On Optimal Estimation Theory for Atmospheric Correction of Visible Shortwave Infrared (VSWIR) Imaging Spectroscopy

David R. Thompson, Vijay Natraj, Brian D. Bue, Robert O. Green

Jet Propulsion Laboratory, California Institute of Technology

Copyright 2017. All Rights Reserved. This research has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NASA programmatic support through ESTO and Terrestrial Ecology programs is gratefully acknowledged.
Agenda

1. Status quo atmospheric correction methods and gaps
2. Optimal Estimation and its advantages
3. Implementation possibilities
Atmospheric correction
Atmospheric correction

\[
\rho_{TOA} = \rho_{atm} + \frac{T \rho_S}{1 - S \rho_S}
\]

Top of atmosphere reflectance

Path reflectance

Transmission

Spherical albedo

Surface reflectance
RTM
Calculations for observation geometry

Lookup table for T, S, ρ_{atm} indexed by H_2O, etc.

In Advance

Typical approach
RTM Calculations for observation geometry

Lookup table for T, S, ρ_{atm} indexed by H$_2$O, etc.

In Advance

Typical approach

Estimate atmospheric state

$\rho_{TOA} = \rho_{atm} + \frac{T \rho_s}{1 - S \rho_s}$

Look up atmospheric state

Algebraic inversion for reflectance
Key attributes of status quo methods

• Surface and atmosphere retrieved separately. Cannot always estimate smooth atmospheric perturbations.

• Number of retrieved atmospheric parameters must be small. The state vector size is limited by LUT dimension.
Big deal for tropical atmospheres

Figure 1: Aerosol Optical Depth (AOD) for the Indian Subcontinent, averaged over winter months of 2001-2004. Here the MISR instrument reveals spatial variability with AOD values of 0.3 or greater for many of the areas overflown during the AVIRIS-NG India campaign (Di Girolamo et al., 2004). Aerosol loadings over urban areas are typically higher.
Small inaccuracies can matter
Alternative: Optimal Estimation
[Rodgers et al., 2000]

• Estimate atmosphere and surface together
• Free parameters are a state vector of arbitrary size
• Probabilistic, permits uncertainty analysis and Bayesian priors
Alternative: Optimal Estimation
[Rodgers et al., 2000]

• Measurement model:

\[y = F(x) + \epsilon \]

- Radiance measurement
- RTM prediction
- Random error

• For covariances \(S \), minimize the error function:

\[\chi^2(x) = (F(x) - y)^T S_{\epsilon}^{-1} (F(x) - y) + (x - x_a)^T S_{a}^{-1} (x - x_a) \]

- Model match to measurement
- Bayesian prior
Example: OCO-2
Retrieval method
[Boesch et al., 2015]
Potential benefits

• **RTM solution for each spectrum**, models exact absorption-in-scattering for accurate correction of H₂O vapor absorption – get past interpolation inaccuracy of LUT and limited number of state variables

• **Relaxes Lambertian assumption**

• **Retrieve aerosol parameters** using information across the VSWIR range, improving accuracy of aerosol correction.

• **Incorporates ancillary measurements** in a principled way via the prior distribution

• **Degree of Freedom (DOF) analysis** permits a rigorous analysis of VSWIR atmospheric information content

• **Posterior uncertainty estimates** for use in downstream analyses.
Agenda

1. Status quo atmospheric correction methods and gaps
2. Optimal Estimation and its advantages
3. Implementation possibilities
Option 1: Fast RTMs

- Two-stream exact-single-scattering (2S-ESS) model (Spurr and Natraj, 2011)
 1. 2S computes the approximate multiple scattering field
 2. ESS calculates the single-scatter field.
- Incorporates state of art representations
 – Nakajima-Tanaka (N-T) correction
 – Delta-M scaling
- For calculations in a 20-layer atmosphere with 100 spectral points, 2S is ~800 times faster compared to DISORT with eight discrete ordinates in the half-space.
- Accurate to within 0.1% of an “exact” RT model, but with computational speed comparable to two-stream models.

- A powerful, flexible regression model
- Major advances 2012-present
- Learns the RTM response function based on training data
- Runs in milliseconds on commodity hardware
- Can achieve accurate emulation within numerical precision
Example: modeling the MODTRAN A band, line by line

Input:
- Albedo,
- Visibility

Hidden layer:
- 2x1 clamped
- 10x sigmoid

Output:
- Fine structure
- Continuum Parameters

Radiance:
- 12100x
- continua x fine structure (deterministic)

10x sigmoid

12100x linear

3x linear
Oxygen A band at two AODs

The fine structure calculation is trained easily on a modern laptop CPU in just a few minutes.

Achieves arbitrary accuracy (<0.0005 transmittance units).

The forward model runs in three milliseconds.
Conclusions

• Optimal Estimation: A principled probabilistic approach to advance atmospheric correction with combined estimation of surface and atmosphere
• Now tractable thanks to mature technologies from other fields
• Watch this space for more…
Thanks!

NASA Earth Science Division (AVIRIS-NG India Science Analysis Grant)
National Science Foundation National Robotics Initiative
RTMs compared

<table>
<thead>
<tr>
<th>Codebase</th>
<th>Radiative Transfer</th>
<th>Method</th>
<th>State vector</th>
<th>Exact scattering</th>
<th>Coupled Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATREM</td>
<td>6S</td>
<td>LUT</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>HyspIRI</td>
<td>6S</td>
<td>LUT</td>
<td>S</td>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>FLAASH</td>
<td>DISORT</td>
<td>LUT</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>ACORN</td>
<td>DISORT</td>
<td>LUT</td>
<td>S</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>ATCOR</td>
<td>DISORT</td>
<td>LUT</td>
<td>S</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>OE</td>
<td>2S-ESS</td>
<td>OE</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>

State vector
- H$_2$O
- Elevation
- Aerosol
- AOD