

2017 IEEE International Geoscience and Remote Sensing Symposium

PERSPECTIVES ON CHINESE DEVELOPMENTS IN SPACEBORNE IMAGING SPECTROSCOPY: WHAT' S NEW IN 2016

Lifu Zhang

Institute of Remote Sensing and Digital Earth, CAS

July23-28, 2017•Fort Worth, Texas, USA

Concept of hyperspectral remote sensing

What is hyperspectral remote sensing?

- □ Spectral Resolution $\geq \lambda/10$: Multi-spectral
- **D** Spectral Resolution $\geq \lambda/100$: Hyper-spectral
- **D** Spectral Resolution $\geq \lambda/1000$: Super-spectral

Why is hyperspectral remote sensing?(i)

- It offers revolutionized concepts from a spectral perspective which is completely different from traditional spatial domainbased wisdom in remote sensing community.
- It solves many problems that cannot be resolved by multispectral imaging such as subsample and mixed sample issues;

Multispectral imagery

Multispectral data can only classify 4 categories of the objects.

Why is hyperspectral remote sensing?(ii)

Hyperspectral remote sensing a research hot spot

Number of projects supported by the NSFC from 1990 to 2016 (data taken from http://www.nsfc.gov.cn/Portal0/default152.h tm). High-quality papers related to HRS written by Chinese and world wide scientists from 1995 to 2017 (data taken from Web of Science).

Who is interested in Hyperspectral remote sensing

Distribution of the main HRS application domains in China

Overview

Spaceborne Hyperspectral Imaging Sensor

Sensor	Spectral Coverage /µm	Spectral Res. /nm	No. of Bands	Available Date
CMODIS	0.4-12.5	20	34	2002
HJ-1A HSI	0.45-0.95	5	115	2008
FY-3 MERSI	0.44–0.89 0.39–1.04 1.62-2.15 10-12.5	50 20 50 2500	5 12 2 1	2008
Chang'E-1 IIM	0.48-0.96	15	32	2009
TG-1 HSI	0.40-1.0 1.0-2.5	10 23	128	2011
SPARK	0.40-1.0	5	148	2016

CMODIS: first satellite hyperspectral imager

Launched in 25th

March,2002

No. bands: 34, Include:
 Visible: 20 (20nm, from 412 nm)
 NIR: 10 (20nm, from 822 nm)
 SWIR: 1 (2.150-2.250 μm)
 TIR: 3

 (8.40-8.90,10.30-11.30 μm,11.50-12.50 μm)

CHJ-1A HSI (China, 2008)

A Constellation of 2 Small Satellites (HJ-1) was launched in Sept. 6, 2008 for Environment and Disasters Monitoring

One of the Main Payloads on Board of the Satellite is a VIS-NIR Imaging Spectrometer (HSI)

Spec.Range:450nm-900nmNumber of Bands:115Spatial Resolution:100mGround Coverage:50kmSide Looking: $\pm 30^{\circ}$ Revisit:4-31days

HJ-1A HIS (China, 2008)

Radiometric Correction: Data analysis, Homogenization, Noise remove, CCD mosaic, Bands co-registration.

Geometric Correction: Geometric correction, Generating map projection. **Systematic Correction :** Eliminating the influence of Attitude and Orbit parameter changes.

MERSI/ FY-3A

Launched in 2008

A global image mosaic from MERSI with natural color and resolution of 3 km

(Courtesy: Chaohua Dong et al.)

Spec.Range:0.4-12.5umNSpatial Resolution:0.25-1kmSQuantization:12 bitFAssembling two onboard calibration systems

Number of Bands: 20 Scanning range: ±55.4° Radiometric calibration Accu. <7%

Chang'E-1 IIM: for Lunar exploration

TG-1 HSI: China's first target vehicle

Spectral Coverage /nm	400-2500
Spectral Res. /nm	10/23
No. of Bands	128
MTF	0.34
Swath/km	10
SNR	180@1600nm

TG-1 Image, South Australia

SPARK: China's first commercial hyperspectral nanosatellite

□ The first commercial hyperspectral nano satellite (SPARK-01、 SPARK-02) were launched on December 22, 2016

SPARK-01

SPARK-02

SPARK: China's first commercial hyperspectral nanosatellite

Swath: 100km@700km;
Revisit period: 16 days;
Spatial resolution: 50m@700km;
Spectral range: 420~1000nm;
Number of band: 148;
Spectral resolution: 4nm;
Weight: 42kg;

The first image product of SPARK-02

Strong data acquisition ability of SPARK

The images obtained by SPARK in the region of China within two months .

Radiation calibration of SPARK data

End of the calibration

Data products of SPARK

Product level		Definition					
Leve	10	Data decompression, data cutting out and disparting products					
Level 1	L1A	Relative radiometric correction products based on L0					
	L1B	Absolute radiometric calibration and spectral calibration products based on					
		L1A					
	L1C	Atmospheric correction products based on L1B					
Level 2	L2A	Systematically geometric correction products based on L1A					
	L2B	Systematically geometric correction products based on L1B					
	L2C	Systematically geometric correction products based on L1C					
Level 3	L3A	Geometric accurate correction products based on L2A					
	L3B	Geometric accurate correction products based on L2B					
	L3C	Geometric accurate correction products based on L2C					
Level 4	L4	Orthographic correction products					
Level 5	L5	Mosaic and fusion products					
Special application products		Typical application products such as agriculture, forestry, water environmental					

Data products of SPARK

L2B

Applications of SPARK data

Image data captured by SPARK-02 (Putnam County, Georgia, America)

Classification

Vegetations

Man-made features

Water

Classification based on hyperspectral features

Applications of SPARK data

Wide range of land use monitoring

Applications of SPARK data

Complex terrain area - investigation of vegetation distribution

The GF project indicates that Chinese Earth observation enters high-resolution phase

GF-5

Sensors Para.	HyperSpect ral Camera (VNIR SWIR)	Full- spectrum spectral imager	Greenhouse gas detector	Atmospheric environment NIR hyspectral detector	Atmospheric- trace-gas absorption spectrometer	Aerosol Multi- angle polarization detectors
Spec. range	VNIR: 0.4μm-0.9μm SWIR1: 0.9μm-1.75μm SWIR2: 1.75μm-2.5μm	0.45μm 12.5μm	0.765μm (O ₂) 1.575μm (CO ₂) 1.65μm (CH ₄) 2.05μm (CO ₂)	750∼4100cm ⁻¹ (2.4∼13.3μm)	240~315nm 311~403nm 411~550nm 545~710nm	433-453nm 480-500nm (P) 555-575nm 660-680nm (P) 758-768nm
Spec.Res	VNIR:5nm SWIR:10nm	0.06um~1.1um	0.6cm ⁻¹ (O ₂) , 0.27cm ⁻¹ (CO ₂ , CH ₄)	0.03cm ⁻¹	0.3~0.5nm	745-785nm 845-885nm(P) 900-920nm
Spatial Res	30m	VNIR:20m M-LWIR:40m	IFOV : 14.6mrad	IFOV: 1.25mrad	48km (across orbit) ×13km (orbit direction)	3.5km
Swath	60km	60km				
SNR	VNIR:≥200 SWIR1:≥150 SWIR2:≥100	VNIR:≥200 M-LWIR: NE△T≤0.2K	≥300@p=30% (O ₂ , CO ₂) ≥250@p=30% (CH ₄ , CO ₂)	>100 (@5800K)		>500 (Land)

CarbonSat: Super-spectral spectrometer

Objective: Global carbon cycle monitoring by integrating vegetation reflectance and sun-induced fluorescence emission flux.

Space-borne sensors for SIF detection worldwide

Sensor Parameters	GOSAT	OCO-2	GOME-2	SCIAMACHY	CarbonSat
Data Acuqisition	Non-imaging	Non-imaging	Non-imaging	Non-imaging	Imaging
Launch time	2009	2014	2006	2002	2020
Overpass time	13: 00	13: 00	9:30	10:00	10:00
Visit circle	3 day	16 day	1.5 day	6 day	27 d
Spectral range	757 – 775 nm		650 – 790 nm		670 - 780 nm
FWHM	0.025 nm	0.05 nm	0.5 nm		~0.3 nm
Spatial resolution	10 km	1.3×2.25 km	40 $ imes$ 80 km	$30{ imes}40~{ m km}$	300 m
SNR	>300 (30%, SZA=30 ⁰)	360 (5%, SZA=60 ⁰)	> 1000	3000	> 200

New MDD format for time series image data storage

 MDD is a multi-dimensional data storage format that can integrate the temporal, spatial, and spectral features of remote sensing data. The MDD has two files: a header file and a data file.

TIS

New *.mdd multidimensional storage structures

5 MDD structure, TSB,TSP,TIB,TIP,TIS

Multidimensional analysis software: MARS V1.0

MARS is a computer software, which can be used for MDD data building, opening, display, processing, analysis and output.

	Chinese	e English				
Global Change Research Data Publishing & Repository —Metadata, Data Products and Data Papers						
Home Submission	Data List Search	Policy Documents Authors Order About Us Sign In	n Register			
Dataset List	Vol. Area	Data Details				
No.1 Vol.1,2014	0	Inter-operational tool for Temporal-Spatial Data Analysis in				
No.2 Vol.1,2014	0	Multi-Dimension Data Format (.mdd)				
No.1 Vol.2,2015	0	ZHANG Lifu ¹ SUN Xuejian* ¹ ZHANG Xia ¹ WANG Nan ¹				
No.2 Vol.2,2015	•	ZHANG Mingyue ^{1,2} LIN Yukun ^{1,2} HUANG Hai ¹ CEN Yi ¹ HUANG Changping ¹ XANG Hang ¹ ZHANG Hongming ¹ LIU Jia ¹				
No.1 Vol.3,2016	0	TONG Qingxi ¹				
No.2 Vol.3,2016	0	Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Reijing100101 Chine				
No.3 Vol.3,2016	0	2 University of Chinese Academy of Sciences , Beijing 100049				
No.4 Vol.3,2016	0	DOI:10.3974/geodb.2017.02.20.V1				
No.5 Vol.3,2016	0	Published:Jun. 2017				
No.6 Vol.3,2016	0	Visitors : 110 Data Files Downloaded : 58				
Dataset on the XiAn Citv	,	Data Downloaded : 295.99 MB Citations :				

Conclusions

- What's new in 2016 and 2017:
 - □ China launched the first commercial hyperspectral nano-Satellite: SPARK, in 2016;
 - Chinese GF-5 hyperspectral satellite will be launching in Aug. 2017;
 - Chinese Carbon Satellite is undergoing demonstration research;
 - We defined a new multidimensional remote sensing data structure for time-series analysis;
 - We published our multidimensional analysis software, which can be download at

http://www.geodoi.ac.cn/WebEn/doi.aspx?Id=702

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

Email: zhanglf@radi.ac.cn