.3 - GRAVITY ANOMALY AND ITS ACCURACY ASSESSMENT FROM HY-2A/GM ALTIMETRY DATA IN THE SOUTH CHINA SEA
Wang, Jian	pg. 4450 WE1.R1.5 - EVALUATION OF SOIL MOISTURE RETRIEVALS FROM ALOS-2, SENTINEL-1 DATA IN GENHE, CHINA pg. 2946 MO2.R9.8 - THE VALIDATION OF SNOW COVER PRODUCT OVER HIGH MOUNTAIN ASIA pg. 3078 WE1.R9.9 - DEVELOPMENT OF MICROWAVE EMISSION MODEL FOR FROZEN SOIL WITH CONSIDERING THE VOLUME SCATTERING EFFECT
Wang, Jiangming	pg. 3180 TH1.R14.5 - IMPROVING STUDENT LEARNING OF SENSOR RELATED COURSES USING INNOVATIVE PROJECTS
Wang, Jianing	pg. 1616 TH1.R2.1 - FUSION-ORIENTED AIRCRAFT DETECTION IN LARGE SCENE IMAGE BASED ON TINY DARKNET

Wang, Jianmin	pg. 4795 TH1.R6.5 - DEVELOPMENT OF GLOBAL LAND SURFACE PHENOLOGY PRODUCT FROM TIME SERIES OF VIIRS OBSERVATIONS
Wang, Jianxin	pg. 5356 TU2.R19.5 - EVALUATION OF GPM IMERG PRODUCTS OVER SOUTH KOREA
Wang, Jie	pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR (pg. 5399 WE1.R19.4 - RESEARCH OF CLOUD DETECTION BASED ON MULTI-TEMPORAL THERMAL INFRARED DATA (pg. 1240 WE1.R18.6 - RECOGNITION OF SHIP BY ISAR WITH IMPROVED PARTIAL-MODAL GENERATIVE ADVERSARIAL
	NETWORKS (pg. 2863) FR2.R16.8 - SAR IMAGE SHIP DETECTION BASED ON SCENE INTERPRETATION
Wang, Jihui	pg. 6989 FR2.R2.9 - CORRELATION ATTENTION FOR REMOTE SENSING IMAGE CAPTIONING
Wang, Jin	pg. 4231 MO2.R12.7 - A DYNAMIC END-TO-END FUSION FILTER FOR LOCAL CLIMATE ZONE CLASSIFICATION USING SAR AND MULTI-SPECTRUM REMOTE SENSING DATA
Wang, Jindi	pg. 4826 TH1.R10.2 - LEAF AGING AFFECTS THE VARIABILITY OF CANOPY REFLECTANCE WITH STAND DEVELOPMENT IN EVERGREEN CHINESE FIR PLANTATION
Wang, Jing	pg. 196 MO2.R15.7 - A MODIFIED SIFT ALGORITHM FOR POLSAR IMAGE REGISTRATION
Wang, Jinwang	pg. 988 TU2.R18.10 - INSTANCE SEGMENTATION WITH ORIENTED PROPOSALS FOR AERIAL IMAGES
Wang, Jinyun	pg. 3184 TH1.R14.6 - FINE-SCALE POPULATION DISTRIBUTIONS MAPPING BASED ON REMOTE SENSING AND SOCIAL SENSING DATA
Wang, Juanmin	pg. 4331 TU2.R10.10 - ESTIMATION OF GLOBAL NET PRIMARY PRODUCTIVITY FROM 1981 TO 2018 WITH REMOTE SENSING DATA
Wang, Jun	Pg. 3615 TH2.R2.1 - THE QUAKES ANALYTIC CENTER FRAMEWORK FOR ADDRESSING DIVERSE SPATIOTEMPORAL SCALES OF TECTONIC AND EARTHQUAKE PROCESSES FR1.R19.1 - DETECTION OF NIGHTTIME FIRE COMBUSTION EFFICIENCY FOR WILDFIRES FROM VIIRS
	pg. 2177 TH2.R18.6 - SPECTRAL-SPATIAL WEIGHTED SPARSE NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING pg. 5588 FR2.R19.7 - DETECTING LAYER HEIGHT OF SMOKE AND DUST AEROSOLS OVER VEGETATED LAND AND WATER SURFACES VIA OXYGEN ABSORPTION BANDS
Wang, Junfeng	pg. 909 TU2.R16.2 - ADAPTIVE SIDELOBE SUPPRESSION OF SAR IMAGES WITH ARBITRARY DOPPLER CENTROIDS AND

	BANDWIDTHS (pg. 1335) WE2.R3.7 - AZIMUTH VELOCITY ESTIMATION IN MULTI-CHANNEL SAR BASED ON VARIABLE-BORESIGHT MODE
Wang, Junjue	pg. 1369 WE2.R5.6 - RSSM-NET: REMOTE SENSING IMAGE SCENE CLASSIFICATION BASED ON MULTI-OBJECTIVE NEURAL ARCHITECTURE SEARCH
Wang, Junwei	pg. 1759 TH1.R7.1 - DEEP LEARNING-BASED HYPERSPECTRAL TARGET DETECTION WITHOUT EXTRA LABELED DATA
Wang, Kai	pg. 5317 TU1.R19.7 - GENERATION, APPLICATION AND EVALUATION OF GF-1 WFV CLOUD DETECTION METHOD BASED CDAG ALGORITHM
Wang, Ke	pg. 6674 TU1.R13.10 - A NEW ALGORITHM FOR ESTIMATING SURFACE ROUGHNESS USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) DATA
Wang, Lan-Wei	(pg. 3383) TU2.R14.4 - ANALYSIS READY DATA FOR INSAR APPLICATIONS
Wang, Lei	pg. 1743 TH1.R5.9 - LEARNING RELATION BY GRAPH NEURAL NETWORK FOR SAR IMAGE FEW-SHOT LEARNING
Wang, Liang	pg. 2551 FR1.R17.11 - A LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION
Wang, Lili	pg. 1323 WE2.R3.4 - A NOVEL GENERAL SEMISUPERVISED DEEP LEARNING FRAMEWORK FOR CLASSIFICATION AND REGRESSION WITH REMOTE SENSING IMAGES
Wang, Lin	pg. 6611 TU1.R2.6 - TECTONIC DIFFERENCE BETWEEN THE QAIDAM BASIN AND THE EASTERN KUNLUN SHAN: INSIGHT FROM BUFFER ANALYSIS OF THE EARTHQUAKES AND FAULTS IN THE NORTH TIBET
Wang, Ling	pg. 3774 TH2.R13.6 - WIDEBAND INTERFERENCE SUPPRESSION FOR SAR BY TIME-FREQUENCY-PULSE JOINT DOMAIN PROCESSING
Wang, Lingyu	pg. 5481 TH2.R19.1 - GLOBAL LAYERED AEROSOL DISTRIBUTIONS FROM CALIOP AND MODIS OBSERVATIONS DURING 2006-2016
Wang, Linlin	(pg. 2388) FR1.R12.2 - SEMI-AUTOMATIC FULLY SPARSE SEMANTIC MODELING FRAMEWORK FOR HYPERSPECTRAL UNMIXING
Wang, Lizhe	pg. 4076 MO2.R1.1 - A MULTI-STAGE NETWORK FOR IMPROVING THE SAMPLE QUALITY IN AERIAL IMAGE OBJECT DETECTION pg. 2392 FR1.R12.3 - SUPERPIXEL-BASED SPATIAL CONSTRAINTS SPARSE UNMIXING FOR HYPERSPECTRAL REMOTE SENSING IMAGERY pg. 537 TU1.R7.4 - SE-HRNET: A DEEP HIGH-RESOLUTION

	NETWORK WITH ATTENTION FOR REMOTE SENSING SCENE CLASSIFICATION
	pg. 2400 FR1.R12.5 - SEMI-SUPERVISED HYPERSPECTRAL UNMIXING WITH VERY DEEP CONVOLUTIONAL NEURAL
	NETWORKS (pg. 972) TU2.R18.6 - INSHORE SHIP DETECTION BASED ON MULTI-INFORMATION FUSION NETWORK AND INSTANCE SEGMENTATION (pg. 4275) TU1.R1.7 - FRACTAL CHARACTERISTICS AND EVOLUTION OF URBAN LAND-USE: A CASE STUDY IN THE SHENZHEN CITY (1988-2015)
	pg. 641 TU1.R11.8 - MULTI-LEVEL STRATEGY-BASED SPATIAL INFORMATION PREDICTION FOR SPATIOTEMPORAL REMOTE SENSING IMAGERY FUSION
Wang, Luyuan	pg. 1628 TH1.R2.4 - A TARGET DETECTION ALGORITHM OF NEURAL NETWORK BASED ON HISTOGRAM STATISTICS
Wang, Meng	pg. 1177 WE1.R17.2 - RESEARCH ON VEHICLE DETECTION BASED ON FASTER R-CNN FOR UAV IMAGES
Wang, Mengfei	(pg. 5151) FR1.R10.11 - DETECTING RECENT LANDSLIDE ACTIVITIES IN YIGONG AND SURROUNDING AREAS IN EASTERN TIBET OF CHINA BASED ON GF-3 SAR AMPLITUDE IMAGERY
Wang, Mengjia	pg. 4434 WE1.R1.1 - DEVELOPMENT AND VALIDATION OF THE SMOS-IC VERSION 2 (V2) SOIL MOISTURE PRODUCT pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION pg. 4331 TU2.R10.10 - ESTIMATION OF GLOBAL NET PRIMARY PRODUCTIVITY FROM 1981 TO 2018 WITH REMOTE SENSING DATA pg. 5011 TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
Wang, Miao	pg. 2575 FR1.R18.5 - SHIP SEGMENTATION ON HIGH- RESOLUTION SAR IMAGE BY A 3D DILATED MULTISCALE U-NET
Wang, Min	pg. 2197) TH2.R20.1 - RISK ASSESSMENT OF DRINKING WATER SOURCE BASED ON HIGH SPATIAL RESOLUTION REMOTE SENSING
Wang, Mingxing	pg. 1763 TH1.R7.2 - DICTIONARY LEARNING HYPERSPECTRAL TARGET DETECTION ALGORITHM BASED ON TUCKER TENSOR DECOMPOSITION
Wang, Modi	pg. 2723 FR2.R6.7 - SUBPIXEL-LEVEL EDGE FEATURE MATCHING FOR SAR AND OPTICAL IMAGES BASED ON ZERNIKE MOMENTS
Wang, Mou	pg. 2479 FR1.R16.3 - EFFICIENT INSAR IMAGING BASED ON FREQUENCY-DOMAIN BACK PROJECTION ALGORITHM pg. 2483 FR1.R16.4 - ISAR COMPRESSIVE SENSING IMAGING USING CONVOLUTION NEURAL NETWORK WITH INTERPRETABLE OPTIMIZATION

	pg. 2763 FR2.R9.5 - KERNEL ROTATIONAL NETWORK FOR SYNTHETIC APERTURE RADAR TARGET RECOGNITION (pg. 2372) FR1.R9.10 - LINEAR ARRAY 3-D SAR SPARSE IMAGING VIA CONVOLUTIONAL NEURAL NETWORK
Wang, Na	(pg. 6879) WE2.R2.5 - WARNING OF RAINFALL-INDUCED LANDSLIDE IN BAZHOU DISTRICT
Wang, Ning	pg. 5994 TU1.R14.2 - A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER pg. 5543 FR1.R19.6 - RETRIEVAL OF TOTAL OZONE COLUMN USING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY (DOAS) ALGORITHM FROM ULTRAVIOLET SOLAR RADIATION DATA pg. 6250 WE1.R15.8 - BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION
Wang, Pai	pg. 6190 WE1.R13.3 - CHARACTERIZATION AND IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE FOR GNSS REFLECTOMETRY
Wang, Peicheng	pg. 6519 FR2.R13.4 - STUDY ON THE IMPROVEMENT OF THE HYPERSPECTRUM RADIOMETER DIGITAL INTERMEDIATE FREQUENCY MODULE pg. 4311 TU2.R10.5 - THE RESEARCH OF LEAF AREA INDEX ANALYZER BASED ON EMBEDDED PLATFORM pg. 4319 TU2.R10.7 - RESEARCH ON THE OPTICAL METHOD OF LEAF AREA INDEX MEASUREMENT BASE ON THE HEMISPHERICAL IMAGE pg. 5053 FR1.R1.10 - DESIGN AND EXPERIMENT OF MICROWAVE SOIL MOISTURE SENSOR pg. 6453 FR1.R13.10 - TEST AND ANALYSIS OF A HYPERSPECTRAL MICROWAVE RADIOMETER INTERMEDIATE FREQUENCY MODULE
Wang, PengBo	pg. 2819 FR2.R12.8 - EXPERIMENTAL RESULTS FOR GNSS-R BASED MOVING TARGET INDICATION
Wang, Pengbo	pg. 2795 FR2.R12.2 - A WEAK MOVING POINT TARGET DETECTION METHOD BASED ON HIGH FRAME RATE SAR IMAGE SEQUENCES AND MACHINE LEARNING pg. 1556 WE2.R16.9 - AN IMAGING COMPENSATION SCHEME FOR CORRECTING IONOSPHERIC EFFECT ON HIGH- RESOLUTION SPACEBORNE P-BAND SAR pg. 2149 TH2.R9.11 - AN ANTENNA BEAM STEERING STRATEGY FOR SAR ECHO SIMULATION IN HIGHLY ELLIPTICAL ORBIT
Wang, QiXiong	pg. 2041 TH2.R3.6 - NEURAL NETWORK PRUNING FOR HYPERSPECTRAL IMAGE BAND SELECTION
Wang, Qianjie	(pg. 5566) FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING

	SATELLITE AEROSOL PRODUCT
Wang, Qicong	pg. 521 TU1.R6.12 - MULTI-GPU PARALLEL IMPLEMENTATION OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Wang, Qingwang	pg. 1062 WE1.R5.7 - SPATIAL-SPECTRAL SMOOTH GRAPH CONVOLUTIONAL NETWORK FOR MULTISPECTRAL POINT CLOUD CLASSIFICATION
Wang, Robert	Pg. 716 TU1.R16.5 - COMPARISON OF TARGET DETECTION RESULTS IN A FOREST WHETHER THE BRANCHES ARE COVERED WITH SNOW BASED ON P-BAND AIRBORNE SAR QUAD-POL IMAGES Pg. 1141 WE1.R16.5 - CHALLENGES AND OPPORTUNITIES FOR STAGGERED SAR WITH LOW OVERSAMPLING FACTORS Pg. 20 MO2.R3.6 - A DEEP LEARNING BASED METHOD FOR LOCAL SUBSIDENCE DETECTION AND INSAR PHASE UNWRAPPING: APPLICATION TO MINING DEFORMATION MONITORING Pg. 1544 WE2.R16.6 - A MODIFIED EXTENDED WAVENUMBER- DOMAIN ALGORITHM FOR ULTRA-HIGH RESOLUTION SPACEBORNE SPOTLIGHT SAR DATA PROCESSING
Wang, Rongfang	pg. 316 MO2.R18.4 - SAR IMAGE CHANGE DETECTION METHOD VIA A PYRAMID POOLING CONVOLUTIONAL NEURAL NETWORK pg. 2547 FR1.R17.10 - A DEEP GENERALIZED CORRELATION NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION pg. 2551 FR1.R17.11 - A LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION
Wang, Rongrong	pg. 6089 WE1.R4.5 - TIME-FREQUENCY DOMAIN NONLINEAR PHASE COMPENSATION FOR FMCW LADAR SIGNALS
Wang, Rufei	pg. 473 TU1.R5.10 - UAV INTELLIGENT OPTIMAL PATH PLANNING METHOD FOR DISTRIBUTED RADAR SHORT-TIME APERTURE SYNTHESIS pg. 2467 FR1.R14.11 - HARBOR DETECTION IN SAR IMAGES BASED ON MULTIDIRECTIONAL ONE-DIMENSIONAL SCANNING
Wang, Rui	pg. 397 TU1.R3.3 - INTERFEROMETRIC PHASE STACK DATA FILTER METHOD VIA BAYESIAN CP FACTORIZATION
Wang, Ruirui	pg. 4681 WE2.R11.8 - USE NIGHT TIME LIGHT REMOTE SENSING TO DISCOVER DRAGON FRUIT PLANTATIONS IN VIETNAM
Wang, Shan	pg. 758 TU1.R18.5 - SALIENCY-DRIVEN TARGET DETECTION BASED ON COMMON VISUAL FEATURE CLUSTERING FOR MULTIPLE SAR IMAGES
Wang, Sheng	pg. 4015 FR2.R8.3 - INVESTIGATION OF TROPICAL CYCLONE WIND ASYMMETRY FROM CROSS-POLARIZATION SAR IMAGERY
Wang, Shengli	pg. 1865 TH1.R12.6 - IMPROVEMENTS TO AN END-MEMBER-

	BASED TWO-SOURCE APPROACH FOR ESTIMATING GLOBAL EVAPOTRANSPIRATION
Wang, Shengqian	pg. 2177 TH2.R18.6 - SPECTRAL-SPATIAL WEIGHTED SPARSE NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
Wang, Shengwei	pg. 6997 FR2.R2.11 - A METHOD TO CREATE TRAINING DATASET FOR DEHAZING WITH CYCLEGAN
Wang, Sherrie	pg. 7041 TU2.R20.5 - META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION pg. 5179 FR1.R11.6 - LANDSAT-BASED RECONSTRUCTION OF CORN AND SOYBEAN YIELD HISTORIES IN THE UNITED STATES SINCE 1999
Wang, Shigang	pg. 1778 TH1.R7.6 - VISUAL CONTEXT AWARE SHIP DETECTOR FOR HIGH-RESOLUTION SAR IMAGERY
Wang, Shishuai	pg. 5790 TH1.R8.5 - EXTREME HIGH WIND SPEED MONITORING WITH SPATIAL RESOLUTION ENHANCEMENT OF HY-2B SMR BRIGHTNESS TEMPERATURE pg. 5893 FR1.R8.10 - LAND AND SEA ICE MASK OPTIMIZATION FOR SCANNING MICROWAVE RADIOMETER OF HY-2B SATELLITE
Wang, Shixin	pg. 6631 TU1.R2.11 - CONSTRUCTION AND APPLICATION OF A POST-QUAKE HOUSE DAMAGE MODEL BASED ON MULTISCALE SELF-ADAPTIVE FUSION OF SPECTRAL TEXTURES IMAGES
Wang, Shu	pg. 920 TU2.R16.5 - GNSS-R MULTI-PERIOD SAR IMAGING EXPERIMENTAL STUDY
Wang, Shuang	pg. 4391 TU2.R12.2 - DECISION FUSION OF PIXEL-BASED AND REGION-BASED SEGMENTATION FOR BUILDING DETECTION pg. 1731 TH1.R5.6 - POLSAR SCENE CLASSIFICATION VIA LOW-RANK TENSOR-BASED MULTI-VIEW SUBSPACE REPRESENTATION pg. 1149 WE1.R16.7 - A SAR IMAGING METHOD BASED ON LP AND TV COMPOSITE NORM REGULARIZATION pg. 6989 FR2.R2.9 - CORRELATION ATTENTION FOR REMOTE SENSING IMAGE CAPTIONING pg. 1472 WE2.R9.10 - PANCHROMATIC IMAGE LAND COVER CLASSIFICATION VIA DCNN WITH UPDATING ITERATION STRATEGY
Wang, Shumin	pg. 6615 TU1.R2.7 - THREE-DIMENSIONAL VARIATIONS OF CARBON MONOXIDE CONCENTRATION ASSOCIATED WITH WENCHUAN EARTHQUAKE BASED ON AIRS DATA
Wang, Siqi	pg. 6642 TU1.R13.2 - A RISK ASSESSMENT FRAMEWORK OF CYANOBACTERIA BLOOM USING LANDSAT DATA: A CASE STUDY OF LAKE LONGGAN (CHINA).

Wang, Siyu	pg. 2205 TH2.R20.3 - INVESTIGATION ON THE METHOD OF
5, - , -	ESTABLISHING CONSTRUCTION WASTE TRAINING SAMPLE
	DATABASE AND ITS APPLICATIONS
Wang, Siyuan	pg. 28 MO2.R3.8 - IMPROVED INSAR LAYOVER AND SHADOW
	DETECTION USING MULTI-FEATURE
Wang, Tao	pg. 5604 MO2.R8.1 - SPATIAL AND SEASONAL VARIATIONS OF
	THE UPPER OCEAN CHLOROPHYLL CONCENTRATION IN THE
	EASTERN NORTH PACIFIC
	pg. 1723 TH1.R5.4 - COMPLEX-VALUED SPATIAL-SCATTERING
	SEPARATED ATTENTION NETWORK FOR POLSAR IMAGE CLASSIFICATION
Wang, Te	pg. 5819 TH2.R8.2 - IN-ORBIT CALIBRATION AND VALIDATION
3.	OF HY-2B ALTIMETER USING AN IMPROVED TRANSPONDER
	pg. 5862 FR1.R8.2 - DEVELOPMENT AND INTEGRATION TEST
	OF AN IMPROVED TRANSPONDER FOR HY-2B ALTIMETER
Wang, Teng	pg. 20 MO2.R3.6 - A DEEP LEARNING BASED METHOD FOR
	LOCAL SUBSIDENCE DETECTION AND INSAR PHASE
	UNWRAPPING: APPLICATION TO MINING DEFORMATION
	MONITORING
Wang, Tianliang	pg. 3086 WE1.R9.11 - COMPREHENSIVE VERIFICATION AND
	ANALYSIS OF MULTI-SCALE REMOTE SENSING PRODUCTS FOR
	SURFACE FREEZING-THAWING STATUS ON THE QINGHAI-TIBET PLATEAU
Wang, Tianlin	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1
	CALIBRATION USING MODELING AND MEASUREMENTS OF
	OCEAN SURFACE MEAN SQUARE SLOPE
	pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
	pg. 6293 WE2.R13.8 - MONITORING GPS EIRP FOR CYGNSS
	LEVEL 1 CALIBRATION
Wang, Tianxing	pg. 4922 TH2.R1.5 - SOIL MOISTURE ESTIMATION BASED ON
	LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER
	BASIN, CHINA
Wang, Tianyuan	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED
	ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS,
	PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG
Wang, Wei	pg. 2699 FR2.R6.1 - A RADIATION BASED TOPOGRAPHIC
	CORRECTION METHOD ON LANDSAT 8/OLI SURFACE REFLECTANCE
	pg. 1141 WE1.R16.5 - CHALLENGES AND OPPORTUNITIES FOR
	STAGGERED SAR WITH LOW OVERSAMPLING FACTORS
	pg. 2308 FR1.R6.5 - SUPERPIXEL BASED SPATIAL AND
	TEMPORAL ADAPTIVE REFLECTANCE FUSION MODEL
	(pg. 2631) FR2.R3.7 - OBJECT DETECTION FOR REMOTE SENSING IMAGES BASED ON GUIDED ANCHORING AND
	FEATURE FUSION
	pg. 2013 TH1.R18.10 - EVALUATION OF SPATIAL-TEMPORAL

	VARIATION OF VEGETATION RESTORATION IN DEXING COPPER MINE AREA USING REMOTE SENSING DATA
Wang, Weidong	pg. 2547 FR1.R17.10 - A DEEP GENERALIZED CORRELATION NETWORK FOR BITEMPORAL IMAGE CHANGE DETECTION
Wang, Weile	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS pg. 3269 MO2.R4.1 - NASA'S SURFACE BIOLOGY AND GEOLOGY CONCEPT STUDY: STATUS AND NEXT STEPS
	TH1.R6.9 - AN INTRODUCTION TO THE GEONEX LEVEL-1G PRODUCTS: TOP-OF-ATMOSPHERE REFLECTANCE AND BRIGHTNESS TEMPERATURE
	pg. 4513 WE1.R10.10 - HOURLY GPP ESTIMATION IN AUSTRALIA USING HIMAWARI-8 AHI PRODUCTS
Wang, Weimin	pg. 2655 FR2.R5.1 - DENSIFICATION OF AIRBORNE LIDAR POINT CLOUD WITH FUSED ENCODER-DECODER NETWORKS
Wang, Weiyan	pg. 4307 TU2.R10.4 - AN FPAR RETRIEVAL ALGORITHM BASED ON DEEP LEARNING FOR MODIS VISIBLE BAND SURFACE REFLECTANCE pg. 4315 TU2.R10.6 - LAI INVERSION FROM MODIS DATA
	USING DEEP BELIEF NETWORK (DBN)
Wang, Wen-Qin	pg. 1094 WE1.R6.4 - JOINT RANGE-ANGLE-DOPPLER RESOLUTION CAPABILITY ANALYSIS FOR FDA RADAR SIGNAL VIA GENERALIZED AMBIGUITY FUNCTION
Wang, WenQin	pg. 6555 FR2.R17.1 - FOCUSING OF SPACEBORNE SAR DATA USING THE IMPROVED NONLINEAR CHIRP SCALING ALGORITHM
Wang, Wenhui	pg. 6389 TH1.R15.3 - NOAA-20/S-NPP VIIRS SENSOR DATA RECORD ON-ORBIT PERFORMANCE UPDATES AND RECENT IMPROVEMENTS pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION
	IMPROVEMENTS (pg. 6058) TU2.R4.7 - ENHANCING LEGACY AND SMALL SATELLITE CALIBRATION/VALIDATION SYSTEMS WITH 3D GLOBE CONTEXTUAL VISUALIZATION
Wang, Wenjia	pg. 5497 TH2.R19.5 - SMOKE INJECTION HEIGHT OF WILDFIRE EVENT BASED ON MULTI-SOURCE REMOTE SENSING DATA IN YUNNAN PROVINCE, CHINA
Wang, Wenli	pg. 4586 WE2.R1.7 - SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
Wang, Xiao	pg. 1177 WE1.R17.2 - RESEARCH ON VEHICLE DETECTION BASED ON FASTER R-CNN FOR UAV IMAGES
Wang, Xiaofeng	pg. 5450 TH1.R19.5 - APPLICATIONS OF QUALITY CONTROL PROCEDURES FOR TEMPERATURE AND HUMIDITY PROFILES

Wang, Xiaowei	RETRIEVED FROM GROUND-BASED MICROWAVE RADIOMETER (pg. 2627) FR2.R3.6 - RESEARCH ON C&I JAMMING BASED ON FREQUENCY DIVERSE ARRAY ANTENNA
Wang, Xiaowen	pg. 6822 WE1.R2.2 - LOCAL SUBSIDENCE OF ACTIVE VOLCANOES MEASURED BY SYNTHETIC APERTURE RADAR
Wang, Xiaoya	pg. 1244 WE1.R18.7 - DENSE DOCKED SHIP DETECTION VIA SPATIAL GROUP-WISE ENHANCE ATTENTION IN SAR IMAGES pg. 1263 WE1.R18.12 - SHIP DETECTION IN LARGE SCALE SAR IMAGES BASED ON BIAS CLASSIFICATION
Wang, Xin	pg. 3549 WE2.R8.8 - STUDIES OF INTERNAL WAVES IN THE STRAIT OF GEORGIA BASED ON REMOTE SENSING IMAGES pg. 2909 FR2.R18.9 - MONITORING AND RISK ASSESSMENT OF HIGH-TEMPERATURE HEAT DAMAGE FOR SUMMER MAIZE BASED ON REMOTE SENSING DATA pg. 4646 WE2.R10.10 - SIMULATING AIRBORNE FULL-WAVEFORM LIDAR DATA IN VARYING MUTILAYERD FOREST THROUGH THE DART MODEL
Wang, Xing	pg. 770 TU1.R18.8 - MICRO GESTURE RECOGNITION WITH TERAHERTZ RADAR BASED ON DIAGONAL PROFILE OF RANGE- DOPPLER MAP
Wang, Xinhong	pg. 5994 TU1.R14.2 - A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER
Wang, Xinlei	(pg. 4383) TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Wang, Xinrong	pg. 2863 FR2.R16.8 - SAR IMAGE SHIP DETECTION BASED ON SCENE INTERPRETATION
Wang, Xinyu	(pg. 4187) MO2.R11.7 - CROPNET: DEEP SPATIAL-TEMPORAL- SPECTRAL FEATURE LEARNING NETWORK FOR CROP CLASSIFICATION FROM TIME-SERIES MULTI-SPECTRAL IMAGES
Wang, Xiuxiu	pg. 2436 FR1.R14.3 - HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK
Wang, Xue	pg. 5034 FR1.R1.5 - ASSESSMENT OF HEAVY METAL POLLUTION IN AGRICULTURAL SOIL AROUND A GOLD MINE AREA IN YITONG COUNTY pg. 1299 WE1.R20.9 - ACTIVE DEEP FEATURES EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON DICTIONARY LEARNING
Wang, Xue-Song	pg. 762 TU1.R18.6 - AN INTEGRATED SAR SPECKLE REDUCTION AND TARGET DETECTION APPROACH
Wang, Xuegang	pg. 2803 FR2.R12.4 - SHADOW DETECTION IN SAR IMAGES:

	AN OTSU- AND CFAR-BASED METHOD
Wang, Xueqian	pg. 1436 WE2.R9.1 - ADAPTIVE SUPERPIXEL SEGMENTATION WITH FISHER VECTORS FOR SHIP DETECTION IN SAR IMAGES
Wang, Xuezhi	pg. 3227 TH2.R14.10 - A CROWDSOURCING-BASED PLATFORM FOR LABELLING REMOTE SENSING IMAGES
Wang, Yan	pg. 905 TU2.R16.1 - SAR PARAMETRIC IMAGING FOR CIRCULAR-PLATE TARGET pg. 1901 TH1.R16.4 - PRELIMINARY RESULT OF MIMO SAR TOMOGRAPHY VIA 3D FFBP pg. 100 MO2.R6.5 - HIGH-RESOLUTION SAR TOMOGRAPHY VIA SEGMENTED DECHIRPING
Wang, Yanan	pg. 2181 TH2.R18.7 - A GEOMETRIC VIEW OF FAST GRAM DETERMINANT-BASED ENDMEMBER EXTRACTION ALGORITHM FOR HYPERSPECTRAL IMAGERY
Wang, Yang	pg. 6190 WE1.R13.3 - CHARACTERIZATION AND IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE FOR GNSS REFLECTOMETRY pg. 3365 TU2.R13.7 - COHERENT GNSS REFLECTION SIGNAL PROCESSING FOR PRECISION ALTIMETRY APPLICATIONS pg. 6206 WE1.R13.7 - GPS SIGNAL LAND REFLECTION COHERENCE DEPENDENCE ON WATER EXTENT AND SURFACE TOPOGRAPHY USING CYGNSS MEASUREMENTS pg. 6210 WE1.R13.8 - DETECTION OF COHERENT GNSS-R MEASUREMENTS USING A SUPPORT VECTOR MACHINE pg. 601 TU1.R10.9 - CONSTRUCTION OF AN INDOOR KNOWLEDGE GRAPH FOR POSITIONING pg. 6218 WE1.R13.10 - COHERENT GPS REFLECTIONS OVER OCEAN SURFACE
Wang, Yani	pg. 2205 TH2.R20.3 - INVESTIGATION ON THE METHOD OF ESTABLISHING CONSTRUCTION WASTE TRAINING SAMPLE DATABASE AND ITS APPLICATIONS
Wang, Yanping	pg. 956 TU2.R18.2 - REMOTE SENSING TARGET TRACKING FOR UAV AERIAL VIDEOS BASED ON MULTI-FREQUENCY FEATURE ENHANCEMENT pg. 782 TU1.R18.11 - MULTI-ANGULAR SAR STATISTICAL PROPERTIES ANALYSIS AND MAN-MADE TARGET DETECTION
Wang, Yao	pg. 4120 MO2.R10.1 - THE RELATIONSHIP BETWEEN CANOPY CLUMPING INDEX (CI), FRACTIONAL VEGETATION COVER (FVC), AND LEAF AREA INDEX (LAI): AN ANALYSIS OF GLOBAL SATELLITE PRODUCTS pg. 4391 TU2.R12.2 - DECISION FUSION OF PIXEL-BASED AND REGION-BASED SEGMENTATION FOR BUILDING DETECTION pg. 2890 FR2.R18.4 - LONG-TERM VARIATION OF GLOBAL LAI AND THE UNCERTAINTY: ANALYSIS OF THE GEOV2 AND MODIS LAI PRODUCTS

Wang, Ye	pg. 6028 TU1.R14.11 - LIGHTGUIDE, INTEGRAL FIELD
	SNAPSHOT IMAGING SPECTROMETER FOR ENVIRONMENTAL IMAGING AND EARTH OBSERVATIONS
Wang, Yi	pg. 5588 FR2.R19.7 - DETECTING LAYER HEIGHT OF SMOKE AND DUST AEROSOLS OVER VEGETATED LAND AND WATER SURFACES VIA OXYGEN ABSORPTION BANDS
Wang, Yiming	pg. 300 MO2.R17.11 - VESSEL TARGET MONITORING WITH BISTATIC COMPACT HF SURFACE WAVE RADAR
Wang, Ying	pg. 2396 FR1.R12.4 - SPATIAL-SPECTRAL AUTOENCODER NETWORKS FOR HYPERSPECTRAL UNMIXING pg. 2173 TH2.R18.5 - HYPERSPECTRAL UNMIXING VIA RECURRENT NEURAL NETWORK WITH CHAIN CLASSIFIER
Wang, Yingjie	pg. 20 MO2.R3.6 - A DEEP LEARNING BASED METHOD FOR LOCAL SUBSIDENCE DETECTION AND INSAR PHASE UNWRAPPING: APPLICATION TO MINING DEFORMATION MONITORING pg. 4846 Th1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE DART MODEL pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Wang, Yong	pg. 1849 TH1.R12.2 - DRONE IMAGE STITCHING USING LOCAL LEAST SQUARE ALIGNMENT pg. 5123 FR1.R10.4 - AN IMPROVED PROGRESSIVE TIN DENSIFICATION ALGORITHM FOR LIDAR DATA FILTERING BASED ON SEGMENTATION AND TERRAIN-ADAPTIVE PARAMETERS pg. 489 TU1.R6.4 - SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION pg. 401 TU1.R3.4 - PHASE UNWRAPPING VIA DEEP LEARNING BASED REGION SEGMENTATION pg. 5321 TU1.R19.8 - AN ALGORITHM TO REMOVE THIN CLOUDS BUT TO PRESERVE GROUND FEATURES IN VISIBLE BANDS
Wang, Yonggang	pg. 501 TU1.R6.7 - A NEW HYPERSPECTRAL CLASSIFICATION METHOD BASED ON NON-SUBSAMPLED CONTOURLET TRANSFORM (NSCT) AND DEEP NEURAL NETWORK
Wang, Yongji	pg. 5521 TH2.R19.11 - AEROSOL INVERSION FOR LANDSAT 8 OLI DATA USING DEEP LEARNING ALGORITHM
Wang, Yongquan	pg. 6301 WE2.R17.2 - VOLUNTEERED REMOTE SENSING USING HANDHELD CAMERAS IN A PASSENGER AIRCRAFT
Wang, Yongzhi	pg. 5131 FR1.R10.6 - RE-EVALUATING BASALTIC DEPOSITS IN MARE NUBIUM WITH CE-2 CELMS DATA pg. 1023 WE1.R3.8 - SURFACE DEFORMATION OF HIGH-SPEED RAILWAY BETWEEN CHANGCHUN AND HARBIN BASED ON TIME-SERIES INSAR TECHNIQUE

Wang, Yu	pg. 172 MO2.R15.1 - FOUR-COMPONENT DECOMPOSITION METHOD OF POLARIMETRIC SAR INTERFEROMETRY USING REFINED VOLUME SCATTERING MODELS pg. 2316 FR1.R6.7 - EFFECTS OF UNBALANCED DATA ON RADIOMETRIC TRANSFORMING MODEL FITTING FOR RELATIVE RADIOMETRIC NORMALIZATION
Wang, Yuan	pg. 5529 FR1.R19.2 - RECOVERY OF THE CARBON MONOXIDE PRODUCT FROM S5P-TROPOMI BY FUSING MULTIPLE DATASETS: A CASE STUDY IN HUBEI PROVINCE, CHINA
Wang, Yuchen	pg. 2256 FR1.R5.4 - CLOUD DETECTION USING GABOR FILTERS AND ATTENTION-BASED CONVOLUTIONAL NEURAL NETWORK FOR REMOTE SENSING IMAGES (pg. 2583) FR1.R18.7 - DEEP ENCODER-DECODER NETWORK BASED ON THE UP AND DOWN BLOCKS USING WAVELET TRANSFORM FOR CLOUD DETECTION
Wang, Yujie	pg. 4850 TH1.R10.8 - THE AOD SENSITIVITY COMPARISON BETWEEN MODIS MULTI-ANGLE IMPLEMENTATION OF ATMOSPHERIC CORRECTION (MAIAC) AND STANDARD MODIS SURFACE REFLECTANCE
Wang, Yulei	pg. 2033 TH2.R3.4 - HYPERSPECTRAL TARGET DETECTION BASED ON TARGET-CONSTRAINED INTERFERENCE-MINIMIZED BAND SELECTION pg. 2807 FR2.R12.5 - GO DECOMPOSITION (GODEC) APPROACH TO FINDING LOW RANK AND SPARSITY MATRICES FOR HYPERSPECTRAL TARGET DETECTION
Wang, Yunhong	pg. 220 MO2.R16.2 - PAN-SHARPENING WITH A CNN-BASED TWO STAGE RATIO ENHANCEMENT METHOD pg. 6973 FR2.R2.5 - MINERAL DETECTION FROM HYPERSPECTRAL IMAGES USING A SPATIAL-SPECTRAL RESIDUAL CONVOLUTIONAL NEURAL NETWORK pg. 1189 WE1.R17.5 - BUILDING DETECTION VIA A TWO-STREAM FPN NETWORK FROM PANCHROMATIC AND MULTI-SPECTRAL IMAGES
Wang, Yunhua	pg. 348 MO2.R19.2 - SIMULATION OF MICROWAVE BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL
Wang, Yuntao	(pg. 6981) FR2.R2.7 - UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA
Wang, Yupei	(pg. 944) TU2.R16.11 - SEMANTIC SEGMENTATION KNOWLEDGE BASED MMRF OPTIMAL METHOD FOR FINE- GRAINED URBAN INFRASTRUCTURE CLASSIFICATION MAPPING FROM OPTICAL VHR AERIAL IMAGERY
Wang, Yuqi	pg. 6567 FR2.R17.4 - AN IMAGE-DOMAIN BASELINE ERROR ESTIMATION METHOD FOR AZIMUTH MULTI-CHANNEL SAR pg. 928 TU2.R16.7 - LONG SYNTHETIC APERTURE PASSIVE LOCALIZATION USING AZIMUTH CHIRP-RATE CONTOUR MAP

Wang, Zengyan	pg. 4731 TH1.R1.11 - EVALUATION OF SMAP AND SMOS SOIL MOISTURE PRODUCTS USING DISTRIBUTED GROUND OBSERVATION NETWORK IN COLD AND ARID REGIONS IN THE NORTHWEST OF CHINA
Wang, Zezhong	pg. 212 MO2.R15.11 - A NOVEL MODEL-BASED POLARIMETRIC SAR DATA DECOMPOSITION APPROACH AND ITS APPLICATIONS
Wang, Zhangwei	pg. 5337 TU1.R19.12 - POLARIMETRIC RADAR MEASUREMENTS AND RAINFALL PERFORMANCE DURING A SEVERE RAINFALL EVENT IN COMPLEX TERRAIN OVER EASTERN CHINA
Wang, Zhao	pg. 2847 FR2.R16.4 - A NOVEL SUPPORT VECTOR MACHINE BASED RADAR INDIVIDUAL RECOGNITION ALGORITHM UNDER INCONSISTENT NOISE CONDITION pg. 2759 FR2.R9.4 - HIGHLY CONTAMINATED WORK MODE IDENTIFICATION OF PHASED ARRAY RADAR USING DEEP LEARNING METHOD pg. 2715 FR2.R6.5 - A NOVEL VARIATIONAL AUTOENCODER BASED RADAR SIGNAL RECONSTRUCTION ALGORITHM USING POLLUTED DATA
Wang, Zhengdong	(pg. 5282) FR2.R11.9 - IMPROVED DROUGHT MONITORING METHOD BASED ON MULTISOURCE REMOTE SENSING DATA
Wang, Zhenzhan	pg. 5783 TH1.R8.3 - A STUDY ON MICROWAVE EMISSIVITY FROM WIND-INDUCED SEA FOAM
Wang, Zhibin	pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR pg. 1385 WE2.R5.10 - UNSUPERVISED STYLE TRANSFER VIA DUALGAN FOR CROSS-DOMAIN AERIAL IMAGE CLASSIFICATION
Wang, Zhipeng (Ben)	pg. 6051 TU2.R4.5 - GOES-17 ABI L1B PRODUCT PERFORMANCE WITH PREDICTIVE CALIBRATION
Wang, Zhiyong	pg. 2639 FR2.R3.9 - A DEFORMABLE CONVOLUTION NEURAL NETWORK FOR SAR ATR pg. 1755 TH1.R5.12 - MULTI-VIEW CNN-LSTM NEURAL NETWORK FOR SAR AUTOMATIC TARGET RECOGNITION
Wang, Zhuosen	pg. 156 MO2.R14.8 - UNCERTAINTIES IN VIIRS NIGHTTIME LIGHT TIME SERIES ANALYSIS
Warner, Juying	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG
Warner, Timothy	MO2.R10.6 - DOES REPEATED PRESCRIBED BURNING RESULT IN FOREST STRUCTURE SIMILAR TO THAT OF WILDFIRE? INSIGHT FROM ANALYSIS OF LIDAR DATA OF THE NEW JERSEY PINELANDS NATIONAL RESERVE
Warnock, April	pg. 6202 WE1.R13.6 - INVESTIGATING THE IMPACT OF COHERENT AND INCOHERENT SCATTERING TERMS IN GNSS-R

DELAY DOPPLER MAPS

Warren, Adam	pg. 6150 WE1.R12.2 - PERFORMANCE OF SWESARR'S MULTI- FREQUENCY DUAL-POLARIMETRY SYNTHETIC APERTURE RADAR DURING NASA'S SNOWEX AIRBORNE CAMPAIGN
Warren, Michael	pg. 6638 TU1.R13.1 - BUDD: MULTI-MODAL BAYESIAN UPDATING DEFORESTATION DETECTIONS
Watanabe, Manabu	pg. 6863 WE2.R2.1 - DETECTION OF FLOODING AGRICULTURAL FIELD BY TYPHOON HAGIBIS ON 2019 USING SAR IMAGERY pg. 3784 TH2.R15.1 - TRIAL OF DEFORESTATION DETECTION
	BY USING 25M RESOLUTION PALSAR-2/SCANSAR DATA (pg. 3799) TH2.R15.5 - RAINFALL-INDUCED CHANGES IN L-BAND BACKSCATTER OVER TROPICAL FORESTS AND THEIR IMPACT ON DEFORESTATION MONITORING (pg. 3807) TH2.R15.7 - SEASONAL CHANGE ANALYSIS FOR ALOS-2 PALSAR-2 DEFORESTATION DETECTION
Watanabe, Tomohiro	pg. 3807 TH2.R15.7 - SEASONAL CHANGE ANALYSIS FOR ALOS-2 PALSAR-2 DEFORESTATION DETECTION
Watremez, Xavier	pg. 3825 TH2.R16.5 - VALIDATION OF INNOVATIVE SYSTEMS OF REMOTE GAS LEAKS DETECTION AND QUANTIFICATION REDUCING EMISSIONS AND INCREASING SAFETY
Watson, Peter	pg. 3943] FR2.R1.6 - STORM POWER OUTAGE PREDICTION AND VERIFICATION USING NWP MODELS AND REMOTE SENSING DATA
Watson, Robert	pg. 5462 TH1.R19.8 - FMCW RADAR IN THE DIGITAL AGE: A SYNTHESISER BASED RADAR WIND PROFILER SIGNAL GENERATION
Wattal, Shashank	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
Wawrzaszek, Anna	pg. 485 TU1.R6.3 - MULTIFRACTAL PARAMETERS FOR CLASSIFICATION OF HYPERSPECTRAL DATA pg. 1691 TH1.R3.8 - MULTIFRACTAL FEATURES FOR LAND USE CLASSIFICATION
Webb, Frank	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Webb, Geoffrey	pg. 1074 WE1.R5.10 - UNSUPERVISED DOMAIN ADAPTATION TECHNIQUES FOR CLASSIFICATION OF SATELLITE IMAGE TIME SERIES
Wegmüller, Urs	pg. 4987 TH2.R10.4 - ESTIMATION OF FOREST ABOVE- GROUND BIOMASS WITH C-BAND SCATTEROMETER

	BACKSCATTER OBSERVATIONS
Wei, Chenlu	pg. 2428 FR1.R14.1 - WEIGHTED HIERARCHICAL SPARSE REPRESENTATION FOR HYPERSPECTRAL TARGET DETECTION
Wei, Dandan	pg. 6141 WE1.R7.11 - A STUDY OF SPECTRA BANDWIDTH INDEX SETTING OF INFRARED IMAGER BASED ON SPECTRUM SIMULATION
Wei, Hongkang	pg. 1295 WE1.R20.8 - MULTI-CLASSIFIERS CONSISTENCY BASED UNSUPERVISED MANIFOLD ALIGNMENT FOR CLASSIFICATION OF REMOTE SENSING IMAGES
Wei, Jing	pg. 5558 FR1.R19.10 - SATELLITE-BASED HIGH-SPATIAL- RESOLUTION AND HIGH-QUALITY FINE PARTICULATE MATTERS ACROSS CHINA
Wei, Jingbo	pg. 1949 TH1.R17.5 - PYRAMID CONVOLUTIONAL NEURAL NETWORKS AND BOTTLENECK RESIDUAL MODULES FOR CLASSIFICATION OF MULTISPECTRAL IMAGES
Wei, Liang	pg. 2827 FR2.R12.10 - ESTIMATION METHOD OF MICRO- DOPPLER PARAMETERS BASED ON CONCENTRATION OF TIME- FREQUENCY ROTATION DOMAIN
Wei, Shanshan	pg. 4120 MO2.R10.1 - THE RELATIONSHIP BETWEEN CANOPY CLUMPING INDEX (CI), FRACTIONAL VEGETATION COVER (FVC), AND LEAF AREA INDEX (LAI): AN ANALYSIS OF GLOBAL SATELLITE PRODUCTS
Wei, Shunjun	pg. 1221 WE1.R18.1 - SHIPDENET-18: AN ONLY 1 MB WITH ONLY 18 CONVOLUTION LAYERS LIGHT-WEIGHT DEEP LEARNING NETWORK FOR SAR SHIP DETECTION pg. 393 TU1.R3.2 - A NOVEL GROUND MOVING TARGET RADIAL VELOCITY ESTIMATION METHOD FOR DUAL-BEAM ALONG-TRACK INTERFEROMETRIC SAR pg. 2479 FR1.R16.3 - EFFICIENT INSAR IMAGING BASED ON FREQUENCY-DOMAIN BACK PROJECTION ALGORITHM pg. 2483 FR1.R16.4 - ISAR COMPRESSIVE SENSING IMAGING USING CONVOLUTION NEURAL NETWORK WITH INTERPRETABLE OPTIMIZATION pg. 2763 FR2.R9.5 - KERNEL ROTATIONAL NETWORK FOR SYNTHETIC APERTURE RADAR TARGET RECOGNITION pg. 545 TU1.R7.6 - SEMI-SUPERVISED LEARNING-BASED REMOTE SENSING IMAGE SCENE CLASSIFICATION VIA ADAPTIVE PERTURBATION TRAINING pg. 413 TU1.R3.7 - A DEM FUSION METHOD OF MULTI-BASELINE INSAR BASED ON PRIOR TERRAIN AND GUIDED FILTER pg. 112 MO2.R6.8 - 3D HIGH-RESOLUTION IMAGING OF MB-TOMOSAR BASED ON SBRIM ALGORITHM pg. 2372 FR1.R9.10 - LINEAR ARRAY 3-D SAR SPARSE IMAGING VIA CONVOLUTIONAL NEURAL NETWORK
Wei, Sisi	pg. 4522 WE1.R11.2 - RICE MONITORING WITH TIME SERIES SAR BASED ON DEEP LEARNING MODEL (pg. 4171 MO2.R11.3 - FINE CLASSIFICATION OF RICE IN

	NORTHEAST THAILAND USING C- AND L-BAND TIME-SERIES SAR IMAGES
Wei, Wei	pg. 505 TU1.R6.8 - DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION.
Wei, Yantao	pg. 68 MO2.R5.8 - IMPROVED LOCAL COVARIANCE MATRIX REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Wei, Yongliang	pg. 5831 TH2.R8.5 - AN ESTIMATE OF THE DECAY RATE OF SWELLS USING ALTIMETER DATA
Wei, Yu	pg. 6686 TU1.R15.3 - EVALUATION OF DOWNWARD SHORTWAVE RADIATION ESTIMATIONS OVER TROPICAL OCEAN SURFACE BASED ON BAYESIAN MODEL AVERAGING METHOD pg. 6710 TU1.R15.9 - LONG-TERM TRENDS OF ESTIMATED SURFACE INCIDENT SHORTWAVE RADIATION IN CHINA DURING 1970-2015
Wei, Yuxuan	pg. 2264 FR1.R5.6 - LABEL SMOOTHING TECHNIQUE FOR ORDINAL CLASSIFICATION IN CLOUD ASSESSMENT
Wei, Zhihui	pg. 854 TU2.R5.7 - A DIRECTIONAL MESSAGE PROPAGATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGES CLASSIFICATION pg. 2185 TH2.R18.8 - MULTI-TEMPORAL HYPERSPECTRAL IMAGES UNMIXING BY MIXED DISTRIBUTION CONSIDERING SMOOTH VARIATION OF ABUNDANCE pg. 521 TU1.R6.12 - MULTI-GPU PARALLEL IMPLEMENTATION OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Wei, Zhishen	pg. 5596 FR2.R19.9 - HIGH RESOLUTION AEROSOL RETRIEVAL OVER URBAN SURFACES USING LANDSAT 8 OLI
Wei, Zidi	pg. 1341 WE2.R3.9 - REMOTE SENSING IMAGES INPAINTING BASED ON STRUCTURED LOW-RANK MATRIX APPROXIMATION
Weihai, Li	pg. 2344] FR1.R9.3 - SHIP CLASSIFICATION IN SAR IMAGES VIA SUPER-RESOLUTION GENERATIVE ADVERSARIAL NETWORK WITH SMALL TRAINING DATASET
Weiler, Fabian	pg. 3463] WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Weir, Nicholas	pg. 3920 FR1.R7.8 - ROAD NETWORK AND TRAVEL TIME EXTRACTION FROM MULTIPLE LOOK ANGLES WITH SPACENET DATA
Weiss, Jonathan	pg. 6857) WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING
Weissman, David	pg. 5666 TU1.R8.6 - APPLICATION OF COINCIDENT SUB- FOOTPRINT SCALE WINDS TO DEVELOP METHODS FOR ESTIMATING SEA SURFACE VORTICITY FROM THE RAPIDSCAT SCATTEROMETER KU-BAND NRCS

Weitz, Catherine	pg. 5147 FR1.R10.10 - IMPLEMENTING NEW FEATURE EXTRACTION TECHNIQUES FOR CHARACTERIZATION OF COMPLEX MINERAL SIGNATURES OF SALTY REGIONS ON MARS
Wellig, Peter	pg. 6166 WE1.R12.6 - MULTI-PLATFORM, MULTI-FREQUENCY SAR CAMPAIGN WITH THE F-SAR AND MIRANDA35 SENSORS
Wen, Changjun	pg. 2519 FR1.R17.2 - FLOOD MAPPING WITH SAR AND MULTI- SPECTRAL REMOTE SENSING IMAGES BASED ON WEIGHTED EVIDENTIAL FUSION
Wen, Chia- Hsien	pg. 2831 FR2.R12.11 - FUSARIUM WILT INSPECTION FOR PHALAENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL BAND SELECTION TECHNIQUES
Wen, Fengping	pg. 2699 FR2.R6.1 - A RADIATION BASED TOPOGRAPHIC CORRECTION METHOD ON LANDSAT 8/OLI SURFACE REFLECTANCE
Wen, Jiang	pg. 5562 FR1.R19.11 - LONG-TERM SPATIOTEMPORAL TREND ANALYSIS (1998-2016) OF PM2.5 IN CHINA USING SATELLITE PRODUCT
Wen, Ning	pg. 850 TU2.R5.6 - PERONA-MALIK DIFFUSION DRIVEN CNN FOR SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES
Wen, Qi	pg. 1189 WE1.R17.5 - BUILDING DETECTION VIA A TWO- STREAM FPN NETWORK FROM PANCHROMATIC AND MULTI- SPECTRAL IMAGES
Wen, Yuhan	pg. 905 TU2.R16.1 - SAR PARAMETRIC IMAGING FOR CIRCULAR-PLATE TARGET
Wenegrat, Jacob	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Weng, Fuzhong	pg. 4943 TH2.R6.2 - VEGETATION INDICES DERIVED FROM FENGYUN-3D MERSI-II DATA pg. 5298 TU1.R19.2 - ASSIMATION OF FY3D COMBINED MICROWAVE SOUNDER OBSERVATION IN ATMS ALIKE ONE DATA STREAM pg. 5442 TH1.R19.3 - ESTIMATION OF LOCATION AND INTENSITY OF TROPICAL CYCLONES BASED ON MICROWAVE SOUNDING INSTRUMENTS pg. 5581 FR2.R19.5 - MONITORING PM2.5 DISTRIBUTIONS OVER CHINA FROM GEOSTATIONARY SATELLITE OBSERVATIONS pg. 5310 TU1.R19.5 - ANALYSIS OF MICROWAVE SCATTERING PROPERTIES OF NON-SPHERICAL ICE PARTICLES USING DISCRETE DIPOLE APPROXIMATION

Weng, Tao	pg. 2894 FR2.R18.5 - CHANGE OF IMPERVIOUS SURFACE OF CHENGDU CITY, CHINA pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK
Wenny, Brian	pg. 6413 TH1.R15.9 - RAILROAD VALLEY RADIOMETRIC CALIBRATION TEST SITE (RADCATS) AS PART OF A GLOBAL RADIOMETRIC CALIBRATION NETWORK (RADCALNET)
Wentz, Frank	pg. 3006 TU2.R9.1 - A MICROWAVE EMISSIVITY SEA ICE RETRIEVAL ALGORITHM pg. 5651 TU1.R8.2 - TRAINING OF TROPICAL CYCLONE WIND SPEED ALGORITHMS FOR THE WINDSAT AND AMSR SENSORS pg. 6445 FR1.R13.8 - CALIBRATION OF THE SMAP RADIOMETER FOR OCEAN APPLICATIONS
Wentz, Katherine	pg. 3006 TU2.R9.1 - A MICROWAVE EMISSIVITY SEA ICE RETRIEVAL ALGORITHM
Werfeli, Mike	pg. 6234 WE1.R15.4 - A CALIBRATION AND VALIDATION TOOL FOR DATA QUALITY ANALYSIS OF AIRBORNE IMAGING SPECTROSCOPY DATA
Wernham, Denny	pg. 3463 WE2.R4.3 - AEOLUS - ESA'S WIND LIDAR MISSION, A BRIEF STATUS
Wernli, Heini	pg. 3023 TU2.R9.6 - OBSERVATIONS OF ARCTIC SEA ICE LEADS AND OPEN WATER DURING THE MICROBIOLOGICAL-OCEAN-CLOUD COUPLING IN THE HIGH ARCTIC CAMPAIGN
Wessel, Birgit	pg. 312 MO2.R18.3 - POTENTIAL OF FOREST MONITORING WITH MULTI-TEMPORAL TANDEM-X HEIGHT MODELS
West, R. Derek	pg. 2097 TH2.R5.9 - OPTICAL AND POLARIMETRIC SAR DATA FUSION TERRAIN CLASSIFICATION USING PROBABILISTIC FEATURE FUSION
Westbrook, David	pg. 6483 FR1.R15.7 - REMOTE SENSING SYSTEMS FOR URBAN-SCALE DRONE AND AIR TAXI OPERATIONS
Western, Andrew	pg. 3556) WE2.R15.2 - MULTI-TEMPORAL ASSESSMENT OF X-BAND SAR SOIL MOISTURE RETRIEVALS ACROSS GROWTH STAGES OF A DRYLAND WHEAT FIELD pg. 3560) WE2.R15.3 - INTERCOMPARISON OF X- AND C-BANDS ACTIVE MICROWAVE SOIL MOISTURE RETRIEVALS OVER DRYLAND WHEAT FIELDS
Weston, Peter	pg. 3762 TH2.R13.2 - GROUND RFI DETECTION SYSTEM FOR PASSIVE MICROWAVE EARTH OBSERVATION DATA AND SPACE MISSIONS
Whitcraft, Alyssa	pg. 3706 TH2.R11.2 - NASA HARVEST(ING) EARTH OBSERVATIONS FOR INFORMED AGRICULTURAL DECISIONS
White, Donald	pg. 4626 WE2.R10.5 - FOREST FLOWS - REAL TIME MONITORING OF WATER QUANTITY AND QUALITY SPATIO-

	TEMPORAL DYNAMICS IN PLANTED FORESTS
Wickert, Jens	pg. 3345 TU2.R13.2 - STATUS OF THE ESA PRETTY MISSION pg. 6289 WE2.R13.7 - THE GRSS STANDARD FOR GNSS- REFLECTOMETRY
Wiehle, Stefan	pg. 1233 WE1.R18.4 - SHIP WAKE COMPONENT DETECTABILITY ON SYNTHETIC APERTURE RADAR (SAR)
Wieland, Marc	pg. 3243) MO2.R2.2 - AUTOMATIC NEAR-REAL TIME FLOOD EXTENT AND DURATION MAPPING BASED ON MULTI-SENSOR EARTH OBSERVATION DATA
Wielicki, Bruce	pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS
Wiese, David	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Wigley-Coetsee, Corli	pg. 4323 TU2.R10.8 - ANNUAL GRASS BIOMASS MAPPING WITH LANDSAT-8 AND SENTINEL-2 DATA OVER KRUGER NATIONAL PARK, SOUTH AFRICA
Wigneron, JP.	pg. 5011 TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
Wigneron, Jean-Pierre	pg. 4434) WE1.R1.1 - DEVELOPMENT AND VALIDATION OF THE SMOS-IC VERSION 2 (V2) SOIL MOISTURE PRODUCT pg. 5003 TH2.R10.8 - VEGETATION OPTICAL DEPTH RETRIEVAL FROM AMSR-E/AMSR2 OBSERVATIONS USING L-MEB INVERSION TH2.R10.9 - VICARIOUS VALIDATION OF L-BAND VEGETATION OPTICAL DEPTH
Willard, Jared	pg. 3494) WE2.R7.3 - PROCESS GUIDED DEEP LEARNING FOR MODELING PHYSICAL SYSTEMS: AN APPLICATION IN LAKE TEMPERATURE MODELING
Williams, David	pg. 2835 FR2.R16.1 - DATA ADAPTIVE IMAGE ENHANCEMENT AND CLASSIFICATION FOR SYNTHETIC APERTURE SONAR
Willsch, Dennis	(pg. 1973) TH1.R17.11 - APPROACHING REMOTE SENSING IMAGE CLASSIFICATION WITH ENSEMBLES OF SUPPORT VECTOR MACHINES ON THE D-WAVE QUANTUM ANNEALER
Willsch, Madita	pg. 1973 TH1.R17.11 - APPROACHING REMOTE SENSING IMAGE CLASSIFICATION WITH ENSEMBLES OF SUPPORT VECTOR MACHINES ON THE D-WAVE QUANTUM ANNEALER

Wilson, Cara	pg. 3302 MO2.R7.4 - OVERCOMING BARRIERS TO THE USE OF
	SATELLITE DATA IN FISHERIES MANAGEMENT (pg. 3207) TH2.R14.5 - ERDDAP: PROVIDING EASY ACCESS TO REMOTE SENSING DATA FOR SCIENTISTS AND STUDENTS
Wilson, Christopher	pg. 3853 TH2.R17.6 - AN INNOVATIVE SPACECUBE APPLICATION FOR ATMOSPHERIC SCIENCE
Wilson, Kenneth	pg. 4886 TH1.R11.6 - MULTI-SCALE REMOTE SENSING FOR FALL ARMYWORM MONITORING AND EARLY WARNING SYSTEMS
Wilson, Mark	pg. 252 MO2.R16.10 - SHIP DETECTION ON SINGLE-BAND GRAYSCALE IMAGERY USING DEEP LEARNING AND AIS SIGNAL MATCHING USING NON-RIGID TRANSFORMATIONS
Wilson, Mike	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG
Wilson, Scott	pg. 6859 WE1.R2.12 - PROTOTYPING OF A MULTI-HAZARD EARLY WARNING SYSTEM FOR AVIATION AND DEVELOPMENT OF NRT ALERT PRODUCTS WITHIN THE EUNADICS-AV AND OPAS PROJECTS
Wind, Gala	WE1.R19.6 - EXTENDING NASA'S MODIS/VIIRS CLOUD CLIMATE DATA RECORD TO THE ADVANCED GEOSTATIONARY IMAGERS
Wind, Galina	WE1.R19.5 - CLOUD OBSERVATIONS FROM THE DEEP SPACE CLIMATE OBSERVATORY (DSCOVR) AT THE EARTH LAGRANGE 1 POINT
Wineteer, Alexander	pg. 3533 WE2.R8.4 - S-MODE: THE SUB-MESOSCALE OCEAN DYNAMICS EXPERIMENT
Winstein, Keith	pg. 5049 FR1.R1.9 - TIME-OF-FLIGHT SOIL MOISTURE ESTIMATION USING RF BACKSCATTER TAGS
Wolf, Walter	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG
Wolfe, Robert	pg. 4403 TU2.R12.5 - COMPARISON OF MODIS LAND SURFACE TEMPERATURE AND AIR TEMPERATURE OVER GLOBAL IN 2015 pg. 6405 TH1.R15.7 - SEASONAL VARIATION IN THE MEASUREMENT OF GOES-16 ABI CHANNEL-TO-CHANNEL REGISTRATION
Wolff, David	pg. 5356 TU2.R19.5 - EVALUATION OF GPM IMERG PRODUCTS OVER SOUTH KOREA
Wong, Elizabeth	pg. 5901 FR1.R8.12 - ESTIMATION OF COLORED DISSOLVED ORGANIC MATTER FROM SATELLITE DATA
Wong, Elizabeth Wing-See	pg. 5616 MO2.R8.4 - ESTIMATION OF COLORED DISSOLVED ORGANIC MATTER USING SENTINEL-2 DATA IN THE COASTAL

	WATERS OF SINGAPORE
Wong, Joel	pg. 5616 MO2.R8.4 - ESTIMATION OF COLORED DISSOLVED ORGANIC MATTER USING SENTINEL-2 DATA IN THE COASTAL WATERS OF SINGAPORE pg. 5901 FR1.R8.12 - ESTIMATION OF COLORED DISSOLVED ORGANIC MATTER FROM SATELLITE DATA
Wong, Man-Sing	pg. 5600 FR2.R19.10 - ESTIMATION OF DIRECTIONAL SURFACE REFLECTANCE AND ATMOSPHERIC AEROSOLS OVER EAST ASIA USING A MULTI-CHANNEL GEOSTATIONARY SATELLITE
Wong, Michael	pg. 44 MO2.R5.2 - DIMENSIONALITY REDUCTION WITH WEIGHTED K-MEANS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Woo, Hye-Jin	pg. 5839 TH2.R8.7 - WAVE-CURRENT INTERACTION IN THE NORTHWEST PACIFIC OCEAN USING SATELLITE ALTIMETER DATA
Wood, Eric	pg. 3334 TU2.R1.5 - SATELLITE FLOOD ASSESSMENT AND FORECASTS FROM SMAP AND LANDSAT
Wood, Jeffrey	pg. 3169 TH1.R14.2 - CONTINUING EDUCATION UNITS (CEUS) FOR NASA'S GLOBAL LEARNING AND OBSERVATIONS TO BENEFIT THE ENVIRONMENT (GLOBE) WORLD WIDE PROGRAM
Wood, Robert	FR1.R2.1 - CLASSIFYING GLOBAL LOW CLOUD MORPHOLOGY WITH A DEEP LEARNING MODEL: RESULTS AND POTENTIAL USE
Wooten, Margaret	pg. 3709 TH2.R11.3 - A MULTI-MODAL APPROACH FOR MONITORING CHANGES IN AGRICULTURE IN THE MEKONG RIVER DELTA
Worch, Ethan	pg. 1271 WE1.R20.2 - HYPERSPECTRAL BAND SELECTION USING MOTH-FLAME METAHEURISTIC OPTIMIZATION pg. 497 TU1.R6.6 - HYPERSPECTRAL IMAGE CLASSIFICATION USING FISHER'S LINEAR DISCRIMINANT ANALYSIS FEATURE REDUCTION WITH GABOR FILTERING AND CNN
Workman, Scott	pg. 1468 WE2.R9.9 - SINGLE IMAGE CLOUD DETECTION VIA MULTI-IMAGE FUSION
Worrall, George	pg. 4719 TH1.R1.8 - SMAP SOIL MOISTURE PRODUCT VALIDITY IN HETEROGENEOUS IRRIGATED REGIONS
Worsley, Elliott	WE2.R13.6 - OUTLINE OF THE ESA HYDROGNSS GNSS REFLECTOMETRY SCOUT MISSION
Wrenn, Forrest	pg. 6690 TU1.R15.4 - RADIATIVE TRANSFER MODELS FOR DERIVING GEOSTATIONARY BROADBAND SHORTWAVE RADIANCES DIRECTLY FROM VISIBLE CHANNELS FOR THE CERES SYN1DEG PRODUCT
Wright, Ethan	TH1.R8.8 - EXAMINING SCATTEROMETER CALIBRATION IN HIGH SEAS

Wright, Louise	pg. 1977 TH1.R18.1 - A SAR-BASED FEASIBILITY STUDY ON DETECTION OF OIL SEEPAGE FROM BURIED PIPELINES
Wright, Tim	pg. 6857 WE1.R2.11 - EXPLOITING INSAR ON A LARGE SCALE FOR TECTONICS AND VOLCANIC MONITORING
Wright, William	pg. 6460 FR1.R15.1 - DETECTION OF SEASONAL ARCTIC TERRAIN CHANGE USING A SMALL UNMANNED AIRCRAFT SYSTEM (SUAS) ON THE ALASKAN NORTH SLOPE pg. 5026 FR1.R1.3 - USE OF X-RAY FLUORESCENCE TO EXPEDITE SAMPLING TO EVALUATE AND VISUALIZE SOIL LEAD CONCENTRATIONS AT WEST POINT, NY pg. 477 TU1.R5.11 - INVESTIGATION OF DIURNAL FLUCTUATIONS OF HEAT AND WATER DISTRIBUTIONS AROUND LANDMINES IMPACTED BY SOIL HETEROGENEITY
Wu, Bangyu	pg. 1393 WE2.R6.1 - SEMI-SUPERVISED DEEP LEARNING SEISMIC IMPEDANCE INVERSION USING GENERATIVE ADVERSARIAL NETWORK
Wu, Bin	pg. 2847 FR2.R16.4 - A NOVEL SUPPORT VECTOR MACHINE BASED RADAR INDIVIDUAL RECOGNITION ALGORITHM UNDER INCONSISTENT NOISE CONDITION pg. 2759 FR2.R9.4 - HIGHLY CONTAMINATED WORK MODE IDENTIFICATION OF PHASED ARRAY RADAR USING DEEP LEARNING METHOD pg. 2715 FR2.R6.5 - A NOVEL VARIATIONAL AUTOENCODER BASED RADAR SIGNAL RECONSTRUCTION ALGORITHM USING POLLUTED DATA pg. 4371 TU2.R11.8 - MONITORING OF VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT BY MULTIANGULAR CANOPY REFLECTANCE SPECTRA IN MAIZE
Wu, Chao-Cheng	pg. 2831 FR2.R12.11 - FUSARIUM WILT INSPECTION FOR PHALAENOPSIS USING UNIFORM INTERVAL HYPERSPECTRAL BAND SELECTION TECHNIQUES
Wu, Chaoxiong	pg. 1857) TH1.R12.4 - SPECTRAL SUPER-RESOLUTION USING HYBRID 2D-3D STRUCTURE TENSOR ATTENTION NETWORKS WITH CAMERA SPECTRAL SENSITIVITY PRIOR pg. 1825) TH1.R9.7 - DILATED RESIDUAL NETWORK BASED ON DUAL EXPECTATION MAXIMIZATION ATTENTION FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES
Wu, Dong	pg. 3853 TH2.R17.6 - AN INNOVATIVE SPACECUBE APPLICATION FOR ATMOSPHERIC SCIENCE

Wu, Fan	pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK pg. 6608 TU1.R2.5 - EARTHQUAKE-INDUCED BUILDING DAMAGE ASSESSMENT ON SAR MULTI- TEXTURE FEATURE FUSION pg. 1015 WE1.R3.6 - PERMOFROST OBERVATION USING ALOS-2 PALSAR-2 DATA IN THE NORTHREN QINGHAI-TIBET PLATEAU
Wu, Fuyu	pg. 5034 FR1.R1.5 - ASSESSMENT OF HEAVY METAL POLLUTION IN AGRICULTURAL SOIL AROUND A GOLD MINE AREA IN YITONG COUNTY
Wu, Haobo	pg. 4128 MO2.R10.3 - STUDY ON UAV SENSED CANOPY LEAF DISTRIBUTION USING COMPUTER SIMULATION pg. 5266 FR2.R11.5 - PREDICTION OF GRAIN PROTEIN CONTENT OF WINTER WHEAT USING UAV BASED HYPERSPECTRAL DATA
Wu, Haolin	pg. 1193 WE1.R17.6 - CLASSIFICATION OF BUILDING STRUCTURE TYPES USING UAV OPTICAL IMAGES
Wu, Hua	pg. 5624 MO2.R8.6 - MONITORING OF TIANWAN NUCLEAR POWER PLANT THERMAL POLLUTION BASED ON REMOTELY SENSED LANDSAT DATA pg. 240 MO2.R16.7 - EVALUATION OF SPATIOTEMPORAL FUSION MODELS IN LAND SURFACE TEMPERATURE USING POLAR-ORBITING AND GEOSTATIONARY SATELLITE DATA
Wu, Huanping	pg. 6226 WE1.R15.2 - RECONSTRUCTING MODIS LST PRODUCTS OVER TIBETAN PLATEAU BASED ON RANDOM FOREST pg. 1885 TH1.R12.11 - SOIL MOISTURE RETRIEVAL USING STACKED GENERALIZATION: AN ENSEMBLE MACHINE LEARNING METHOD
Wu, Jiabin	pg. 4363 TU2.R11.6 - STUDY ON SPATIOTEMPORAL VARIATIONS OF EVAPOTRANSPIRATION IN ETUOKEQIANQI BASED ON MOD16 PRODUCTS AND PENMAN-MONTEITH MODEL
Wu, Jian-jun	pg. 6886 WE2.R2.7 - INTRODUCTION OF SPATIAL AND TEMPORAL DISTRIBUTION OF TYPHOONS FROM 1989 TO 2018 AND TYPICAL CASES OF DISASTER IMPACT ANALYSIS
Wu, Jiayue	pg. 2847 FR2.R16.4 - A NOVEL SUPPORT VECTOR MACHINE BASED RADAR INDIVIDUAL RECOGNITION ALGORITHM UNDER INCONSISTENT NOISE CONDITION
Wu, Jiemin	pg. 2105 TH2.R5.11 - PYSRRESNET: SUPER RESOLUTION FOR VIDEO SATELLITE IMAGERY VIA PYRAMID RESIDUAL NETWORK
Wu, Junjie	pg. 2791 FR2.R12.1 - AN EFFICIENT COHERENT INTEGRATION APPROACH FOR BISTATIC SAR MOVING TARGET DETECTION AND PARAMETER ESTIMATION BASED ON 2-D DERAMP

	PROCESSING (pg. 2815) FR2.R12.7 - A LONG-TIME INTEGRATION METHOD FOR GNSS-BASED PASSIVE RADAR DETECTION OF MARINE TARGET WITH MULTI-STAGE MOTIONS (pg. 2101) TH2.R5.10 - SAR IMAGE SUPER-RESOLUTION BASE ON WEIGHTED DENSE CONNECTED CONVOLUTIONAL NETWORK (pg. 2153) TH2.R9.12 - EFFICIENT TIME DOMAIN ECHO SIMULATION OF BISTATIC SAR CONSIDERING TOPOGRAPHY VARIATION
Wu, Kangle	pg. 228 MO2.R16.4 - MULTISCALE INFRARED AND VISIBLE IMAGE FUSION BASED ON PHASE CONGRUENCY AND SALIENCY
Wu, Ke	pg. 2424 FR1.R12.11 - JOINT SPARSE REPRESENTATION AND MULTITASK LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
Wu, Lin	pg. 4076 MO2.R1.1 - A MULTI-STAGE NETWORK FOR IMPROVING THE SAMPLE QUALITY IN AERIAL IMAGE OBJECT DETECTION
Wu, Linlin	pg. 1283 WE1.R20.5 - HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER NETWORK
Wu, Longwen	pg. 6985 FR2.R2.8 - HLS-BASED FPGA IMPLEMENTATION OF CONVOLUTIONAL DEEP BELIEF NETWORK FOR SIGNAL MODULATION RECOGNITION
Wu, Meng-Che	pg. 4866 TH1.R11.1 - A NOVEL FEATURE FOR DETECTION OF RICE FIELD DISTRIBUTION USING TIME SERIES SAR DATA pg. 1548 WE2.R16.7 - RECURRENT DEEP LEARNING FOR RICE FIELDS DETECTION FROM SAR IMAGES
Wu, Ning	pg. 1532 WE2.R16.3 - REMOVEMENT OF STAGGERED SAR AMBIGUITY IN LOW-OVERSAMPLING BY DEEP LEARNING
Wu, Puxia	pg. 493 TU1.R6.5 - FEATURE SEPARATION BASED ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Wu, Qiaoli	pg. 4826 TH1.R10.2 - LEAF AGING AFFECTS THE VARIABILITY OF CANOPY REFLECTANCE WITH STAND DEVELOPMENT IN EVERGREEN CHINESE FIR PLANTATION
Wu, Qiong	pg. 1023 WE1.R3.8 - SURFACE DEFORMATION OF HIGH-SPEED RAILWAY BETWEEN CHANGCHUN AND HARBIN BASED ON TIME-SERIES INSAR TECHNIQUE
Wu, Shaorong	pg. 3309 MO2.R7.6 - MONITORING HEAVY PRECIPITATION WITH THE CMORPH INTEGRATED SATELLITE PRECIPITATION ESTIMATES
Wu, Shiyu	pg. 920 TU2.R16.5 - GNSS-R MULTI-PERIOD SAR IMAGING EXPERIMENTAL STUDY

Wu, Stewart	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR
	EARTH AND PLANETARY APPLICATIONS
Wu, Tong	pg. 1841 TH1.R9.11 - SPATIAL ATTENTION NETWORK FOR ROAD EXTRACTION
Wu, Wan	pg. 6385 TH1.R15.2 - DEVELOPMENT OF A HIGH-FIDELITY CLARREO PATHFINDER SIMULATOR
	pg. 3286 MO2.R4.6 - CLARREO PATHFINDER: MISSION OVERVIEW AND CURRENT STATUS
Wu, Wenzhao	pg. 1381 WE2.R5.9 - UNSUPERVISED MIXED MULTI-TARGET DOMAIN ADAPTATION FOR REMOTE SENSING IMAGES CLASSIFICATION
Wu, Xiande	pg. 276 MO2.R17.5 - SMALL OBJECT DETECTION IN OPTICAL REMOTE SENSING VIDEO WITH MOTION GUIDED R-CNN
Wu, Xiangqian	PERFORMANCE WITH PREDICTIVE CALIBRATION
Wu, Xiaoling	Pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI-
	TEMPORAL STUDY (pg. 4446) WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS
Wu, Yan	pg. 1460 WE2.R9.7 - HIGH-ORDER TRIPLET CRF-PCANET FOR UNSUPERVISED SEGMENTATION OF SAR IMAGE
Wu, Yantong	pg. 5290 FR2.R11.11 - MARKOV CHAIN MONTE CARLO AND FOUR-DIMENSIONAL VARIATIONAL APPROACH BASED WINTER WHEAT YIELD ESTIMATION pg. 4383 TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Wu, Yirong	pg. 2368 FR1.R9.9 - A FAST 3-D IMAGING METHOD FOR CIRCULAR SAR BASED ON 3-D BACK-PROJECTION ALGORITHM
Wu, Yu	pg. 1185 WE1.R17.4 - BUILDING RECOGNITION OF UAV REMOTE SENSING IMAGES BY DEEP LEARNING
Wu, Yue	pg. 2479 FR1.R16.3 - EFFICIENT INSAR IMAGING BASED ON FREQUENCY-DOMAIN BACK PROJECTION ALGORITHM pg. 4934 TH2.R1.8 - MONITORING SOILWATER AND ORGANIC CARBON STORAGE PATTERNS AT THE ARCTIC FOOTHILLS, ALASKA, USING INSAR pg. 2372 FR1.R9.10 - LINEAR ARRAY 3-D SAR SPARSE IMAGING VIA CONVOLUTIONAL NEURAL NETWORK
Wu, Yuhao	pg. 2964 TU1.R9.1 - LAKE ICE CLASSIFICATION FROM MODIS TOA REFLECTANCE IMAGERY USING A CONVOLUTIONAL

	NEURAL NETWORK: A CASE STUDY OF GREAT SLAVE LAKE, CANADA
Wu, Yuxuan	pg. 2739 FR2.R6.11 - RESEARCH ON STEREO MATCHING FOR SATELLITE GENERALIZED IMAGE PAIR BASED ON IMPROVED SURF AND RFM
Wu, Zebin	pg. 2185 TH2.R18.8 - MULTI-TEMPORAL HYPERSPECTRAL IMAGES UNMIXING BY MIXED DISTRIBUTION CONSIDERING SMOOTH VARIATION OF ABUNDANCE pg. 521 TU1.R6.12 - MULTI-GPU PARALLEL IMPLEMENTATION OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR
Wu, Zhaoming	Pg. 2169 TH2.R18.4 - SPECTRAL-SPATIAL HYPERSPECTRAL UNMIXING IN TRANSFORMED DOMAINS
Wu, Zhenhua	pg. 2053 TH2.R3.9 - META NETWORK FOR RADAR HRRP NONCOOPERATIVE TARGET RECOGNITION WITH MISSING ASPECTS
Wu, Zhipeng	pg. 20 MO2.R3.6 - A DEEP LEARNING BASED METHOD FOR LOCAL SUBSIDENCE DETECTION AND INSAR PHASE UNWRAPPING: APPLICATION TO MINING DEFORMATION MONITORING
Wu, Zihua	pg. 5547 FR1.R19.7 - EVALUATION OF THE RELATIONSHIP BETWEEN IASI NH3R-I TOTAL COLUMN AND TERRESTRIAL VEGETATION CONDITIONS
Wurm, Michael	pg. 4219 MO2.R12.4 - DERIVING URBAN MASS CONCENTRATIONS USING TANDEM-X AND SENTINEL-2 DATA FOR THE ASSESSMENT OF MORPHOLOGICAL POLYCENTRICITY
Wyniawskyj, Nina Sofia	pg. 4898 TH1.R11.9 - IMPROVING SEVERE-WEATHER RESILIENCE FOR MONGOLIAN HERDING COMMUNITIES USING SATELLITE EARTH OBSERVATION IMAGERY pg. 252 MO2.R16.10 - SHIP DETECTION ON SINGLE-BAND GRAYSCALE IMAGERY USING DEEP LEARNING AND AIS SIGNAL MATCHING USING NON-RIGID TRANSFORMATIONS
Χ	
Xaud, Haron Abrahim Magalhaes	pg. 4100 MO2.R1.7 - SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER
Xaud, Maristela Ramalho	pg. 4100 MO2.R1.7 - SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER
Xi, Haijian	pg. 3195 TH2.R14.2 - DESIGN AND DEVELOPMENT OF SPATIO- TEMPORAL FUSION AND OPERATION PLATFORM FOR ANCIENT AND MODERN MAPS
Xi, Shao	pg. 6389 TH1.R15.3 - NOAA-20/S-NPP VIIRS SENSOR DATA RECORD ON-ORBIT PERFORMANCE UPDATES AND RECENT

	<u>IMPROVEMENTS</u>
Xi, Xiaohuan	pg. 6073 WE1.R4.1 - THE PERFORMANCE OF ICESAT-2'S STRONG AND WEAK BEAMS IN ESTIMATING GROUND ELEVATION AND FOREST HEIGHT pg. 385 MO2.R19.12 - SCATTERING MECHANISM OF LARGE- FOOTPRINT FULL-WAVEFORM LIDAR OVER MOUNTAINOUS FOREST AREAS
Xi, Zhihong	pg. 1480 WE2.R12.1 - REMOTE SENSING IMAGE SUPER- RESOLUTION VIA ENHANCED BACK-PROJECTION NETWORKS
Xia, Gui-Song	pg. 3900 FR1.R7.3 - POWER SERIES MODULE FOR SEMANTIC SEGMENTATION IN REMOTE SENSING IMAGE pg. 680 TU1.R12.7 - CSDN: A CROSS SPATIAL DIFFERENCE NETWORK FOR SEMANTIC CHANGE DETECTION IN REMOTE SENSING IMAGES pg. 988 TU2.R18.10 - INSTANCE SEGMENTATION WITH ORIENTED PROPOSALS FOR AERIAL IMAGES
Xia, Guisong	pg. 1809 TH1.R9.3 - LOOK AT THE BIG PICTURE: BUILDING AREA EXTRACTION WITH GLOBAL DENSITY MAP
Xia, Jun	pg. 2894 FR2.R18.5 - CHANGE OF IMPERVIOUS SURFACE OF CHENGDU CITY, CHINA pg. 4279 TU1.R1.8 - LAND USE AND LAND COVER CHANGE OF GHANA pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB-SAHARA AFRICA
Xia, Junming	pg. 5874 FR1.R8.5 - FEASIBILITY ANALYSIS AND SUITABLE ANTENNA DIRECTIONS OF IGNSS-R ALTIMETRY MEASUREMENT FOR AVOIDING THE INTERSATELLITE INTERFERENCE
Xia, Junshi	pg. 3751 TH2.R12.7 - DAMAGE CHARACTERIZATION IN URBAN ENVIRONMENTS FROM MULTITEMPORAL REMOTE SENSING DATASETS BUILT FROM PREVIOUS EVENTS
Xia, Yu	TU2.R6.3 - LAND COVER MAPPING BASED ON MULTI-BRANCH FUSION OF OBJECT-BASED AND PIXEL-BASED SEGMENTATION WITH FILTERED LABELS
Xian, Darong	pg. 565 TU1.R7.12 - A WAVELET DOMAIN BASED CNN SHIP CLASSIFICATION METHOD FOR HIGH RESOLUTION OPTICAL SATELLITE REMOTE SENSING IMAGES
Xiang, Jianbing	pg. 2380 FR1.R9.12 - TWO-STEP BISTATIC SPACEBORNE SLIDING-SPOTLIGHT SAR IMAGING AGORITHM BASED ON ACCURATE RANGE MODEL
Xiang, Jixiang	pg. 6567 FR2.R17.4 - AN IMAGE-DOMAIN BASELINE ERROR ESTIMATION METHOD FOR AZIMUTH MULTI-CHANNEL SAR pg. 928 TU2.R16.7 - LONG SYNTHETIC APERTURE PASSIVE LOCALIZATION USING AZIMUTH CHIRP-RATE CONTOUR MAP
Xiang, Maosheng	pg. 6089 WE1.R4.5 - TIME-FREQUENCY DOMAIN NONLINEAR PHASE COMPENSATION FOR FMCW LADAR SIGNALS

Xiang, Sizhe	pg. 465 TU1.R5.8 - DEM EXTRACTION FROM AIRBORNE LIDAR POINT CLOUD IN THICK-FORESTED AREAS VIA CONVOLUTIONAL NEURAL NETWORK
Xiang, Yuming	pg. 6742 TU1.R17.5 - STEREO MATCHING OF VHR REMOTE SENSING IMAGES VIA BIDIRECTIONAL PYRAMID NETWORK
Xiang, Zijuan	pg. 1472 WE2.R9.10 - PANCHROMATIC IMAGE LAND COVER CLASSIFICATION VIA DCNN WITH UPDATING ITERATION STRATEGY
Xiao, Changlin	TU2.R6.5 - LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS - IEEE DATA FUSION CONTEST 2020 TRACK 1
	TU2.R6.6 - LARGE-SCALE LAND COVER MAPPING OF SATELLITE IMAGES USING ENSEMBLE OF RANDOM FORESTS WITH MULTI-RESOLUTION LABEL - IEEE DATA FUSION CONTEST 2020 TRACK 2
Xiao, Fanghong	pg. 2491 FR1.R16.6 - HIGH-RESOLUTION OPTICAL AND SAR IMAGE REGISTRATION USING LOCAL SELF-SIMILAR DESCRIPTOR BASED ON EDGE FEATURE pg. 4203 MO2.R11.11 - RESEARCH OF METHANE EMISSIONS BASED ON BIOGEOCHEMICAL MODEL AND ACTIVE MICROWAVE MEASUREMENT
Xiao, Fenglin	pg. 2511 FR1.R16.11 - REMOTE SENSING DATA AUGMENTATION THROUGH ADVERSARIAL TRAINING
Xiao, Jincheng	pg. 3195 TH2.R14.2 - DESIGN AND DEVELOPMENT OF SPATIO- TEMPORAL FUSION AND OPERATION PLATFORM FOR ANCIENT AND MODERN MAPS
Xiao, Liang	Pg. 1042 WE1.R5.2 - LOCALLY CONSTRAINED COLLABORATIVE REPRESENTATION BASED FISHER'S LDA FOR CLUSTERING OF HYPERSPECTRAL IMAGES Pg. 850 TU2.R5.6 - PERONA-MALIK DIFFUSION DRIVEN CNN FOR SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES Pg. 854 TU2.R5.7 - A DIRECTIONAL MESSAGE PROPAGATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGES CLASSIFICATION Pg. 336 MO2.R18.9 - BIPARTITE RESIDUAL NETWORK FOR CHANGE DETECTION IN HETEROGENEOUS OPTICAL AND RADAR IMAGES
Xiao, Man	pg. 2105 TH2.R5.11 - PYSRRESNET: SUPER RESOLUTION FOR VIDEO SATELLITE IMAGERY VIA PYRAMID RESIDUAL NETWORK
Xiao, Qing	pg. 4854 TH1.R10.9 - EVALUATION OF FOUR THERMAL INFRARED KERNEL-DRIVEN MODELS USING LIMITED OBSERVATIONS
Xiao, Ruixue	pg. 5529 FR1.R19.2 - RECOVERY OF THE CARBON MONOXIDE PRODUCT FROM S5P-TROPOMI BY FUSING MULTIPLE DATASETS: A CASE STUDY IN HUBEI PROVINCE, CHINA

Xiao, Shun-Ping	pg. 762 TU1.R18.6 - AN INTEGRATED SAR SPECKLE REDUCTION AND TARGET DETECTION APPROACH pg. 208 MO2.R15.10 - COMPARISON STUDY OF MULTITEMPORAL POLSAR CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS
Xiao, Yang	pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB- SAHARA AFRICA
Xiao, Zhenlong	pg. 2767 FR2.R9.6 - EXTRACTION OF POWER LINES AND PYLONS FROM LIDAR POINT CLOUDS USING A GCN-BASED METHOD pg. 1695 TH1.R3.9 - EXTRACTING VEHICLES IN POINT CLOUDS OF UNDERGROUND PARKING LOTS BASED ON GRAPH CONVOLUTION
Xiao, Zhiqiang	pg. 1106 WE1.R6.7 - ESTIMATING LEAF AREA INDEX AT 250M SPATIAL RESOLUTION FROM MODIS DATA USING GENERAL REGRESSION NEURAL NETWORKS (pg. 4331) TU2.R10.10 - ESTIMATION OF GLOBAL NET PRIMARY PRODUCTIVITY FROM 1981 TO 2018 WITH REMOTE SENSING DATA
Xiao, Zhu	pg. 501 TU1.R6.7 - A NEW HYPERSPECTRAL CLASSIFICATION METHOD BASED ON NON-SUBSAMPLED CONTOURLET TRANSFORM (NSCT) AND DEEP NEURAL NETWORK pg. 2909 FR2.R18.9 - MONITORING AND RISK ASSESSMENT OF HIGH-TEMPERATURE HEAT DAMAGE FOR SUMMER MAIZE BASED ON REMOTE SENSING DATA
Xie, Boyi	pg. 6875 WE2.R2.4 - EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA
Xie, Hongtu	pg. 932 TU2.R16.8 - CIRCULAR EXPERIMENT WITH P-BAND ULTRA-WIDEBAND SYNTHETIC APERTURE RADAR SYSTEM
Xie, Huan	pg. 4947 TH2.R6.3 - A 21-YEAR (1990-2011) RECORD OF LAND COVER CHANGES AND URBAN DYNAMICS OF SHANGHAI CITY DERIVED FROM LANDSAT IMAGES pg. 284 MO2.R17.7 - GEOSPATIAL OBJECT DETECTION WITH SINGLE SHOT ANCHOR-FREE NETWORK pg. 5855 TH2.R8.11 - PHOTON-COUNTING LIDAR: LINEAR DENSITY MULTI-LEVEL CLASSIFICATION METHOD FOR OFFSHORE AREAS
Xie, Jinwei	pg. 180 MO2.R15.3 - X-BAND POLINSAR VEGETATION CANOPY HEIGHT INVERSION STRATEGY BASED ON FREQUENCY SEGMENTATION
Xie, Junfeng	pg. 6014) TU1.R14.7 - EVALUATION OF THE GF1-B/C/D SATELLITE RADIOMETRIC PERFORMANCE USING RADCALNET BAOTOU SITE TU2.R4.8 - GYROSCOPE DATA DE-NOISING BASED ON INHERENT FREQUENCY FOR EARTH OBSERVATION SATELLITE
Xie, Ni	(pg. 932) TU2.R16.8 - CIRCULAR EXPERIMENT WITH P-BAND

	ULTRA-WIDEBAND SYNTHETIC APERTURE RADAR SYSTEM
Xie, Peng	pg. 3111 WE1.R14.6 - A MANAGEMENT SYSTEM FOR FORESTRY REMOTE SENSING IMAGES BASED ON THE GLOBAL SUBDIVISION MODEL
Xie, Pingping	pg. 3309 MO2.R7.6 - MONITORING HEAVY PRECIPITATION WITH THE CMORPH INTEGRATED SATELLITE PRECIPITATION ESTIMATES
Xie, Qian	pg. 6798 TU2.R2.8 - A REMOTE SENSING AND METEOROLOGICAL DATA-BASED METHODOLOGY FOR WILDFIRE DANGER ASSESSMENT FOR CHINA
Xie, Qinghua	pg. 4148 MO2.R10.8 - INITIAL TESTS FOR THE GENERATION OF A SPANISH NATIONAL MAP OF FOREST HEIGHT FROM TANDEM-X DATA
Xie, Rui	pg. 3235 TH2.R14.12 - A METHOD TO IDENTIFY HIGH-QUALITY PURE SNOW DATA IN POLDER DATABASE
Xie, Weiying	pg. 2420 FR1.R12.10 - DISCRIMINATIVE SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL ANOMALY DETECTION
Xie, Wen	pg. 1731 TH1.R5.6 - POLSAR SCENE CLASSIFICATION VIA LOW-RANK TENSOR-BASED MULTI-VIEW SUBSPACE REPRESENTATION pg. 200 MO2.R15.8 - DEEP LEARNING BASED CLASSIFICATION USING SEMANTIC INFORMATION FOR POLSAR IMAGE
Xie, Xiaozhen	Pg. 2312 FR1.R6.6 - HYPERSPECTRAL IMAGE RESTORATION VIA GLOBAL TOTAL VARIATION REGULARIZED LOCAL NONCONVEX LOW-RANK MATRIX APPROXIMATION
Xie, Xinxin	pg. 5426 WE1.R19.11 - CHARACTERISTIC ANALYSIS OF TYPHOON MUFIA FROM FY-3B MWRI OBSERVATIONS
Xie, peigen	TH2.R16.6 - AUTOMATIC OIL SLICK DETECTION FOR ENVIRONMENTAL DOMAIN USING SYNTHETIC APERTURE RADAR (SAR) IMAGES
Xin, Haiqiang	pg. 2723 FR2.R6.7 - SUBPIXEL-LEVEL EDGE FEATURE MATCHING FOR SAR AND OPTICAL IMAGES BASED ON ZERNIKE MOMENTS
Xin, Jingfeng	pg. 6898 WE2.R2.10 - STUDY ON REGIONAL DROUGHT MONITORING BASED ON MULTI-SOURCES DATA IN CHINA
Xin, Qinchuan	TH1.R10.11 - A NEW PHENOLOGY METHOD FOR MODELLING DYNAMICS OF GLOBAL LEAF AREA INDEX
Xing, Cheng	pg. 3888 FR1.R3.8 - LAND COVER CLASSIFICATION WITH CPOLINSAR IMAGE VIA M-DELTA DECOMPOSITION AND OPTIMAL POLARIMETRIC COHERENCE COEFFICIENT pg. 1255 WE1.R18.10 - SHIP DETECTION FROM POLSAR IMAGERY BASED ON THE SCATTERING DIFFERENCE

	PARAMETER
Xing, Dezhi	pg. 3180 TH1.R14.5 - IMPROVING STUDENT LEARNING OF SENSOR RELATED COURSES USING INNOVATIVE PROJECTS pg. 3215 TH2.R14.7 - FPGA BASED DIGITAL MAGNETIC FIELD DETECTION SYSTEM
Xing, Mengdao	pg. 830 TU2.R5.1 - TWO-STEP ENSEMBLE BASED CLASS NOISE CLEANING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 2340 FR1.R9.2 - SHIP POSITIONING AND RADIAL VELOCITY ESTIMATION FOR SPACEBORNE SAR BASED ON ENERGY CENTER EXTRACTION pg. 7013 TU1.R20.3 - NEW ALGORITHM FOR NEAR-FIELD ISAR
	Pg. 6563 FR2.R17.3 - SPACE TARGETS RESCALING BASED ON BISTATIC ISAR SYSTEM
	pg. 2348 FR1.R9.4 - AN OPTIMIZATION ALGORITHM OF MOVING TARGETS REFOCUSING VIA PARAMETER ESTIMATION DEPENDENCE OF MAXIMUM SHARPNESS PRINCIPLE AFTER BP INTEGRAL
	pg. 489 TU1.R6.4 - SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 6567 FR2.R17.4 - AN IMAGE-DOMAIN BASELINE ERROR ESTIMATION METHOD FOR AZIMUTH MULTI-CHANNEL SAR
	FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION THE REST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 405 TU1.R3.5 - AN INFINITY-NORM-BASED PHASE UNWRAPPING METHOD WITH TSPA FRAMEWORK FOR MULTI-BASELINE SAR INTERFEROGRAMS
	Pg. 2125 TH2.R9.5 - UNAMBIGUOUS SIGNAL RECONSTRUCTION ALGORITHM FOR HIGH SQUINT MULTICHANNEL SAR MOUNTED ON HIGH SPEED MANEUVERING PLATFORMS
	pg. 2811 FR2.R12.6 - A TWO-STEP SHIP TARGET DETECTION METHOD IN HIGH-RESOLUTION SAR IMAGE BASED ON COARSE-TO-FINE MECHANISM
	pg. 2356 FR1.R9.6 - CLUTTER SUPPRESSION AND MOVING TARGET RADIAL VELOCITY ESTIMATION METHOD FOR HRWS MULTICHANNEL SYSTEM BASED ON SUBSPACE PROJECTION pg. 928 TU2.R16.7 - LONG SYNTHETIC APERTURE PASSIVE
	LOCALIZATION USING AZIMUTH CHIRP-RATE CONTOUR MAP (pg. 2360) FR1.R9.7 - A SIDELOBE REDUCTION ALGORITHM FOR SAR IMAGERY FORMED BY FAST BACK PROJECTION ALGORITHM BASED ON SPECTRUM COMPRESSION
	pg. 2635 FR2.R3.8 - HIGH-RESOLUTION IMAGING BASED ON TEMPORAL-SPATIAL STOCHASTIC RADIATION FIELD AND COMPRESSIVE SENSING THEORY
	pg. 1917 TH1.R16.8 - AN EFFICIENT MEO SAR IMAGING ALGORITHM BASED ON OPTIMAL IMAGING COORDINATE SYSTEM
	pg. 1251 WE1.R18.9 - A SVA BASED SIDELOBE SUPPRESSION METHOD FOR SEA-LAND SEGMENTATION AND SHIP DETECTION IN SAR IMAGES
Xing, Minfeng	pg. 5270 FR2.R11.6 - ESTIMATING CHLOROPHYLL CONTENT

	OF RICE BASED ON UAV-BASED HYPERSPECTRAL IMAGERY AND CONTINUOUS WAVELET TRANSFORM [pg. 6499] FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING
Xiong, Boli	pg. 1129 WE1.R16.2 - AN EFFICIENT WATER SEGMENTATION METHOD FOR SAR IMAGES pg. 1248 WE1.R18.8 - SHIP TARGET SIGNATURE INDICATION BASED ON COMPLEX SIGNAL KURTOSIS IN SAR IMAGES
Xiong, Fengchao	pg. 2157 TH2.R18.1 - NONLOCAL LOW-RANK NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
Xiong, Huilin	pg. 549 TU1.R7.7 - GRAPH EMBEDDING FOR REMOTE SCENE IMAGE CLASSIFICATION BASED ON ATTENTION MODEL
Xiong, Xiaoxiong	pg. 6117 WE1.R7.5 - NOAA-20 VIIRS ON-ORBIT CALIBRATION IMPROVEMENTS pg. 6397 TH1.R15.5 - NOAA-20 VIIRS REFLECTIVE SOLAR BANDS ON-ORBIT CALIBRATION USING A HYBRID APPROACH pg. 6242 WE1.R15.6 - CROSSTALK EFFECT IN NOAA 20 VIIRS THERMAL EMISSIVE BANDS pg. 6246 WE1.R15.7 - PRELIMINARY JPSS-3 VIIRS POLARIZATION SENSITIVITY AND COMPARISON WITH S-NPP, JPSS-1 AND -2
Xiong, Xinyue	pg. 1825 TH1.R9.7 - DILATED RESIDUAL NETWORK BASED ON DUAL EXPECTATION MAXIMIZATION ATTENTION FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES
Xiong, Ying	pg. 2871 FR2.R16.10 - A DETECTION METHOD OF MULTI- SENSOR FOR RADAR COUNTERMEASURE NETWORK
Xiong, Yongzhu	pg. 1592 WE2.R18.6 - ACCURATE DETECTION OF HISTORICAL BUILDINGS USING AERIAL PHOTOGRAPHS AND DEEP TRANSFER LEARNING
Xu, ChenGuang	pg. 2169 TH2.R18.4 - SPECTRAL-SPATIAL HYPERSPECTRAL UNMIXING IN TRANSFORMED DOMAINS
Xu, Chenqi	pg. 6586 FR2.R17.9 - THE RELATIONSHIP BETWEEN EMULSION FILM THICKNESS AND NORMALIZED RADAR CROSS SECTION CONSTRUCTED BY EXPERIMENT
Xu, Dan	pg. 6563 FR2.R17.3 - SPACE TARGETS RESCALING BASED ON BISTATIC ISAR SYSTEM
Xu, Debin	pg. 6997 FR2.R2.11 - A METHOD TO CREATE TRAINING DATASET FOR DEHAZING WITH CYCLEGAN
Xu, Dinghai	pg. 5945 TU1.R4.1 - YAW STEERING USING ADAPTIVE FILTERING FOR SPACEBORNE SAR SYSTEMS
Xu, Dingyou	pg. 1957 TH1.R17.7 - SIMILAR REGION RECOMMENDATION BASED ON HISTOGRAM FEATURES

Xu, Dong	pg. 6758 TU1.R17.9 - TRANSLATING MULTISPECTRAL IMAGERY TO NIGHTTIME IMAGERY VIA CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
Xu, Fang	pg. 1663 TH1.R3.1 - EDGE-DRIVEN OBJECT MATCHING FOR UAV IMAGES AND SATELLITE SAR IMAGES
Xu, Fanyun	pg. 473 TU1.R5.10 - UAV INTELLIGENT OPTIMAL PATH PLANNING METHOD FOR DISTRIBUTED RADAR SHORT-TIME APERTURE SYNTHESIS pg. 2467 FR1.R14.11 - HARBOR DETECTION IN SAR IMAGES BASED ON MULTIDIRECTIONAL ONE-DIMENSIONAL SCANNING
Xu, Feng	pg. 1893 TH1.R16.2 - VARIABLE RESOLUTION SYNTHETIC APERTURE RADAR IMAGING SYSTEM
Xu, Hanyang	pg. 1893 TH1.R16.2 - VARIABLE RESOLUTION SYNTHETIC APERTURE RADAR IMAGING SYSTEM
Xu, Haokui	pg. 3436 TU2.R17.2 - MODELING MULTI-FREQUENCY TOMOGRAMS FOR SNOW STRATIGRAPHY pg. 367 M02.R19.7 - A PHYSICAL PATCH MODEL FOR GNSS-R LAND APPLICATIONS WITH TOPOGRAPHY EFFECTS AND DDM SIMULATIONS pg. 1432 WE2.R6.11 - AN ACCURATE LOW-COST METHOD FOR Q-FACTOR AND RESONANCE FREQUENCY MEASUREMENTS OF RF AND MICROWAVE RESONATORS
Xu, Hua	pg. 2284 FR1.R5.11 - HUMAN IDENTIFICATION USING MICRO-MOTION AND LIGHTWEIGHT NEURAL NETWORKS
Xu, Huan	(pg. 3051) WE1.R9.2 - SEA ICE AND OPEN WATER CLASSIFICATION OF SAR IMAGES USING A DEEP LEARNING MODE
Xu, Huaping	pg. 1149 WE1.R16.7 - A SAR IMAGING METHOD BASED ON LP AND TV COMPOSITE NORM REGULARIZATION pg. 28 MO2.R3.8 - IMPROVED INSAR LAYOVER AND SHADOW DETECTION USING MULTI-FEATURE
Xu, Jeri	pg. 6875 WE2.R2.4 - EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA
Xu, Jiawen	pg. 6686 TU1.R15.3 - EVALUATION OF DOWNWARD SHORTWAVE RADIATION ESTIMATIONS OVER TROPICAL OCEAN SURFACE BASED ON BAYESIAN MODEL AVERAGING METHOD pg. 6710 TU1.R15.9 - LONG-TERM TRENDS OF ESTIMATED SURFACE INCIDENT SHORTWAVE RADIATION IN CHINA DURING 1970-2015
Xu, Jinying	pg. 2316) FR1.R6.7 - EFFECTS OF UNBALANCED DATA ON RADIOMETRIC TRANSFORMING MODEL FITTING FOR RELATIVE RADIOMETRIC NORMALIZATION

Xu, Junyi	pg. 24 MO2.R3.7 - A THREE-STAGE FRAMEWORK FOR MULTI-BASELINE INSAR PHASE UNWRAPPING
Xu, Ke	pg. 5858 FR1.R8.1 - EVALUATION OF HY-2B ALTIMETER PRODUCTS OVER OCEAN pg. 5866 FR1.R8.3 - GRAVITY ANOMALY AND ITS ACCURACY ASSESSMENT FROM HY-2A/GM ALTIMETRY DATA IN THE SOUTH CHINA SEA pg. 5827 TH2.R8.4 - PRELIMINARY PRECISION ASSESSMENT OF HY-2B ALTIMETER DATA OVER ANTARCTICA AND GREENLAND
Xu, Lili	pg. 4363 TU2.R11.6 - STUDY ON SPATIOTEMPORAL VARIATIONS OF EVAPOTRANSPIRATION IN ETUOKEQIANQI BASED ON MOD16 PRODUCTS AND PENMAN-MONTEITH MODEL
Xu, Lina	pg. 6018 TU1.R14.8 - ON-ORBIT GEOMETRIC CALIBRATION AND ACCURACY VERIFICATION OF HY-1C CZI
Xu, Linlin	pg. 2964 TU1.R9.1 - LAKE ICE CLASSIFICATION FROM MODIS TOA REFLECTANCE IMAGERY USING A CONVOLUTIONAL NEURAL NETWORK: A CASE STUDY OF GREAT SLAVE LAKE, CANADA pg. 3176 TH1.R14.4 - QUALITY ANALYSIS OF THE VIIRS LAI/FPAR TIME-SERIES pg. 6158 WE1.R12.4 - RECALIBRATING SENTINEL-1 ADDITIVE NOISE-GAIN WITH LINEAR PROGRAMMING pg. 1456 WE2.R9.6 - UNSUPERVISED SEGMENTATION OF MULTILOOK COMPACT POLARIMETRIC SAR DATA BASED ON COMPLEX WISHART DISTRIBUTION pg. 3035 TU2.R9.9 - A MULTI-SCALE TECHNIQUE TO DETECT MARGINAL ICE ZONES USING CONVOLUTIONAL NEURAL NETWORKS.
Xu, Liying	pg. 3888 FR1.R3.8 - LAND COVER CLASSIFICATION WITH CPOLINSAR IMAGE VIA M-DELTA DECOMPOSITION AND OPTIMAL POLARIMETRIC COHERENCE COEFFICIENT
Xu, Lu	pg. 4522 WE1.R11.2 - RICE MONITORING WITH TIME SERIES SAR BASED ON DEEP LEARNING MODEL pg. 4171 MO2.R11.3 - FINE CLASSIFICATION OF RICE IN NORTHEAST THAILAND USING C- AND L-BAND TIME-SERIES SAR IMAGES
Xu, Meng	pg. 2607 FR2.R3.1 - CLOUD SHADOW DETECTION IN HYPERSPECTRAL IMAGERY USING BACKPROPAGATION NEURAL NETWORK WITH LIDAR DATA
Xu, Miao	pg. 6969 FR2.R2.4 - EDGE PREDICTION NET FOR RECONSTRUCTING ROAD LABELS CONTAMINATED BY CLOUDS
Xu, Min	pg. 4758 TH1.R4.7 - MULTI-PREDICTOR ENSEMBLE MODEL FOR RIVER TURBIDITY ASSESSMENT USING LANDSAT 8 IMAGERY AT A REGIONAL SCALE

Xu, Mingming	pg. 1125) WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC			
Au, Minighing	PHASE CODING METHOD FOR MIMO SAR			
	pg. 1532 WE2.R16.3 - REMOVEMENT OF STAGGERED SAR			
	AMBIGUITY IN LOW-OVERSAMPLING BY DEEP LEARNING			
	pg. 2499 FR1.R16.8 - A ROBUST AMBIGUITY REMOVAL			
	METHOD FOR STAGGERED SAR			
V. N'				
Xu, Ning	pg. 2181 TH2.R18.7 - A GEOMETRIC VIEW OF FAST GRAM			
	DETERMINANT-BASED ENDMEMBER EXTRACTION ALGORITHM			
	FOR HYPERSPECTRAL IMAGERY			
Xu, Pei	pg. 905 TU2.R16.1 - SAR PARAMETRIC IMAGING FOR			
	CIRCULAR-PLATE TARGET			
Xu, Qi	pg. 5855 TH2.R8.11 - PHOTON-COUNTING LIDAR: LINEAR			
	DENSITY MULTI-LEVEL CLASSIFICATION METHOD FOR			
	OFFSHORE AREAS			
V. Oinna				
Xu, Qiang	pg. 1011 WE1.R3.5 - LANDSLIDE DISPLACEMENT			
	MONITORING BY TIME SERIES INSAR COMBINING PS AND DS			
	<u>TARGETS</u>			
Xu, Qing	pg. 5604 MO2.R8.1 - SPATIAL AND SEASONAL VARIATIONS OF			
	THE UPPER OCEAN CHLOROPHYLL CONCENTRATION IN THE			
	EASTERN NORTH PACIFIC			
	pg. 4673 WE2.R11.6 - DEVELOP LARGE-AREA AUTUMN CROP			
	TYPE PRODUCT USING A DEEP LEARNING STRATEGY			
	pg. 5717 TU2.R8.8 - AUTOMATIC EXTRACTION OF INTERNAL			
	WAVE SIGNATURE FROM MULTIPLE SATELLITE SENSORS BASED			
	ON DEEP CONVOLUTIONAL NEURAL NETWORKS			
	pg. 5811 TH1.R8.11 - CNN-BASED TROPICAL CYCLONE TRACK			
	FORECASTING FROM SATELLITE INFRARED IMAGES			
Xu, Qizhi	pg. 220 MO2.R16.2 - PAN-SHARPENING WITH A CNN-BASED			
,	TWO STAGE RATIO ENHANCEMENT METHOD			
	TWO STAGE NATIO ENTIANCEMENT METHOD			
Xu, Quan	pg. 1845 TH1.R12.1 - UAV IMAGE MOSAICING BASED MULTI-			
	REGION LOCAL PROJECTION DEFORMATION			
Xu, Ran	pg. 2635 FR2.R3.8 - HIGH-RESOLUTION IMAGING BASED ON			
,	TEMPORAL-SPATIAL STOCHASTIC RADIATION FIELD AND			
	COMPRESSIVE SENSING THEORY			
Xu, Shan				
Au, Silali	pg. 4379 TU2.R11.10 - ON THE ESTIMATION OF THE LEAF			
	ANGLE DISTRIBUTION FROM DRONE BASED			
	<u>PHOTOGRAMMETRY</u>			
Xu, Tao	pg. 1189 WE1.R17.5 - BUILDING DETECTION VIA A TWO-			
	STREAM FPN NETWORK FROM PANCHROMATIC AND MULTI-			
	SPECTRAL IMAGES			
Xu, Wei	PR 2447 FR1 R14 6 - IMDACT ANALYSIS OF DADIO EDECLIENCY			
,	pg. 2447 FR1.R14.6 - IMPACT ANALYSIS OF RADIO FREQUENCY INTERFERENCE ON SAR IMAGE SHIP DETECTION BASED ON			
	DEEP LEARNING			
	pg. 1560 WE2.R16.10 - AMPLITUDE AND PHASE ERROR			
	CORRECTION METHOD FOR ARRAY SAR PROCESSED IN TIME			

	DOMAIN
Xu, Wenbo	pg. 268 MO2.R17.3 - AIRPLANE RECOGNITION FROM REMOTE SENSING IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORK pg. 6714 TU1.R15.10 - ESTIMATION OF SURFACE ALBEDO BASED ON FY-3D MERSI-2 TOA DATA pg. 2739 FR2.R6.11 - RESEARCH ON STEREO MATCHING FOR SATELLITE GENERALIZED IMAGE PAIR BASED ON IMPROVED SURF AND RFM pg. 4383 TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Xu, Xi-Yu	pg. 5835 TH2.R8.6 - SIMULATION OF THE WIDE SWATH SEA SURFACE HEIGHT CALIBRATION USING GNSS BUOY ARRAY
Xu, Xia	pg. 1365 WE2.R5.5 - AN OPEN SET DOMAIN ADAPTATION NETWORK BASED ON ADVERSARIAL LEARNING FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION
Xu, Xiaoguang	FR1.R19.1 - DETECTION OF NIGHTTIME FIRE COMBUSTION EFFICIENCY FOR WILDFIRES FROM VIIRS Pg. 5588 FR2.R19.7 - DETECTING LAYER HEIGHT OF SMOKE AND DUST AEROSOLS OVER VEGETATED LAND AND WATER SURFACES VIA OXYGEN ABSORPTION BANDS
Xu, Xiaojian	pg. 441 TU1.R5.2 - ROBUST 3D TOMOGRAPHIC IMAGING OF THE IONOSPHERIC ELECTRON DENSITY
Xu, Xiaolan	pg. 2921 MO2.R9.1 - SNOW SIZE DISTRIBUTION AND AGGREGATION MODELING BASED ON THE BICONTINUOUS MODEL pg. 3436 TU2.R17.2 - MODELING MULTI-FREQUENCY TOMOGRAMS FOR SNOW STRATIGRAPHY pg. 2950 MO2.R9.9 - OBSERVING SYSTEM SIMULATION EXPERIMENT FOR REMOTE SENSING OF SNOW AT P-BAND
Xu, Xiaoyong	pg. 4590 WE2.R1.8 - ASSESSMENT OF SMAP AND ESA CCI SOIL MOISTURE OVER THE GREAT LAKES BASIN
Xu, Xin	pg. 1464 WE2.R9.8 - DBC: DEEP BOUNDARIES COMBINATION FOR FARMLAND BOUNDARY DETECTION BASED ON UAV IMAGERY pg. 1743 TH1.R5.9 - LEARNING RELATION BY GRAPH NEURAL NETWORK FOR SAR IMAGE FEW-SHOT LEARNING
Xu, Xingou	pg. 5701 TU2.R8.4 - EFFECTS OF WIND ESTIMATION ERRORS ON OCEAN SURFACE CURRENT RETRIEVAL FOR A DOPPLER SCATTEROMETER pg. 5787 TH1.R8.4 - GENERALIZATION OF KU-BAND FALSE- ALARM REDUCTION METHOD AND APPLICATION TO CSCAT pg. 5798 TH1.R8.7 - A STUDY ON COMBINED C- AND KU-BAND RAIN EFFECTS FOR WIND SCATTEROMETRY QUALITY CONTROL
Xu, Xiong	pg. 4947 TH2.R6.3 - A 21-YEAR (1990-2011) RECORD OF

	LAND COVER CHANGES AND URBAN DYNAMICS OF SHANGHAL CITY DERIVED FROM LANDSAT IMAGES
Xu, Xiyu	pg. 5858 FR1.R8.1 - EVALUATION OF HY-2B ALTIMETER PRODUCTS OVER OCEAN
Xu, Yang	pg. 521 TU1.R6.12 - MULTI-GPU PARALLEL IMPLEMENTATION OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Xu, Yi	pg. 1229 WE1.R18.3 - SHIP DETECTION IN RADAR IMAGE SERIES BASED ON THE LONG SHORT-TERM MEMORY NETWORK
Xu, Yifan	pg. 4395 TU2.R12.3 - AN ACCURATE EXTRACTION ALGORITHM OF THE INDOOR BOUNDARY FEATURES BASED ON POINT CLOUD DATA
Xu, Ying	pg. 5831 TH2.R8.5 - AN ESTIMATE OF THE DECAY RATE OF SWELLS USING ALTIMETER DATA
Xu, Yongsheng	pg. 3529 WE2.R8.3 - PRELIMINARY ANALYSIS OF TROPICAL CYCLONE OCEAN WAVES USING SENTINEL-1 SAR DATA.
Xu, Zhiqiang	pg. 1205 WE1.R17.9 - STREET VIEW IMAGE RETRIEVAL WITH AVERAGE POOLING FEATURES
Xue, Huijie	pg. 5745 WE1.R8.5 - STORM SURGE INUNDATION MODELING OF FIVE WINTER STORMS IN SACO-CASCO BAYS: A FVCOM BASED NUMERICAL STUDY
Xue, Jia	pg. 6746 TU1.R17.6 - ANGULAR LUMINANCE FOR MATERIAL SEGMENTATION
Xue, Yong	pg. 5566 FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT pg. 3172 TH1.R14.3 - INTRODUCTION TO POSTGRADUATE EDUCATION OF REMOTE SENSING IN CHINA
Xue, Yuanyuan	pg. 2416 FR1.R12.9 - HYPERSPECTRAL ANOMALY DETECTION BASED ON ISOLATION FOREST WITH BAND CLUSTERING
Υ	
Y.S., Rao	pg. 4696 TH1.R1.2 - SOIL MOISTURE RETRIEVAL USING SAR DERIVED VEGETATION DESCRIPTORS IN WATER CLOUD MODEL
Yackel, John	pg. 3043 TU2,R9.11 - COMPARISON OF ASCAT ESTIMATED SNOW THICKNESS ON FIRST-YEAR SEA ICE IN THE CANADIAN ARCTIC WITH MODELED AND PASSIVE MICROWAVE DATA
Yahia, Mohamed	pg. 1327 WE2.R3.5 - INFINITE NUMBER OF LOOKS PREDICTION IN POLSAR FILTERING BY LINEAR REGRESSION
Yailymov, Bohdan	pg. 1050 WE1.R5.4 - SATELLITE AGRICULTURAL MONITORING IN UKRAINE AT COUNTRY LEVEL: WORLD BANK PROJECT pg. 4971 TH2.R6.9 - ASSESSMENT OF LAND CONSUMPTION FOR SDG INDICATOR 11.3.1 USING GLOBAL AND LOCAL BUILT-

				PS

	<u>01.711(27.1.11.10</u>
Yailymova, Hanna	pg. 1050 WE1.R5.4 - SATELLITE AGRICULTURAL MONITORING IN UKRAINE AT COUNTRY LEVEL: WORLD BANK PROJECT
Yamada, Hideyuki	pg. 766 TU1.R18.7 - HUMAN BODY RECOGNITION METHOD USING DIFFRACTION SIGNAL IN NLOS SCENARIO FOR MILLIMETER WAVE RADAR
Yamada, Takato	pg. 2703 FR2.R6.2 - HYPERSPECTRAL DATA CLASSIFICATION AND REGRESSION USING WAVELET TRANSFORM
Yamada, Tatsuya	pg. 4815 TH1.R6.10 - ASSESSMENT OF IMAGERY FOR LAND MAPPING WITH CONSTELLATION AND CONVENTIONAL SATELLITE
Yamamoto, Hirokazu	pg. 3272 MO2.R4.2 - HYPERSPECTRAL IMAGER SUITE (HISUI) : ITS LAUNCH AND CURRENT STATUS
Yamamoto, Kosuke	pg. 3259 MO2.R2.6 - A STUDY OF AUTOMATIC FLOOD-AREA DETECION USING ALOS-2 AND ANCILLARY DATA
Yamamoto, Munehisa	pg. 3611 WE2.R19.8 - DEVELOPMENT OF RAINFALL NORMALIZATION MODULE FOR GSMAP MICROWAVE IMAGERS AND SOUNDERS
Yamamoto, Yudai	pg. 6623 TU1.R2.9 - USING MULTIMODAL LEARNING MODEL FOR EARTHQUAKE DAMAGE DETECTION BASED ON OPTICAL SATELLITE IMAGERY AND STRUCTURAL ATTRIBUTES
Yamazaki, Fumio	pg. 4096 MO2.R1.6 - DETECTION OF LANDSLIDES INDUCED BY THE 2018 HOKKAIDO EASTERN IBURI EARTHQUAKE USING MULTI-TEMPORAL ALOS-2 IMAGERY
Yan, Banghua	Pg. 5345 TU2.R19.2 - AN OPERATIONAL SATELLITE SNOWFALL RATE PRODUCT AT NOAA Pg. 6393 TH1.R15.4 - MONITORING OF THE CROSS-CALIBRATION BIASES BETWEEN THE S-NPP AND NOAA-20 VIIRS SENSOR DATA RECORDS USING GOES ADVANCED BASELINE IMAGER AS A TRANSFER Pg. 6527 FR2.R13.6 - POST-LAUNCH PERFORMANCE ASSESSMENT OF METOP-C ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) INSTRUMENT NOISE AND ANTENNA TEMPERATURE DATA TH1.R15.8 - SNPP AND NOAA-20 GLOBAL INTER-SENSOR BIAS ASSESSMENTS WITHIN ICVS FRAMEWORK USING 32-DAY AVERAGED DIFFERENCE METHOD Pg. 6258 WE1.R15.10 - LIFETIME PERFORMANCE ASSESSMENT OF SNPP OMPS NADIR MAPPER SDR DATA USING SIMULTANEOUS NADIR OVERPASS COLLOCATED OBSERVATIONS WITH GOME-2
Yan, Biyuan	pg. 2332 FR1.R6.12 - A FUSION METHOD OF SAR IMAGE AND OPTICAL IMAGE BASED ON NSCT AND GRAM-SCHMIDT TRANSFORM
Yan, Bokun	(pg. 2013) TH1.R18.10 - EVALUATION OF SPATIAL-TEMPORAL

	VARIATION OF VEGETATION RESTORATION IN DEXING COPPER MINE AREA USING REMOTE SENSING DATA
Yan, Jie-Bang	pg. 2979 TU1.R9.5 - AN L-BAND RADAR SYSTEM FOR ICE SHEET MEASUREMENTS
	pg. 1417 WE2.R6.7 - GROUND-BASED ULTRA WIDEBAND DUAL-POLARIZED RADAR SOUNDING OF GREENLAND ICE SHEETS
	pg. 6174 WE1.R12.8 - AIRBORNE UWB RADAR ON A LIGHT SPORT AIRCRAFT FOR POLAR SURVEYS
Yan, Kai	pg. 4614) WE2.R10.2 - EXTENDING STOCHASTIC RADIATIVE TRANSFER THEORY TO SIMULATE BRF OVER FORESTS CONTAINING TREES WITH HETEROGENEOUS DAMAGED FOLIAGE
	pg. 3176 TH1.R14.4 - QUALITY ANALYSIS OF THE VIIRS LAI/FPAR TIME-SERIES
Yan, Lei	pg. 6957 FR2.R2.1 - IMPROVED GENETIC ALGORITHM FOR BUNDLE ADJUSTMENT IN PHOTOGRAMMETRY
Yan, Qingyu	pg. 517 TU1.R6.11 - SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE USING PCA AND GABOR FILTERING
Yan, Qingyun	pg. 4562 WE2.R1.1 - SENSITIVITY OF CYGNSS-DERIVED SOIL MOISTURE TO GLOBAL PRECIPITATION
	pg. 6182 WE1.R13.1 - GLOBAL SOIL MOISTURE ESTIMATION USING CYGNSS DATA
Yan, Shuang	pg. 3086 WE1.R9.11 - COMPREHENSIVE VERIFICATION AND ANALYSIS OF MULTI-SCALE REMOTE SENSING PRODUCTS FOR SURFACE FREEZING-THAWING STATUS ON THE QINGHAI-TIBET PLATEAU
Yan, Stephen	pg. 2934 MO2.R9.5 - AIRBORNE DUAL-BAND MICROWAVE RADAR SYSTEM FOR SNOW THICKNESS MEASUREMENT
Yan, Xin	pg. 4754 TH1.R4.6 - RELIABILITY EVALUATION OF WETLAND SAMPLES BASED ON HISTORICAL THEMATIC MAPS
Yan, Yajing	pg. 1889 TH1.R16.1 - GAP-FILLING BASED ON EOF ANALYSIS OF SPATIO-TEMPORAL COVARIANCE OF SATELLITE IMAGE DERIVED DISPLACEMENT TIME SERIES
Yan, Yiming	pg. 4211 MO2.R12.2 - A NOVEL BUILDING RECONSTRUCTION FRAMEWORK USING SINGLE-VIEW REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORKS pg. 3063 WE1.R9.5 - A DISTRIBUTION CONTROLLABLE
	SIMULATION METHOD OF REMOTE SENSING SEA-ICE IMAGES
Yang, Aqiang	PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA
Yang, Bin	pg. 2161 TH2.R18.2 - AN IMPROVED BILINEAR MIXTURE MODEL CONSIDERING ADJACENCY AND SHADE EFFECTS

	pg. 1090 WE1.R6.3 - A REGULARIZED TENSOR NETWORK FOR CYCLONE WIND SPEED ESTIMATION pg. 1323 WE2.R3.4 - A NOVEL GENERAL SEMISUPERVISED DEEP LEARNING FRAMEWORK FOR CLASSIFICATION AND REGRESSION WITH REMOTE SENSING IMAGES
Yang, Bo	pg. 6317) WE2.R17.6 - HIGH-RESOLUTION UAV MAPPING FOR INVESTIGATING EELGRASS BEDS ALONG THE WEST COAST OF NORTH AMERICA pg. 28 MO2.R3.8 - IMPROVED INSAR LAYOVER AND SHADOW DETECTION USING MULTI-FEATURE pg. 6337) WE2.R17.11 - IMPLEMENTING DRONE MAPPING ALONG THE US WEST COAST FOR EELGRASS MEADOW EXTENT AND DYNAMICS
Yang, Changbao	pg. 5203 FR2.R10.1 - MICROWAVE THERMAL EMISSION FEATURES OF MARE TRANQUILLITATIS AND MARE SERENITATIS INDICATED BY CE2 CELMS DATA pg. 5131 FR1.R10.6 - RE-EVALUATING BASALTIC DEPOSITS IN MARE NUBIUM WITH CE-2 CELMS DATA
Yang, Chao	pg. 6642 TU1.R13.2 - A RISK ASSESSMENT FRAMEWORK OF CYANOBACTERIA BLOOM USING LANDSAT DATA: A CASE STUDY OF LAKE LONGGAN (CHINA). pg. 3199 TH2.R14.3 - ROAD VECTORIZATION BASED ON IMAGE PIXEL TRACKING AND ATTRIBUTE MATCHING METHOD pg. 553 TU1.R7.8 - REMOTE SENSING SCENE CLASSIFICATION USING SPATIAL TRANSFORMER FUSING NETWORK
Yang, Cheng	pg. 1667 TH1.R3.2 - GRAPH-BASED MICRO-SEISMIC SIGNAL CLASSIFICATION WITH AN OPTIMISED FEATURE SPACE
Yang, Dochul	pg. 3564 WE2.R15.4 - IMPROVEMENT OF KOMPSAT-5 SEA SURFACE WIND WITH CORRECTION EQUATION RRETRIEVAL AND APPLICATION
Yang, Dongkai	pg. 920 TU2.R16.5 - GNSS-R MULTI-PERIOD SAR IMAGING EXPERIMENTAL STUDY pg. 5874 FR1.R8.5 - FEASIBILITY ANALYSIS AND SUITABLE ANTENNA DIRECTIONS OF IGNSS-R ALTIMETRY MEASUREMENT FOR AVOIDING THE INTERSATELLITE INTERFERENCE
Yang, Feifei	pg. 3943 FR2.R1.6 - STORM POWER OUTAGE PREDICTION AND VERIFICATION USING NWP MODELS AND REMOTE SENSING DATA
Yang, Feng	pg. 2843 FR2.R16.3 - ADAPTIVE FUSION AND MASK REFINEMENT INSTANCE SEGMENTATION NETWORK FOR HIGH RESOLUTION REMOTE SENSING IMAGES
Yang, Guangning	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Yang, Guangyi	TU2.R6.3 - LAND COVER MAPPING BASED ON MULTI-BRANCH FUSION OF OBJECT-BASED AND PIXEL-BASED SEGMENTATION WITH FILTERED LABELS

	pg. 1821 TH1.R9.6 - LEARNING DISCRIMINATIVE GLOBAL AND LOCAL FEATURES FOR BUILDING EXTRACTION FROM AERIAL IMAGES
Yang, H. Lexie	pg. 6826 WE1.R2.3 - RAPID STRUCTURE DETECTION IN SUPPORT OF DISASTER RESPONSE : A CASE STUDY OF THE 2018 KILAUEA VOLCANO ERUPTION
Yang, Haiguang	pg. 2815 FR2,R12.7 - A LONG-TIME INTEGRATION METHOD FOR GNSS-BASED PASSIVE RADAR DETECTION OF MARINE TARGET WITH MULTI-STAGE MOTIONS pg. 2639 FR2.R3.9 - A DEFORMABLE CONVOLUTION NEURAL NETWORK FOR SAR ATR pg. 2101 TH2.R5.10 - SAR IMAGE SUPER-RESOLUTION BASE ON WEIGHTED DENSE CONNECTED CONVOLUTIONAL NETWORK
Yang, Hao	pg. 609 TU1.R10.11 - PARALLEL GENERATION OF A 3D DENSE POINT CLOUD BASED ON UAV IMAGING AND THE CMVS ALGORITHM
Yang, Hoeseok	pg. 2559 FR1.R18.1 - IMPROVEMENT OF CNN-BASED ROAD EXTRACTION FROM SATELLITE IMAGES VIA MORPHOLOGICAL IMAGE PROCESSING
Yang, Hsiuhan Lexie	pg. 593 TU1.R10.7 - ENTROPY AND BOUNDARY BASED ADVERSARIAL LEARNING FOR LARGE SCALE UNSUPERVISED DOMAIN ADAPTATION
Yang, Hu	pg. 6349 TH1.R13.2 - ESTIMATING NEDT OF ON-ORBIT ATMS pg. 6353 TH1.R13.3 - PRE-LAUNCH PERFORMANCE OF THE ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) ON THE JOINT POLAR SATELLITE SYSTEM-2 SATELLITE (JPSS-2) pg. 6449 FR1.R13.9 - ON STUDY OF ERROR SOURCES IN MICROWAVE THERMAL VACUUM NON-LINEARITY TEST AND ON-ORBIT VERIFICATION
Yang, Hua	pg. 6886 WE2.R2.7 - INTRODUCTION OF SPATIAL AND TEMPORAL DISTRIBUTION OF TYPHOONS FROM 1989 TO 2018 AND TYPICAL CASES OF DISASTER IMPACT ANALYSIS
Yang, Jian	pg. 1711 TH1.R5.1 - LAND COVER CLASSIFICATION FOR POLSAR IMAGES BASED ON MIXTURE MODELS AND MRF pg. 5690 TU2.R8.1 - A MLSD-SMCG METHOD FOR SCATTERING AND EMISSION FROM OCEAN-SURFACES WITH FULL OCEAN SPECTRUM AND LARGE RMS HEIGHTS pg. 356 MO2.R19.4 - EFFECTS OF ROUGHNESS SCALE ON OCEAN RADAR SCATTERING USING NUMERICAL SIMULATIONS pg. 196 MO2.R15.7 - A MODIFIED SIFT ALGORITHM FOR POLSAR IMAGE REGISTRATION pg. 3888 FR1.R3.8 - LAND COVER CLASSIFICATION WITH CPOLINSAR IMAGE VIA M-DELTA DECOMPOSITION AND OPTIMAL POLARIMETRIC COHERENCE COEFFICIENT pg. 5725 TU2.R8.10 - A NUMERICAL STUDY OF SST EFFECTS ON OCEAN RADAR BACKSCATTERING pg. 1255 WE1.R18.10 - SHIP DETECTION FROM POLSAR IMAGERY BASED ON THE SCATTERING DIFFERENCE

	PARAMETER (pg. 1703) TH1.R3.11 - SYMMETRIC SCATTERING MODEL BASED FEATURE EXTRACTION FROM GENERAL COMPACT POLARIMETRIC SAR IMAGERY
Yang, Jiandong	pg. 521 TU1.R6.12 - MULTI-GPU PARALLEL IMPLEMENTATION OF SPATIAL-SPECTRAL KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Yang, Jianwei	pg. 2938 MO2.R9.6 - ASSESSING THE PERFORMANCES OF FY-3D/MWRI AND DMSP SSMIS IN GLOBSNOW-2 ASSIMILATION SYSTEM FOR SWE ESTIMATION pg. 3078 WE1.R9.9 - DEVELOPMENT OF MICROWAVE EMISSION MODEL FOR FROZEN SOIL WITH CONSIDERING THE VOLUME SCATTERING EFFECT
Yang, Jianyu	Pg. 2791 FR2.R12.1 - AN EFFICIENT COHERENT INTEGRATION APPROACH FOR BISTATIC SAR MOVING TARGET DETECTION AND PARAMETER ESTIMATION BASED ON 2-D DERAMP PROCESSING (Pg. 6571) FR2.R17.5 - FAST TOTAL VARIATION SUPERRESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING (Pg. 3188) TH1.R14.7 - MAJORIZE-MINIMIZATION BASED SUPERRESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING (Pg. 2815) FR2.R12.7 - A LONG-TIME INTEGRATION METHOD FOR GNSS-BASED PASSIVE RADAR DETECTION OF MARINE TARGET WITH MULTI-STAGE MOTIONS (Pg. 2779) FR2.R9.9 - KERNEL LOCAL SAMPLE DIRECTIONAL DISCRIMINANT EMBEDDING FOR SAR AUTOMATIC TARGET RECOGNITION (Pg. 473) TU1.R5.10 - UAV INTELLIGENT OPTIMAL PATH PLANNING METHOD FOR DISTRIBUTED RADAR SHORT-TIME APERTURE SYNTHESIS (Pg. 1793) TH1.R7.10 - AN IMPROVED TARGET EXTRACTION SCHEME FOR FORWARD-LOOKING SCANNING RADAR (Pg. 2101) TH2.R5.10 - SAR IMAGE SUPER-RESOLUTION BASE ON WEIGHTED DENSE CONNECTED CONVOLUTIONAL NETWORK (Pg. 2467) FR1.R14.11 - HARBOR DETECTION IN SAR IMAGES BASED ON MULTIDIRECTIONAL ONE-DIMENSIONAL SCANNING (Pg. 6718) TU1.R15.11 - SCENE EDGE TARGET RECOVERY OF SCANNING RADAR ANGULAR SUPER-RESOLUTION BASED ON DATA EXTRAPOLATION (Pg. 1795) TH1.R5.12 - MULTI-VIEW CNN-LSTM NEURAL NETWORK FOR SAR AUTOMATIC TARGET RECOVERY OF SCANNING RADAR ANGULAR SUPER-RESOLUTION BASED ON DATA EXTRAPOLATION (Pg. 1795) TH1.R5.12 - EFFICIENT TIME DOMAIN ECHO SIMULATION OF BISTATIC SAR CONSIDERING TOPOGRAPHY
Yang, Jiaxin	Pg. 877 TU2.R7.2 - ESTIMATING MULTIPLE-SCALE GDP DISTRIBUTION USING NIGHTTIME LIGHT AND SPATIAL METHODS
Yang, Jichen	pg. 948 TU2.R16.12 - DESIGNING SYNTHETIC OVERHEAD

	IMAGERY TO MATCH A TARGET GEOGRAPHIC REGION: PRELIMINARY RESULTS TRAINING DEEP LEARNING MODELS
Yang, Jingxuan	pg. 3215 TH2.R14.7 - FPGA BASED DIGITAL MAGNETIC FIELD DETECTION SYSTEM pg. 3219 TH2.R14.8 - OPTIMIZATION OF HIGH PRECISION SAR ADC USED IN THE REMOTE SENSING TECHNOLOGY
Yang, Jingzhicheng	pg. 4955 TH2.R6.5 - AN AUTOMATIC METHOD FOR MAPPING PEN AQUACULTURE IN A SHALLOW LAKE
Yang, John Xun	pg. 6349 TH1.R13.2 - ESTIMATING NEDT OF ON-ORBIT ATMS
Yang, Jun	pg. 5298 TU1.R19.2 - ASSIMATION OF FY3D COMBINED MICROWAVE SOUNDER OBSERVATION IN ATMS ALIKE ONE DATA STREAM pg. 1905 TH1.R16.5 - A REAL-TIME IMAGING PROCESSING METHOD BASED ON MODIFIED RMA WITH SUB-APERTURE IMAGES FUSION FOR SPACEBORNE SPOTLIGHT SAR pg. 5310 TU1.R19.5 - ANALYSIS OF MICROWAVE SCATTERING PROPERTIES OF NON-SPHERICAL ICE PARTICLES USING DISCRETE DIPOLE APPROXIMATION pg. 1251 WE1.R18.9 - A SVA BASED SIDELOBE SUPPRESSION METHOD FOR SEA-LAND SEGMENTATION AND SHIP DETECTION IN SAR IMAGES
Yang, Junli	pg. 2443 FR1.R14.5 - SIMPLE, FAST, ACCURATE OBJECT DETECTION BASED ON ANCHOR-FREE METHOD FOR HIGH RESOLUTION REMOTE SENSING IMAGES
Yang, Kai	pg. 5123 FR1.R10.4 - AN IMPROVED PROGRESSIVE TIN DENSIFICATION ALGORITHM FOR LIDAR DATA FILTERING BASED ON SEGMENTATION AND TERRAIN-ADAPTIVE PARAMETERS
Yang, Ke	(pg. 1580) WE2.R18.3 - AUTOMATED DETECTION OF MANHOLE COVERS IN MLS POINT CLOUDS USING A DEEP LEARNING APPROACH
Yang, Keun Hang	pg. 4485) WE1.R10.3 - INVESTIGATING THE LAGGED RELATIONSHIP BETWEEN SMAP SOIL MOISTURE AND LIVE FUEL MOISTURE IN CALIFORNIA, USA
Yang, Kun	pg. 4586 WE2.R1.7 - SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
Yang, Kunping	pg. 3900 FR1.R7.3 - POWER SERIES MODULE FOR SEMANTIC SEGMENTATION IN REMOTE SENSING IMAGE pg. 680 TU1.R12.7 - CSDN: A CROSS SPATIAL DIFFERENCE NETWORK FOR SEMANTIC CHANGE DETECTION IN REMOTE SENSING IMAGES
Yang, Lei	pg. 4826) TH1.R10.2 - LEAF AGING AFFECTS THE VARIABILITY OF CANOPY REFLECTANCE WITH STAND DEVELOPMENT IN EVERGREEN CHINESE FIR PLANTATION pg. 2909 FR2.R18.9 - MONITORING AND RISK ASSESSMENT OF HIGH-TEMPERATURE HEAT DAMAGE FOR SUMMER MAIZE

	BASED ON REMOTE SENSING DATA
	pg. 4646 WE2.R10.10 - SIMULATING AIRBORNE FULL- WAVEFORM LIDAR DATA IN VARYING MUTILAYERD FOREST
	THROUGH THE DART MODEL
Yang, Lexie	(pg. 6906) WE2.R2.12 - A FULLY AUTOMATIC METHOD FOR RAPIDLY MAPPING IMPACTED AREA BY NATURAL DISASTER
Yang, Lina	pg. 1480 WE2.R12.1 - REMOTE SENSING IMAGE SUPER- RESOLUTION VIA ENHANCED BACK-PROJECTION NETWORKS
Yang, Mengjiao	(pg. 2879) FR2.R18.1 - ANALYSIS OF THE SPATIAL AND TEMPORAL VARIATIONS OF LAND SURFACE TEMPERATURE OVER THE TIBETAN PLATEAU FROM 2000 TO 2018
Yang, Qian	pg. 4688) WE2.R11.10 - JOINT ESTIMATION OF GRASSLAND LEAF AREA INDEX AND LEAF CHLOROPHYLL CONTENT FROM UNMANNED AERIAL VEHICLE HYPERSPECTRAL DATA
Yang, Qiaoqiao	pg. 4967 TH2.R6.8 - MULTI-SCALE DEEP RESIDUAL LEARNING FOR CLOUD REMOVAL
Yang, Qiguang	pg. 6385 TH1.R15.2 - DEVELOPMENT OF A HIGH-FIDELITY CLARREO PATHFINDER SIMULATOR
Yang, Rong	pg. 3365 TU2.R13.7 - COHERENT GNSS REFLECTION SIGNAL PROCESSING FOR PRECISION ALTIMETRY APPLICATIONS
Yang, Rui	pg. 2715 FR2.R6.5 - A NOVEL VARIATIONAL AUTOENCODER BASED RADAR SIGNAL RECONSTRUCTION ALGORITHM USING POLLUTED DATA pg. 1464 WE2.R9.8 - DBC: DEEP BOUNDARIES COMBINATION FOR FARMLAND BOUNDARY DETECTION BASED ON UAV
	IMAGERY
	pg. 1743 TH1.R5.9 - LEARNING RELATION BY GRAPH NEURAL NETWORK FOR SAR IMAGE FEW-SHOT LEARNING
Yang, Shirui	pg. 1793 TH1.R7.10 - AN IMPROVED TARGET EXTRACTION SCHEME FOR FORWARD-LOOKING SCANNING RADAR
Yang, Siqi	pg. 4128 MO2.R10.3 - STUDY ON UAV SENSED CANOPY LEAF DISTRIBUTION USING COMPUTER SIMULATION
	pg. 5266] FR2.R11.5 - PREDICTION OF GRAIN PROTEIN CONTENT OF WINTER WHEAT USING UAV BASED HYPERSPECTRAL DATA
Yang, Ting	pg. 6774 TU2.R2.2 - THE ACTIVE MICROWAVE DATA-BASED ANALYSIS OF FIRE RISK IN THE WILDLAND-URBAN INTERFACE
	pg. 4203 MO2.R11.11 - RESEARCH OF METHANE EMISSIONS BASED ON BIOGEOCHEMICAL MODEL AND ACTIVE MICROWAVE MEASUREMENT
Yang, Wei	pg. 2795 FR2.R12.2 - A WEAK MOVING POINT TARGET DETECTION METHOD BASED ON HIGH FRAME RATE SAR IMAGE SEQUENCES AND MACHINE LEARNING pg. 1556 WE2.R16.9 - AN IMAGING COMPENSATION SCHEME

	FOR CORRECTING IONOSPHERIC EFFECT ON HIGH- RESOLUTION SPACEBORNE P-BAND SAR
	pg. 2149 TH2.R9.11 - AN ANTENNA BEAM STEERING STRATEGY FOR SAR ECHO SIMULATION IN HIGHLY ELLIPTICAL ORBIT
Yang, Wen	pg. 1663 TH1.R3.1 - EDGE-DRIVEN OBJECT MATCHING FOR UAV IMAGES AND SATELLITE SAR IMAGES
	pg. 1809 TH1.R9.3 - LOOK AT THE BIG PICTURE: BUILDING AREA EXTRACTION WITH GLOBAL DENSITY MAP
	pg. 988 TU2.R18.10 - INSTANCE SEGMENTATION WITH ORIENTED PROPOSALS FOR AERIAL IMAGES
	pg. 340 MO2.R18.10 - CHANGE DETECTION OF POLARIMETRIC SAR IMAGES USING MINKOWSKI LOG-RATIO DISTANCE
Yang, Xiangli	pg. 340 MO2.R18.10 - CHANGE DETECTION OF POLARIMETRIC SAR IMAGES USING MINKOWSKI LOG-RATIO DISTANCE
Yang, Xiaobo	pg. 1133 WE1.R16.3 - CURRENT DIRECTION RETRIEVAL ON THE GULF STREAM SURFACE LAYER
	pg. 401 TU1.R3.4 - PHASE UNWRAPPING VIA DEEP LEARNING BASED REGION SEGMENTATION
Yang, Xiaofeng	(pg. 4015) FR2.R8.3 - INVESTIGATION OF TROPICAL CYCLONE WIND ASYMMETRY FROM CROSS-POLARIZATION SAR IMAGERY
	pg. 6006 TU1.R14.5 - A COLOR RESTORATION ALGORITHM FOR THIN-FILM CAMERA IMAGES
	pg. 5725 TU2.R8.10 - A NUMERICAL STUDY OF SST EFFECTS ON OCEAN RADAR BACKSCATTERING
Yang, Xiaqing	Pg. 545 TU1.R7.6 - SEMI-SUPERVISED LEARNING-BASED REMOTE SENSING IMAGE SCENE CLASSIFICATION VIA ADAPTIVE PERTURBATION TRAINING
Yang, Xinyue	pg. 5566 FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT
	pg. 6694 TU1.R15.5 - HIGH-RESOLUTION BRDF AND ALBEDO PARAMETERS INVERSION FROM SENTINEL-2 MULTISPECTRAL INSTRUMENT DATA
Yang, Xuebo	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
	pg. 385 MO2.R19.12 - SCATTERING MECHANISM OF LARGE-FOOTPRINT FULL-WAVEFORM LIDAR OVER MOUNTAINOUS FOREST AREAS
Yang, Xun	pg. 6774 TU2.R2.2 - THE ACTIVE MICROWAVE DATA-BASED ANALYSIS OF FIRE RISK IN THE WILDLAND-URBAN INTERFACE
	pg. 6722 TU1.R15.12 - 3D FDTD INVESTIGATION ON BISTATIC SCATTERING FROM 2D ROUGH SURFACE WITH CPML ABSORBING CONDITION
Yang, Yang	pg. 4834 TH1.R10.4 - MONITORING DYNAMIC CHANGES OF VEGETATION COVER IN THE TARIM RIVER BASIN BASED WITH LANDSAT IMAGERY AND GOOGLE EARTH ENGINE

Yang, Yi	pg. 656 TU1.R12.1 - AN END-TO-END DEEP LEARNING CHANGE DETECTION FRAMEWORK FOR REMOTE SENSING
	IMAGES
	pg. 1945 TH1.R17.4 - END-TO-END DEEP LEARNING SEMANTIC CLASSIFICATION ARCHITECTURE FOR REMOTE SENSING
	IMAGERY
	pg. 2535 FR1.R17.6 - GEOSOT GRID REMOTE SENSING
	INTELLIGENT INTERPRETATION MODEL BASED ON FINE-TUNING
	RESNET-18: A CASE STUDY OF CONSTRUCTION LAND
Yang, Ying	pg. 1023 WE1.R3.8 - SURFACE DEFORMATION OF HIGH-SPEED
	RAILWAY BETWEEN CHANGCHUN AND HARBIN BASED ON
	TIME-SERIES INSAR TECHNIQUE
Yang, Yongmin	THE COOP WES BY 10 - STUDY ON REGIONAL DROUGHT
.ag, .ag	pg. 6898 WE2.R2.10 - STUDY ON REGIONAL DROUGHT MONITORING BASED ON MULTI-SOURCES DATA IN CHINA
	HOMITORING DISED ON FIGER SOURCES BRITING CHINA
Yang, Yue	pg. 5592 FR2.R19.8 - A HIGH-SPATIAL-RESOLUTION AEROSOL
	RETRIEVAL ALGORITHM FOR SENTINEL-2 IMAGES OVER
	BRIGHT URBAN SURFACES
	pg. 5596 FR2.R19.9 - HIGH RESOLUTION AEROSOL RETRIEVAL OVER URBAN SURFACES USING LANDSAT 8 OLI
	OVER ORDAN SORFACES OSING EARDSAF O OLI
Yang, Yuekui	WE1.R19.5 - CLOUD OBSERVATIONS FROM THE DEEP SPACE
	CLIMATE OBSERVATORY (DSCOVR) AT THE EARTH LAGRANGE 1
	POINT
Yang, Zhanxin	pg. 944 TU2.R16.11 - SEMANTIC SEGMENTATION
	KNOWLEDGE BASED MMRF OPTIMAL METHOD FOR FINE-
	GRAINED URBAN INFRASTRUCTURE CLASSIFICATION MAPPING
	FROM OPTICAL VHR AERIAL IMAGERY
Yang, Zhen	pg. 549 TU1.R7.7 - GRAPH EMBEDDING FOR REMOTE SCENE
	IMAGE CLASSIFICATION BASED ON ATTENTION MODEL
	pg. 1255 WE1.R18.10 - SHIP DETECTION FROM POLSAR
	IMAGERY BASED ON THE SCATTERING DIFFERENCE
	<u>PARAMETER</u>
Yang, Zhifeng	pg. 3676 TH2.R7.4 - A DEEP MACHINE LEARNING APPROACH
	FOR LIDAR BASED BOUNDARY LAYER HEIGHT DETECTION
Yanos, Claudia	THE DATE OF THE PARTY OF THE PARTY.
farios, Ciaudia	pg. 4407 TU2.R12.6 - URBAN HEAT ISLANDS AND REMOTE
	SENSING: CHARACTERIZING LAND SURFACE TEMPERATURE AT THE NEIGHBORHOOD SCALE
	THE REIGHBORHOUD SUITE
Yanovsky, Igor	pg. 1921 TH1.R16.9 - DERIVING VELOCITY FIELDS OF
	SUBMESOSCALE EDDIES USING MULTI-SENSOR IMAGERY
Yao, Huang	pg. 68 MO2.R5.8 - IMPROVED LOCAL COVARIANCE MATRIX
	REPRESENTATION FOR HYPERSPECTRAL IMAGE
	CLASSIFICATION
Yao, Jing	THE DO OF HINCHDEDWICED HADDEDCECTOR
Yao, Jing	(pg. 2049) TH2.R3.8 - UNSUPERVISED HYPERSPECTRAL EMBEDDING BY LEARNING A DEEP REGRESSION NETWORK
	pg. 2691 FR2.R5.10 - LOCALLY LINEAR RECONSTRUCTION FOR
	SPECTRAL ENHANCEMENT USING LIMITED PIXEL-TO-PIXEL

	MULTISPECTRAL AND HYPERSPECTRAL DATA
Yao, Libo	pg. 984 TU2.R18.9 - A FINE-GRAINED SHIP DETECTION FRAMEWORK BASED ON FIXED ROI MASKING AND FEATURE OPTIMIZATION IN OPTICAL REMOTE SENSING IMAGES pg. 565 TU1.R7.12 - A WAVELET DOMAIN BASED CNN SHIP CLASSIFICATION METHOD FOR HIGH RESOLUTION OPTICAL SATELLITE REMOTE SENSING IMAGES
Yao, Panpan	pg. 4586 WE2.R1.7 - SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
Yao, Wei	pg. 3104 WE1.R14.4 - CANDELA: A CLOUD PLATFORM FOR COPERNICUS EARTH OBSERVATION DATA ANALYTICS pg. 6945 FR1.R2.10 - DATA MINING ON THE CANDELA CLOUD PLATFORM
Yao, Xiaojing	pg. 885 TU2.R7.4 - EVALUATION OF THE ENVIRONMENTAL QUALITY OF HUMAN SETTLEMENTS IN FUZHOU BASED ON MULTI-SOURCE DATA
Yao, Yanjuan	pg. 1279 WE1.R20.4 - LOCAL CORRELATION BASED DATA GRAVITATION CLASSIFICATION FOR HYPERSPECTRAL IMAGE pg. 5262 FR2.R11.4 - WINTER WHEAT PHENOLOGY EXTRACTION BASED ON DENSE TIME SERIES OF SENYINEL-1A DATA pg. 2308 FR1.R6.5 - SUPERPIXEL BASED SPATIAL AND TEMPORAL ADAPTIVE REFLECTANCE FUSION MODEL pg. 64 MO2.R5.7 - MULTISCALE CONVOLUTION NETWORK WITH REGION-BASED MAX VOTING FOR HYPERSPECTRAL IMAGES CLASSIFICATION pg. 76 MO2.R5.10 - 2D-SSA BASED MULTISCALE FEATURE FUSION FOR FEATURE EXTRACTION AND DATA CLASSIFICATION
Yao, Yuanyuan	IN HYPERSPECTRAL IMAGERY Pg. 1440 WE2.R9.2 - MAPPING OF URBAN AREAS FROM SAR IMAGES VIA SEMANTIC SEGMENTATION
Yao, Zhenqiu	pg. 597 TU1.R10.8 - DEEP RECONSTRUCTION-ARRIVAL PICKING NETWORKS: TRANSFER LEARNING FROM SEISMIC P-WAVE TO ULTRASONIC LOGGING IMAGING
Yari, Masoud	pg. 6934 FR1.R2.7 - MULTI-SCALE AND TEMPORAL TRANSFER LEARNING FOR AUTOMATIC TRACKING OF INTERNAL ICE LAYERS pg. 2960 MO2.R9.12 - SNOW RADAR LAYER TRACKING USING ITERATIVE NEURAL NETWORK APPROACH pg. 7001 FR2.R2.12 - RADAR SENSOR SIMULATION WITH GENERATIVE ADVERSARIAL NETWORK
Ye, Dan	pg. 5855 TH2.R8.11 - PHOTON-COUNTING LIDAR: LINEAR DENSITY MULTI-LEVEL CLASSIFICATION METHOD FOR OFFSHORE AREAS
Ye, Hanlin	pg. 6682 TU1.R15.2 - MOON-BASED EARTH RADIATION RUDGET EXPERIMENT SITE SELECTION ANALYSIS RASED ON

BUDGET EXPERIMENT SITE SELECTION ANALYSIS BASED ON

	EARTH OBSERVATION GEOMETRY
Ye, Huichun	pg. 4371 TU2.R11.8 - MONITORING OF VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT BY MULTIANGULAR CANOPY REFLECTANCE SPECTRA IN MAIZE
Ye, Minchao	pg. 842 TU2.R5.4 - IMPROVING HYPERSPECTRAL IMAGE CLASSIFICATION USING GRAPH WAVELETS
Ye, Nan	pg. 4438) WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND WE1.R1.3 AND PASSIVE MICROWAYE SOIL
	WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI-TEMPORAL STUDY
	pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS
Ye, Shujia	pg. 296 MO2.R17.10 - WEAK TARGET DETECTION IN HIGH- RESOLUTION REMOTE SENSING IMAGES BY COMBINING SUPER-RESOLUTION AND DEFORMABLE FPN
Ye, Xiutiao	pg. 6989 FR2.R2.9 - CORRELATION ATTENTION FOR REMOTE SENSING IMAGE CAPTIONING
Ye, Yongchang	(pg. 4795) TH1.R6.5 - DEVELOPMENT OF GLOBAL LAND SURFACE PHENOLOGY PRODUCT FROM TIME SERIES OF VIIRS OBSERVATIONS
Ye, Zhanwei	(pg. 1267) WE1.R20.1 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON SEMI-SUPERVISED DUAL-BRANCH CONVOLUTIONAL AUTOENCODER WITH SELF-ATTENTION
	pg. 276 MO2.R17.5 - SMALL OBJECT DETECTION IN OPTICAL REMOTE SENSING VIDEO WITH MOTION GUIDED R-CNN
Yektakhah, Behzad	(pg. 1432) WE2.R6.11 - AN ACCURATE LOW-COST METHOD FOR Q-FACTOR AND RESONANCE FREQUENCY MEASUREMENTS OF RF AND MICROWAVE RESONATORS
Yeo, In-Young	pg. 4438) WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND
	WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI- TEMPORAL STUDY
	pg. 4446 WE1.R1.4 - PRELIMINARY MODEL FOR SOIL MOISTURE RETRIEVAL USING P-BAND RADIOMETER OBSERVATIONS
Yeoh, Paul	pg. 6097) WE1.R4.7 - COMPARISON OF TLS AND ULS DATA FOR WILDLIFE HABITAT ASSESSMENTS IN TEMPERATE WOODLANDS
Yeom, Jong-Min	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE
Yessou, Hichame	pg. 1349 WE2.R5.1 - A COMPARATIVE STUDY OF DEEP

	LEARNING LOSS FUNCTIONS FOR MULTI-LABEL REMOTE SENSING IMAGE CLASSIFICATION
Yevick, Aaron	pg. 3479 WE2,R4.7 - ORBITING AND IN-SITU LIDARS FOR EARTH AND PLANETARY APPLICATIONS
Yi, Yuchan	pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE WE1.R13.5 - LAND AND OCEAN COHERENCE DETECTION USING THE CYCLONE GLOBAL NAVIGATION SATELLITE SYSTEM (CYGNSS) MISSION LEVEL-1 DELAY-DOPPLER MAPS
Yin, Cong	pg. 5874 FR1.R8.5 - FEASIBILITY ANALYSIS AND SUITABLE ANTENNA DIRECTIONS OF IGNSS-R ALTIMETRY MEASUREMENT FOR AVOIDING THE INTERSATELLITE INTERFERENCE
Yin, Feng	pg. 4383 TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Yin, Jihao	pg. 2041 TH2.R3.6 - NEURAL NETWORK PRUNING FOR HYPERSPECTRAL IMAGE BAND SELECTION
Yin, Junjun	pg. 1711 TH1.R5.1 - LAND COVER CLASSIFICATION FOR POLSAR IMAGES BASED ON MIXTURE MODELS AND MRF pg. 5690 TU2.R8.1 - A MLSD-SMCG METHOD FOR SCATTERING AND EMISSION FROM OCEAN-SURFACES WITH FULL OCEAN SPECTRUM AND LARGE RMS HEIGHTS pg. 356 MO2.R19.4 - EFFECTS OF ROUGHNESS SCALE ON OCEAN RADAR SCATTERING USING NUMERICAL SIMULATIONS pg. 196 MO2.R15.7 - A MODIFIED SIFT ALGORITHM FOR POLSAR IMAGE REGISTRATION pg. 3888 FR1.R3.8 - LAND COVER CLASSIFICATION WITH CPOLINSAR IMAGE VIA M-DELTA DECOMPOSITION AND OPTIMAL POLARIMETRIC COHERENCE COEFFICIENT pg. 1255 WE1.R18.10 - SHIP DETECTION FROM POLSAR IMAGERY BASED ON THE SCATTERING DIFFERENCE PARAMETER pg. 1703 TH1.R3.11 - SYMMETRIC SCATTERING MODEL BASED FEATURE EXTRACTION FROM GENERAL COMPACT POLARIMETRIC SAR IMAGERY
Yin, Qiang	pg. 754 TU1.R18.4 - INCREMENTAL MULTITASK SAR TARGET RECOGNITION WITH DOMINANT NEURON PRESERVATION pg. 720 TU1.R16.6 - METRIC LEARNING BASED FINE-GRAINED CLASSIFICATION FOR POLSAR IMAGERY pg. 288 MO2.R17.8 - IMPROVING SAR TARGET RECOGNITION WITH MULTI-TASK LEARNING
Yin, Shuting	TU2.R6.8 - WEAKLY SUPERVISED LAND COVER CLASSIFICATION METHOD FOR LARGE-SCALE MULTI-RESOLUTION LABELED SATELLITE IMAGES DATA SETS
Yin, Siyang	pg. 3235 TH2.R14.12 - A METHOD TO IDENTIFY HIGH-QUALITY PURE SNOW DATA IN POLDER DATABASE

Yin, Tiangang	THE DESCRIPTION OF SOLAR INDUCED
iiii, iiaiiyaiiy	pg. 4846 TH1.R10.7 - SIMULATION OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE FROM 3D CANOPIES WITH THE
	DART MODEL
	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART
	MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE,
	CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Yin, Xiaobin	pg. 5790 TH1.R8.5 - EXTREME HIGH WIND SPEED
	MONITORING WITH SPATIAL RESOLUTION ENHANCEMENT OF
	HY-2B SMR BRIGHTNESS TEMPERATURE
	pg. 5635 MO2.R8.9 - SIMULATION ANALYSIS OF PAYLOAD IMR
	AND MICAP ONBOARD CHINESE OCEAN SALINITY SATELLITE
	pg. 5893 FR1.R8.10 - LAND AND SEA ICE MASK OPTIMIZATION
	FOR SCANNING MICROWAVE RADIOMETER OF HY-2B
	SATELLITE FRA ROLLINGTION OF SEA SURFACE
	pg. 5897 FR1.R8.11 - EVALUATION OF SEA SURFACE TEMPERATURE FROM HY-1C DATA
	TEMI EIGITORE FROM ITI-1C DATA
Yin, Xueqi	pg. 1643 TH1.R2.8 - BUILDING DETECTION BASED ON
	RECTANGLE APPROXIMATION AND REGION GROWING
Yin, Zhiyong	pg. 2898 FR2.R18.6 - ANALYSIS OF TRAFFIC FLOW IN URBAN
	AREA FOR SATELLITE VIDEO
Yirong, Wu	pg. 2827 FR2.R12.10 - ESTIMATION METHOD OF MICRO-
	DOPPLER PARAMETERS BASED ON CONCENTRATION OF TIME-
	FREQUENCY ROTATION DOMAIN
Yocky, David	pg. 2097 TH2.R5.9 - OPTICAL AND POLARIMETRIC SAR DATA
	FUSION TERRAIN CLASSIFICATION USING PROBABILISTIC
	FEATURE FUSION
Yokoya, Naoto	pg. 3751 TH2.R12.7 - DAMAGE CHARACTERIZATION IN URBAN
	ENVIRONMENTS FROM MULTITEMPORAL REMOTE SENSING
	DATASETS BUILT FROM PREVIOUS EVENTS
Yonezawa, Chinatsu	pg. 6863 WE2.R2.1 - DETECTION OF FLOODING
	AGRICULTURAL FIELD BY TYPHOON HAGIBIS ON 2019 USING
	<u>SAR IMAGERY</u>
	pg. 5171 FR1.R11.4 - PADDY FIELD MAPPING IN EASTERN
	PART OF ASIA USING SENTINEL-1 AND SENTINEL-2
Yoo, Hyelim	pg. 6051 TU2.R4.5 - GOES-17 ABI L1B PRODUCT
	PERFORMANCE WITH PREDICTIVE CALIBRATION
Yoo, Jung-Moon	pg. 5600 FR2.R19.10 - ESTIMATION OF DIRECTIONAL SURFACE
	REFLECTANCE AND ATMOSPHERIC AEROSOLS OVER EAST ASIA
	USING A MULTI-CHANNEL GEOSTATIONARY SATELLITE
Yoshida, Naofumi	pg. 5159 FR1.R11.1 - ASSESSING CROP PRODUCTIVITY IN
	DECONTAMINATED FARMLAND IN FUKUSHIMA USING MICRO-
	SATELLITE VENMS AND HYPERSPECTRAL SENSING
Yoshida, Takahiro	pg. 874 TU2.R7.1 - A GEOGRAPHICALLY WEIGHTED TOTAL

Yoshida, Yukio	pg. 1082 WE1.R6.1 - INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS
Yoshii, Tatsuki	pg. 4124 MO2.R10.2 - INTEGRATING UAV AND LIDAR DATA FOR RETRIEVING TREE VOLUME OF HINOKI FORESTS
Yost, Claire	pg. 4235 MO2.R12.8 - APPLICATION OF DINSAR TECHNIQUE TO HIGH COHERENCE SATELLITE IMAGES FOR STRATEGIC INFRASTRUCTURE MONITORING
You, Dong	pg. 2340 FR1.R9.2 - SHIP POSITIONING AND RADIAL VELOCITY ESTIMATION FOR SPACEBORNE SAR BASED ON ENERGY CENTER EXTRACTION pg. 6563 FR2.R17.3 - SPACE TARGETS RESCALING BASED ON BISTATIC ISAR SYSTEM
You, Hongjian	pg. 6742 TU1.R17.5 - STEREO MATCHING OF VHR REMOTE SENSING IMAGES VIA BIDIRECTIONAL PYRAMID NETWORK
You, Shu Cheng	pg. 728 TU1.R16.8 - STUDY ON POLARIMETRIC SCATTERING CHARACTERISTICS BASED ON DIFFERNENT BAND SAR IMAGES
You, Shucheng	pg. 6654 TU1.R13.5 - REMOTE SENSING MONITORING OF MANGROVE VARIATION IN JIULONG RIVER ESTUARY OF FUJIAN FROM 1978 TO 2018 pg. 6658 TU1.R13.6 - MONITORING MANGROVE CHANGES IN TONGMING BAY OF CHINA USING MULTI- TEMPORAL SATELLITE REMOTE SENSING IMAGERY pg. 6631 TU1.R2.11 - CONSTRUCTION AND APPLICATION OF A POST-QUAKE HOUSE DAMAGE MODEL BASED ON MULTISCALE SELF-ADAPTIVE FUSION OF SPECTRAL TEXTURES IMAGES
You, Sungjin	pg. 2440 FR1.R14.4 - HUMAN DETECTION WITH RANGE- DOPPLER SIGNATURES USING 3D CONVOLUTIONAL NEURAL NETWORKS
You, Yanan	pg. 397 TU1.R3.3 - INTERFEROMETRIC PHASE STACK DATA FILTER METHOD VIA BAYESIAN CP FACTORIZATION pg. 964 TU2.R18.4 - ARBITRARY-ORIENTED SHIP DETECTION METHOD BASED ON IMPROVED REGRESSION MODEL FOR TARGET DIRECTION DETECTION NETWORK pg. 2531 FR1.R17.5 - CHANGE DETECTION NETWORK OF NEARSHORE SHIPS FOR MULTI-TEMPORAL OPTICAL REMOTE SENSING IMAGES pg. 2328 FR1.R6.11 - FUSION OF SAR AND OPTICAL REMOTE SENSING IMAGES BASED ON DEEP CONVOLUTION GENERATIVE ADVERSARIAL NETWORKS
Youngentob, Kara	pg. 6097 WE1.R4.7 - COMPARISON OF TLS AND ULS DATA FOR WILDLIFE HABITAT ASSESSMENTS IN TEMPERATE WOODLANDS
Youssefi, David	pg. 457 TU1.R5.6 - CARS: A PHOTOGRAMMETRY PIPELINE USING DASK GRAPHS TO CONSTRUCT A GLOBAL 3D MODEL
Yu, Anthony	pg. 3479 WE2.R4.7 - ORBITING AND IN-SITU LIDARS FOR

	EARTH AND PLANETARY APPLICATIONS
Yu, Changjun	pg. 300 MO2.R17.11 - VESSEL TARGET MONITORING WITH BISTATIC COMPACT HF SURFACE WAVE RADAR
Yu, Chunyan	pg. 481 TU1.R6.2 - HYPERSPECTRAL CLASSIFICATION USING LOW RANK AND SPARSITY MATRICES DECOMPOSITION
Yu, Fangfang	pg. 6051 TU2.R4.5 - GOES-17 ABI L1B PRODUCT PERFORMANCE WITH PREDICTIVE CALIBRATION
Yu, Fujiang	pg. 5831) TH2.R8.5 - AN ESTIMATE OF THE DECAY RATE OF SWELLS USING ALTIMETER DATA
Yu, Hanwen	pg. 405 TU1.R3.5 - AN INFINITY-NORM-BASED PHASE UNWRAPPING METHOD WITH TSPA FRAMEWORK FOR MULTI- BASELINE SAR INTERFEROGRAMS pg. 409 TU1.R3.6 - IMPROVED BRANCH-CUT ALGORITHM FOR MULTIBASELINE PHASE UNWRAPPING USING SAR INTERFEROGRAMS pg. 24 MO2.R3.7 - A THREE-STAGE FRAMEWORK FOR MULTI- BASELINE INSAR PHASE UNWRAPPING
Yu, Haoyang	pg. 2033 TH2.R3.4 - HYPERSPECTRAL TARGET DETECTION BASED ON TARGET-CONSTRAINED INTERFERENCE-MINIMIZED BAND SELECTION pg. 56 MO2.R5.5 - SUPERPIXEL-LEVEL CONSTRAINT REPRESENTATION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION
Yu, Hongbin	pg. 5574 FR2.R19.3 - SATELLITE REMOTE SENSING OBSERVATIONS OF TRANS-ATLANTIC DUST TRANSPORT AND DEPOSITION: A MULTI-SENSOR ANALYSIS
Yu, Huai	pg. 1663 TH1.R3.1 - EDGE-DRIVEN OBJECT MATCHING FOR UAV IMAGES AND SATELLITE SAR IMAGES
Yu, Jiajie	pg. 3111) WE1.R14.6 - A MANAGEMENT SYSTEM FOR FORESTRY REMOTE SENSING IMAGES BASED ON THE GLOBAL SUBDIVISION MODEL
Yu, Jian	pg. 854 TU2.R5.7 - A DIRECTIONAL MESSAGE PROPAGATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGES CLASSIFICATION
Yu, Jianwen	(pg. 2101) TH2.R5.10 - SAR IMAGE SUPER-RESOLUTION BASE ON WEIGHTED DENSE CONNECTED CONVOLUTIONAL NETWORK
Yu, Jindong	pg. 1169 WE1.R16.12 - THE EFFECTS OF NOISE, SPARSITY AND PHASE ON PSEUDO-RANDOM TIME-SPACE MODULATION SAR PERFORMANCE
Yu, Jiyang	pg. 1628 TH1.R2.4 - A TARGET DETECTION ALGORITHM OF NEURAL NETWORK BASED ON HISTOGRAM STATISTICS
Yu, Peng	pg. 6129 WE1.R7.8 - NOAA20 AND S-NPP VIIRS LAND

	SURFACE TEMPERATURE PRODUCT VALIDATION AND INTER- COMPARISON
Yu, Ruikun	pg. 2747 FR2.R9.1 - POTENTIAL OF LAND COVER CLASSIFICATION BASED ON GF-1 AND GF-3 DATA
Yu, Shanshan	pg. 6381 TH1.R15.1 - OCO-2 CALIBRATION REFINEMENT ACROSS VERSIONS AND PLANS FOR OCO-3
Yu, Tao	pg. 2436 FR1.R14.3 - HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK pg. 4331 TU2.R10.10 - ESTIMATION OF GLOBAL NET PRIMARY PRODUCTIVITY FROM 1981 TO 2018 WITH REMOTE SENSING DATA
Yu, Ting	pg. 425 TU1.R3.10 - DUAL-BASELINE INTERFEROMETRIC ISAR IMAGING
Yu, Weidong	pg. 172 MO2.R15.1 - FOUR-COMPONENT DECOMPOSITION METHOD OF POLARIMETRIC SAR INTERFEROMETRY USING REFINED VOLUME SCATTERING MODELS pg. 1925 TH1.R16.10 - MULTICHANNEL SLIDING SPOTLIGHT SAR IMAGING: FIRST RESULT OF GF-3 SATELLITE pg. 1564 WE2.R16.11 - INTERRUPTED FMCW SAR IMAGING VIA SPARSE RECONSTRUCTION
Yu, Weihang	pg. 2316 FR1.R6.7 - EFFECTS OF UNBALANCED DATA ON RADIOMETRIC TRANSFORMING MODEL FITTING FOR RELATIVE RADIOMETRIC NORMALIZATION
Yu, Wentao	pg. 4295 TU2.R10.1 - SPATIAL-TEMPORAL PREDICTION OF VEGETATION INDEX WITH A CONVOLUTIONAL GRU NETWORK pg. 501 TU1.R6.7 - A NEW HYPERSPECTRAL CLASSIFICATION METHOD BASED ON NON-SUBSAMPLED CONTOURLET TRANSFORM (NSCT) AND DEEP NEURAL NETWORK pg. 509 TU1.R6.9 - DECOUPLED NETWORK WITH ACTIVE LEARNING STRATEGY FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Yu, Wenxian	pg. 2563 FR1.R18.2 - IRON ORE REGION SEGMENTATION USING HIGH-RESOLUTION REMOTE SENSING IMAGES BASED ON RES-U-NET pg. 2623 FR2.R3.5 - REDUCING THE RECEIVING ARRAY COMPLEXITY BY USING THE PARALLEL STOCHASTIC RESONANCE SYSTEM pg. 2855 FR2.R16.6 - ELLIPSE-FCN: OIL TANKS DETECTION FROM REMOTE SENSING IMAGES WITH FULLY CONVOLUTION NETWORK pg. 152 MO2.R14.7 - PHOTOVOLTAIC PANEL CONSTRUCTION CHANGE MONITORING BASED ON LSTM MODELS
Yu, Xianchuan	pg. 6981 FR2.R2.7 - UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA

Yu, Xiangzhen	pg. 924 TU2.R16.6 - A PRECISE ONE-STEP MOTION COMPENSATION FOR SYNTHETIC APERTURE RADAR
Yu, Xingxing	pg. 1090 WE1.R6.3 - A REGULARIZED TENSOR NETWORK FOR CYCLONE WIND SPEED ESTIMATION
Yu, Xuelian	pg. 2803 FR2.R12.4 - SHADOW DETECTION IN SAR IMAGES: AN OTSU- AND CFAR-BASED METHOD
Yu, Yanghai	pg. 104 MO2.R6.6 - PROCESSING OPTIONS FOR HIGH- RESOLUTION SAR TOMOGRAPHY FROM IRREGULAR TRAJECTORIES
Yu, Yunyue	pg. 6129 WE1.R7.8 - NOAA20 AND S-NPP VIIRS LAND SURFACE TEMPERATURE PRODUCT VALIDATION AND INTER- COMPARISON
Yu, Ze	pg. 1169 WE1.R16.12 - THE EFFECTS OF NOISE, SPARSITY AND PHASE ON PSEUDO-RANDOM TIME-SPACE MODULATION SAR PERFORMANCE
Yu, Zhengyang	(pg. 2783) FR2.R9.10 - RADAR SIGNAL INTRA-PULSE MODULATION RECOGNITION BASED ON CONTOUR EXTRACTION
Yuan, Anran	pg. 509 TU1.R6.9 - DECOUPLED NETWORK WITH ACTIVE LEARNING STRATEGY FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Yuan, Bin	(pg. 1413) WE2.R6.6 - INVERSION OF UNDERGROUND STRUCTURE BASED ON GA_RLPSO TIME-DOMAIN FULL WAVEFORM CONJUGATE GRADIENT METHOD
Yuan, Hanning	pg. 2316 FR1.R6.7 - EFFECTS OF UNBALANCED DATA ON RADIOMETRIC TRANSFORMING MODEL FITTING FOR RELATIVE RADIOMETRIC NORMALIZATION
Yuan, Haoxuan	pg. 2615 FR2.R3.3 - SATELLITE ATTITUDE CHANGE RECOGNITION BASED ON MULTI-FRAME IMAGE BY 3D CONVOLUTIONAL NEURAL NETWORKS
Yuan, Jiahao	pg. 4838 TH1.R10.5 - PRELIMINARY STUDY OF WAVELENGTH POSITIONS OF LEAF FLUORESCENCE PEAKS WITH EXPERIMENTAL DATA
Yuan, Lang	pg. 3199 TH2.R14.3 - ROAD VECTORIZATION BASED ON IMAGE PIXEL TRACKING AND ATTRIBUTE MATCHING METHOD pg. 2599 FR1.R18.11 - NEW NETWORK BASED ON D-LINKNET AND RESNEXT FOR HIGH RESOLUTION SATELLITE IMAGERY ROAD EXTRACTION
Yuan, Qiangqiang	pg. 5529) FR1.R19.2 - RECOVERY OF THE CARBON MONOXIDE PRODUCT FROM S5P-TROPOMI BY FUSING MULTIPLE DATASETS: A CASE STUDY IN HUBEI PROVINCE, CHINA pg. 2667 FR2.R5.4 - COMBINED THE DATA-DRIVEN WITH MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED

	NOISE REMOVAL IN HYPERSPECTRAL IMAGE
	pg. 589 TU1.R10.6 - LUNAR HYPERSPECTRAL IMAGE DESTRIPING METHOD USING LOW-RANK MATRIX RECOVERY AND GUIDED PROFILE
	pg. 2687 FR2.R5.9 - DATA-DRIVEN AND MODEL-DRIVEN SPECTRAL SUPERRESOLUTION ALGORITHMS: COMBINATION, ANALYSIS AND APPLICATION FOR CLASSIFICATION (pg. 2731) FR2.R6.9 - VIDEO SATELLITE IMAGERY SUPER RESOLUTION FOR 'JILIN-1' VIA A SINGLE-AND-MULTI FRAME ENSEMBLED FRAMEWORK
Yuan, Shuai	pg. 1381) WE2.R5.9 - UNSUPERVISED MIXED MULTI-TARGET DOMAIN ADAPTATION FOR REMOTE SENSING IMAGES CLASSIFICATION
Yuan, Tianle	FR1.R2.1 - CLASSIFYING GLOBAL LOW CLOUD MORPHOLOGY WITH A DEEP LEARNING MODEL: RESULTS AND POTENTIAL USE
Yuan, Xiangtian	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Yuan, Xiaoguang	pg. 493 TU1.R6.5 - FEATURE SEPARATION BASED ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Yuan, Yanxin	pg. 2284 FR1.R5.11 - HUMAN IDENTIFICATION USING MICRO-MOTION AND LIGHTWEIGHT NEURAL NETWORKS
Yuan, Yuan	pg. 2428 FR1.R14.1 - WEIGHTED HIERARCHICAL SPARSE REPRESENTATION FOR HYPERSPECTRAL TARGET DETECTION pg. 6467 FR1.R15.3 - DETECT GEOGRAPHICAL LOCATION BY MULTI-VIEW SCENE MATCHING pg. 6738 TU1.R17.4 - VISUAL LOCALIZATION BASED ON REMOTE SENSING SCENE MATCHING WITH SIAMESE FEATURE AGGREGATION NETWORK pg. 980 TU2.R18.8 - INSTANCE-AWARE REMOTE SENSING IMAGE CAPTIONING WITH CROSS-HIERARCHY ATTENTION
Yuan, Yue	pg. 2683 FR2.R5.8 - HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION USING NON-CONVEX RELAXATION LOW RANK AND TOTAL VARIATION REGULARIZATION
Yuasa, Takayuki	TU2.R13.6 - CAN MULTI-FREQUENCY INTERFEROMETRY EXPAND THE COHERENCE CONDITIONS FOR SPACEBORNE GNSS GRAZING ANGLE CARRIER PHASE ALIMETRY?
Yue, Jianwei	pg. 2723 FR2.R6.7 - SUBPIXEL-LEVEL EDGE FEATURE MATCHING FOR SAR AND OPTICAL IMAGES BASED ON ZERNIKE MOMENTS

Yue, Peng	pg. 3127 WE1.R14.10 - GEOCUBE: TOWARDS THE MULTI-SOURCE GEOSPATIAL DATA CUBE IN BIG DATA ERA pg. 6810 TU2.R2.11 - AUTOMATIC GENERATION OF DECISION SUPPORT REPORT FOR DISASTER RESPONSE USING REMOTE SENSING AND SDI
Yue, Siyu	pg. 4570 WE2.R1.3 - IDENTIFYING TERRESTRIAL VEGETATION- SOIL MOISTURE OSCILLATION FROM SATELLITE OBSERVATIONS
Yue, Zongyu	pg. 5203 FR2.R10.1 - MICROWAVE THERMAL EMISSION FEATURES OF MARE TRANQUILLITATIS AND MARE SERENITATIS INDICATED BY CE2 CELMS DATA
Yueh, Simon	pg. 3319 TU2.R1.1 - SMAP MISSION STATUS AND PLAN pg. 3330 TU2.R1.4 - SMAP MICROWAVE RADIOMETER CALIBRATION REVISIT APPROACHES AND PERFORMAMNCE pg. 4704 TH1.R1.4 - FULL-WAVE SIMULATIONS OF SCATTERING IN VEGETATION FOR MICROWAVE REMOTE SENSING OF SOIL MOISTURE pg. 3338 TU2.R1.6 - SMAP VALIDATION EXPERIMENT 2019-2021 (SMAPVEX19/21): DETECTION OF SOIL MOISTURE UNDER FOREST CANOPY pg. 2950 MO2.R9.9 - OBSERVING SYSTEM SIMULATION EXPERIMENT FOR REMOTE SENSING OF SNOW AT P-BAND pg. 5639 MO2.R8.10 - AN EMPIRICAL SEA ICE CORRECTION ALGORITHM FOR SMAP SSS RETRIEVAL IN THE ARCTIC OCEAN
Yuen, Peter	pg. 1315 WE2.R3.2 - RAPID ESTIMATION OF ORTHOGONAL MATCHING PURSUIT REPRESENTATION
Yun, Jeongran	pg. 5537 FR1.R19.4 - ANALYZING METEOROLOGICAL AND CHEMICAL CONDITIONS FOR TWO HIGH OZONE EVENTS OVER THE NEW YORK CITY AND LONG ISLAND REGION
Yun, Sang-Ho	pg. 6875 WE2.R2.4 - EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA
Yun, Ye	pg. 2380 FR1.R9.12 - TWO-STEP BISTATIC SPACEBORNE SLIDING-SPOTLIGHT SAR IMAGING AGORITHM BASED ON ACCURATE RANGE MODEL
Yuzuriha, Ryota	pg. 2695 FR2.R5.11 - TOTAL NUCLEAR NORMS OF GRADIENTS FOR HYPERSPECTRAL IMAGE PANSHARPENING
Yépez, Marco	pg. 6854 WE1.R2.10 - INSAR DEFORMATION ANALYSIS AND SOURCE MODELLING OF THE GUAGUA PICHINCHA VOLCANO (ECUADOR)
Z	
Zabalza, Jamie	pg. 76 MO2.R5.10 - 2D-SSA BASED MULTISCALE FEATURE FUSION FOR FEATURE EXTRACTION AND DATA CLASSIFICATION IN HYPERSPECTRAL IMAGERY
Zafar, Sumaira	pg. 4773 TH1.R4.11 - VALIDATION OF SENTINEL 3A ALTIMETRY DATA FOR RIVER LEVEL MONITORING AT TWO LOCATIONS

	ALONG THE LOWER INDUS RIVER
Zahabu, Eliakimu	pg. 4327 TU2.R10.9 - GENERATION OF LIDAR-PREDICTED FOREST BIOMASS MAPS FROM RADAR BACKSCATTER WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
Zahra, Al-Ali	Pg. 5990 TU1.R14.1 - GROUND REFLECTANCE FACTOR RETRIEVAL FROM LANDSAT (MSS, TM, ETM+, AND OLI) TIME SERIES DATA BASED ON SEMI-EMPIRICAL LINE APPROACH AND PSEUDOINVARIANT TARGETS IN ARID LANDSCAPE
Zaidi, Arjumand	pg. 4770 TH1.R4.10 - WATER BALANCE STUDY OF MANCHAR LAKE (SINDH, PAKISTAN) USING LANDSAT AND SENTINEL 3A pg. 4773 TH1.R4.11 - VALIDATION OF SENTINEL 3A ALTIMETRY DATA FOR RIVER LEVEL MONITORING AT TWO LOCATIONS ALONG THE LOWER INDUS RIVER pg. 4116 MO2.R1.11 - IMPACT OF SMALL DAMS ON VEGETATION COVER IN THE POTOHAR REGION OF PAKISTAN
Zakharov, Moisei	pg. 3082 WE1.R9.10 - REMOTE SENSING OF MOUNTAIN PERMAFROST LANDSCAPE BY MULTI-FUSION DATA MODELING. EXAMPLE OF VERKHOYANSK RIDGE (RUSSIA)
Zaky, Mostafa	pg. 370 MO2.R19.8 - ELECTROMAGNETIC SCATTERING COMPUTATION OF A SNOW LAYER OVER ROUGH SURFACE USING SSWAP-SD TECHNIQUE
Zalewsky, Eric	pg. 5537 FR1.R19.4 - ANALYZING METEOROLOGICAL AND CHEMICAL CONDITIONS FOR TWO HIGH OZONE EVENTS OVER THE NEW YORK CITY AND LONG ISLAND REGION
Zaman, Shadia	pg. 4590 WE2.R1.8 - ASSESSMENT OF SMAP AND ESA CCI SOIL MOISTURE OVER THE GREAT LAKES BASIN
Zambrano Gallardo, Cira Francisca	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Zambrano, Francisco	pg. 4803 TH1.R6.7 - IMPACT OF MEGADROUGHT ON VEGETATION PRODUCTIVITY IN CHILE: FOREST LESSER RESISTANT THAN CROPS AND GRASSLAND
Zammit, Christian	pg. 4626 WE2.R10.5 - FOREST FLOWS - REAL TIME MONITORING OF WATER QUANTITY AND QUALITY SPATIO- TEMPORAL DYNAMICS IN PLANTED FORESTS
Zamparelli, Virginia	pg. 5721 TU2.R8.9 - ON THE ANALYSIS OF SAR DERIVED WIND AND SEA SURFACE CURRENTS
Zanotta, Daniel	pg. 5207 FR2.R10.2 - A QUANTITATIVE ANALYSIS ON DIFFERENT CARBONATE INDICATORS BASED ON SPACEBORNE DATA IN A CONTROLLED KARST AREA
Zarro, Chiara	pg. 992 TU2.R18.11 - SEMI-AUTOMATIC CLASSIFICATION OF BUILDING FROM LOW-DENSITY LIDAR DATA AND WORLDVIEW-2 IMAGES THROUGH OBIA TECHNIQUE

Zaugg, Evan	pg. 6170 WE1.R12.7 - DEVELOPMENT AND RESULTS FOR A NEW SOFTWARE DEFINED RADAR: THE SLIMSDR
Zavagli, Massimo	pg. 2225 TH2.R20.8 - OIL SPILL DETECTION FROM SAR IMAGES BY DEEP LEARNING
Zavesky, Landon	pg. 6133) WE1.R7.9 - LANDSAT SURFACE REFLECTANCE VALIDATION SITE SELECTION
Zavorotny, Valery	pg. 7029 TU2.R20.2 - WIND VECTOR AND WAVE HEIGHT RETRIEVAL IN INLAND WATERS USING CYGNSS pg. 5909 MO2.R13.2 - IMPROVEMENT OF CYGNSS LEVEL 1 CALIBRATION USING MODELING AND MEASUREMENTS OF OCEAN SURFACE MEAN SQUARE SLOPE pg. 5913 MO2.R13.3 - SIMULATION STUDY OF CYGNSS OBSERVABILITY OF DYNAMIC INUNDATION EVENTS pg. 5917 MO2.R13.4 - INVESTIGATION OF COHERENT AND INCOHERENT SCATTERING FROM LAKES USING CYGNSS OBSERVATIONS
Zebker, Howard	pg. 5949 TU1.R4.2 - THE CASE FOR 6-HOUR REPEAT INSAR pg. 9 MO2.R3.3 - ON THE USE OF PRF DITHERING FOR WIDE SWATH, FINE RESOLUTION INSAR pg. 12 MO2.R3.4 - FEASIBILITY OF RETRIEVING SOIL MOISTURE FROM INSAR DECORRELATION PHASE AND CLOSURE PHASE pg. 16 MO2.R3.5 - A PHYSICS-BASED DECORRELATION PHASE COVARIANCE MODEL FOR EFFECTIVE DECORRELATION NOISE REDUCTION IN INTERFEROGRAM STACKS pg. 2487 FR1.R16.5 - AN ANALYTICAL FRAMEWORK FOR UNDERSTANDING PERSISTENT SCATTERER INCIDENCE IN INSAR IMAGERY WITH BANDWIDTH AND WAVELENGTH pg. 1030 WE1.R3.10 - HIGH-PASS FILTERS TO REDUCE THE EFFECTS OF BROAD ATMOSPHERIC CONTRIBUTIONS IN SBAS INVERSIONS: A CASE STUDY IN THE DELAWARE BASIN pg. 4606 WE2.R1.12 - JOINT RETRIEVAL OF SOIL MOISTURE AND PERMAFROST ACTIVE LAYER THICKNESS USING L-BAND INSAR AND P-BAND POLSAR
Zebker, Molly	pg. 1000 WE1.R3.2 - MAPPING THE RATE OF CARBON MINERALIZATION IN OMAN OPHIOLITES USING SENTINEL-1 INSAR TIME SERIES
Zelinski, Michael	(pg. 3963) FR2.R4.4 - OFF-NADIR LONGWAVE INFRARED HYPERSPECTRAL MATERIAL IDENTIFICATION USING RADIOMETRIC MODELS
Zempoaltecatl-Ramírez, Enrique	pg. 4526 WE1.R11.3 - UNDERSTANDING THE BACKSCATTERING FROM SENTINEL-1 OVER A GROWING SEASON OF CORN IN CENTRAL MEXICO USING THE THEXMEX DATASETS
Zeng, Dening	pg. 276 MO2.R17.5 - SMALL OBJECT DETECTION IN OPTICAL REMOTE SENSING VIDEO WITH MOTION GUIDED R-CNN

Zeng, Haijin	pg. 2312 FR1.R6.6 - HYPERSPECTRAL IMAGE RESTORATION VIA GLOBAL TOTAL VARIATION REGULARIZED LOCAL NONCONVEX LOW-RANK MATRIX APPROXIMATION
Zeng, Hao	pg. 6973 FR2.R2.5 - MINERAL DETECTION FROM HYPERSPECTRAL IMAGES USING A SPATIAL-SPECTRAL RESIDUAL CONVOLUTIONAL NEURAL NETWORK
Zeng, HongCheng	pg. 2819 FR2.R12.8 - EXPERIMENTAL RESULTS FOR GNSS-R BASED MOVING TARGET INDICATION
Zeng, Hongcheng	pg. 1556 WE2.R16.9 - AN IMAGING COMPENSATION SCHEME FOR CORRECTING IONOSPHERIC EFFECT ON HIGH-RESOLUTION SPACEBORNE P-BAND SAR
Zeng, Hui	pg. 5505 TH2.R19.7 - AEROSOL OPTICAL DEPTH ESTIMATE USING GROUND-MEASURED SPECTRAL SKYLIGHT RATIO METHOD
Zeng, Jiangyuan	pg. 5030 FR1.R1.4 - ASSESSMENT OF MODEL-BASED SURFACE SOIL TEMPERATURE PRODUCTS UNSING GLOBAL DENSE INSITU OBSERVATIONS pg. 3039 TU2.R9.10 - ASSESSMENT OF FOUR PASSIVE MICROWAVE SEA ICE CONCENTRATIONS BY USING AUTOMATIC MODIS SEA ICE CLASSIFICATION
Zeng, Jing	pg. 5588 FR2.R19.7 - DETECTING LAYER HEIGHT OF SMOKE AND DUST AEROSOLS OVER VEGETATED LAND AND WATER SURFACES VIA OXYGEN ABSORPTION BANDS
Zeng, Liang	pg. 1255 WE1.R18.10 - SHIP DETECTION FROM POLSAR IMAGERY BASED ON THE SCATTERING DIFFERENCE PARAMETER
Zeng, Qiming	pg. 6575 FR2.R17.6 - IONOSPHERE ESTIMATION OF THE SPLIT-SPECTRUM INSAR BASED ON IRI MODEL pg. 212 MO2.R15.11 - A NOVEL MODEL-BASED POLARIMETRIC SAR DATA DECOMPOSITION APPROACH AND ITS APPLICATIONS pg. 5155 FR1.R10.12 - QUALITY ASSESSMENT OF THREE DIGITAL ELEVATION MODELS WITH 30 M RESOLUTION BY TAKING 12 M TANDEM-X DEM AS REFERENCE
Zeng, Tao	pg. 905 TU2.R16.1 - SAR PARAMETRIC IMAGING FOR CIRCULAR-PLATE TARGET pg. 1901 TH1.R16.4 - PRELIMINARY RESULT OF MIMO SAR TOMOGRAPHY VIA 3D FFBP pg. 100 MO2.R6.5 - HIGH-RESOLUTION SAR TOMOGRAPHY VIA SEGMENTED DECHIRPING
Zeng, Wen	pg. 2388) FR1.R12.2 - SEMI-AUTOMATIC FULLY SPARSE SEMANTIC MODELING FRAMEWORK FOR HYPERSPECTRAL UNMIXING

Zeng, Xing	pg. 5566 FR2.R19.1 - EFFECTIVENESS EVALUATION OF CHINA'S AIR POLLUTION CONTROL ACTION PLAN USING SATELLITE AEROSOL PRODUCT
Zeng, Yongqin	pg. 3211 TH2.R14.6 - THE TRANSMISSION INTERFACE DESIGN OF HALL-EFFECT SENSOR
Zeng, Zhao-Cheng	pg. 4995 TH2.R10.6 - WEAK RESPONSE OF VEGETATION PHOTOSYNTHESIS TO METEOROLOGICAL DROUGHTS IN SOUTHWEST CHINA: INSIGHTS FROM GOME-2 SOLAR-INDUCED FLUORESCENCE pg. 5509 TH2.R19.8 - OBSERVING URBAN AEROSOLS USING CO-LOCATED NO2 ENHANCEMENT FROM TROPOMI
Zeng, Zhaozhao	pg. 5348 TU2.R19.3 - SPATIAL DOWNSCALING FOR GLOBAL PRECIPITATION MEASUREMENT USING A GEOGRAPHICALLY AND TEMPORALLY WEIGHTED REGRESSION MODEL
Zeng, Zhiqiang	pg. 2352 FR1.R9.5 - A NOVEL SAR IMAGE DOMAIN-GROUND MOVING TARGET IMAGING METHOD
Zeni, Giovanni	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS pg. 798 TU2.R3.4 - A GENERALIZED-SVD-BASED TECHNIQUE FOR ENHANCING PERFORMANCE OF MULTI-TEMPORAL DINSAR ANALYSES: THE WEIGHTED ADAPTIVE VARIABLE-LENGTH (WAVE) TECHNIQUE
Zeni, Luigi	pg. 6600 TU1.R2.3 - LONG-TERM MONITORING OF A TUNNEL IN A LANDSLIDE PRONE AREA BY DISTRIBUTED OPTICAL FIBER SENSORS
Zhai, Haoran	pg. 4426 TU2.R12.11 - RESEARCH ON THE DEVELOPMENT OF URBANIZATION IN YANGTZE RIVER ECONOMIC BELT BASED ON NIGHTTIME LIGHT REMOTE SENSING DATA
Zhai, Pengfei	pg. 4653) WE2.R11.1 - MAPPING RICE PLANTING AREA USING MULTI-TEMPORAL QUAD-POL RADARSAT-2 DATASETS AND RANDOM FOREST ALGORITHM
Zhai, Wanlin	pg. 5815 TH2.R8.1 - VALIDATION OF JASON-3 ALTIMETER USING TIDE GAUGES AROUND NORTH AMERICA pg. 6345 TH1.R13.1 - ANALYSIS OF FIVE-YEAR AMSR2 BRIGHTNESS TEMPERATURE USING THE HISTOGRAMS OF COLD MEASUREMENTS
Zhai, Weixin	pg. 2535 FR1.R17.6 - GEOSOT GRID REMOTE SENSING INTELLIGENT INTERPRETATION MODEL BASED ON FINE-TUNING RESNET-18: A CASE STUDY OF CONSTRUCTION LAND pg. 3111 WE1.R14.6 - A MANAGEMENT SYSTEM FOR FORESTRY REMOTE SENSING IMAGES BASED ON THE GLOBAL SUBDIVISION MODEL
Zhai, Xiaohua	pg. 6730 TU1.R17.2 - TRAINING GENERAL REPRESENTATIONS FOR REMOTE SENSING USING IN-DOMAIN KNOWLEDGE

Zhan, Jie	pg. 5878 FR1.R8.6 - COMPARISON OF QUASI-ANALYTICAL ALGORITHMS BASED ON IOCCG DATA
Zhan, Qian	pg. 5254 FR2.R11.2 - IMPROVING THE RICE YIELD ESTIMATION USING SMOS AND CYGNSS GNSS-R DATA
Zhan, Qiqi	Pg. 2879 FR2.R18.1 - ANALYSIS OF THE SPATIAL AND TEMPORAL VARIATIONS OF LAND SURFACE TEMPERATURE OVER THE TIBETAN PLATEAU FROM 2000 TO 2018
Zhan, Ronghui	pg. 2631 FR2.R3.7 - OBJECT DETECTION FOR REMOTE SENSING IMAGES BASED ON GUIDED ANCHORING AND FEATURE FUSION
Zhan, Xu	pg. 413 TU1.R3.7 - A DEM FUSION METHOD OF MULTI-BASELINE INSAR BASED ON PRIOR TERRAIN AND GUIDED FILTER pg. 112 MO2.R6.8 - 3D HIGH-RESOLUTION IMAGING OF MB-TOMOSAR BASED ON SBRIM ALGORITHM
Zhan, Yan	pg. 3618 TH2.R2.2 - GEODETIC DATA ASSIMILATION FOR EVALUATING VOLCANIC UNREST
Zhang, Aizhu	pg. 1279 WE1.R20.4 - LOCAL CORRELATION BASED DATA GRAVITATION CLASSIFICATION FOR HYPERSPECTRAL IMAGE pg. 5262 FR2.R11.4 - WINTER WHEAT PHENOLOGY EXTRACTION BASED ON DENSE TIME SERIES OF SENYINEL-1A DATA pg. 2308 FR1.R6.5 - SUPERPIXEL BASED SPATIAL AND TEMPORAL ADAPTIVE REFLECTANCE FUSION MODEL pg. 64 MO2.R5.7 - MULTISCALE CONVOLUTION NETWORK WITH REGION-BASED MAX VOTING FOR HYPERSPECTRAL IMAGES CLASSIFICATION pg. 76 MO2.R5.10 - 2D-SSA BASED MULTISCALE FEATURE FUSION FOR FEATURE EXTRACTION AND DATA CLASSIFICATION IN HYPERSPECTRAL IMAGERY
Zhang, Baopeng	pg. 960 TU2.R18.3 - AN END-TO-END SCALABLE OBJECT DETECTION NETWORK FOR REMOTE SENSING IMAGES
Zhang, Bin	pg. 6389 TH1.R15.3 - NOAA-20/S-NPP VIIRS SENSOR DATA RECORD ON-ORBIT PERFORMANCE UPDATES AND RECENT IMPROVEMENTS pg. 6058 TU2.R4.7 - ENHANCING LEGACY AND SMALL SATELLITE CALIBRATION/VALIDATION SYSTEMS WITH 3D GLOBE CONTEXTUAL VISUALIZATION
Zhang, Bing	pg. 2412 FR1.R12.8 - A BACKGROUND REFINEMENT COLLABORATIVE REPRESENTATION METHOD WITH SALIENCY WEIGHT FOR HYPERSPECTRAL ANOMALY DETECTION
Zhang, Bo	pg. 1015 WE1.R3.6 - PERMOFROST OBERVATION USING ALOS-2 PALSAR-2 DATA IN THE NORTHREN QINGHAI-TIBET PLATEAU
Zhang, Caiyun	pg. 3070 WE1.R9.7 - MAPPING VEGETATION AND SEASONAL

	THAW DEPTH IN CENTRAL ALASKA USING AIRBORNE HYPERSPECTRAL AND LIDAR DATA
Zhang, Chaochao	pg. 513 TU1.R6.10 - PARTICLE SWARM OPTIMIZATION BASED DEEP LEARNING ARCHITECTURE SEARCH FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Zhang, Chenglong	pg. 1279 WE1.R20.4 - LOCAL CORRELATION BASED DATA GRAVITATION CLASSIFICATION FOR HYPERSPECTRAL IMAGE
Zhang, Chenze	(pg. 3172) TH1.R14.3 - INTRODUCTION TO POSTGRADUATE EDUCATION OF REMOTE SENSING IN CHINA
Zhang, Chi	pg. 4211 MO2.R12.2 - A NOVEL BUILDING RECONSTRUCTION FRAMEWORK USING SINGLE-VIEW REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORKS pg. 4391 TU2.R12.2 - DECISION FUSION OF PIXEL-BASED AND REGION-BASED SEGMENTATION FOR BUILDING DETECTION
Zhang, Chuanrong	pg. 1833 TH1.R9.9 - SEMANTIC SEGMENTATION OF URBAN BUILDINGS FROM VHR REMOTELY SENSED IMAGERY USING ATTENTION-BASED CNN
Zhang, Cunjie	pg. 4530 WE1.R11.4 - ANALYSIS OF THE RELATION BETWEEN S-BAND BACKSCATTER AND RANKS DISTRIBUTION OF WHEAT pg. 4634 WE2.R10.7 - A FUEL MOISTURE CONTENT MONITORING METHODOLOGY BASED ON OPTICAL REMOTE SENSING
Zhang, Da	pg. 5396 WE1.R19.3 - TROPICAL CYCLONE CONVECTION STRUCTURE EVOLUTION DURING RAPID INTENSIFICATION USING HIMAWARI-8 SATELLITE
Zhang, Dan	pg. 936 TU2.R16.9 - FEATURE CORRELATION ANALYSIS OF TWO-BRANCH CONVOLUTIONAL NETWORKS FOR MULTI-SOURCE IMAGE CLASSIFICATION
Zhang, Di	pg. 1604 WE2.R18.9 - SAR EDDY DETECTION USING MASK- RCNN AND EDGE ENHANCEMENT
Zhang, Dianjun	pg. 5878 FR1.R8.6 - COMPARISON OF QUASI-ANALYTICAL ALGORITHMS BASED ON IOCCG DATA
Zhang, Dujuan	pg. 3184 TH1.R14.6 - FINE-SCALE POPULATION DISTRIBUTIONS MAPPING BASED ON REMOTE SENSING AND SOCIAL SENSING DATA
Zhang, Fan	

Zhang, Fei	pg. 5278 FR2.R11.8 - TOWARD MATURITY ASSESSMENT OF SNAP BEAN CROPS: A BEST-CASE GREENHOUSE SCENARIO pg. 469 TU1.R5.9 - TOWARD A STRUCTURAL DESCRIPTION OF ROW CROPS USING UAS-BASED LIDAR POINT CLOUDS
Zhang, Feng	pg. 4669 WE2.R11.5 - AUTUMN CROP MAPPING BASED ON DEEP LEARNING METHOD DRIVEN BY HISTORICAL LABELLED DATASET pg. 4673 WE2.R11.6 - DEVELOP LARGE-AREA AUTUMN CROP TYPE PRODUCT USING A DEEP LEARNING STRATEGY pg. 633 TU1.R11.6 - MULTISPECTRAL AND PANCHROMATIC IMAGE FUSION VIA CONVOLUTION SPARSE CODING WITH JOINT SPARSITY
Zhang, Fengli	pg. 176 MO2.R15.2 - EVALUATION OF A_S1 FOR BUILDING DAMAGE MAPPING BASED ON TOUZI DECOMPOSITION
Zhang, Fubo	pg. 437 TU1.R5.1 - 3D RECONSTRUCTION IN MOUNTAIN AREA FOR ARRAY TOMOSAR
Zhang, Gang	pg. 2471 FR1.R16.1 - A NON-LINEARLY MOVING SHIP AUTOFOCUS METHOD UNDER HYBRID COORDINATE SYSTEM pg. 916 TU2.R16.4 - IMPROVED OMEGA-K ALGORITHM FOR HIGHLY SQUINTED TOPSAR WITH CURVED TRAJECTORY
Zhang, Gaoyuan	pg. 5513) TH2.R19.9 - IMPACT OF PRECIPITATION ON MILLIMETER-WAVE BACKHAUL LINKS FOR 5G CELLULAR NETWORKS
Zhang, Guangyun	pg. 5878 FR1.R8.6 - COMPARISON OF QUASI-ANALYTICAL ALGORITHMS BASED ON IOCCG DATA
Zhang, Guichen	TU2.R6.4 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 1 (pg. 2408) FR1.R12.7 - IMPROVING THE CLASSIFICATION IN SHADOWED AREAS USING NONLINEAR SPECTRAL UNMIXING TU2.R6.7 - STEPWISE REFINEMENT OF LOW RESOLUTION LABELS FOR EARTH OBSERVATION DATA: PART 2
Zhang, Guixu	pg. 2264 FR1.R5.6 - LABEL SMOOTHING TECHNIQUE FOR ORDINAL CLASSIFICATION IN CLOUD ASSESSMENT
Zhang, Guo	pg. 6238 WE1.R15.5 - CORRECTION OF CAMERA INTERIOR ORIENTATION ELEMENTS BASED ON MULTI-FRAME STAR MAP
Zhang, Guohe	pg. 2284 FR1.R5.11 - HUMAN IDENTIFICATION USING MICRO-MOTION AND LIGHTWEIGHT NEURAL NETWORKS
Zhang, Guorong	pg. 2177) TH2.R18.6 - SPECTRAL-SPATIAL WEIGHTED SPARSE NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
Zhang, Haiying	pg. 4754 TH1.R4.6 - RELIABILITY EVALUATION OF WETLAND SAMPLES BASED ON HISTORICAL THEMATIC MAPS
Zhang, Hao	pg. 6254 WE1.R15.9 - ANALYSIS OF RADIANCE ERROR

	CAUSED BY THE CHANNEL CENTER WAVELENGTH SHIFT OF IMAGING SPECTROMETER
Zhang, Haocheng	pg. 336 MO2.R18.9 - BIPARTITE RESIDUAL NETWORK FOR CHANGE DETECTION IN HETEROGENEOUS OPTICAL AND RADAR IMAGES
Zhang, Haojian	pg. 2129 TH2.R9.6 - A VARIABLE-DECOUPLING METHOD USED IN MSR-BASED IMAGING ALGORITHMS FOR SAR WITH CONSTANT ACCELERATION
Zhang, Heng	pg. 20 MO2.R3.6 - A DEEP LEARNING BASED METHOD FOR LOCAL SUBSIDENCE DETECTION AND INSAR PHASE UNWRAPPING: APPLICATION TO MINING DEFORMATION MONITORING pg. 1544 WE2.R16.6 - A MODIFIED EXTENDED WAVENUMBER-DOMAIN ALGORITHM FOR ULTRA-HIGH RESOLUTION SPACEBORNE SPOTLIGHT SAR DATA PROCESSING pg. 1925 TH1.R16.10 - MULTICHANNEL SLIDING SPOTLIGHT SAR IMAGING: FIRST RESULT OF GF-3 SATELLITE
Zhang, Hengyang	pg. 5945 TU1.R4.1 - YAW STEERING USING ADAPTIVE FILTERING FOR SPACEBORNE SAR SYSTEMS
Zhang, Hong	pg. 4522 WE1.R11.2 - RICE MONITORING WITH TIME SERIES SAR BASED ON DEEP LEARNING MODEL pg. 4171 MO2.R11.3 - FINE CLASSIFICATION OF RICE IN NORTHEAST THAILAND USING C- AND L-BAND TIME-SERIES SAR IMAGES pg. 4399 TU2.R12.4 - AUTOMATIC EXTRACTION OF BUILT-UP AREAS FOR CITIES IN CHINA FROM GF-3 IMAGES BASED ON IMPROVED RESIDUAL U-NET NETWORK pg. 1015 WE1.R3.6 - PERMOFROST OBERVATION USING ALOS-2 PALSAR-2 DATA IN THE NORTHREN QINGHAI-TIBET PLATEAU pg. 5631 MO2.R8.8 - SEA SURFACE SALINITY SUBFOOTPRINT VARIABILITY FROM A GLOBAL HIGH-RESOLUTION MODEL
Zhang, Hongsheng	pg. 6650 TU1.R13.4 - ANALYZING MANGROVE ZONATION DYNAMICS USING TIME-SERIES HIGH-RESOLUTION SATELLITE IMAGES pg. 4422 TU2.R12.10 - A SHADOW FREE MULTISOURCE STACK SPARSE AUTOENCODER FRAMEWORK FOR URBAN IMPERVIOUS SURFACE MAPPING
Zhang, Hongyan	Pg. 7009 TU1.R20.2 - REMOTE SENSING IMAGE SPATIO- TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR TU2.R6.3 - LAND COVER MAPPING BASED ON MULTI-BRANCH FUSION OF OBJECT-BASED AND PIXEL-BASED SEGMENTATION WITH FILTERED LABELS Pg. 1821 TH1.R9.6 - LEARNING DISCRIMINATIVE GLOBAL AND LOCAL FEATURES FOR BUILDING EXTRACTION FROM AERIAL IMAGES
Zhang, Hu	pg. 4303 TU2.R10.3 - A METHOD FOR IMPROVING THE

	ACCURACY OF THE MODERATE RESOLUTION LAI PRODUCT BASED ON THE MIXED-PIXEL CLUMPING INDEX Pg. 5014 TH2.R10.11 - A HIGHLY CHLOROPHYLL-SENSITIVE AND LAI-INSENSITIVE INDEX BASED ON THE RED-EDGE BAND: CSI
Zhang, Huayu	pg. 2647 FR2.R3.11 - SUPERVISED ADAPTIVE-RPN NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Zhang, Hui	pg. 6997 FR2.R2.11 - A METHOD TO CREATE TRAINING DATASET FOR DEHAZING WITH CYCLEGAN
Zhang, Jia	pg. 128 MO2.R14.1 - GEONEX: A GEOSTATIONARY EARTH OBSERVATORY AT NASA EARTH EXCHANGE: EARTH MONITORING FROM OPERATIONAL GEOSTATIONARY SATELLITE SYSTEMS pg. 3180 TH1.R14.5 - IMPROVING STUDENT LEARNING OF SENSOR RELATED COURSES USING INNOVATIVE PROJECTS pg. 3215 TH2.R14.7 - FPGA BASED DIGITAL MAGNETIC FIELD DETECTION SYSTEM
Zhang, Jiahua	pg. 5396 WE1.R19.3 - TROPICAL CYCLONE CONVECTION STRUCTURE EVOLUTION DURING RAPID INTENSIFICATION USING HIMAWARI-8 SATELLITE
Zhang, Jiajia	pg. 1905 TH1.R16.5 - A REAL-TIME IMAGING PROCESSING METHOD BASED ON MODIFIED RMA WITH SUB-APERTURE IMAGES FUSION FOR SPACEBORNE SPOTLIGHT SAR
Zhang, Jian	pg. 862 TU2.R5.9 - ADAPTIVE NEIGHBORHOOD STRATEGY BASED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Zhang, Jianchang	pg. 5294 TU1.R19.1 - AN INVESTIGATION OF A PROBABILISTIC NOWCAST SYSTEM FOR DUAL-POLARIZATION RADAR APPLICATIONS
Zhang, Jianwei	pg. 1604 WE2.R18.9 - SAR EDDY DETECTION USING MASK-RCNN AND EDGE ENHANCEMENT
Zhang, Jiawei	pg. 1149 WE1.R16.7 - A SAR IMAGING METHOD BASED ON LP AND TV COMPOSITE NORM REGULARIZATION
Zhang, Jie	pg. 348 MO2.R19.2 - SIMULATION OF MICROWAVE BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL pg. 316 MO2.R18.4 - SAR IMAGE CHANGE DETECTION METHOD VIA A PYRAMID POOLING CONVOLUTIONAL NEURAL NETWORK pg. 300 MO2.R17.11 - VESSEL TARGET MONITORING WITH BISTATIC COMPACT HF SURFACE WAVE RADAR
Zhang, Jihua	pg. 1711 TH1.R5.1 - LAND COVER CLASSIFICATION FOR POLSAR IMAGES BASED ON MIXTURE MODELS AND MRF
Zhang, Jing	pg. 2256 FR1.R5.4 - CLOUD DETECTION USING GABOR FILTERS AND ATTENTION-BASED CONVOLUTIONAL NEURAL

	NETWORK FOR REMOTE SENSING IMAGES (pg. 2583) FR1.R18.7 - DEEP ENCODER-DECODER NETWORK BASED ON THE UP AND DOWN BLOCKS USING WAVELET TRANSFORM FOR CLOUD DETECTION
Zhang, Jinqiang	pg. 2113 TH2.R9.2 - AN IMPROVED IMAGING ALGORITHM FOR AIRBORNE NEAR-NADIR TOPS SAR WITH YAW ANGLE ERROR
Zhang, Jinshui	pg. 4669 WE2.R11.5 - AUTUMN CROP MAPPING BASED ON DEEP LEARNING METHOD DRIVEN BY HISTORICAL LABELLED DATASET pg. 4673 WE2.R11.6 - DEVELOP LARGE-AREA AUTUMN CROP TYPE PRODUCT USING A DEEP LEARNING STRATEGY
Zhang, Jiyu	pg. 2153 TH2.R9.12 - EFFICIENT TIME DOMAIN ECHO SIMULATION OF BISTATIC SAR CONSIDERING TOPOGRAPHY VARIATION
Zhang, Jun	pg. 1365 WE2.R5.5 - AN OPEN SET DOMAIN ADAPTATION NETWORK BASED ON ADVERSARIAL LEARNING FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION (pg. 2631) FR2.R3.7 - OBJECT DETECTION FOR REMOTE SENSING IMAGES BASED ON GUIDED ANCHORING AND FEATURE FUSION
Zhang, Junping	pg. 1770 TH1.R7.4 - SPECTRAL-SPATIAL JOINT TARGET DETECTION OF HYPERSPECTRAL IMAGE BASED ON TRANSFER LEARNING pg. 1291 WE1.R20.7 - UNSUPERVISED FEATURE EXTRACTION IN HYPERSPECTRAL IMAGE BASED ON IMPROVED NEIGHBORHOOD PRESERVING EMBEDDING pg. 517 TU1.R6.11 - SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE USING PCA AND GABOR FILTERING
Zhang, Kai	pg. 633 TU1.R11.6 - MULTISPECTRAL AND PANCHROMATIC IMAGE FUSION VIA CONVOLUTION SPARSE CODING WITH JOINT SPARSITY
Zhang, Ke	pg. 3180 TH1.R14.5 - IMPROVING STUDENT LEARNING OF SENSOR RELATED COURSES USING INNOVATIVE PROJECTS pg. 3215 TH2.R14.7 - FPGA BASED DIGITAL MAGNETIC FIELD DETECTION SYSTEM
Zhang, Kexin	pg. 6575 FR2.R17.6 - IONOSPHERE ESTIMATION OF THE SPLIT- SPECTRUM INSAR BASED ON IRI MODEL
Zhang, Kun	pg. 6022 TU1.R14.9 - PROGRESS TOWARD EVALUATING PRELAUNCH THERMAL VACUUM TESTS OF THE JPSS-2 CRIS INSTRUMENT
Zhang, Lamei	TU2.R16.3 - DIFFERENTIAL MODEL FOR SAR IMAGING [pg. 204] MO2.R15.9 - POLSAR IMAGE CLASSIFICATION VIA COMPLEX-VALUED MULTI-SCALE CONVOLUTIONAL NEURAL NETWORK
Zhang, Lanjie	pg. 5643 MO2.R8.11 - SEA SURFACE SALINITY RETRIEVAL FROM AQUARIUS IN THE SOUTH CHINA SEA USING MACHINE

	LEARNING ALGORITHM pg. 5426 WE1.R19.11 - CHARACTERISTIC ANALYSIS OF TYPHOON MUFIA FROM FY-3B MWRI OBSERVATIONS
Zhang, Lei	pg. 505 TU1.R6.8 - DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION. pg. 6989 FR2.R2.9 - CORRELATION ATTENTION FOR REMOTE SENSING IMAGE CAPTIONING pg. 1925 TH1.R16.10 - MULTICHANNEL SLIDING SPOTLIGHT SAR IMAGING: FIRST RESULT OF GF-3 SATELLITE
Zhang, Leiyu	pg. 6282 WE2.R13.5 - A NOVEL BISTATIC SAR IMAGING ALGORITHM BASED ON GNSS TRANSMITTERS AND LOW-ORBIT RECEIVERS
Zhang, Liangpei	Pg. 5529 FR1.R19.2 - RECOVERY OF THE CARBON MONOXIDE PRODUCT FROM SSP-TROPOMI BY FUSING MULTIPLE DATASETS: A CASE STUDY IN HUBEI PROVINCE, CHINA Pg. 2388 FR1.R12.2 - SEMI-AUTOMATIC FULLY SPARSE SEMANTIC MODELING FRAMEWORK FOR HYPERSPECTRAL UNMIXING Pg. 7009 TU1.R20.2 - REMOTE SENSING IMAGE SPATIO-TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR Pg. 577 TU1.R10.3 - SUPER RESOLUTION GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE AUGMENTATION FOR SCENE CLASSIFICATION OF REMOTE SENSING IMAGES Pg. 2392 FR1.R12.3 - SUPERPIXEL-BASED SPATIAL CONSTRAINTS SPARSE UNMIXING FOR HYPERSPECTRAL REMOTE SENSING IMAGERY Pg. 3900 FR1.R7.3 - POWER SERIES MODULE FOR SEMANTIC SEGMENTATION IN REMOTE SENSING IMAGE Pg. 2667 FR2.R5.4 - COMBINED THE DATA-DRIVEN WITH MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED NOISE REMOVAL IN HYPERSPECTRAL IMAGE pg. 1817 TH1.R9.5 - A MODIFIED D-LINKNET WITH TRANSFER LEARNING FOR ROAD EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING pg. 2400 FR1.R12.5 - SEMI-SUPERVISED HYPERSPECTRAL UNMIXING WITH VERY DEEP CONVOLUTIONAL NEURAL NETWORKS pg. 589 TU1.R10.6 - LUNAR HYPERSPECTRAL IMAGE DESTRIPING METHOD USING LOW-RANK MATRIX RECOVERY AND GUIDED PROFILE pg. 1821 TH1.R9.6 - LEARNING DISCRIMINATIVE GLOBAL AND LOCAL FEATURES FOR BUILDING EXTRACTION FROM AERIAL IMAGES pg. 1373 WE2.R5.7 - TOPIC MODEL FOR REMOTE SENSING DATA: A COMPREHENSIVE REVIEW pg. 1197 WE1.R17.7 - URBAN SCENES CHANGE DETECTION BASED ON MULTI-SCALE IRREGULAR BAG OF VISUAL FEATURES FOR HIGH SPATIAL RESOLUTION IMAGERY pg. 680 TU1.R12.7 - CSDN: A CROSS SPATIAL DIFFERENCE NETWORK FOR SEMANTIC CHANGE DETECTION IN REMOTE SENSING IMAGES

Zhang, Liangsong	pg. 5831 TH2.R8.5 - AN ESTIMATE OF THE DECAY RATE OF SWELLS USING ALTIMETER DATA
Zhang, Libao	pg. 758 TU1.R18.5 - SALIENCY-DRIVEN TARGET DETECTION BASED ON COMMON VISUAL FEATURE CLUSTERING FOR MULTIPLE SAR IMAGES pg. 1213 WE1.R17.11 - AIRPORT DETECTION BASED ON SALIENCY ANALYSIS AND GEOMETRIC FEATURE DETECTION FOR REMOTE SENSING IMAGES
Zhang, Linlin	pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT P- AND L-BAND
Zhang, Linrang	pg. 2141 TH2.R9.9 - GROUND MOVING TARGET IMAGING BASED ON MSOKT AND KT FOR SYNTHETIC APERTURE RADAR
Zhang, Lishuo	pg. 1869 TH1.R12.7 - ROBUST ESTIMATION APPROACH FOR PLANE FITTING IN 3D LASER SCANNING DATA
Zhang, Lixian	pg. 1381 WE2.R5.9 - UNSUPERVISED MIXED MULTI-TARGET DOMAIN ADAPTATION FOR REMOTE SENSING IMAGES CLASSIFICATION
Zhang, Lu	pg. 2627 FR2.R3.6 - RESEARCH ON C&I JAMMING BASED ON FREQUENCY DIVERSE ARRAY ANTENNA pg. 200 MO2.R15.8 - DEEP LEARNING BASED CLASSIFICATION USING SEMANTIC INFORMATION FOR POLSAR IMAGE
Zhang, Mengfan	pg. 2260 FR1.R5.5 - IMPROVED CLOUD DETECTION MODEL USING S-NPP CRIS FSR DATA VIA MACHINE LEARNING
Zhang, Mengliang	pg. 696 TU1.R12.11 - SPARSE REPRESENTATION-BASED IMAGE FUSION FOR MULTI-SOURCE NDVI CHANGE DETECTION
Zhang, Mengmeng	pg. 5104 FR1.R4.11 - CONVOLUTIONAL NEURAL NETWORK FOR COASTAL WETLAND CLASSIFICATION IN HYPERSPECTRAL IMAGE
Zhang, Mingda	pg. 3127 WE1.R14.10 - GEOCUBE: TOWARDS THE MULTI- SOURCE GEOSPATIAL DATA CUBE IN BIG DATA ERA pg. 6810 TU2.R2.11 - AUTOMATIC GENERATION OF DECISION SUPPORT REPORT FOR DISASTER RESPONSE USING REMOTE SENSING AND SDI
Zhang, Mingyu	pg. 1007 WE1.R3.4 - ATMOSPHERIC CORRECTION OF SAR IMAGES BASED ON PS-INSAR
Zhang, Nannan	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY pg. 1287 WE1.R20.6 - SPECTRAL PROPERTIES ANALYSIS OF WASTEWATER IN OIL FIELD AND ITS REMOTE SENSING DETECTION WITH GF-2

Zhang, Peng	pg. 1460 WE2.R9.7 - HIGH-ORDER TRIPLET CRF-PCANET FOR UNSUPERVISED SEGMENTATION OF SAR IMAGE
Zhang, Penglin	pg. 2643 FR2.R3.10 - A NOVEL FRAMEWORK OF CNN INTEGRATED WITH ADABOOST FOR REMOTE SENSING SCENE CLASSIFICATION
Zhang, Ping	pg. 4403 TU2.R12.5 - COMPARISON OF MODIS LAND SURFACE TEMPERATURE AND AIR TEMPERATURE OVER GLOBAL IN 2015 pg. 3039 TU2.R9.10 - ASSESSMENT OF FOUR PASSIVE MICROWAVE SEA ICE CONCENTRATIONS BY USING AUTOMATIC MODIS SEA ICE CLASSIFICATION
Zhang, Qi	pg. 1019 WE1.R3.7 - MONITORING DAM STABILITY USING NEW SAR INTERFEROMETRY TIME SERIES pg. 5139 FR1.R10.8 - DETECTION OF PRE-FAILURE DEFORMATION OF THE 2017 MAOXIAN LANDSLIDE WITH TIME-SERIES INSAR AND MULTI-TEMPORAL OPTICAL DATASETS pg. 421 TU1.R3.9 - A NEW FOREST HEIGHT INVERSION METHOD BASED ON L-BAND REPEAT-PASS SPACEBORNE POL-INSAR DATA pg. 2643 FR2.R3.10 - A NOVEL FRAMEWORK OF CNN INTEGRATED WITH ADABOOST FOR REMOTE SENSING SCENE CLASSIFICATION
Zhang, Qian	pg. 2467 FR1.R14.11 - HARBOR DETECTION IN SAR IMAGES BASED ON MULTIDIRECTIONAL ONE-DIMENSIONAL SCANNING
Zhang, Qiang	pg. 2667 FR2.R5.4 - COMBINED THE DATA-DRIVEN WITH MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED NOISE REMOVAL IN HYPERSPECTRAL IMAGE
Zhang, Qianqian	pg. 4914 TH2.R1.3 - SENTINEL-1 IMAGERY INCORPORATING MACHINE LEARNING FOR DRYLAND SALINITY MONITORING: A CASE STUDY IN ESPERANCE, WESTERN AUSTRALIA
Zhang, Qijian	pg. 1213 WE1.R17.11 - AIRPORT DETECTION BASED ON SALIENCY ANALYSIS AND GEOMETRIC FEATURE DETECTION FOR REMOTE SENSING IMAGES
Zhang, Qingjun	pg. 1125 WE1.R16.1 - A NOVEL AZIMUTH DISCRETE PERIODIC PHASE CODING METHOD FOR MIMO SAR
Zhang, Qiping	pg. 6571 FR2.R17.5 - FAST TOTAL VARIATION SUPERRESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING pg. 3188 TH1.R14.7 - MAJORIZE-MINIMIZATION BASED SUPER- RESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING
Zhang, Qixing	pg. 5497 TH2.R19.5 - SMOKE INJECTION HEIGHT OF WILDFIRE EVENT BASED ON MULTI-SOURCE REMOTE SENSING DATA IN YUNNAN PROVINCE, CHINA
Zhang, Ruanyu	pg. 5426 WE1.R19.11 - CHARACTERISTIC ANALYSIS OF TYPHOON MUFIA FROM FY-3B MWRI OBSERVATIONS

	pg. 5643 MO2.R8.11 - SEA SURFACE SALINITY RETRIEVAL FROM AQUARIUS IN THE SOUTH CHINA SEA USING MACHINE LEARNING ALGORITHM
Zhang, Rui	pg. 6654 TU1.R13.5 - REMOTE SENSING MONITORING OF MANGROVE VARIATION IN JIULONG RIVER ESTUARY OF FUJIAN FROM 1978 TO 2018
	pg. 6658 TU1.R13.6 - MONITORING MANGROVE CHANGES IN TONGMING BAY OF CHINA USING MULTI- TEMPORAL SATELLITE REMOTE SENSING IMAGERY
	pg. 2635 FR2.R3.8 - HIGH-RESOLUTION IMAGING BASED ON TEMPORAL-SPATIAL STOCHASTIC RADIATION FIELD AND COMPRESSIVE SENSING THEORY
	pg. 6631 TU1.R2.11 - CONSTRUCTION AND APPLICATION OF A POST-QUAKE HOUSE DAMAGE MODEL BASED ON MULTISCALE SELF-ADAPTIVE FUSION OF SPECTRAL TEXTURES IMAGES
Zhang, Ruihua	pg. 6957 FR2.R2.1 - IMPROVED GENETIC ALGORITHM FOR BUNDLE ADJUSTMENT IN PHOTOGRAMMETRY
Zhang, Ruixiang	pg. 1663 TH1.R3.1 - EDGE-DRIVEN OBJECT MATCHING FOR UAV IMAGES AND SATELLITE SAR IMAGES
Zhang, Run	pg. 621 TU1.R11.3 - SUPER-RESOLUTION OF LARGE VOLUMES OF SENTINEL-2 IMAGES WITH HIGH PERFORMANCE DISTRIBUTED DEEP LEARNING
Zhang, ShaoQuan	pg. 2169 TH2.R18.4 - SPECTRAL-SPATIAL HYPERSPECTRAL UNMIXING IN TRANSFORMED DOMAINS
Zhang, Shaoquan	pg. 2177 TH2.R18.6 - SPECTRAL-SPATIAL WEIGHTED SPARSE NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
Zhang, Shengwei	(pg. 6361) TH1.R13.5 - ANALYSIS OF SYSTEM LINEARITY CAUSED BY GAIN VARIATION FOR MICROSATBASED MICROWAVE RADIOMETER
	(pg. 6377) TH1.R13.9 - EVALUATION AND ASSIMILATION OF FY-3C MWHTS FOR RAMMASUN
	pg. 5333 TU1.R19.11 - DESIGN AND DEVELOPMENT OF GROUND-BASED MICROWAVE RADIOMETER FOR METEOROLOGICAL AND CLIMATE APPLICATIONS
Zhang, Shu	pg. 2731 FR2.R6.9 - VIDEO SATELLITE IMAGERY SUPER RESOLUTION FOR 'JILIN-1' VIA A SINGLE-AND-MULTI FRAME ENSEMBLED FRAMEWORK
Zhang, Shuangshang	(pg. 5717) TU2.R8.8 - AUTOMATIC EXTRACTION OF INTERNAL WAVE SIGNATURE FROM MULTIPLE SATELLITE SENSORS BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS
Zhang, Shunsheng	pg. 6555 FR2.R17.1 - FOCUSING OF SPACEBORNE SAR DATA USING THE IMPROVED NONLINEAR CHIRP SCALING ALGORITHM
	pg. 2627 FR2.R3.6 - RESEARCH ON C&I JAMMING BASED ON FREQUENCY DIVERSE ARRAY ANTENNA

Zhang, Shuo	pg. 2707 FR2.R6.3 - NOISE ANALYSIS OF HYPERSPECTRAL IMAGES CAPTURED BY DIFFERENT SENSORS
Zhang, Siyu	pg. 204 MO2.R15.9 - POLSAR IMAGE CLASSIFICATION VIA COMPLEX-VALUED MULTI-SCALE CONVOLUTIONAL NEURAL NETWORK
Zhang, Tao	pg. 2747 FR2.R9.1 - POTENTIAL OF LAND COVER CLASSIFICATION BASED ON GF-1 AND GF-3 DATA
	pg. 6961 FR2.R2.2 - SATELLITE OBSERVATION OF TANSMERIDIONAL PROPAGATING INTERNAL WAVES IN THE
	CELEBES SEA
	(pg. 5399) WE1.R19.4 - RESEARCH OF CLOUD DETECTION BASED ON MULTI-TEMPORAL THERMAL INFRARED DATA
	pg. 6654 TU1.R13.5 - REMOTE SENSING MONITORING OF
	MANGROVE VARIATION IN JIULONG RIVER ESTUARY OF FUJIAN FROM 1978 TO 2018
	pg. 6658 TU1.R13.6 - MONITORING MANGROVE CHANGES IN TONGMING BAY OF CHINA USING MULTI- TEMPORAL SATELLITE REMOTE SENSING IMAGERY
	pg. 1145 WE1.R16.6 - EXPEDITING PHASE GRADIENT
	AUTOFOCUS ALGORITHM FOR SAR IMAGING
	pg. 1255 WE1.R18.10 - SHIP DETECTION FROM POLSAR IMAGERY BASED ON THE SCATTERING DIFFERENCE PARAMETER
	pg. 5057 FR1.R1.11 - EVALUATION OF THE EFFECTS OF HETEROGENEOUS SOIL MOISTURE ON MEASURED
	BRIGHTNESS TEMPERATURE BY A MICROWAVE RADIOMETER
	pg. 6631 TU1.R2.11 - CONSTRUCTION AND APPLICATION OF A POST-QUAKE HOUSE DAMAGE MODEL BASED ON MULTISCALE
	SELF-ADAPTIVE FUSION OF SPECTRAL TEXTURES IMAGES (pg. 4426) TU2.R12.11 - RESEARCH ON THE DEVELOPMENT OF
	URBANIZATION IN YANGTZE RIVER ECONOMIC BELT BASED ON NIGHTTIME LIGHT REMOTE SENSING DATA
Zhang, Tianwen	pg. 1221 WE1.R18.1 - SHIPDENET-18: AN ONLY 1 MB WITH
	ONLY 18 CONVOLUTION LAYERS LIGHT-WEIGHT DEEP LEARNING NETWORK FOR SAR SHIP DETECTION
Zhang, Tianyang	pg. 1635 TH1.R2.6 - ADAPTIVE FEATURE AGGREGATION
	NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Zhang, Tinghao	pg. 1145 WE1.R16.6 - EXPEDITING PHASE GRADIENT AUTOFOCUS ALGORITHM FOR SAR IMAGING
	AUTOFOCUS ALGORITHM FOR SAR IMAGING
Zhang, Tingting	pg. 4566 WE2.R1.2 - SOIL MOISTURE MAPPING WITH POLARIMETRIC SAR IN HUANGHE DELTA OF CHINA
	pg. 2129 TH2.R9.6 - A VARIABLE-DECOUPLING METHOD USED IN MSR-BASED IMAGING ALGORITHMS FOR SAR WITH CONSTANT ACCELERATION
Zhang, Tingwei	pg. 1993 TH1.R18.5 - DEFORMATION VELOCITY MONITORING
	IN KUNMING CITY USING ASCENDING AND DESCENDING SENTINEL-1A DATA WITH SBAS-INSAR TECHNIQUE

Zhang, Tong	pg. 1639 TH1.R2.7 - FEATURE ENHANCED CENTERNET FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Zhang, Wangfei	pg. 1993 TH1.R18.5 - DEFORMATION VELOCITY MONITORING IN KUNMING CITY USING ASCENDING AND DESCENDING SENTINEL-1A DATA WITH SBAS-INSAR TECHNIQUE
Zhang, Wei	pg. 2747 FR2.R9.1 - POTENTIAL OF LAND COVER CLASSIFICATION BASED ON GF-1 AND GF-3 DATA pg. 597 TU1.R10.8 - DEEP RECONSTRUCTION-ARRIVAL PICKING NETWORKS: TRANSFER LEARNING FROM SEISMIC P-WAVE TO ULTRASONIC LOGGING IMAGING pg. 4426 TU2.R12.11 - RESEARCH ON THE DEVELOPMENT OF URBANIZATION IN YANGTZE RIVER ECONOMIC BELT BASED ON NIGHTTIME LIGHT REMOTE SENSING DATA
Zhang, Weili	pg. 909 TU2.R16.2 - ADAPTIVE SIDELOBE SUPPRESSION OF SAR IMAGES WITH ARBITRARY DOPPLER CENTROIDS AND BANDWIDTHS
Zhang, Weiyu	pg. 6686 TU1.R15.3 - EVALUATION OF DOWNWARD. SHORTWAVE RADIATION ESTIMATIONS OVER TROPICAL OCEAN SURFACE BASED ON BAYESIAN MODEL AVERAGING METHOD pg. 6710 TU1.R15.9 - LONG-TERM TRENDS OF ESTIMATED SURFACE INCIDENT SHORTWAVE RADIATION IN CHINA DURING 1970-2015
Zhang, Wen-Liang	pg. 6373 TH1.R13.8 - INTERCALIBRATION OF FY-3C MWRI OVER FOREST WARM-SCENES USING MICROWAVE RADIATIVE TRANSFER MODEL
Zhang, Wenjie	pg. 4516) WE1.R10.11 - EFFECTS OF TROPICAL FOREST DEGRADATION ON AMAZON FOREST PHENOLOGY
Zhang, Wenjuan	pg. 6254 WE1.R15.9 - ANALYSIS OF RADIANCE ERROR CAUSED BY THE CHANNEL CENTER WAVELENGTH SHIFT OF IMAGING SPECTROMETER
Zhang, Wentao	pg. 1793 TH1.R7.10 - AN IMPROVED TARGET EXTRACTION SCHEME FOR FORWARD-LOOKING SCANNING RADAR
Zhang, Xi	pg. 1774 TH1.R7.5 - A HIGH RESOLUTION SAR SHIP SAMPLE DATABASE AND SHIP TYPE CLASSIFICATION pg. 6586 FR2.R17.9 - THE RELATIONSHIP BETWEEN EMULSION FILM THICKNESS AND NORMALIZED RADAR CROSS SECTION CONSTRUCTED BY EXPERIMENT
Zhang, Xiang	pg. 6642 TU1.R13.2 - A RISK ASSESSMENT FRAMEWORK OF CYANOBACTERIA BLOOM USING LANDSAT DATA: A CASE STUDY OF LAKE LONGGAN (CHINA). pg. 5030 FR1.R1.4 - ASSESSMENT OF MODEL-BASED SURFACE SOIL TEMPERATURE PRODUCTS UNSING GLOBAL DENSE INSITU OBSERVATIONS pg. 6654 TU1.R13.5 - REMOTE SENSING MONITORING OF MANGROVE VARIATION IN JIULONG RIVER ESTUARY OF FUJIAN FROM 1978 TO 2018

Zhang, Xiangrong	pg. 4279 TU1.R1.8 - LAND USE AND LAND COVER CHANGE OF GHANA pg. 4723 TH1.R1.9 - SOIL MOISTURE ESTIMATION BASED ON THE AIEM FOR BARE AGRICULTURAL AREA pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB-SAHARA AFRICA pg. 1267 WE1.R20.1 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON SEMI-SUPERVISED DUAL-BRANCH CONVOLUTIONAL AUTOENCODER WITH SELF-ATTENTION pg. 1937 TH1.R17.2 - A LEARNABLE BLUR KERNEL FOR REMOTE SENSING IMAGE RETRIEVAL pg. 838 TU2.R5.3 - HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK pg. 1283 WE1.R20.5 - HYPERSPECTRAL IMAGE
	CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER NETWORK pg. 276 MO2.R17.5 - SMALL OBJECT DETECTION IN OPTICAL REMOTE SENSING VIDEO WITH MOTION GUIDED R-CNN pg. 541 TU1.R7.5 - REMOTE SENSING SCENE CLASSIFICATION BASED ON GLOBAL AND LOCAL CONSISTENT NETWORK pg. 1731 TH1.R5.6 - POLSAR SCENE CLASSIFICATION VIA LOW-RANK TENSOR-BASED MULTI-VIEW SUBSPACE REPRESENTATION pg. 1635 TH1.R2.6 - ADAPTIVE FEATURE AGGREGATION NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES pg. 1062 WE1.R5.7 - SPATIAL-SPECTRAL SMOOTH GRAPH CONVOLUTIONAL NETWORK FOR MULTISPECTRAL POINT CLOUD CLASSIFICATION pg. 2057 TH2.R3.10 - REMOTE SENSING IMAGES FEATURE LEARNING BASED ON MULTI-BRANCH NETWORKS
	pg. 1472 WE2.R9.10 - PANCHROMATIC IMAGE LAND COVER CLASSIFICATION VIA DCNN WITH UPDATING ITERATION STRATEGY pg. 2647 FR2.R3.11 - SUPERVISED ADAPTIVE-RPN NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Zhang, Xiangwen	pg. 2013 TH1.R18.10 - EVALUATION OF SPATIAL-TEMPORAL VARIATION OF VEGETATION RESTORATION IN DEXING COPPER MINE AREA USING REMOTE SENSING DATA
Zhang, Xiao	pg. 56 MO2.R5.5 - SUPERPIXEL-LEVEL CONSTRAINT REPRESENTATION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION
Zhang, Xiaobo	pg. 2894 FR2.R18.5 - CHANGE OF IMPERVIOUS SURFACE OF CHENGDU CITY, CHINA pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK
Zhang, Xiaodian	pg. 1759 TH1.R7.1 - DEEP LEARNING-BASED HYPERSPECTRAL TARGET DETECTION WITHOUT EXTRA LABELED DATA
Zhang, Xiaohan	pg. 984 TU2.R18.9 - A FINE-GRAINED SHIP DETECTION

	FRAMEWORK BASED ON FIXED ROI MASKING AND FEATURE OPTIMIZATION IN OPTICAL REMOTE SENSING IMAGES (Pg. 565) TU1.R7.12 - A WAVELET DOMAIN BASED CNN SHIP CLASSIFICATION METHOD FOR HIGH RESOLUTION OPTICAL SATELLITE REMOTE SENSING IMAGES
Zhang, Xiaoling	pg. 1221 WE1.R18.1 - SHIPDENET-18: AN ONLY 1 MB WITH ONLY 18 CONVOLUTION LAYERS LIGHT-WEIGHT DEEP LEARNING NETWORK FOR SAR SHIP DETECTION
	pg. 393 TU1.R3.2 - A NOVEL GROUND MOVING TARGET RADIAL VELOCITY ESTIMATION METHOD FOR DUAL-BEAM ALONG-TRACK INTERFEROMETRIC SAR
	pg. 2479 FR1.R16.3 - EFFICIENT INSAR IMAGING BASED ON FREQUENCY-DOMAIN BACK PROJECTION ALGORITHM
	pg. 2483 FR1.R16.4 - ISAR COMPRESSIVE SENSING IMAGING USING CONVOLUTION NEURAL NETWORK WITH INTERPRETABLE OPTIMIZATION
	pg. 545 TU1.R7.6 - SEMI-SUPERVISED LEARNING-BASED REMOTE SENSING IMAGE SCENE CLASSIFICATION VIA ADAPTIVE PERTURBATION TRAINING
	pg. 413 TU1.R3.7 - A DEM FUSION METHOD OF MULTI- BASELINE INSAR BASED ON PRIOR TERRAIN AND GUIDED FILTER
	pg. 112 MO2.R6.8 - 3D HIGH-RESOLUTION IMAGING OF MB- TOMOSAR BASED ON SBRIM ALGORITHM
Zhang, Xiaotong	pg. 6686 TU1.R15.3 - EVALUATION OF DOWNWARD SHORTWAVE RADIATION ESTIMATIONS OVER TROPICAL OCEAN SURFACE BASED ON BAYESIAN MODEL AVERAGING METHOD pg. 6710 TU1.R15.9 - LONG-TERM TRENDS OF ESTIMATED
	SURFACE INCIDENT SHORTWAVE RADIATION IN CHINA DURING 1970-2015
Zhang, Xiaoyang	pg. 4795 TH1.R6.5 - DEVELOPMENT OF GLOBAL LAND SURFACE PHENOLOGY PRODUCT FROM TIME SERIES OF VIIRS OBSERVATIONS
Zhang, Xiaoyu	pg. 60 MO2.R5.6 - SELF-PACED LEARNING WITH SUPERPIXELWISE FEATURES FOR HYPERSPECTRAL IMAGE CLASSIFICATION
	pg. 4967 TH2.R6.8 - MULTI-SCALE DEEP RESIDUAL LEARNING FOR CLOUD REMOVAL
Zhang, Xingyue	pg. 112 MO2.R6.8 - 3D HIGH-RESOLUTION IMAGING OF MB- TOMOSAR BASED ON SBRIM ALGORITHM
Zhang, Xinxuan	(pg. 3931) FR2.R1.3 - INVESTIGATING THE ASSIMILATION OF LEAF AREA INDEX PRODUCTS AT DIFFERENT TEMPORAL RESOLUTIONS IN A LAND SURFACE MODEL
Zhang, Xinyu	pg. 68 MO2.R5.8 - IMPROVED LOCAL COVARIANCE MATRIX REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Zhang, Xudong	pg. 6961 FR2.R2.2 - SATELLITE OBSERVATION OF TANSMERIDIONAL PROPAGATING INTERNAL WAVES IN THE

pg. 64 MO2.R5.7 - MULTISCALE CONVOLUTION NETWORK WITH REGION-BASED MAX VOTING FOR HYPERSPECTRAL IMAGES CLASSIFICATION pg. 1817 TH1.R9.5 - A MODIFIED D-LINKNET WITH TRANSFER LEARNING FOR ROAD EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING pg. 4203 MO2.R11.11 - RESEARCH OF METHANE EMISSIONS BASED ON BIOGEOCHEMICAL MODEL AND ACTIVE MICROWAVE MEASUREMENT pg. 6706 TU1.R15.8 - AN APPROACH TO ESTIMATE NET SURFACE SHORTWAVE RADIATION ON CLEAR-SKY DAYS IN RUGGED TERRAIN BASED ON REMOTE SENSING DATA pg. 348 MO2.R19.2 - SIMULATION OF MICROWAVE BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL pg. 505 TU1.R6.8 - DEEP SELF-SUPERVISED LEARNING FOR
LEARNING FOR ROAD EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING Pg. 4203 MO2.R11.11 - RESEARCH OF METHANE EMISSIONS BASED ON BIOGEOCHEMICAL MODEL AND ACTIVE MICROWAVE MEASUREMENT Pg. 6706 TU1.R15.8 - AN APPROACH TO ESTIMATE NET SURFACE SHORTWAVE RADIATION ON CLEAR-SKY DAYS IN RUGGED TERRAIN BASED ON REMOTE SENSING DATA Pg. 348 MO2.R19.2 - SIMULATION OF MICROWAVE BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL
BASED ON BIOGEOCHEMICAL MODEL AND ACTIVE MICROWAVE MEASUREMENT Pg. 6706 TU1.R15.8 - AN APPROACH TO ESTIMATE NET SURFACE SHORTWAVE RADIATION ON CLEAR-SKY DAYS IN RUGGED TERRAIN BASED ON REMOTE SENSING DATA Pg. 348 MO2.R19.2 - SIMULATION OF MICROWAVE BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL
SURFACE SHORTWAVE RADIATION ON CLEAR-SKY DAYS IN RUGGED TERRAIN BASED ON REMOTE SENSING DATA (pg. 348) MO2.R19.2 - SIMULATION OF MICROWAVE BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL
BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL
pg. 505 TU1.R6.8 - DEEP SELF-SUPERVISED LEARNING FOR
FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION.
(pg. 6254) WE1.R15.9 - ANALYSIS OF RADIANCE ERROR CAUSED BY THE CHANNEL CENTER WAVELENGTH SHIFT OF IMAGING SPECTROMETER
pg. 1616 TH1.R2.1 - FUSION-ORIENTED AIRCRAFT DETECTION IN LARGE SCENE IMAGE BASED ON TINY DARKNET
pg. 2595 FR1.R18.10 - LIGHT-WEIGHT ATTENTION SEMANTIC SEGMENTATION NETWORK FOR HIGH-RESOLUTION REMOTE SENSING IMAGES
pg. 3176 TH1.R14.4 - QUALITY ANALYSIS OF THE VIIRS LAI/FPAR TIME-SERIES
pg. 4787 TH1.R6.3 - DETECTION OF CHANGES IN IMPERVIOUS SURFACE USING SENTINEL-2 IMAGERY pg. 4100 MO2.R1.7 - SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER
pg. 6571 FR2.R17.5 - FAST TOTAL VARIATION SUPERRESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING pg. 3188 TH1.R14.7 - MAJORIZE-MINIMIZATION BASED SUPER- RESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING

	SCANNING RADAR ANGULAR SUPER-RESOLUTION BASED ON DATA EXTRAPOLATION
Zhang, Ying	pg. 1311 WE2.R3.1 - A SPATIALIZATION METHOD OF POPULATION DATA CONSIDERING SPATIAL HETEROGENEITY pg. 6615 TU1.R2.7 - THREE-DIMENSIONAL VARIATIONS OF CARBON MONOXIDE CONCENTRATION ASSOCIATED WITH WENCHUAN EARTHQUAKE BASED ON AIRS DATA pg. 164 MO2.R14.10 - VISION-BASED SCATTERING KEY-FRAME EXTRACTION FOR VIDEOSAR SUMMARIZATION
Zhang, Yinghui	pg. 4120 MO2.R10.1 - THE RELATIONSHIP BETWEEN CANOPY CLUMPING INDEX (CI), FRACTIONAL VEGETATION COVER (FVC), AND LEAF AREA INDEX (LAI): AN ANALYSIS OF GLOBAL SATELLITE PRODUCTS pg. 2890 FR2.R18.4 - LONG-TERM VARIATION OF GLOBAL LAI AND THE UNCERTAINTY: ANALYSIS OF THE GEOV2 AND MODIS LAI PRODUCTS
Zhang, Yingjun	pg. 5741 WE1.R8.4 - INVESTIGATION OF SUBMESOSCALE EDDIES FROM MODIS COLOR INDEX PRODUCTS IN COASTAL REGIONS: A CASE STUDY IN SUBEI SHOAL
Zhang, Yong	pg. 6109] WE1.R7.3 - RADIOMETRIC CALIBRATION OF FENGYUN-3D MERSI-II SATELLITE: A CASE STUDY IN LAKE QINGHAI, CHINA
Zhang, Yongchao	pg. 6571 FR2.R17.5 - FAST TOTAL VARIATION SUPERRESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING pg. 3188 TH1.R14.7 - MAJORIZE-MINIMIZATION BASED SUPER- RESOLUTION METHOD FOR RADAR FORWARD-LOOKING IMAGING pg. 473 TU1.R5.10 - UAV INTELLIGENT OPTIMAL PATH PLANNING METHOD FOR DISTRIBUTED RADAR SHORT-TIME APERTURE SYNTHESIS pg. 6718 TU1.R15.11 - SCENE EDGE TARGET RECOVERY OF SCANNING RADAR ANGULAR SUPER-RESOLUTION BASED ON DATA EXTRAPOLATION
Zhang, Yongjun	pg. 1353) WE2.R5.2 - A CNN-GCN FRAMEWORK FOR MULTI-LABEL AERIAL IMAGE SCENE CLASSIFICATION pg. 465) TU1.R5.8 - DEM EXTRACTION FROM AIRBORNE LIDAR POINT CLOUD IN THICK-FORESTED AREAS VIA CONVOLUTIONAL NEURAL NETWORK pg. 1385) WE2.R5.10 - UNSUPERVISED STYLE TRANSFER VIA DUALGAN FOR CROSS-DOMAIN AERIAL IMAGE CLASSIFICATION pg. 1612) WE2.R18.11 - DEEP NETWORKS UNDER BLOCK-LEVEL SUPERVISION FOR PIXEL-LEVEL CLOUD DETECTION IN MULTI-SPECTRAL SATELLITE IMAGERY
Zhang, Yongming	pg. 5497 TH2.R19.5 - SMOKE INJECTION HEIGHT OF WILDFIRE EVENT BASED ON MULTI-SOURCE REMOTE SENSING DATA IN YUNNAN PROVINCE, CHINA
Zhang, Yu	pg. 1592 WE2.R18.6 - ACCURATE DETECTION OF HISTORICAL BUILDINGS USING AERIAL PHOTOGRAPHS AND DEEP

	TRANSFER LEARNING
Zhang, Yubo	pg. 5203 FR2.R10.1 - MICROWAVE THERMAL EMISSION FEATURES OF MARE TRANQUILLITATIS AND MARE SERENITATIS INDICATED BY CE2 CELMS DATA
Zhang, Yukun	pg. 778 TU1.R18.10 - MULTI-VIEW FUSION BASED ON EXPECTATION MAXIMIZATION FOR SAR TARGET RECOGNITION
Zhang, Yun	Pg. 2615 FR2.R3.3 - SATELLITE ATTITUDE CHANGE RECOGNITION BASED ON MULTI-FRAME IMAGE BY 3D CONVOLUTIONAL NEURAL NETWORKS Pg. 2121 TH2.R9.4 - THE PHASE ERROR ANALYSIS AND COMPENSATION OF MRUAV-SAR Pg. 6282 WE2.R13.5 - A NOVEL BISTATIC SAR IMAGING ALGORITHM BASED ON GNSS TRANSMITTERS AND LOW-ORBIT RECEIVERS Pg. 1240 WE1.R18.6 - RECOGNITION OF SHIP BY ISAR WITH IMPROVED PARTIAL-MODAL GENERATIVE ADVERSARIAL NETWORKS Pg. 2129 TH2.R9.6 - A VARIABLE-DECOUPLING METHOD USED IN MSR-BASED IMAGING ALGORITHMS FOR SAR WITH CONSTANT ACCELERATION Pg. 6985 FR2.R2.8 - HLS-BASED FPGA IMPLEMENTATION OF CONVOLUTIONAL DEEP BELIEF NETWORK FOR SIGNAL MODULATION RECOGNITION Pg. 425 TU1.R3.10 - DUAL-BASELINE INTERFEROMETRIC ISAR IMAGING Pg. 4159 MO2.R10.11 - DELINEATION OF INDIVIDUAL TREE CROWNS IN WORLDVIEW-3 SATELLITE IMAGERY WITH MULTISCALE FITTING METHOD
Zhang, Yunhua	(pg. 1981) TH1.R18.2 - POLARIMETRIC SCATTERING CHARACTERISTIC ANALYSIS OF DISASTER AFFECTED AREA BASED ON HUYNEN-EULER PARAMETERS
Zhang, Yunteng	pg. 1106 WE1.R6.7 - ESTIMATING LEAF AREA INDEX AT 250M SPATIAL RESOLUTION FROM MODIS DATA USING GENERAL REGRESSION NEURAL NETWORKS
Zhang, Yuxi	pg. 5274 FR2.R11.7 - SENTINEL-2 AND PLANETSCOPE DATA FUSION INTO DAILY 3 M IMAGES FOR LEAF AREA INDEX MONITORING
Zhang, Yuxiang	(pg. 2424) FR1.R12.11 - JOINT SPARSE REPRESENTATION AND MULTITASK LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
Zhang, Yuxuan	(pg. 6969) FR2.R2.4 - EDGE PREDICTION NET FOR RECONSTRUCTING ROAD LABELS CONTAMINATED BY CLOUDS
Zhang, Yuzhi	pg. 3086 WE1.R9.11 - COMPREHENSIVE VERIFICATION AND ANALYSIS OF MULTI-SCALE REMOTE SENSING PRODUCTS FOR SURFACE FREEZING-THAWING STATUS ON THE QINGHAI-TIBET PLATEAU
Zhang, Zenghui	pg. 2563 FR1.R18.2 - IRON ORE REGION SEGMENTATION

	USING HIGH-RESOLUTION REMOTE SENSING IMAGES BASED
	ON RES-U-NET (pg. 2855) FR2.R16.6 - ELLIPSE-FCN: OIL TANKS DETECTION
	FROM REMOTE SENSING IMAGES WITH FULLY CONVOLUTION
	NETWORK
	(pg. 152) MO2.R14.7 - PHOTOVOLTAIC PANEL CONSTRUCTION CHANGE MONITORING BASED ON LSTM MODELS
	CHANGE MONITORING BASED ON ESTIM MODELS
Zhang, Zhibo	pg. 5574 FR2.R19.3 - SATELLITE REMOTE SENSING
	OBSERVATIONS OF TRANS-ATLANTIC DUST TRANSPORT AND DEPOSITION: A MULTI-SENSOR ANALYSIS
	DET OSTRON. A FIGUR SENSON ANALISIS
Zhang, Zhijie	pg. 1833 TH1.R9.9 - SEMANTIC SEGMENTATION OF URBAN
	BUILDINGS FROM VHR REMOTELY SENSED IMAGERY USING ATTENTION-BASED CNN
	ATTENTION DAJED CHIN
Zhang, Zijin	pg. 5458 TH1.R19.7 - THE RETRIEVAL OF SURFACE
	ATMOSPHERIC PRESSURE OVER THE OCEANS USING 50-60
	GHZ AND 118.75 GHZ PASSIVE MICROWAVE OBSERVATIONS
Zhang, Zijing	pg. 6567 FR2.R17.4 - AN IMAGE-DOMAIN BASELINE ERROR
	ESTIMATION METHOD FOR AZIMUTH MULTI-CHANNEL SAR
	pg. 928 TU2.R16.7 - LONG SYNTHETIC APERTURE PASSIVE
	LOCALIZATION USING AZIMUTH CHIRP-RATE CONTOUR MAP
Zhang, Ziwen	pg. 401 TU1.R3.4 - PHASE UNWRAPPING VIA DEEP LEARNING
	BASED REGION SEGMENTATION
Zhang, Ziyue	pg. 2767 FR2.R9.6 - EXTRACTION OF POWER LINES AND
	PYLONS FROM LIDAR POINT CLOUDS USING A GCN-BASED
	METHOD
Zhao, Bin	pg. 1488 WE2.R12.3 - LOCAL SPATIAL-SPECTRAL
	CORRELATION BASED MIXTURES OF FACTOR ANALYZERS FOR
	HYPERSPECTRAL DENOISING
	(pg. 2121) TH2.R9.4 - THE PHASE ERROR ANALYSIS AND COMPENSATION OF MRUAV-SAR
	pg. 1516 WE2.R12.10 - HYPERSPECTRAL IMAGES DENOISING
	BASED ON MIXTURES OF FACTOR ANALYZERS
7h a Chair	
Zhao, Chen	pg. 2795 FR2.R12.2 - A WEAK MOVING POINT TARGET
	DETECTION METHOD BASED ON HIGH FRAME RATE SAR IMAGE SEQUENCES AND MACHINE LEARNING
Zhao, Chunhui	pg. 1763 TH1.R7.2 - DICTIONARY LEARNING HYPERSPECTRAL
	TARGET DETECTION ALGORITHM BASED ON TUCKER TENSOR DECOMPOSITION
	pg. 4211 MO2.R12.2 - A NOVEL BUILDING RECONSTRUCTION
	FRAMEWORK USING SINGLE-VIEW REMOTE SENSING IMAGES
	BASED ON CONVOLUTIONAL NEURAL NETWORKS
	(pg. 2209) TH2.R20.4 - SPECTRAL-SPATIAL STACKED AUTOENCODERS BASED ON THE BILATERAL FILTER FOR
	HYPERSPECTRAL ANOMALY DETECTION
	pg. 3063 WE1.R9.5 - A DISTRIBUTION CONTROLLABLE
	SIMULATION METHOD OF REMOTE SENSING SEA-ICE IMAGES

Zhao, Chunliang	pg. 6714 TU1.R15.10 - ESTIMATION OF SURFACE ALBEDO BASED ON FY-3D MERSI-2 TOA DATA
Zhao, Danpei	(pg. 2145) TH2.R9.10 - HIERARCHICAL ATTENTION FOR SHIP DETECTION IN SAR IMAGES
	pg. 2463 FR1.R14.10 - MULTI-SCALE REMOTE SENSING TARGETS DETECTION WITH ROTATED FEATURE PYRAMID
Zhao, Feng	pg. 5998 TU1.R14.3 - RETRIEVAL OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE AT RED SPECTRAL PEAK WITH TROPOMI ON SENTINEL-5 PRECURSOR
	pg. 4838 TH1.R10.5 - PRELIMINARY STUDY OF WAVELENGTH POSITIONS OF LEAF FLUORESCENCE PEAKS WITH EXPERIMENTAL DATA
	pg. 200 MO2.R15.8 - DEEP LEARNING BASED CLASSIFICATION USING SEMANTIC INFORMATION FOR POLSAR IMAGE
	[pg. 4850] TH1.R10.8 - THE AOD SENSITIVITY COMPARISON BETWEEN MODIS MULTI-ANGLE IMPLEMENTATION OF ATMOSPHERIC CORRECTION (MAIAC) AND STANDARD MODIS SURFACE REFLECTANCE
Zhao, Fengjun	Pg. 716 TU1.R16.5 - COMPARISON OF TARGET DETECTION RESULTS IN A FOREST WHETHER THE BRANCHES ARE COVERED WITH SNOW BASED ON P-BAND AIRBORNE SAR QUAD-POL IMAGES
Zhao, Guoping	pg. 489 TU1.R6.4 - SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Zhao, Hang	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY
Zhao, Hui	pg. 4723 TH1.R1.9 - SOIL MOISTURE ESTIMATION BASED ON THE AIEM FOR BARE AGRICULTURAL AREA
Zhao, Jian	pg. 6985 FR2.R2.8 - HLS-BASED FPGA IMPLEMENTATION OF CONVOLUTIONAL DEEP BELIEF NETWORK FOR SIGNAL MODULATION RECOGNITION
Zhao, Jianghua	pg. 3227 TH2.R14.10 - A CROWDSOURCING-BASED PLATFORM FOR LABELLING REMOTE SENSING IMAGES
Zhao, Jie	pg. 248 MO2.R16.9 - INTERPOLATION OF GEOCHEMICAL DATA WITH ASTER IMAGES BASED ON ALEXNET CONVOLUTION NEURAL NETWORK
Zhao, Jing	pg. 4303 TU2.R10.3 - A METHOD FOR IMPROVING THE ACCURACY OF THE MODERATE RESOLUTION LAI PRODUCT BASED ON THE MIXED-PIXEL CLUMPING INDEX
	pg. 5014 TH2.R10.11 - A HIGHLY CHLOROPHYLL-SENSITIVE AND LAI-INSENSITIVE INDEX BASED ON THE RED-EDGE BAND: CSI
Zhao, Juan	pg. 1137 WE1.R16.4 - A NOVEL ISAR IMAGING ALGORITHM FOR NONUNIFORMLY ROTATING TARGET

	pg. 846 TU2.R5.5 - JOINT GROUP SPARSE COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Zhao, Juanping	pg. 2563 FR1.R18.2 - IRON ORE REGION SEGMENTATION USING HIGH-RESOLUTION REMOTE SENSING IMAGES BASED ON RES-U-NET
Zhao, Jun	pg. 5998 TU1.R14.3 - RETRIEVAL OF SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE AT RED SPECTRAL PEAK WITH TROPOMI ON SENTINEL-5 PRECURSOR
Zhao, Kuangshi	pg. 1341 WE2.R3.9 - REMOTE SENSING IMAGES INPAINTING BASED ON STRUCTURED LOW-RANK MATRIX APPROXIMATION
Zhao, Limin	pg. 5345 TU2.R19.2 - AN OPERATIONAL SATELLITE SNOWFALL RATE PRODUCT AT NOAA
Zhao, Lingjun	pg. 236 MO2.R16.6 - SPATIO-TEMPORAL FUSION OF NIGHT-TIME LIGHT IMAGES WITH DEEP LEARNING
Zhao, Lu	pg. 473 TU1.R5.10 - UAV INTELLIGENT OPTIMAL PATH PLANNING METHOD FOR DISTRIBUTED RADAR SHORT-TIME APERTURE SYNTHESIS
Zhao, Minghua	pg. 2663 FR2.R5.3 - DEEP INTRA FUSION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
Zhao, Nan	pg. 1377 WE2.R5.8 - MAPPING LOCAL CLIMATE ZONES WITH CIRCLED SIMILARITY PROPAGATION BASED DOMAIN ADAPTATION
Zhao, Pengfei	pg. 1651 TH1.R2.10 - MULTI-ASPECT SAR TARGET RECOGNITION BASED ON EFFICIENTNET AND GRU
Zhao, Quan	pg. 6515 FR2.R13.3 - A NOVEL IF RECEIVER STRUCTURE IN HYPERSPECTRAL RADIOMETER
Zhao, Ranran	pg. 5497 TH2.R19.5 - SMOKE INJECTION HEIGHT OF WILDFIRE EVENT BASED ON MULTI-SOURCE REMOTE SENSING DATA IN YUNNAN PROVINCE, CHINA
Zhao, Shaojie	pg. 5057 FR1.R1.11 - EVALUATION OF THE EFFECTS OF HETEROGENEOUS SOIL MOISTURE ON MEASURED BRIGHTNESS TEMPERATURE BY A MICROWAVE RADIOMETER
Zhao, Shuhe	pg. 5430 WE1.R19.12 - EFFECTS OF CLOUD ON LAND SURFACE TEMPERATURE (LST) CHANGE IN THERMAL INFRARED REMOTE SENSING IMAGES: A CASE STUDY OF LANDSAT 8 DATA
Zhao, Shuheng	pg. 589 TU1.R10.6 - LUNAR HYPERSPECTRAL IMAGE DESTRIPING METHOD USING LOW-RANK MATRIX RECOVERY AND GUIDED PROFILE
Zhao, Tian	pg. 4834 TH1.R10.4 - MONITORING DYNAMIC CHANGES OF VEGETATION COVER IN THE TARIM RIVER BASIN BASED WITH

	LANDSAT IMAGERY AND GOOGLE EARTH ENGINE
Zhao, Tianjie	pg. 6871 WE2.R2.3 - THE APPLICATION OF REMOTE SENSING PRECIPITATION PRODUCTS FOR RUNOFF MODELLING AND FLOOD INUNDATION AREA ESTIMATION IN TYPICAL MONSOON BASINS OF INDOCHINA PENINSULA pg. 4922 TH2.R1.5 - SOIL MOISTURE ESTIMATION BASED ON LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER BASIN, CHINA pg. 5045 FR1.R1.8 - SOIL MOISTURE ESTIMATION BY USING MULTI-ANGULAR AND MULTI-TEMPORAL OBSERVATIONS FROM SMOS
Zhao, Tianming	pg. 1173 WE1.R17.1 - VEHICLE DETECTION WITH BOTTOM ENHANCED RETINANET IN AERIAL IMAGES
Zhao, Wei	pg. 2699 FR2.R6.1 - A RADIATION BASED TOPOGRAPHIC CORRECTION METHOD ON LANDSAT 8/OLI SURFACE REFLECTANCE pg. 2879 FR2.R18.1 - ANALYSIS OF THE SPATIAL AND TEMPORAL VARIATIONS OF LAND SURFACE TEMPERATURE OVER THE TIBETAN PLATEAU FROM 2000 TO 2018
Zhao, Wufan	pg. 3916 FR1.R7.7 - BUILDING INSTANCE SEGMENTATION AND BOUNDARY REGULARIZATION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES
Zhao, Xiaobin	pg. 1655 TH1.R2.11 - HYPERSPECTRAL TARGET DETECTION BY FRACTIONAL FOURIER TRANSFORM
Zhao, Xiaokang	pg. 5654 TU1.R8.3 - RAIN EFFECTS ON CFOSAT SCATTEROMETER: TOWARDS AN IMPROVED WIND QUALITY CONTROL
Zhao, Yan	pg. 2906 FR2.R18.8 - RESEARCH ON THE DETECTION METHOD OF BUILDING SEISMIC DAMAGE CHANGE
Zhao, Yaqin	pg. 6985 FR2.R2.8 - HLS-BASED FPGA IMPLEMENTATION OF CONVOLUTIONAL DEEP BELIEF NETWORK FOR SIGNAL MODULATION RECOGNITION
Zhao, Yaxuan	pg. 4967 TH2.R6.8 - MULTI-SCALE DEEP RESIDUAL LEARNING FOR CLOUD REMOVAL
Zhao, Yongguang	pg. 5994 TU1.R14.2 - A HYPERSPECTRAL REFLECTANCE RECONSTRUCTION METHOD CONSIDERING SURFACE BRDF CHARACTERISTICS FOR AUTOMATIC MULTISPECTRAL RADIOMETER pg. 6250 WE1.R15.8 - BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION pg. 4688 WE2.R11.10 - JOINT ESTIMATION OF GRASSLAND LEAF AREA INDEX AND LEAF CHLOROPHYLL CONTENT FROM UNMANNED AERIAL VEHICLE HYPERSPECTRAL DATA
Zhao, Yu	pg. 4890 TH1.R11.7 - MACHINE LEARNING APPROACHES FOR

	CROP GROWTH MONITORING USING MULTI-TEMPORAL AND MULTI-VARIETY REMOTELY SENSED DATA
Zhao, Yue	pg. 2843 FR2.R16.3 - ADAPTIVE FUSION AND MASK REFINEMENT INSTANCE SEGMENTATION NETWORK FOR HIGH RESOLUTION REMOTE SENSING IMAGES
Zhao, Zewei	pg. 5306 TU1.R19.4 - A SIMULATING METHOD OF AIRSHIP-BORNE POLARIMETRIC WEATHER RADAR FOR TYPHOON OBSERVATION
Zhao, Zhen	pg. 1311 WE2.R3.1 - A SPATIALIZATION METHOD OF POPULATION DATA CONSIDERING SPATIAL HETEROGENEITY
Zhao, Zhengang	pg. 6981 FR2.R2.7 - UNBALANCED GEOLOGIC BODY CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SQUEEZE AND EXCITATION NETWORKS AT TIANSHAN AREA
Zhen, Zhijun	pg. 3455 TU2.R17.8 - RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION
Zheng, Chengxin	pg. 2113 TH2.R9.2 - AN IMPROVED IMAGING ALGORITHM FOR AIRBORNE NEAR-NADIR TOPS SAR WITH YAW ANGLE ERROR
Zheng, Desheng	pg. 6028 TU1.R14.11 - LIGHTGUIDE, INTEGRAL FIELD SNAPSHOT IMAGING SPECTROMETER FOR ENVIRONMENTAL IMAGING AND EARTH OBSERVATIONS
Zheng, Gang	pg. 5765 WE1.R8.10 - AUTOMATIC MAPPING OF TROPICAL CYCLONE-INDUCED COASTAL INUNDATION IN SAR IMAGERY BASED ON CLUSTERING OF DEEP FEATURES
Zheng, Hengbiao	FR1.R11.9 - EXPLOITING THE TEXTURAL INDICES OF UAV MULTISPECTRAL IMAGERY TO PREDICT RICE GRAIN YIELD
Zheng, Honglei	pg. 348 MO2.R19.2 - SIMULATION OF MICROWAVE BACKSCATTERING FROM SEA SURFACE USING AN IMPROVED TWO-SCALE MODEL
Zheng, Jiangbin	pg. 738 TU1.R16.11 - PORT DETECTION IN POLARIMETRIC SAR IMAGES BASED ON THREE-COMPONENT DECOMPOSITION
Zheng, Jie	pg. 553 TU1.R7.8 - REMOTE SENSING SCENE CLASSIFICATION USING SPATIAL TRANSFORMER FUSING NETWORK
Zheng, Juepeng	pg. 1381 WE2.R5.9 - UNSUPERVISED MIXED MULTI-TARGET DOMAIN ADAPTATION FOR REMOTE SENSING IMAGES CLASSIFICATION
Zheng, Lijuan	pg. 1185 WE1.R17.4 - BUILDING RECOGNITION OF UAV REMOTE SENSING IMAGES BY DEEP LEARNING
Zheng, Mingxuan	pg. 2519 FR1.R17.2 - FLOOD MAPPING WITH SAR AND MULTI- SPECTRAL REMOTE SENSING IMAGES BASED ON WEIGHTED EVIDENTIAL FUSION
Zheng, Tao	pg. 6423 FR1.R13.2 - ARTIFACT-FREE RFI LOCALIZATION

	BASED ON SPATIAL SMOOTHING MUSIC IN SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETERS (pg. 6511) FR2.R13.2 - A WAVENUMBER DOMAIN IMAGING ALGORITHM FOR SYNTHETIC APERTURE INTERFEROMETRIC RADIOMETRY IN NEAR-FIELD
Zheng, Xiaoxiong	pg. 2571 FR1.R18.4 - SEGMENTATION OF HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGE BASED ON U-NET CONVOLUTIONAL NETWORKS
Zheng, Xingming	pg. 5022 FR1.R1.2 - RESEARCH ON WATER SUITABILITY OF MAIZE PLANTING RANGE IN NORTHEAST CHINA
Zheng, Yalan	pg. 2197 TH2.R20.1 - RISK ASSESSMENT OF DRINKING WATER SOURCE BASED ON HIGH SPATIAL RESOLUTION REMOTE SENSING
Zheng, Yitong	pg. 5505 TH2.R19.7 - AEROSOL OPTICAL DEPTH ESTIMATE USING GROUND-MEASURED SPECTRAL SKYLIGHT RATIO METHOD
Zheng, Yongxiang	pg. 2451 FR1.R14.7 - OBJECT DETECTION FOR REMOTE SENSING IMAGE BASED ON DEEP LEARNING
Zheng, Yujie	pg. 16 MO2.R3.5 - A PHYSICS-BASED DECORRELATION PHASE COVARIANCE MODEL FOR EFFECTIVE DECORRELATION NOISE REDUCTION IN INTERFEROGRAM STACKS
Zheng, Yuxuan	pg. 2671 FR2.R5.5 - DEEP RESIDUAL SPATIAL ATTENTION NETWORK FOR HYPERSPECTRAL PANSHARPENING
Zheng, Zezhong	pg. 6879 WE2.R2.5 - WARNING OF RAINFALL-INDUCED LANDSLIDE IN BAZHOU DISTRICT
	(pg. 2894) FR2.R18.5 - CHANGE OF IMPERVIOUS SURFACE OF CHENGDU CITY, CHINA
	pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK
	pg. 2539 FR1.R17.8 - CHANGE OF GLACIAL LAKE IN
	pg. 4279 TU1.R1.8 - LAND USE AND LAND COVER CHANGE OF
	GHANA (pg. 1647) TH1.R2.9 - SHIP DETECTION WITH SAR BASED ON
	YOLO
	pg. 6997 FR2.R2.11 - A METHOD TO CREATE TRAINING DATASET FOR DEHAZING WITH CYCLEGAN
	pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB- SAHARA AFRICA
Zheng, Zhi	pg. 465 TU1.R5.8 - DEM EXTRACTION FROM AIRBORNE LIDAR POINT CLOUD IN THICK-FORESTED AREAS VIA CONVOLUTIONAL NEURAL NETWORK
71 71	
Zheng, Zhuo	pg. 660 TU1.R12.2 - CHANGEMASK: LEARNING PERMUTATION- INVARIANT REPRESENTATION FOR END-TO-END LULC/LAND- COVER MAPPING AND CHANGE DETECTION
	pg. 2579 FR1.R18.6 - A NOVEL GLOBAL-AWARE DEEP

	NETWORK FOR ROAD DETECTION OF VERY HIGH RESOLUTION REMOTE SENSING
Zhi, Yun	pg. 4590 WE2.R1.8 - ASSESSMENT OF SMAP AND ESA CCI SOIL MOISTURE OVER THE GREAT LAKES BASIN
Zhong, Juanjuan	pg. 6969 FR2.R2.4 - EDGE PREDICTION NET FOR RECONSTRUCTING ROAD LABELS CONTAMINATED BY CLOUDS
Zhong, Xian	pg. 830 TU2.R5.1 - TWO-STEP ENSEMBLE BASED CLASS NOISE CLEANING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Zhong, Yanfei	Pg. 660 TU1.R12.2 - CHANGEMASK: LEARNING PERMUTATION-INVARIANT REPRESENTATION FOR END-TO-END LULC/LAND-COVER MAPPING AND CHANGE DETECTION (Pg. 2388) FR1.R12.2 - SEMI-AUTOMATIC FULLY SPARSE SEMANTIC MODELING FRAMEWORK FOR HYPERSPECTRAL UNMIXING (Pg. 2392) FR1.R12.3 - SUPERPIXEL-BASED SPATIAL CONSTRAINTS SPARSE UNMIXING FOR HYPERSPECTRAL REMOTE SENSING IMAGERY (Pg. 577) TU1.R10.3 - SUPER RESOLUTION GENERATIVE ADVERSARIAL NETWORK BASED IMAGE AUGMENTATION FOR SCENE CLASSIFICATION OF REMOTE SENSING IMAGES (Pg. 4092) MO2.R1.5 - DENSE GREENHOUSE EXTRACTION IN HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGERY (Pg. 1817) TH1.R9.5 - A MODIFIED D-LINKNET WITH TRANSFER LEARNING FOR ROAD EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING (Pg. 2400) FR1.R12.5 - SEMI-SUPERVISED HYPERSPECTRAL UNMIXING WITH VERY DEEP CONVOLUTIONAL NEURAL NETWORKS (Pg. 2579) FR1.R18.6 - A NOVEL GLOBAL-AWARE DEEP NETWORK FOR ROAD DETECTION OF VERY HIGH RESOLUTION REMOTE SENSING (Pg. 1369) WE2.R5.6 - RSSM-NET: REMOTE SENSING IMAGE SCENE CLASSIFICATION BASED ON MULTI-OBJECTIVE NEURAL ARCHITECTURE SEARCH (Pg. 1373) WE2.R5.7 - TOPIC MODEL FOR REMOTE SENSING DATA: A COMPREHENSIVE REVIEW (Pg. 4187) MO2.R11.7 - CROPNET: DEEP SPATIAL-TEMPORAL-SPECTRAL FEATURE LEARNING NETWORK FOR COP CLASSIFICATION FROM TIME-SERIES MULTI-SPECTRAL IMAGES (Pg. 1197) WE1.R17.7 - URBAN SCENES CHANGE DETECTION BASED ON MULTI-SCALE IRREGULAR BAG OF VISUAL FEATURES FOR HIGH SPATIAL RESOLUTION IMAGERY (Pg. 1377) WE2.R5.8 - MAPPING LOCAL CLIMATE ZONES WITH CIRCLED SIMILARITY PROPAGATION BASED DOMAIN ADAPTATION
Zhou, Bin	TU2.R16.3 - DIFFERENTIAL MODEL FOR SAR IMAGING
Zhou, Bo	pg. 2201 TH2.R20.2 - AIRCRAFT TARGET DETECTION IN POLSAR IMAGE BASED ON REGION SEGMENTATION AND MULTI-FEATURE DECISION

Zhou, Fang	(pg. 1905) TH1.R16.5 - A REAL-TIME IMAGING PROCESSING METHOD BASED ON MODIFIED RMA WITH SUB-APERTURE IMAGES FUSION FOR SPACEBORNE SPOTLIGHT SAR
Zhou, Fangrong	pg. 2539 FR1.R17.8 - CHANGE OF GLACIAL LAKE IN KARAKORAM RANGE pg. 1647 TH1.R2.9 - SHIP DETECTION WITH SAR BASED ON YOLO
Zhou, Feipeng	pg. 1189 WE1.R17.5 - BUILDING DETECTION VIA A TWO- STREAM FPN NETWORK FROM PANCHROMATIC AND MULTI- SPECTRAL IMAGES
Zhou, Feng	pg. 1715 TH1.R5.2 - SEMI-SUPERVISED CLASSIFICATION OF POLSAR DATA WITH MULTI-SCALE WEIGHTED GRAPH CONVOLUTIONAL NETWORK pg. 1090 WE1.R6.3 - A REGULARIZED TENSOR NETWORK FOR CYCLONE WIND SPEED ESTIMATION pg. 2527 FR1.R17.4 - HYPERSPECTRAL IMAGE CHANGE
	DETECTION BY SELF-SUPERVISED TENSOR NETWORK (pg. 1323) WE2.R3.4 - A NOVEL GENERAL SEMISUPERVISED DEEP LEARNING FRAMEWORK FOR CLASSIFICATION AND REGRESSION WITH REMOTE SENSING IMAGES (pg. 6926) FR1.R2.5 - A DECEPTIVE JAMMING TEMPLATE SYNTHESIS METHOD FOR SAR USING GENERATIVE ADVERSARIAL NETS
Zhou, Guiyun	pg. 4395 TU2.R12.3 - AN ACCURATE EXTRACTION ALGORITHM OF THE INDOOR BOUNDARY FEATURES BASED ON POINT CLOUD DATA
Zhou, Guoqing Zhou, Hong-min	pg. 6879 WE2.R2.5 - WARNING OF RAINFALL-INDUCED LANDSLIDE IN BAZHOU DISTRICT pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK pg. 4279 TU1.R1.8 - LAND USE AND LAND COVER CHANGE OF GHANA pg. 2539 FR1.R17.8 - CHANGE OF GLACIAL LAKE IN KARAKORAM RANGE pg. 1647 TH1.R2.9 - SHIP DETECTION WITH SAR BASED ON YOLO
	pg. 6902 WE2.R2.11 - DROUGHT MONITORING IN SUB-SAHARA AFRICA pg. 385 MO2.R19.12 - SCATTERING MECHANISM OF LARGE-FOOTPRINT FULL-WAVEFORM LIDAR OVER MOUNTAINOUS FOREST AREAS pg. 6886 WE2.R2.7 - INTRODUCTION OF SPATIAL AND
	TEMPORAL DISTRIBUTION OF TYPHOONS FROM 1989 TO 2018 AND TYPICAL CASES OF DISASTER IMPACT ANALYSIS
Zhou, Hongying	pg. 2839 FR2.R16.2 - DEEP LEARNING FOR AUTOMATIC RECOGNITION OF OIL PRODUCTION RELATED OBJECTS BASED ON HIGH-RESOLUTION REMOTE SENSING IMAGERY

Zhou, Huaji	pg. 501 TU1.R6.7 - A NEW HYPERSPECTRAL CLASSIFICATION METHOD BASED ON NON-SUBSAMPLED CONTOURLET TRANSFORM (NSCT) AND DEEP NEURAL NETWORK
Zhou, Huanyu	pg. 220 MO2.R16.2 - PAN-SHARPENING WITH A CNN-BASED TWO STAGE RATIO ENHANCEMENT METHOD
Zhou, Jie	pg. 4343 TU2.R11.1 - DISENTANGLING THE RESPONSE OF VAGETATION TO RAINFALL ANOMALIES FOR DROUGHT EVALUATION OVER THE INDUS BASIN pg. 6894 WE2.R2.9 - ASSESSMENT OF GRACE DATA RESPONSE TO GLOBAL DROUGHT EVENTS FROM 2003 TO 2016
Zhou, Jun	pg. 2157 TH2.R18.1 - NONLOCAL LOW-RANK NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
Zhou, Lei	pg. 2205 TH2.R20.3 - INVESTIGATION ON THE METHOD OF ESTABLISHING CONSTRUCTION WASTE TRAINING SAMPLE DATABASE AND ITS APPLICATIONS
Zhou, Liangjiang	pg. 84 MO2.R6.1 - CHANNEL IMBALANCE CALIBRATION METHOD FOR AIRBORNE TOMOSAR SYSTEM pg. 2368 FR1.R9.9 - A FAST 3-D IMAGING METHOD FOR CIRCULAR SAR BASED ON 3-D BACK-PROJECTION ALGORITHM
Zhou, Lifan	pg. 409 TU1.R3.6 - IMPROVED BRANCH-CUT ALGORITHM FOR MULTIBASELINE PHASE UNWRAPPING USING SAR INTERFEROGRAMS
Zhou, Lihang	Pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG Pg. 3306 MO2.R7.5 - MONITORING THE CHANGES OF THE ARCTIC ENVIRONMENT WITH THE JOINT POLAR SATELLITE SYSTEM (JPSS) SOUNDING DATA PRODUCTS TH1.R15.8 - SNPP AND NOAA-20 GLOBAL INTER-SENSOR BIAS ASSESSMENTS WITHIN ICVS FRAMEWORK USING 32-DAY AVERAGED DIFFERENCE METHOD
Zhou, Liming	pg. 5537 FR1.R19.4 - ANALYZING METEOROLOGICAL AND CHEMICAL CONDITIONS FOR TWO HIGH OZONE EVENTS OVER THE NEW YORK CITY AND LONG ISLAND REGION
Zhou, Meilun	pg. 1271 WE1.R20.2 - HYPERSPECTRAL BAND SELECTION USING MOTH-FLAME METAHEURISTIC OPTIMIZATION pg. 497 TU1.R6.6 - HYPERSPECTRAL IMAGE CLASSIFICATION USING FISHER'S LINEAR DISCRIMINANT ANALYSIS FEATURE REDUCTION WITH GABOR FILTERING AND CNN
Zhou, Meng	FR1.R19.1 - DETECTION OF NIGHTTIME FIRE COMBUSTION EFFICIENCY FOR WILDFIRES FROM VIIRS
Zhou, Min	pg. 6146 WE1.R12.1 - A KA-BAND ALONG TRACK INTERFEROMETRY AND GROUND MOVING TARGET IDENTIFICATION ARCHITECTURE BASED ON REFLECTARRAY

	ANTENNAS
Zhou, Pengyu	pg. 565 TU1.R7.12 - A WAVELET DOMAIN BASED CNN SHIP CLASSIFICATION METHOD FOR HIGH RESOLUTION OPTICAL SATELLITE REMOTE SENSING IMAGES
Zhou, Qin	pg. 2256 FR1.R5.4 - CLOUD DETECTION USING GABOR FILTERS AND ATTENTION-BASED CONVOLUTIONAL NEURAL NETWORK FOR REMOTE SENSING IMAGES pg. 2583 FR1.R18.7 - DEEP ENCODER-DECODER NETWORK BASED ON THE UP AND DOWN BLOCKS USING WAVELET TRANSFORM FOR CLOUD DETECTION
Zhou, Shuwei	pg. 2352 FR1.R9.5 - A NOVEL SAR IMAGE DOMAIN-GROUND MOVING TARGET IMAGING METHOD
Zhou, Wenli	pg. 397 TU1.R3.3 - INTERFEROMETRIC PHASE STACK DATA FILTER METHOD VIA BAYESIAN CP FACTORIZATION pg. 2531 FR1.R17.5 - CHANGE DETECTION NETWORK OF NEARSHORE SHIPS FOR MULTI-TEMPORAL OPTICAL REMOTE SENSING IMAGES
Zhou, Wu	Pg. 5790 TH1.R8.5 - EXTREME HIGH WIND SPEED MONITORING WITH SPATIAL RESOLUTION ENHANCEMENT OF HY-2B SMR BRIGHTNESS TEMPERATURE Pg. 5635 MO2.R8.9 - SIMULATION ANALYSIS OF PAYLOAD IMR AND MICAP ONBOARD CHINESE OCEAN SALINITY SATELLITE Pg. 5893 FR1.R8.10 - LAND AND SEA ICE MASK OPTIMIZATION FOR SCANNING MICROWAVE RADIOMETER OF HY-2B SATELLITE
Zhou, Xiaozhe	pg. 6499 FR1.R15.11 - TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING
Zhou, Xing	pg. 4319 TU2.R10.7 - RESEARCH ON THE OPTICAL METHOD OF LEAF AREA INDEX MEASUREMENT BASE ON THE HEMISPHERICAL IMAGE
Zhou, Xinkai	pg. 2819 FR2.R12.8 - EXPERIMENTAL RESULTS FOR GNSS-R BASED MOVING TARGET INDICATION
Zhou, Xuewen	TH1.R10.11 - A NEW PHENOLOGY METHOD FOR MODELLING DYNAMICS OF GLOBAL LEAF AREA INDEX
Zhou, Yang	pg. 2511 FR1.R16.11 - REMOTE SENSING DATA AUGMENTATION THROUGH ADVERSARIAL TRAINING
Zhou, Yaping	WE1.R19.5 - CLOUD OBSERVATIONS FROM THE DEEP SPACE CLIMATE OBSERVATORY (DSCOVR) AT THE EARTH LAGRANGE 1 POINT
Zhou, Yi	pg. 6631 TU1.R2.11 - CONSTRUCTION AND APPLICATION OF A POST-QUAKE HOUSE DAMAGE MODEL BASED ON MULTISCALE SELF-ADAPTIVE FUSION OF SPECTRAL TEXTURES IMAGES
Zhou, Yicong	pg. 2384 FR1.R12.1 - CAUCHY NMF FOR HYPERSPECTRAL UNMIXING

	pg. 68 MO2.R5.8 - IMPROVED LOCAL COVARIANCE MATRIX REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Zhou, Yiwen	pg. 5628 MO2.R8.7 - DEBYE DIELECTRIC MODEL FUNCTION FOR SEAWATER BASED ON EXPANDED L-BAND MEASUREMENT DATA SET
Zhou, Yongsheng	pg. 754 TU1.R18.4 - INCREMENTAL MULTITASK SAR TARGET RECOGNITION WITH DOMINANT NEURON PRESERVATION pg. 720 TU1.R16.6 - METRIC LEARNING BASED FINE-GRAINED CLASSIFICATION FOR POLSAR IMAGERY pg. 288 MO2.R17.8 - IMPROVING SAR TARGET RECOGNITION WITH MULTI-TASK LEARNING
Zhou, Yu	pg. 2141 TH2.R9.9 - GROUND MOVING TARGET IMAGING BASED ON MSOKT AND KT FOR SYNTHETIC APERTURE RADAR
Zhou, Yuanchun	pg. 3227 TH2.R14.10 - A CROWDSOURCING-BASED PLATFORM FOR LABELLING REMOTE SENSING IMAGES
Zhou, Yuanyuan	pg. 2763 FR2.R9.5 - KERNEL ROTATIONAL NETWORK FOR SYNTHETIC APERTURE RADAR TARGET RECOGNITION pg. 545 TU1.R7.6 - SEMI-SUPERVISED LEARNING-BASED REMOTE SENSING IMAGE SCENE CLASSIFICATION VIA ADAPTIVE PERTURBATION TRAINING
Zhou, Yuchan	pg. 3055 WE1.R9.3 - SEA-ICE CLASSIFICATION BASED ON OPTICAL IMAGE USING MORPHOLOGICAL PROFILE FEATURES
Zhou, Yue	pg. 2475 FR1.R16.2 - SAR TARGET CLASSIFICATION WITH LIMITED DATA VIA DATA DRIVEN ACTIVE LEARNING
Zhou, Zheng-Shu	pg. 5065 FR1.R4.1 - FIRST ASSESSMENT OF NOVASAR-1 S-BAND SAR BACKSCATTER CHARACTERISTICS OVER TROPICAL WETLANDS pg. 4914 TH2.R1.3 - SENTINEL-1 IMAGERY INCORPORATING MACHINE LEARNING FOR DRYLAND SALINITY MONITORING: A CASE STUDY IN ESPERANCE, WESTERN AUSTRALIA pg. 6154 WE1.R12.3 - INITIAL NOVASAR-1 DATA PROCESSING AND IMAGERY EVALUATION pg. 5971 TU1.R4.8 - NEW INSIGHTS FROM AUSTRALIA'S SYNTHETIC APERTURE RADAR CAPABILITY, NOVASAR-1
Zhou, Zi-Xuan	pg. 1141 WE1.R16.5 - CHALLENGES AND OPPORTUNITIES FOR STAGGERED SAR WITH LOW OVERSAMPLING FACTORS pg. 1544 WE2.R16.6 - A MODIFIED EXTENDED WAVENUMBER-DOMAIN ALGORITHM FOR ULTRA-HIGH RESOLUTION SPACEBORNE SPOTLIGHT SAR DATA PROCESSING
Zhu, Anran	pg. 4331 TU2.R10.10 - ESTIMATION OF GLOBAL NET PRIMARY PRODUCTIVITY FROM 1981 TO 2018 WITH REMOTE SENSING DATA
Zhu, Cheng	pg. 541 TU1.R7.5 - REMOTE SENSING SCENE CLASSIFICATION BASED ON GLOBAL AND LOCAL CONSISTENT NETWORK

	pg. 1283 WE1.R20.5 - HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER NETWORK
Zhu, Chunbo	pg. 2145 TH2.R9.10 - HIERARCHICAL ATTENTION FOR SHIP DETECTION IN SAR IMAGES
Zhu, Daiyin	pg. 164 MO2.R14.10 - VISION-BASED SCATTERING KEY-FRAME EXTRACTION FOR VIDEOSAR SUMMARIZATION
Zhu, Daoye	pg. 2535 FR1.R17.6 - GEOSOT GRID REMOTE SENSING INTELLIGENT INTERPRETATION MODEL BASED ON FINE-TUNING RESNET-18: A CASE STUDY OF CONSTRUCTION LAND pg. 3111 WE1.R14.6 - A MANAGEMENT SYSTEM FOR FORESTRY REMOTE SENSING IMAGES BASED ON THE GLOBAL SUBDIVISION MODEL
Zhu, Di	pg. 2968 TU1.R9.2 - A STUDY OF COMBINED ACTIVE PASSIVE MICROWAVE SOUNDING OF ICE SHEET INTERNAL TEMPERATURE PROFILING pg. 5701 TU2.R8.4 - EFFECTS OF WIND ESTIMATION ERRORS ON OCEAN SURFACE CURRENT RETRIEVAL FOR A DOPPLER SCATTEROMETER pg. 5705 TU2.R8.5 - EFFECTS OF DIFFERENT WAVE SPECTRA ON WIND-WAVE INDUCED DOPPLER SHIFT ESTIMATES
Zhu, Dong	pg. 6427 FR1.R13.3 - LOCATION OF SMOS RFI SOURCES USING A MATRIX COMPLETION APPROACH
Zhu, Fusheng	pg. 2623 FR2.R3.5 - REDUCING THE RECEIVING ARRAY COMPLEXITY BY USING THE PARALLEL STOCHASTIC RESONANCE SYSTEM
Zhu, Jianhua	pg. 5815 TH2.R8.1 - VALIDATION OF JASON-3 ALTIMETER USING TIDE GAUGES AROUND NORTH AMERICA pg. 6345 TH1.R13.1 - ANALYSIS OF FIVE-YEAR AMSR2 BRIGHTNESS TEMPERATURE USING THE HISTOGRAMS OF COLD MEASUREMENTS pg. 5783 TH1.R8.3 - A STUDY ON MICROWAVE EMISSIVITY FROM WIND-INDUCED SEA FOAM
Zhu, Jianjun	pg. 4148 MO2.R10.8 - INITIAL TESTS FOR THE GENERATION OF A SPANISH NATIONAL MAP OF FOREST HEIGHT FROM TANDEM-X DATA
Zhu, Jinshan	pg. 1608 WE2.R18.10 - IMPROVING THE PERFORMANCE OF SEABIRDS DETECTION COMBINING MULTIPLE SEMANTIC SEGMENTATION MODELS
Zhu, Jiyue	Pg. 2921 MO2.R9.1 - SNOW SIZE DISTRIBUTION AND AGGREGATION MODELING BASED ON THE BICONTINUOUS MODEL MO2.R9.3 - VALIDATION OF THE COMBINED ACTIVE AND PASSIVE MICROWAVE SNOW RETRIEVAL ALGORITHM USING ESA SNOWSAR APPLIED TO CANADA AND US
Zhu, Liujun	pg. 4438 WE1.R1.2 - SOIL MOISTURE RETRIEVAL DEPTHS AT

	P- AND L-BAND WE1.R1.3 - AIRBORNE P-BAND PASSIVE MICROWAVE SOIL MOISTURE REMOTE SENSING: MULTI-ANGULAR AND MULTI- TEMPORAL STUDY
Zhu, Mingcang	pg. 6879 WE2.R2.5 - WARNING OF RAINFALL-INDUCED LANDSLIDE IN BAZHOU DISTRICT pg. 4410 TU2.R12.7 - INFERENCE OF URBAN FUNCTION ZONE BASED ON DEEP NEURAL NETWORK pg. 1647 TH1.R2.9 - SHIP DETECTION WITH SAR BASED ON YOLO
Zhu, Mingyong	pg. 1592 WE2.R18.6 - ACCURATE DETECTION OF HISTORICAL BUILDINGS USING AERIAL PHOTOGRAPHS AND DEEP TRANSFER LEARNING
Zhu, Peng	pg. 1635 TH1.R2.6 - ADAPTIVE FEATURE AGGREGATION NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
Zhu, Qi	pg. 5658 TU1.R8.4 - AN OVERVIEW OF NOAA CYGNSS WIND PRODUCT VERSION 1.0 pg. 5794 TH1.R8.6 - SCATSAT-1 HIGH WINDS GEOPHYSICAL MODEL FUNCTION AND ITS WINDS APPLICATION IN OPERATIONAL MARINE FORECASTING AND WARNING pg. 597 TU1.R10.8 - DEEP RECONSTRUCTION-ARRIVAL PICKING NETWORKS: TRANSFER LEARNING FROM SEISMIC P-WAVE TO ULTRASONIC LOGGING IMAGING
Zhu, Qing	pg. 2771 FR2.R9.7 - A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR 3D POINT CLOUDS
Zhu, Qiqi	pg. 2388 FR1.R12.2 - SEMI-AUTOMATIC FULLY SPARSE SEMANTIC MODELING FRAMEWORK FOR HYPERSPECTRAL UNMIXING pg. 577 TU1.R10.3 - SUPER RESOLUTION GENERATIVE ADVERSARIAL NETWORK BASED IMAGE AUGMENTATION FOR SCENE CLASSIFICATION OF REMOTE SENSING IMAGES pg. 1817 TH1.R9.5 - A MODIFIED D-LINKNET WITH TRANSFER LEARNING FOR ROAD EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING pg. 1373 WE2.R5.7 - TOPIC MODEL FOR REMOTE SENSING DATA: A COMPREHENSIVE REVIEW pg. 1197 WE1.R17.7 - URBAN SCENES CHANGE DETECTION BASED ON MULTI-SCALE IRREGULAR BAG OF VISUAL FEATURES FOR HIGH SPATIAL RESOLUTION IMAGERY pg. 553 TU1.R7.8 - REMOTE SENSING SCENE CLASSIFICATION USING SPATIAL TRANSFORMER FUSING NETWORK
Zhu, Shengqi	pg. 2635 FR2.R3.8 - HIGH-RESOLUTION IMAGING BASED ON TEMPORAL-SPATIAL STOCHASTIC RADIATION FIELD AND COMPRESSIVE SENSING THEORY
Zhu, Shuang	pg. 4669 WE2.R11.5 - AUTUMN CROP MAPPING BASED ON DEEP LEARNING METHOD DRIVEN BY HISTORICAL LABELLED DATASET

	pg. 4673 WE2.R11.6 - DEVELOP LARGE-AREA AUTUMN CROP TYPE PRODUCT USING A DEEP LEARNING STRATEGY
Zhu, Tong	pg. 5438 TH1.R19.2 - NUCAPS HYPERSPECTRAL INFRARED ATMOSPHERIC SOUNDING PRODUCT SYSTEM: PRODUCTS, PERFORMANCE, AND ALGORITHM REFINEMENTS FOR IASI-NG
Zhu, Wanning	pg. 1213 WE1.R17.11 - AIRPORT DETECTION BASED ON SALIENCY ANALYSIS AND GEOMETRIC FEATURE DETECTION FOR REMOTE SENSING IMAGES
Zhu, Xiao	pg. 4646 WE2.R10.10 - SIMULATING AIRBORNE FULL- WAVEFORM LIDAR DATA IN VARYING MUTILAYERD FOREST THROUGH THE DART MODEL
Zhu, Xiao Xiang	pg. 952 TU2.R18.1 - EVENT AND ACTIVITY RECOGNITION IN AERIAL VIDEOS USING DEEP NEURAL NETWORKS AND A NEW DATASET pg. 7025 TU2.R20.1 - MODEL AND DATA UNCERTAINTY FOR SATELLITE TIME SERIES FORECASTING WITH DEEP RECURRENT MODELS pg. 529 TU1.R7.2 - LEARNING MULTI-LABEL AERIAL IMAGE CLASSIFICATION UNDER LABEL NOISE: A REGULARIZATION APPROACH USING WORD EMBEDDINGS pg. 2081 TH2.R5.5 - ON THE FUSION STRATEGIES OF SENTINEL-1 AND SENTINEL-2 DATA FOR LOCAL CLIMATE ZONE CLASSIFICATION pg. 3509 WE2.R7.7 - BUILDING EXTRACTION BY GATED GRAPH CONVOLUTIONAL NEURAL NETWORK WITH DEEP STRUCTURED FEATURE EMBEDDING pg. 164 MO2.R14.10 - VISION-BASED SCATTERING KEY-FRAME EXTRACTION FOR VIDEOSAR SUMMARIZATION pg. 692 TU1.R12.10 - A NOVEL APPROACH TO UNSUPERVISED SEGMENTATION OF MULTITEMPORAL VHR IMAGES BASED ON DEEP LEARNING
Zhu, Xiaohua	pg. 6250 WE1.R15.8 - BIDIRECTIONAL SPECTRAL REFLECTANCE FACTOR OF BAOTOU SANDY CALIBRATION SITE AND ITS APPLICATION IN VICARIOUS RADIOMETRIC CALIBRATION pg. 4688 WE2.R11.10 - JOINT ESTIMATION OF GRASSLAND LEAF AREA INDEX AND LEAF CHLOROPHYLL CONTENT FROM UNMANNED AERIAL VEHICLE HYPERSPECTRAL DATA
Zhu, Xiaoxiang	pg. 2065 TH2.R5.1 - CLOUD REMOVAL IN UNPAIRED SENTINEL-2 IMAGERY USING CYCLE-CONSISTENT GAN AND SAR-OPTICAL DATA FUSION pg. 3979 FR2.R7.1 - ADVANCING DEEP LEARNING FOR EARTH SCIENCES: FROM HYBRID MODELING TO INTERPRETABILITY pg. 1452 WE2.R9.5 - INSTANCE SEGMENTATION OF BUILDINGS USING KEYPOINTS pg. 2049 TH2.R3.8 - UNSUPERVISED HYPERSPECTRAL EMBEDDING BY LEARNING A DEEP REGRESSION NETWORK

Zhu, Xiaoxiao	pg. 6073 WE1.R4.1 - THE PERFORMANCE OF ICESAT-2'S STRONG AND WEAK BEAMS IN ESTIMATING GROUND ELEVATION AND FOREST HEIGHT
Zhu, Xin	pg. 2121 TH2.R9.4 - THE PHASE ERROR ANALYSIS AND COMPENSATION OF MRUAV-SAR
Zhu, Xinran	(pg. 4505) WE1.R10.8 - GENERATING SPATIAL-TEMPORAL CONTINUOUS LAI TIME-SERIES FROM LANDSAT USING NEURAL NETWORK AND METEOROLOGICAL DATA
Zhu, Xuan	pg. 5274) FR2.R11.7 - SENTINEL-2 AND PLANETSCOPE DATA FUSION INTO DAILY 3 M IMAGES FOR LEAF AREA INDEX MONITORING
Zhu, Yan	FR1.R11.9 - EXPLOITING THE TEXTURAL INDICES OF UAV MULTISPECTRAL IMAGERY TO PREDICT RICE GRAIN YIELD
Zhu, Ying	pg. 6782 TU2.R2.4 - EVALUATION OF HIMAWARI-8 FOR LIVE FUEL MOISTURE CONTENT RETRIEVAL
Zhu, Yinuo	(pg. 2205) TH2.R20.3 - INVESTIGATION ON THE METHOD OF ESTABLISHING CONSTRUCTION WASTE TRAINING SAMPLE DATABASE AND ITS APPLICATIONS
Zhu, Yujiao	pg. 885 TU2.R7.4 - EVALUATION OF THE ENVIRONMENTAL QUALITY OF HUMAN SETTLEMENTS IN FUZHOU BASED ON MULTI-SOURCE DATA
Zhu, Yunlong	pg. 920 TU2.R16.5 - GNSS-R MULTI-PERIOD SAR IMAGING EXPERIMENTAL STUDY
Zhu, Zidong	pg. 3235 TH2.R14.12 - A METHOD TO IDENTIFY HIGH-QUALITY PURE SNOW DATA IN POLDER DATABASE
Zhu, jiyue	pg. 367 MO2.R19.7 - A PHYSICAL PATCH MODEL FOR GNSS-R LAND APPLICATIONS WITH TOPOGRAPHY EFFECTS AND DDM SIMULATIONS
Zhuang, Yin	pg. 1639] TH1.R2.7 - FEATURE ENHANCED CENTERNET FOR OBJECT DETECTION IN REMOTE SENSING IMAGES pg. 944] TU2.R16.11 - SEMANTIC SEGMENTATION KNOWLEDGE BASED MMRF OPTIMAL METHOD FOR FINE- GRAINED URBAN INFRASTRUCTURE CLASSIFICATION MAPPING FROM OPTICAL VHR AERIAL IMAGERY
Zhuang, Zhaowen	pg. 2631 FR2.R3.7 - OBJECT DETECTION FOR REMOTE SENSING IMAGES BASED ON GUIDED ANCHORING AND FEATURE FUSION
Zhuo, Wen	pg. 4383 TU2.R11.11 - WINTER WHEAT YIELD ESTIMATION AT THE FIELD SCALE BY ASSIMILATING SENTINEL-2 LAI INTO CROP GROWTH MODEL
Ziemann, Amanda	pg. 3975 FR2.R4.7 - TEMPORAL ANOMALY DETECTION IN MULTISPECTRAL IMAGERY

Zimmermann, Robert	pg. 4035 FR2.R14.3 - TOWARDS 4D VIRTUAL OUTCROPS WITH HYPERSPECTRAL IMAGING
Zink, Manfred	pg. 3403 TU2.R15.1 - TANDEM-X: 10 YEARS OF OPERATION
Zink, Michael	pg. 6483 FR1.R15.7 - REMOTE SENSING SYSTEMS FOR URBAN-SCALE DRONE AND AIR TAXI OPERATIONS
Zinno, Ivana	pg. 4065 FR2.R15.4 - GROUND DEFORMATION ANALYSIS OF THE ITALIAN PENINSULA THROUGH THE SENTINEL-1 P-SBAS PROCESSING CHAIN pg. 5246 FR2.R10.12 - A GLOBAL ARCHIVE OF DINSAR CO-SEISMIC DEFORMATION MAPS FROM SENTINEL-1 DATA
Zinzow, Clark	pg. 4819 TH1.R6.11 - UNSUPERVISED METRIC FOR LARGE- SCALE CLOUD MASK EVALUATION
Zissis, Dimitris	pg. 2276 FR1.R5.9 - VESSEL DETECTION USING IMAGE PROCESSING AND NEURAL NETWORKS
Zlotnicki, Victor	pg. 6121 WE1.R7.6 - THE NASA MASS CHANGE DESIGNATED OBSERVABLE STUDY: OVERVIEW, PROGRESS, AND FUTURE PLANS
Zoffoli, Simona	pg. 6055 TU2.R4.6 - SCIENTIFIC REQUIREMENTS FOR A NEW EO MISSION IN THE MWIR-LWIR SPECTRAL RANGE
Zorzi, Stefano	pg. 1829 TH1.R9.8 - MAP-REPAIR: DEEP CADASTRE MAPS ALIGNMENT AND TEMPORAL INCONSISTENCIES FIX IN SATELLITE IMAGES
Zou, Hang	pg. 1141 WE1.R16.5 - CHALLENGES AND OPPORTUNITIES FOR STAGGERED SAR WITH LOW OVERSAMPLING FACTORS
Zou, Tongyuan	pg. 1809 TH1.R9.3 - LOOK AT THE BIG PICTURE: BUILDING AREA EXTRACTION WITH GLOBAL DENSITY MAP pg. 340 MO2.R18.10 - CHANGE DETECTION OF POLARIMETRIC SAR IMAGES USING MINKOWSKI LOG-RATIO DISTANCE pg. 296 MO2.R17.10 - WEAK TARGET DETECTION IN HIGH- RESOLUTION REMOTE SENSING IMAGES BY COMBINING SUPER-RESOLUTION AND DEFORMABLE FPN
Zou, Zhenyu	pg. 6615 TU1.R2.7 - THREE-DIMENSIONAL VARIATIONS OF CARBON MONOXIDE CONCENTRATION ASSOCIATED WITH WENCHUAN EARTHQUAKE BASED ON AIRS DATA
Zozaya, Alfonso	pg. 4481 WE1.R10.2 - A MULTI-SENSOR APPROACH TO SEPARATE PALM OIL PLANTATIONS FROM FOREST COVER USING NDFI AND A MODIFIED PAULI DECOMPOSITION TECHNIQUE pg. 2093 TH2.R5.8 - AUTOMATE LITHOLOGICAL CLASSIFICATION OF THE AMOTAPE TAHUIN METAMORPHIC COMPLEX IN ECUADOR USING RANDOM FOREST AND A MULTI- SENSOR SATELLITE IMAGERY APPROACH
Zribi, Mehrez	pg. 4910 TH2.R1.2 - CLAY CONTENT MAPPING USING SOIL

	MOISTURE PRODUCTS DERIVED FROM A SYNERGETIC USE OF SENTINEL-1 AND SENTINEL-2 DATA (pg. 4454) WE1.R1.6 - SOIL MOISTURE ESTIMATION AT 500M USING SENTINEL-1: APPLICATION TO TUNISIAN SITES (pg. 3154) WE2.R14.6 - THE FRENCH LAND DATA AND SERVICES CENTER: THEIA (pg. 4711) TH1.R1.6 - IRRIGATION MAPPING USING SENTINEL-1 TIME SERIES (pg. 5011) TH2.R10.10 - NEW ASCAT VEGETATION OPTICAL
	DEPTH (IB-VOD) RETRIEVALS OVER AFRICA
Zuffada, Cinzia	pg. 7029 TU2.R20.2 - WIND VECTOR AND WAVE HEIGHT RETRIEVAL IN INLAND WATERS USING CYGNSS pg. 5913 MO2.R13.3 - SIMULATION STUDY OF CYGNSS OBSERVABILITY OF DYNAMIC INUNDATION EVENTS pg. 5917 MO2.R13.4 - INVESTIGATION OF COHERENT AND INCOHERENT SCATTERING FROM LAKES USING CYGNSS OBSERVATIONS pg. 5847 TH2.R8.9 - IMPROVED ORBIT DETERMINATION OF THE CYGNSS SATELLITES AND ITS APPLICATION TO GNSS-R OCEAN ALTIMETRY pg. 6214 WE1.R13.9 - WAVE COHERENCE IN GNSS REFLECTOMETRY: A SIGNAL PROCESSING POINT OF VIEW
Zuikova, Emma	pg. 5693 TU2.R8.2 - APPLICATION OF DOPPLER RADAR FOR MEASUREMENT OF CURRENT VELOCITY AT SMALL INCIDENCE ANGLES: THE FIRST EXPERIMENTS AT THE RIVER
Zuleta, Ignacio	pg. 3833 TH2.R17.1 - LEVERAGING SPACE AND GROUND ASSETS IN A SENSORWEB FOR SCIENTIFIC MONITORING: EARLY RESULTS AND OPPORTUNITIES FOR THE FUTURE
Zuo, Lin	pg. 2229 TH2.R20.9 - MAPPING ELECTRIC TRANSMISSION LINE INFRASTRUCTURE FROM AERIAL IMAGERY WITH DEEP LEARNING
Zuo, Zhengkang	pg. 6957 FR2.R2.1 - IMPROVED GENETIC ALGORITHM FOR BUNDLE ADJUSTMENT IN PHOTOGRAMMETRY
Zurita, Albert	pg. 6507 FR2.R13.1 - TECHNOLOGY DEVELOPMENTS FOR AN ADVANCED L-BAND RADIOMETER MISSION
Zurita, Alberto	pg. 5974 TU1.R4.9 - THE NEXT GENERATION OF L BAND RADIOMETRY: USER'S REQUIREMENTS AND TECHNICAL SOLUTIONS
Zurita, Alberto M.	pg. 6539 FR2.R13.9 - SPATIAL RESOLUTION ENHANCEMENT OF RADIOMETER MEASUREMENTS COLLECTED BY THE FUTURE MICROWAVE CIMR MISSION
Zuykova, Emma	pg. 5713 TU2.R8.7 - BISTATIC DOPPLER SPECTRA OF THE SIGNAL REFLECTED BY ROUGH WATER SURFACE MEASURED BY MODIFIED MONOSTATIC RADAR
Zwart, Jacob	pg. 3494 WE2.R7.3 - PROCESS GUIDED DEEP LEARNING FOR MODELING PHYSICAL SYSTEMS: AN APPLICATION IN LAKE TEMPERATURE MODELING

Zwieback, Simon

TU2.R15.7 - THE 2015 SAGAVANIRKTOK RIVER FLOOD AND
ASSOCIATED PERMAFROST DEGRADATION OBSERVED WITH
TERRASAR-X/TANDEM-X AND OTHER SENSORS

Main Menu