PERSPECTIVES ON CHINESE DEVELOPMENTS IN SPACEBORNE IMAGING SPECTROSCOPY: WHAT’S NEW IN 2016

Lifu Zhang

Institute of Remote Sensing and Digital Earth, CAS

July 23-28, 2017, Fort Worth, Texas, USA
1. Introduction
2. Onboard Chinese Hyperspectral Missions
3. New Spaceborne Imaging Spectroscopy
4. Upcoming missions
5. Conclusions
Introduction

- Concept of hyperspectral remote sensing

Observing the Earth

Ground target Spectral

Soil

Water

Tree

Sorghum

Sand
Introduction

What is hyperspectral remote sensing?

- Spectral Resolution $\geq \lambda/10$: Multi-spectral
- Spectral Resolution $\geq \lambda/100$: Hyper-spectral
- Spectral Resolution $\geq \lambda/1000$: Super-spectral
Why is hyperspectral remote sensing? (i)

- It offers revolutionized concepts from a spectral perspective which is completely different from traditional spatial domain-based wisdom in remote sensing community.
- It solves many problems that cannot be resolved by multispectral imaging such as subsample and mixed sample issues;

Multispectral imagery
Introduction

Why is hyperspectral remote sensing? (ii)

Hyperspectral imagery can classify 10 categories of the objects.
Introduction

Hyperspectral remote sensing a research hot spot

Number of projects supported by the NSFC from 1990 to 2016 (data taken from http://www.nsfc.gov.cn/Portal0/default152.htm).

High-quality papers related to HRS written by Chinese and world wide scientists from 1995 to 2017 (data taken from Web of Science).
Introduction

Who is interested in Hyperspectral remote sensing

[Pie chart showing distribution of main HRS application domains in China]

Distribution of the main HRS application domains in China
OUTLINE

1. Introduction
2. Onboard Chinese Hyperspectral Missions
3. New Spaceborne Imaging Spectroscopy
4. Upcoming Hyperspectral Missions
5. Conclusions
Onboard Chinese Hyperspectral Missions

Overview

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Spectral Coverage /µm</th>
<th>Spectral Res. /nm</th>
<th>No. of Bands</th>
<th>Available Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMODIS</td>
<td>0.4-12.5</td>
<td>20</td>
<td>34</td>
<td>2002</td>
</tr>
<tr>
<td>HJ-1A HSI</td>
<td>0.45–0.95</td>
<td>5</td>
<td>115</td>
<td>2008</td>
</tr>
<tr>
<td>FY-3 MERSI</td>
<td>0.44–0.89</td>
<td>50</td>
<td>5</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>0.39–1.04</td>
<td>20</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.62–2.15</td>
<td>50</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10–12.5</td>
<td>2500</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chang‘E-1 IIM</td>
<td>0.48–0.96</td>
<td>15</td>
<td>32</td>
<td>2009</td>
</tr>
<tr>
<td>TG-1 HSI</td>
<td>0.40–1.0</td>
<td>10</td>
<td>128</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>1.0–2.5</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPARK</td>
<td>0.40–1.0</td>
<td>5</td>
<td>148</td>
<td>2016</td>
</tr>
</tbody>
</table>
CMODIS: first satellite hyperspectral imager

- **No. bands**: 34, Include:
 - **Visible**: 20 (20nm, from 412 nm)
 - **NIR**: 10 (20nm, from 822 nm)
 - **SWIR**: 1 (2.150-2.250 μm)
 - **TIR**: 3 (8.40-8.90, 10.30-11.30 μm, 11.50-12.50 μm)

Launched in 25th March, 2002

A typical CMODIS image
A Constellation of 2 Small Satellites (HJ-1) was launched in Sept. 6, 2008 for Environment and Disasters Monitoring.

One of the Main Payloads on Board of the Satellite is a VIS-NIR Imaging Spectrometer (HSI)

Spec.Range: 450nm-900nm
Number of Bands: 115
Spatial Resolution: 100m
Ground Coverage: 50km
Side Looking: ±30°
Revisit: 4-31days
Radiometric Correction: Data analysis, Homogenization, Noise remove, CCD mosaic, Bands co-registration.

Geometric Correction: Geometric correction, Generating map projection.

Systematic Correction: Eliminating the influence of Attitude and Orbit parameter changes.
Onboard Chinese Hyperspectral Missions

MERSI/ FY-3A

Launched in 2008

A global image mosaic from MERSI with natural color and resolution of 3 km

(Courtesy: Chaohua Dong *et al*.)

Spec.Range: 0.4-12.5μm
Spatial Resolution: 0.25-1km
Quantization: 12 bit
Assembling two onboard calibration systems
Number of Bands: 20
Scanning range: ±55.4°
Radiometric calibration Accu. <7%
Onboard Chinese Hyperspectral Missions

Chang’E-1 IIM: for Lunar exploration

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of Swath</td>
<td>25.6km</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>200m</td>
</tr>
<tr>
<td>Imaging Region</td>
<td>75° N~75° S</td>
</tr>
<tr>
<td>Spectral Range</td>
<td>480~960nm</td>
</tr>
<tr>
<td>Spectral Bands</td>
<td>32</td>
</tr>
<tr>
<td>Digitization</td>
<td>12bit</td>
</tr>
<tr>
<td>MTF</td>
<td>≥0.2</td>
</tr>
</tbody>
</table>

Global lunar surface (IIM hyperspectral cube)
Onboard Chinese Hyperspectral Missions

TG-1 HSI: China’s first target vehicle

29-Sep-2011

TG-1 Image, South Australia

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Coverage /nm</td>
<td>400-2500</td>
</tr>
<tr>
<td>Spectral Res. /nm</td>
<td>10/23</td>
</tr>
<tr>
<td>No. of Bands</td>
<td>128</td>
</tr>
<tr>
<td>MTF</td>
<td>0.34</td>
</tr>
<tr>
<td>Swath/km</td>
<td>10</td>
</tr>
<tr>
<td>SNR</td>
<td>180@1600nm</td>
</tr>
</tbody>
</table>
1. Introduction

2. Onboard Chinese Hyperspectral Missions

3. New Spaceborne Imaging Spectroscopy

4. Upcoming Hyperspectral Missions

5. Conclusions
New Spaceborne Imaging Spectroscopy

SPARK: China’s first commercial hyperspectral nano-satellite

Capture hyperspectral images with the spatial resolution of 50 meters
SPARK: China’s first commercial hyperspectral nano-satellite

The first commercial hyperspectral nano satellite (SPARK-01, SPARK-02) were launched on December 22, 2016.
New Spaceborne Imaging Spectroscopy

SPARK: China’s first commercial hyperspectral nanosatellite

- Swath: 100km@700km;
- Revisit period: 16 days;
- Spatial resolution: 50m@700km;
- Spectral range: 420~1000nm;
- Number of band: 148;
- Spectral resolution: 4nm;
- Weight: 42kg;

The first image product of SPARK-02
The images obtained by SPARK in the region of China within two months.
New Spaceborne Imaging Spectroscopy

Radiation calibration of SPARK data

- SPARK satellite
 - On-orbit calibration preparation
 - Relative radiometric calibration
 - Geometric correction
 - Absolute radiometric calibration
 - Error estimation based on radiative transfer model
 - Dark current calculation
 - Based on rectilinear flight
 - Based on the reflectivity method
 - Ground reflectance error
 - Optical thickness error
 - Aerosol error
 - Water vapor error
 - Atmospheric model error
 - SNR error
 - Other errors

End of the calibration
New Spaceborne Imaging Spectroscopy

Data products of SPARK

<table>
<thead>
<tr>
<th>Product level</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>Data decompression, data cutting out and disparting products</td>
</tr>
<tr>
<td>Level 1</td>
<td>L1A Relative radiometric correction products based on L0</td>
</tr>
<tr>
<td></td>
<td>L1B Absolute radiometric calibration and spectral calibration products based on L1A</td>
</tr>
<tr>
<td></td>
<td>L1C Atmospheric correction products based on L1B</td>
</tr>
<tr>
<td>Level 2</td>
<td>L2A Systematically geometric correction products based on L1A</td>
</tr>
<tr>
<td></td>
<td>L2B Systematically geometric correction products based on L1B</td>
</tr>
<tr>
<td></td>
<td>L2C Systematically geometric correction products based on L1C</td>
</tr>
<tr>
<td>Level 3</td>
<td>L3A Geometric accurate correction products based on L2A</td>
</tr>
<tr>
<td></td>
<td>L3B Geometric accurate correction products based on L2B</td>
</tr>
<tr>
<td></td>
<td>L3C Geometric accurate correction products based on L2C</td>
</tr>
<tr>
<td>Level 4</td>
<td>L4 Orthographic correction products</td>
</tr>
<tr>
<td>Level 5</td>
<td>L5 Mosaic and fusion products</td>
</tr>
<tr>
<td>Special application products</td>
<td>Typical application products such as agriculture, forestry, water environmental</td>
</tr>
</tbody>
</table>
New Spaceborne Imaging Spectroscopy

- Data products of SPARK
Applications of SPARK data

Image data captured by SPARK-02 (Putnam County, Georgia, America)

Classification based on hyperspectral features
New Spaceborne Imaging Spectroscopy

Applications of SPARK data

Liaoning province, China

Wide range of land use monitoring
New Spaceborne Imaging Spectroscopy

- Applications of SPARK data

Complex terrain area - investigation of vegetation distribution
1. Introduction
2. Onboard Chinese Hyperspectral Missions
3. New Spaceborne Imaging Spectroscopy
4. Upcoming Hyperspectral Missions
5. Conclusions
Upcoming Hyperspectral Missions

GF-series: high-resolution satellite program

- GF-1 (2013) 2m/8m/16m
- GF-2 (2014) 1m/4m
- GF-3 (2016) CSAR
- GF-4 (2015) 50m-geostationary
- GF-5 (2017) HRS
- GF-6 (2017) Like GF-1
- GF-7 (2018) cartographic optical satellite

The GF project indicates that Chinese Earth observation enters high-resolution phase
Upcoming Hyperspectral Missions

GF-5

<table>
<thead>
<tr>
<th>Sensors</th>
<th>HyperSpectral Camera (VNIR, SWIR)</th>
<th>Full-spectrum spectral imager</th>
<th>Greenhouse gas detector</th>
<th>Atmospheric environment NIR hyperspectral detector</th>
<th>Atmospheric trace-gas absorption spectrometer</th>
<th>Aerosol Multi-angle polarization detectors</th>
</tr>
</thead>
</table>
| Spec. range | **VNIR:** 0.4μm-0.9μm
SWIR1: 0.9μm-1.75μm
SWIR2: 1.75μm-2.5μm | **VNIR:** 0.45μm
SWIR1: 0.765μm (O₂)
SWIR2: 1.575μm (CO₂) | **VNIR:** 750～4100cm⁻¹
SWIR1: 240～315nm
SWIR2: 750～4100cm⁻¹
SWIR1: 240～315nm | **VNIR:** 433-453nm
SWIR1: 480-500nm (P)
SWIR2: 660-680nm (P)
SWIR2: 758-768nm
SWIR2: 745-785nm
SWIR2: 845-885nm (P)
SWIR2: 900-920nm | **VNIR:** 433-453nm
SWIR1: 480-500nm (P)
SWIR2: 660-680nm (P)
SWIR2: 758-768nm
SWIR2: 745-785nm
SWIR2: 845-885nm (P)
SWIR2: 900-920nm | **VNIR:** 433-453nm
SWIR1: 480-500nm (P)
SWIR2: 660-680nm (P)
SWIR2: 758-768nm
SWIR2: 745-785nm
SWIR2: 845-885nm (P)
SWIR2: 900-920nm |
| Spec.Res | **VNIR:** 5nm
SWIR: 10nm | **VNIR:** 0.06um~1.1um
SWIR1: 0.6cm⁻¹ (O₂)
SWIR2: 0.27cm⁻¹ (CO₂, CH₄) | **VNIR:** 0.03cm⁻¹ | **VNIR:** 0.3～0.5nm | **VNIR:** 0.3～0.5nm | **VNIR:** 0.3～0.5nm |
| Spatial Res | **VNIR:** 20m
M-LWIR: 40m | **VNIR:** 14.6mrad
M-LWIR: IFOV: 1.25mrad | **VNIR:** IFOV: 1.25mrad | **VNIR:** 48km (across orbit) × 13km (orbit direction) | **VNIR:** 3.5km | **VNIR:** 3.5km |
| Swath | **VNIR:** ≥200
SWIR1: ≥150
SWIR2: ≥100 | **VNIR:** 60km
M-LWIR: 60km | **VNIR:** -- | **VNIR:** -- | **VNIR:** -- | **VNIR:** -- |
| SNR | **VNIR:** ≥200
SWIR1: ≥150
SWIR2: ≥100 | **VNIR:** ≥200
M-LWIR: NEΔT≤0.2K | ≥300@p=30% (O₂, CO₂)
≥250@p=30% (CH₄, CO₂) | >100(@5800K) | -- | >500 (Land) |
Upcoming Hyperspectral Missions

CarbonSat: Super-spectral spectrometer

Objective: Global carbon cycle monitoring by integrating vegetation reflectance and sun-induced fluorescence emission flux.

The finer the spectral resolution, the deeper the Fraunhofer Lines

A balance between SNR and Spectral resolution
Upcoming Hyperspectral Missions

<table>
<thead>
<tr>
<th>Sensor Parameters</th>
<th>GOSAT</th>
<th>OCO-2</th>
<th>GOME-2</th>
<th>SCIAMACHY</th>
<th>CarbonSat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Acquisition</td>
<td>Non-imaging</td>
<td>Non-imaging</td>
<td>Non-imaging</td>
<td>Non-imaging</td>
<td>Imaging</td>
</tr>
<tr>
<td>Launch time</td>
<td>2009</td>
<td>2014</td>
<td>2006</td>
<td>2002</td>
<td>2020</td>
</tr>
<tr>
<td>Overpass time</td>
<td>13:00</td>
<td>13:00</td>
<td>9:30</td>
<td>10:00</td>
<td>10:00</td>
</tr>
<tr>
<td>Visit circle</td>
<td>3 day</td>
<td>16 day</td>
<td>1.5 day</td>
<td>6 day</td>
<td>27 d</td>
</tr>
<tr>
<td>Spectral range</td>
<td>757 – 775 nm</td>
<td>650 – 790 nm</td>
<td>670 - 780 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWHM</td>
<td>0.025 nm</td>
<td>0.05 nm</td>
<td>0.5 nm</td>
<td></td>
<td>~0.3 nm</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>10 km</td>
<td>1.3×2.25 km</td>
<td>40×80 km</td>
<td>30×40 km</td>
<td>300 m</td>
</tr>
<tr>
<td>SNR</td>
<td>>300 (30%, SZA=30°)</td>
<td>360 (5%, SZA=60°)</td>
<td>>1000</td>
<td>3000</td>
<td>>200</td>
</tr>
</tbody>
</table>
New MDD format for time series image data storage

- MDD is a multi-dimensional data storage format that can integrate the temporal, spatial, and spectral features of remote sensing data. The MDD has two files: a header file and a data file.

Head File
- Spatial, spectral and temporal size of the dimension
- The storage format used in the data file
- Coordinate projection and affine transformation coefficients
- The storage type of the data
- The name of spectral and temporal dimension
- File name and type, data offset, and so on

Data File
- TSB
- TSP
- TIB
- TIP
- TIS
Upcoming Hyperspectral Missions

- New *.mdd multidimensional storage structures

- 5 MDD structure, TSB, TSP, TIB, TIP, TIS
Multidimensional analysis software: MARS V1.0

MARS is a computer software, which can be used for MDD data building, opening, display, processing, analysis and output.

Free download for all users on the website: http://www.geodoi.ac.cn

Visualization of time series spectral features

Multi-dimensional analysis module
Inter-operational tool for Temporal-Spatial Data Analysis in Multi-Dimension Data Format (.mdd)

ZHANG Lifu1, SUN Xuejian*1, ZHANG Xia1, WANG Nan1,
ZHANG Mingyue1,2, LIN Yukun1,2, HUANG Hai1, CEN Yi1
HUANG Changping1, YANG Hang1, ZHANG Hongming1, LIU Jia1
TONG Qingxi1

1 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing 100049

DOI: 10.3974/geodb.2017.02.20.V1
Published: Jun. 2017

Visitors: 110 Data Files Downloaded: 58
Data Downloaded: 295.99 MB Citations:
Conclusions

- What’s new in 2016 and 2017:
 - China launched the first commercial hyperspectral nano-Satellite: SPARK, in 2016;
 - Chinese GF-5 hyperspectral satellite will be launching in Aug. 2017;
 - Chinese Carbon Satellite is undergoing demonstration research;
 - We defined a new multidimensional remote sensing data structure for time-series analysis;
 - We published our multidimensional analysis software, which can be download at

http://www.geodoi.ac.cn/WebEn/doi.aspx?Id=702
Thank you!

Email: zhanglf@radi.ac.cn