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Abstract 
 

The work described in this thesis concerns the estimation of tropical forest 

vegetation cover in the Amazon region using  a continental scale high resolution (100 

m) radar mosaic as data source. The radar mosaic was compiled by the Jet 

Propulsion Laboratory (Caltech/NASA JPL) using approximately 2500 JERS-1 L-

band scenes acquired in the context of the Global Rain Forest Mapping project by the 

National Agency for Space Development of Japan (NASDA).  

A novel classification scheme was developed for this purpose. The underpinning 

method is based on a wavelet signal decomposition/reconstruction technique. In the 

wavelet reconstruction algorithm, an adaptive wavelet coefficient threshold is 

introduced to distinguish wavelet maxima related to the transition between classes 

from maxima related to textural within-class variation. 

Two image-labeling techniques are tested and compared: i) a region-growing 

algorithm and ii) a per-pixel two-stage hybrid classifier. 

The large data volume problem was tackled by developing a special purpose 

processing chain that works on partially overlapping tiles extracted from the mosaic 

Quantitative validation and error analysis of the classifiers’ performance and 

their generalization capability to regional scale are carried out using, as reference, 

maps derived from Landsat Thematic Mapper. A first result of the validation process 

is that the wavelet classifier provides a classification accuracy of 87% in forest/non-

forest mapping. The analysis by site reveals that class degraded-forest is the major 

source of classification errors. The discrepancy between TM maps and SAR maps 

increases with increasing landscape spatial fragmentation. 

A test on relative performances between the wavelet-based region growing 

segmentation technique and a conventional clustering technique (ISODATA) shows 



 

that the wavelet-based technique provides better accuracy and is capable of 

generalizing over the entire data set. 

The issue of detecting the degraded-forest class - generally ignored by 

Amazonian deforestation mapping programs - is tackled using data acquired by both 

optical and SAR instruments. For optical data, a three-stage classification procedure 

is developed for detecting degraded forest classes in Landsat TM images. For SAR 

data, a multi-temporal speckle filtering technique is used to improve the signal to 

noise ratio. Forest degradation, characterized by small isolated and elongated bare 

soil regions regularly distributed in forest areas, is visually detectable in the filtered 

imagery.  

Starting from the consideration that the discrepancy between TM maps and SAR 

maps increases with the landscape spatial fragmentation, an inductive learning 

methodology, capable of correcting SAR regional-scale maps using local 

classification estimates at a higher resolution is tested. 

Finally some ideas and projects are put forward which are meant to be working 

hypotheses for future actions and practical approaches to reduce the pressure over the 

tropical forest ecosystem. 

 

 

 

 

 

 

 

 

 



 

Samenvatting 
 

Het werk beschreven in dit proefschrift betreft de schatting van het areaal 

tropisch bos in het Amazonegebied door middel van een radarmozaïek met hoge 

resolutie (100 m) en continentale bedekking als databron. Het radarmozaïek is door 

het Jet Propulsion Laboratory (NASA JPL) samengesteld uit ongeveer 2500 JERS-1 

L-band radarbeelden die opgenomen zijn door het National Agency for Space 

Development of Japan (NASDA) ten behoeve van het Global Rain Forest Mapping 

project.  

Voor dit doel is een nieuwe classificatie methode ontwikkeld. Deze methode is 

gebaseerd op een wavelet signaalontbinding en –reconstructie techniek. Binnen het 

wavelet reconstructiealgoritme wordt een adaptieve wavelet coëfficiënt drempel 

geïntroduceerd om wavelet maxima gerelateerd aan de ruimtelijke overgang tussen 

klassen te kunnen onderscheiden van maxima gerelateerd aan textuurvariaties binnen 

een klasse. 

Twee beeldkenmerkbenoemingstechnieken zijn getest en vergeleken: i) een 

gebiedsaangroei algoritme en ii) een per beeldelement twee-traps hybride 

classificeerder. 

Het probleem van het grote data volume is aangepakt door de ontwikkeling van 

een speciaal voor dit doel vervaardigde verwerkingsketen die werkt op de gedeeltelijk 

overlappende deelgebieden waaruit het mozaïek is samengesteld.  

Kwantitatieve validatie en foutenanalyse van de prestaties van de 

classificeerders, en hun mogelijkheden voor generalisatie naar een regionale schaal, 

zijn uitgevoerd met behulp van kaarten afgeleid uit Landsat Thematic Mapper 

beelden als referentie. Een eerste resultaat van dit prestatiebeoordelingsproces laat 

zien dat de wavelet classificeerder een nauwkeurigheid van 87% haalt voor kartering 



 

van bossen versus niet-bossen. De analyseresultaten op het niveau van individuele 

testgebieden laten zien dat de klasse gedegradeerd bos de voornaamste oorzaak is 

van classificatiefouten. De discrepantie tussen TM-kaarten and SAR-kaarten neemt 

toe met toenemende fragmentatie van het landschap. 

Een vergelijkende test naar de relatieve prestaties van de op wavelets 

gebaseerde techniek van segmentatie door gebiedsgroei en een conventionele cluster 

techniek (ISODATA) laat zien dat de op wavelets gebaseerde techniek een hogere 

nauwkeurigheid geeft en in staat is een generalisatie te leveren voor de gehele dataset. 

Het probleem van de detectie van de klasse gedegradeerd bos – in het algemeen 

veronachtzaamd binnen programma’s voor kartering van ontbossing in de Amazone – 

wordt aangepakt door zowel optische als SAR data te gebruiken. Voor optische data 

is een drie-traps classificatieprocedure ontwikkeld voor detectie van gedegradeerd 

bos in Landsat TM beelden. Voor SAR data is een multitemporele speckle 

filteringtechniek gebruikt om de signaal-ruis verhouding te verbeteren. 

Bosdegradatie, gekarakteriseerd door kleine langwerpige en geïsoleerde gebieden 

zonder vegetatiebedekking, en met een regelmatige verdeling binnen bosgebieden, is 

visueel waarneembaar in gefilterde beelden. 

Uitgaande van de veronderstelling dat de discrepantie tussen TM-kaarten en 

SAR-kaarten toeneemt met de mate van landschapsfragmentatie is een inductieve 

leermethode getest. Deze methode blijkt de mogelijkheid te hebben om lokale 

classificatieschattingen bij een hogere resolutie te gebruiken voor de correctie van 

SAR-kaarten met regionale schaal. 

Tenslotte worden enkele ideeën en aanbevelingen gegeven die bruikbaar kunnen 

zijn als werkhypothesen of als praktische benaderingen om de druk op het tropisch 

bosecosysteem te verlichten. 
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Chapter 1 

Introduction 
 

1.1 Background 
Tropical rainforests form an irregular vegetation belt comprised between the 

Tropic of Cancer to the North and the Tropic of Capricorn to the South. Rainforests 

can exist only in high rainfall areas (precipitation > 110 mm/month) having a short or 

non-existent dry season, at an altitude lower than 1300 m where the soil’s physical 

properties ensure high levels of available soil moisture and the mean annual 

temperature is around 24° C. 

The Amazon river basin in South America, the Congo river basin in Africa and 

the Borneo and Papua New Guinea in South East Asia are in order of size the world 

widest geographical regions covered by tropical rainforests (see figure 1.1). 

Tropical forests represent important pools of biological, ecological and economic 

resources. Covering less than 7% of the earth, they contain half of the planet’s 

species. For instance, in a half hectare of Amazonian forest, 200 different tree species 

can be found while in the whole of North America the amount of different tree 

species is around 400. 

Moreover, these ecosystems have constituted for millennia the natural habitat of 

native populations. Many archeological finds, discovered in wide areas within the 

Amazon basin, prove the intensive but sustainable usage of forest resources from 

indigenous populations in the past (Fisher, 1990).  
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Figure 1.1: Geographical location of the Tropical forest belt (see color Figure B.1 - 

Annex B, pp. 201). 

 

1.2 Deforestation and related consequences 
Tropical rainforests are particularly threatened by the rapid increase, worldwide, 

in the demand for new agricultural, ranching or farming land, by selective and 

intensive logging, by mining or oil/gas extraction, by settlements or tourism 

programs, water diversion and dam building (figure 2.2 shows the effect of a fire 

event) (Meyers 1980, 1996, and  2000; Lanly, 1982, Jerry, 1986). 

 
Figure 1.2: The photo, taken in Brazilian Amazonia, shows a deforested area where 

the ground was cleared by fire (see color Figure B.2 - Annex B, pp. 201). 
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In many rainforest regions the native populations have been decimated; 

anthropologists calculate that 8 million South American Indians lived in Brazil before 

the discovery of the New World and nowadays only 230,000 Indians survive. About 

half of the tropical rainforest on earth have been destroyed and the remaining 

coverage is about 9 million square kilometers.  

A total of 5.1 million ha of forest was lost per year in tropical South and Central 

America over the period 1990 to 1995 (FAO, 1997). 500,000 square kilometers of 

primary forest in Brazil’s Legal Amazon were converted to ranching, agriculture, 

hydroelectric dams and other land uses at a rate of 20,000 square kilometers per year 

during the 1978-1988 period (Fearnside, 1993a), 19,000 square kilometers per year 

for the 1988-1989 period, 14,000 square kilometers per year for the 1989-1990 

period, 11,000 square kilometers per year for 1990-1991 (Fearnside, 1993b), 14,000 

square kilometers per year for 1991-1992 and 15,000 square kilometers per year for 

1992-1994 (INPE, 1996), 29,000 square kilometers per year for 1995, 18,000 square 

kilometers per year for 1996, 13,000 square kilometers per year for 1997 and 17,000 

square kilometers per year for 1997 (INPE, 1998). 

These deforestation phenomena are related to another important aspect: the 

tropical rainforests role in the atmosphere – biosphere exchange processes, and in 

particular for the carbon cycle and the green house gases flow - such as carbon 

dioxide and methane. This issue is linked to global climate change, a problem of great 

political and scientific relevance (Mellillo et al., 1996; Devol, 1998) 

Large conversion of tropical forest into pastures or annual crops could lead to 

changes in the climate. Numerical models of the global atmosphere and biosphere, 

used for simulating the effects of the Amazonian tropical forest replacements by 

degraded grass (pasture), have revealed a significant increase in the mean surface 

temperature (about 2.5° C) and a decrease in the annual evapo-transpiration (39% 
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reduction), precipitation (25% reduction), and runoff (20 % reduction) in the region 

(Nobre et al., 1991). 

Continuous collection of climate and soil moisture data at different sites within 

forest and pasture in the Amazon basin has confirmed the model results 

demonstrating the local-scale, meso-scale, and large-scale climatic impacts of 

deforestation (Gash and Nobre, 1997). 

Moreover tropical forest conversion, shifting cultivation and clearing of 

secondary vegetation make significant contributions to the global emission of 

greenhouse gases today, and have the potential for large additional emissions in 

future decades (Zhang et al., 1996). Although the discrepant estimations of the total 

net emission of carbon from the tropical land use (i.e. for the 1981-1990 period: 2.4 

million t C per year according to INPA (Fearnside, 2000) or 1.6 million t C per year 

according to Intergovernmental Panel of Climate Change (IPCC), they all indicate 

that continued deforestation would produce greater impact on global carbon emission  

The recent Protocol to the Framework Convention on Climate Change agreed in 

Kyoto has but stressed the critical nature of the situation, confirming general 

awareness and the need for political action towards a long-term solution 

(UNEP/IUC., 1999) 

 

1.3 Objectives 
This research work addresses the problem of deriving and validating regional 

scale estimates of the tropical forest cover in South America using a wide area high 

resolution (100 m) L-band radar mosaic. This data set was compiled in the context of 

the Global Rain Forest Mapping (GRFM).project, an initiative of the Agency for 

Space Development of Japan (see section 1.5).  
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1.4 Remote sensing for forest monitoring 
A correct evaluation of tropical forest resources implies a response to a set of 

simple questions (Mayaux, 1998). 

1) Where are the forested areas? 

2) How much tropical forest remains? 

3) What are the changes that have affected and will affect those ecosystems? 

Delivering accurate estimates of tropical forest coverage is therefore a key 

component to give an answer to these questions. 

A related question is: which instruments are available for this purpose? 

Earth observations by satellite provide a unique technology to acquire 

quantitative information on forest cover, particularly on a regional scale (Kummer, 

1992; Looyen, 1993; Mayaux et al., 2000). 

Field-based inventories have in fact many technical restrictions: the vastness and 

the wilderness of the tropical ecosystem would limit extrapolation from a discreet 

sampling over a continuous spatial dimension. 

Airborne sensors may offer a higher spatial, spectral and radiometric resolution, 

or the possibility of selecting the time of image acquisition.  But due to expensive and 

spatially limited acquisitions they are more suitable for local forest survey (Hoekman 

and Varekamp, 2001; Hoekman and Quiñones, 2002; Van der Sanden and Hoekman, 

1999) 

Moreover, the cost of satellite images is usually much lower than that of digital 

airborne images. Lower spatial resolution of satellite images (image resolution of the 

most widely employed sources of remotely sensed data goes from 18m of SPOT 

images to 1.1 km of NOAA-AVHRR) (D'Souza et al., 1985) although in a way a 

restriction, facilitates the analyses of wider areas. The higher sensor stability (i.e. 

compared to the airborne sensor) facilitates relative image registration for monitoring 
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in time. In some cases, the coarse spatial resolution may give more stable and 

representative measurements when there is very high heterogeneity. 

Satellite remote sensing offers different sensors for measuring different ground 

parameters at different scales. The imaging instruments can be divided into two main 

categories: active and passive instruments. A typically active sensor is radar (Radio 

Detection and Ranging), which measures the strength and round-trip time of the 

microwave signals that are emitted by a radar antenna and reflected off a distant 

surface or object. The radar antenna alternately transmits and receives pulses at 

particular microwave wavelengths (in the range 1 cm to 1 m, which corresponds to a 

frequency range of about 300 MHz to 30 GHz) and polarizations (waves polarized on 

a single vertical or horizontal plane). Passive instruments generally work in the 

visible or thermal domains (approximately from 0.35 micron to 15 micron) measuring 

the Sun reflected energy or the target emitted energy. 

Parameters to be estimated are the forest cover extension compared to the 

anthropic or natural non-forest area. This objective implies the extraction of thematic 

information on vegetation cover by classifying satellite images. 

The geographical extension of deforestation phenomena calls for regional scale 

mapping, which requires imagery with wide and continuous geographical coverage. 

Inconsistencies in the methods, legends and frequency of national surveys have 

led to the use of optical remotely sensed data to monitor tropical forests at national 

(INPE, 1996), pan-tropical (Skole, 1993; Achard et al., 1998) and global (FAO, 

1993) levels. Despite offering synoptic views of the changes, these approaches all 

suffer from major logistical problems in processing the data, and in a lack of 

completeness due to cloud cover.  

Radar data offer all weather, 24 hour acquisition and allows to obtaining wall-to-

wall coverage in tropical area affected by cloud coverage. Despite this advantage the 
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specific knowledge required for image formation and raw data processing, 

historically hindered the radar data usage for global scale problems. 

The usage of satellite data set - both from optical and radar sensors - for global 

scale problems call for adequate geometric, radiometric, geocoding and data analysis 

tools due to the massive data volume involved. 

 

1.5 Approaches and techniques for forest monitoring 

by satellite 
 

1.5.1 Optical remote sensing approaches 
Optical remote sensing approaches, as recommended by Myers (Myers, 1989) to 

improve world tropical forest assessment, became the basis for several initiatives 

launched in the early 1990s by organizations such as the Food and Agriculture 

Organization of the United Nations (FAO), the World Conservation Union (IUCN), 

the European Commission (EC) Joint Research Centre (JRC), the National 

Aeronautics and Space Administration (NASA) and the Woods Hole Research Center 

(WHRC). 

More recently and specifically for the Amazon region the Instituto National de 

Pesquisas Espaciais (INPE) has initiated a remote sensing-based program for tropical 

forest assessment at national level (INPE, 1996). A Landsat TM wall-to-wall 

coverage at national level is adopted by INPE in this project. 

FAO Forest Resource Information System (FAO-FORIS), the geographical 

information system developed by FAO and IUNC Conservation Atlas of the Tropical 

Forest (Collins et al., 1991; Sayer et al., 1992; Harcourt and Sayer, 1996) approach 

the problem through compilation of existing national surveys that often differ from 

country to country.  
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FAO Remote Sensing Survey (FAO-RS) adopts a statistical sampling with 

Landsat TM 30 m spatial resolution optical images. 

NASA’s Landsat Pathfinder Tropical Forest Inventory Project (Skole and 

Tucker, 1993; Chomentowski et al., 1994) is designed to map the rates of 

deforestation in the tropical forest by a Landsat TM wall-to-wall coverage of the 

early 1970s, mid 1980s and mid 1990s. 

The TREES (Tropical Forest Ecosystem Environments monitoring by Satellites) 

project developed by EC JRC is based on a NOAA AVHRR wall-to-wall coverage 

(1.1 km ground resolution) and samples of Landsat TM data (30 m ground resolution) 

for area correction (Mayaux et al., 1998; Mayaux and Lambin, 1995, 1997). 

Comparing results from these different forest assessment projects Mayaux et al. 

(Mayaux et al., 1998) have spotted discrepancies than can be ascribed to the 

following methodological elements. 

First, different forest-resource assessments do not share the same definition of 

forests. Forest definition can refer to spectral response of the adopted sensor, or to the 

inventory requirements. 

Spatial resolution and acquisition frequency are the two parameters of the optical 

remote sensing data sets that cause major discrepancies among the forest survey 

projects which have been here mentioned. High spatial resolution optical sensors (e.g. 

Landsat TM 30 m pixel size) suffer from low frequency of acquisition especially in 

tropical cloudy regions. On the other hand, despite the nearly day by day coverage, 

coarse spatial resolution optical sensors (i.e. NOAA AVHRR 1.1 km pixel size) lead 

to loss of spatial detail with respect to the spatial structure of the landscape 

(Woodcock and Strahler, 1987).  

These difficulties in obtaining wall-to-wall high-resolution coverage call for 

statistical sampling in space to extrapolate global coverage statistics (i.e. FAO-RS 
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approach) or for correcting proportional errors of coarse resolution coverage (i.e. 

TREES approach). 

Finally differences in forest statistics are also related to the different 

methodologies adopted for image interpretation. The satellite data can be analyzed by 

visual interpretation or by automatic classification. Batista and Tucker (Batista and 

Tucker, 1991) found that visual interpretation of Landsat TM images, coupled with 

digitizing the results into a geographic information system, is the best tropical 

deforestation determination technique. A confirmation is given by Mas and Ramirez 

(Mas and Ramirez, 1996) who maintain that visual classification presents a higher 

overall accuracy than the best digital classification. On the other hand there is 

evidence that visual interpretation tends to overestimate the forest cover in heavily-

forested areas (Mayaux et al., 1998) and to underestimate the forest that has been 

impoverished (i.e., degraded) each year (Nepstad et al., 1999). In any case detection 

of deforestation phenomena on regional scales and high spatial resolutions still 

depends to a large extent on human photo-interpretation (i.e. FAO-RS, INPE), (Stone 

and Lefebvre, 1998); TREES and Landsat Pathfinder adopt a mixed procedure, 

combining an automatic classification of the raw images and a visual labeling of the 

resultant classes (Mayaux et al., 1998; TRFIC).  

Finally it is worth noticing that even though in the image analysis and pattern 

recognition literature there has been a great development of new methods for image 

labeling in recent years, many labeling techniques have had a minor impact, owing to 

their functional, operational and computational limitations. (Zamperoni, 1996; Jain 

and Dubes, 1988; Jain and Binford, 1991; Kunt, 1991). 

Within the limits imposed by the intrinsic difficulties mentioned above, global 

tropical forest area estimation can be improved by the use of radar remote sensing. 

Indeed, in contrast to optical sensors, radar sensors can provide on-demand high 
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resolution acquisitions with a frequency that is independent from the weather 

conditions. 

 

1.5.2 Radar remote sensing approaches 
Thematic information extraction on the vegetation cover from radar data, either 

by visual inspection or by automatic classification, indicates that these data can 

provide a new and important characterization of some geophysical parameters related 

to tropical forests (Bijker and Hoekman, 1994, Conway et al., 1996, Hoekman, 1995; 

Hoekman, 1997b;  Hoekman and Quiñones, 2000; Van der Sanden and Hoekman, 

1995; Varekamp and Hoekman, 2001; Woodhouse and Hoekman, 1996; Van der 

Sanden, 1997b; De Grandi, 1997a). 

Much research work was recently devoted to tropical forest assessment using 

radar remote sensing. This work however is limited to the radar mapping at national 

and local level. Some examples in bibliography specifically related to Amazon forest 

are listed in table 1.1; other important examples are reported in (De Araujo, 1999; 

Dutra et al., 1999; Hoekman, 1995; Salas et al., 2002; Sgrenzaroli et al., 2000) 

Due to the extent of tropical forest area, space-borne radar sensors are ideal 

vehicles for tropical forest assessment at continental/regional level.  

Initiatives for radar applications at regional level are still very few. Among these 

the NASDA Global Rain Forest Mapping (GRFM) can be considered the first 

international project, that has overcome the two constraints that historically hindered 

radar data usage for global scale problems: i) the heavy requirements of data 

processing and ii) the massive data volume involved. 
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Table 1.1: Examples of radar (satellite and airborne) mapping applications at local 

and national level. 

Author Study area Type of sensor 
and resolution 

Thematic 
context 

Classification 
methodology 

Haschimoto and 
Tsuchiya, 1995 

Center Amazonia, 
Rondonia, Sena 
Madureira (Brazil) 

JERS-1 SAR L-
band, 12.5 m 

Forest, clear-cuts 
mapping  

Images backscatter 
thresholding and 
visual 
interpretation 

Freeman et al., 
1995  

Manu National 
Park (Peru) 

JERS-1 SAR L-
band, 100 m 

Forest (different 
types)/non forest  

Bayesian 
Maximum 
likelihood 
classifier (feature 
vector: backscatter 
and texture) 

Schmidt et al., 
1996 

Rondonia (Brazil) ERS-1 SAR C-
band, 25 m 

Forest / non forest Maximum 
likelihood 
classifier applied 
on filtered images. 
Texture classifier 
(EBIS) on 
unfiltered images 

Keil et al., 1997 Acre and Rondonia 
(Brazil)  

SIR-C/X L-band 
and C-band 

Forest, non forest, 
degraded forest 

Maximum 
likelihood 
classifier applied 
on filtered images. 
Texture classifier 
(EBIS) on 
unfiltered images 

Yanasse et al., 
1997 

Tapajos National 
Forest (Brazil) 

SIR-C/X L-band 
and C-band 

Secondary forest 
regrowth stages 

Visual 
interpretation 

Saatchi et  al., 
1997 

Rondonia (Brazil) SIR-C/X L-band 
and C-band 

Deforestation Supervised 
maximum a 
posteriori Bayesian 
classifier 
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Table 1.1: Examples of radar (satellite and airborne) mapping applications at local 

and national level. 

Author Study area Type of sensor 
and resolution 

Thematic 
context 

Classification 
methodology 

Van der Sanden, 
1997a 

Mabura Hill 
(Guyana) 
San Jose’ del 
Guaviare 
(Colombia) 

CCRS Airborne 
SAR C-band and X 
band  
Pixel size around 4 
m 
NASA/JPL 
Airborne SAR 
(AIRSAR) 
P-, L- and C-bands 
Pixel size 6-8 m 
ERS-1 SAR C-
band 25 m, single 

Forest (different 
types), other land 
cover  

Maximum 
likelihood on 
radiometric and 
textural attributes 

Bijker, 1997 San Jose’ del 
Guaviare 
(Colombia) 

ERS-1 SAR C-
band 25 m 

Forest, pasture, 
grasslands, 
secondary 
vegetation 

Decision rule 
classifier 
Multi-channel 
segmentation 
algorithm 
(RCSEG) 
 

Dutra et al., 1999 Para’ (Brazil) Multitemporal 
JERS-1 SAR L-
band, 12.5 m 

Deforestation  Region growing 
technique 

Grover et al., 1999 Tapajos National 
Forest (Brazil) 

Multi-temporal 
ERS-1 SAR C-
band 25 m, single 
JERS-1 SAR L-
band, 12.5 m 

Forest, non forest, 
regrowth 

Multi-temporal 
segmentation on 
ERS-1 data, image 
thresholding on 
JERS-1 data 

 

 

1.5.3 The Global Rain Forest Mapping (GRFM) project 
GRFM was an initiative launched in 1995 by the National Space Development 

Agency of Japan (NASDA) (Rosenqvist, 1996; Rosenqvist et al., 2000). Goal of the 

project was to produce wall-to-wall geometrically corrected and radiometrically 

balanced mosaics of radar backscatter over the tropical rainforests using data acquired 

by the L-band Synthetic Aperture Radar (SAR) on board the JERS-1 spacecraft (De 
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Grandi et al., 2000b; Siqueira et al., 2000; Shimada et al., 2000). These radar mosaics 

are spatially and temporally contiguous at a resolution of 100 m. Coverage includes 

South East Asia, Central Africa and the Amazon basin. As far as our research is 

concerned, the work is focused on the South America tropical area. 

The starting idea of a large-area seasonal mapping by JERS-1 over the entire 

Amazon Basin originated in 1994 from the Jet Propulsion Laboratory (JPL) evolved 

at NASDA to cover the entire equatorial belt, and culminated in 1995 with the 

establishment of the GRFM project. Later on NASDA extended the collaboration to 

the Joint Research Centre (JRC) of the European Commission (EC), where 

experience in tropical forest monitoring by radar remote sensing had been already 

developed through the TREES ERS-1 Project and the ERS-1 Central Africa Mosaic 

Projects (CAMP) (Malingreau and Duchassois, 1995; De Grandi et al., 1999c). 

It has to be noted that the TREES ERS-1 ’94 Project (Malingreau and 

Duchassois, 1995) systematically assesses for the first time the relevance and 

usefulness of space-borne SAR (ERS-1) within a series of representative forest areas 

around the tropical belt. Eight tropical rain forest test sites in South America were 

selected. A related study on the use of ERS-1 in deforestation detection and 

monitoring is presented in (Hoekman, 1997). A synopsis of these studies is given 

table 1.2. 
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Table 1.2: Radar mapping applications at local and national level for the Latin 

American Site of the TREES ERS-1 Study ’94. 

Author Study area Type of sensor 
and resolution 

Thematic 
context 

Classification 
methodology 

Huising and 
Lemoine, 1997 

Cost Rica ERS-1 SAR C-
band, 25 m, multi-
temporal dataset 

Forest / non forest  Multi-temporal 
signature 
extraction and 
supervised 
classification 

Keil M. et al., 
1997 

Sena Madureira, 
Acre (Brazil) 

ERS-1 SAR C-
band, 25 m 

Forest / non forest Supervised image 
thresholding  
Maximum 
likelihood 
EBIS classifier 

Conway, 1997 Acre (Brazil) ERS-1 SAR C-
band, 100 m, mono 
and multi-temporal

Forest / non forest K-K’ Nearest 
Neighbors 

Corves et al., 1997 Manaus region 
(Brazil) 

ERS-1 SAR C-
band, 30 m 

Forest / non forest Minimum 
Euclidean Distance 

Wooding and 
Batts, 1997 

Rondonia (Brazil) ERS-1 SAR C-
band, 25 m, multi-
temporal dataset 

Forest, 
Scrub/grass, 
Cultivated 

Visual 
interpretation of 
multi-temporal 
color composites 

Grover et al., 1997 Tapajos National 
Park (Brazil) 

ERS-1 SAR C-
band, 25 m, multi-
temporal dataset 

Forest (different 
types), secondary 
forest, pasture, 
bare soil 

Image filtering and 
interactive 
thresholding 

Hoekman, 1997a Aracuara 
(Colombia) 

ERS-1 SAR C-
band, 25 m, multi-
temporal dataset 
NASA/JPL 
Airborne SAR 
(AIRSAR) 
P-, L- and C-bands 
Pixel size 6-8 m 

Forest / non forest 
Shifting 
Cultivation 
 

Texture analyses, 
filtering 
processing, 
backscattering 
modelling 

Van der Sanden, 
1997a 

Mabura Hill 
(Guyana) 

ERS-1 SAR C- 
(SAR.PRI and 
SAR.SLC 
multitemporal) 

Forest (different 
types), Logged 
forest, Non forest, 
Secondary forest 

Visual 
interpretation of 
SAR.PRI  
Textural analysis 
of SAR.SLC 

Bijker and 
Hoekman, 1997 

San Jose’ del 
Guaviare 
(Colombia) 

ERS-1 SAR C-
band, 25 m, multi-
temporal dataset 

Forest , non-forest, 
savannah, pasture 

Filtering and image 
segmentation 
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The TREES Central Africa Mosaic Project (CAMP) is one of the first attempts 

to bring high-resolution SAR data from the role of gap–filler and local hot spot 

analyses to the role of global mapping on a semi continental scale. Within this project 

a Central Africa radar mosaic was assembled at 100 m pixel spacing using 477 ERS-1 

scenes and covering an area of more than 3,000,000 square km (De Grandi et al., 

1999c). This project can be considered a predecessor of the GRFM Project in terms 

of new perspectives on using SAR data but also for the development of a mosaicking 

machine software. 

An important example of large SAR dataset mosaicking can be found in the 

work by Jean-Paul Rudant et al. [http://earth.esa.int/symposia/papers/tonon/]. 

An accurate geometric model by block triangulation has been achieved over the 

whole set French Guyana with a RMS (Root Means Square) plan metric accuracy of 

15 m, checked by a differential GPS field campaign led by a French military survey 

team. 

Related to the GRFM project and to thematic information extraction at local 

level from wide-area radar mosaics, it is important to mention some results obtained 

by the GRFM science program. This program involves the agencies that generate the 

radar mosaics (NASA ASF and JPL, NASDA, JRC) but also a large number of 

organizations, universities and individuals who perform field activities and data 

analyses at different levels. In table 1.3 we schematically report some of these results 

that use the GRFM products on a local scale level. 

As to regional/continental scale, the generation of thematic products from the 

high resolution GRFM radar mosaics poses challenging problems with respect to the 

estimation of relevant geophysical parameters at global scale and the determination of 

the accuracy of these estimates. 

Only a few examples can be found in the literature with reference to the use of 

radar mosaics for global/regional scale mapping. 
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De Grandi (De Grandi et al., 2000a) present very promising results about a 

thematic map of the swamp and lowland rain forests in the entire Congo River basin 

at 200 m pixel size. This map constitutes a significant update in the information on 

biomes like the swamp forests in the Congo floodplain that were so far not well 

documented on a continental scale. 

 

Table 1.3: Radar mapping applications at local and national level for South America 

within the JERS-1 Science Program ‘99. 

Author Study area Type of sensor 
and resolution 

Thematic 
context 

Classification 
methodology 

Beaulieu N. et al., 
1999. 

Puerto Lopez 
(Colombia) 
Pucallpa (Peru’) 

JERS-1 SAR L-
band, 12.5 m, 
single and multi-
temporal dataset  

Gallery forest 
Flooded areas 
extension 

Image filtering and 
thresholding 
Visual 
interpretation 

Dobson et al., 
1999. 

Cabaliana (Brazil) JERS-1 SAR L-
band and ERS-1 
SAR C 
combination (12.5 
m) 

Forest (different 
type), non forest 
(different classes) 

Edge preserving 
filtering 
Unsupervised 
clustering followed 
by a supervised 
maximum 
likelihood cluster 
labeling 

Dutra L. V. et al., 
1999. 

Acre, Rondonia, 
Para’, Monte 
Alegre Lake area 
(Brazil) 

JERS-1 SAR L-
band, 12.5 m 

Relationship forest 
biomass – radar 
backscatter 
Deforestation 
Flooded areas 
extension 

Texture analyses 
and minimum 
distance 
(Mahalanobis) 
classifier 

Hess L. et al., 
1999. 

16 test area within 
the entire Amazon 
basin 

JERS-1 SAR L-
band, 100 m 

20 forest and 
savanna types 

Visual 
interpretation 

Salas W. S. et al., 
1999. 

 JERS-1 SAR L-
band, 12.5 m, 
multi-temporal 
dataset 

Deforestation, 
biomass estimates, 
impact of Faraday 
rotation  

Filtering and 
ISODATA 
clustering 

 

In the same thematic context two other studies propose solutions hinging on 

multi-sensor (radar and optical) regional scale mosaics. 
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De Grandi et al. (De Grandi et al., 1998) illustrate the potential of a synergic 

combination of the CAMP ERS-1 (C-band) and the GRFM JERS-1 (L-band) mosaics 

to supply complementary information - the first related to the vegetation cover only, 

the second to the flooding extent -, and they generate a classification map of the 

entire Congo floodplain at 200 m pixel size. A simple supervised maximum 

likelihood classification that works on a two component feature vector (pixel 

radiometric value and the normalized standard deviation of amplitude data) is used to 

delineate the swamp and lowland forests. Stratification of the classification map using 

a-priori knowledge of the vegetation distribution contained in the TREES project GIS 

is also used to resolve some class ambiguities. Accuracy evaluation of the swamp 

forest map has been preformed by comparison with interpretation of 6 Landsat TM 

scenes over the Congo flood-plain. 

In the second research work (De Grandi et al., 2001b) the different properties of 

the composite microwave (ERS-1 C-band, JERS-1 L-band) and optical observations 

(imaging spectrometer VEGETATION on board SPOT 4) are exploited to achieve a 

vegetation map of the Central Congo basin. Thematic information on swamp, 

lowland and flooded forest is derived by a rule-based hierarchical classifier applied 

on radar data. Secondary forest information that cannot be consistently detected by 

radar instruments is derived from the optical data using non-contextual clustering 

algorithms. Information fusion is achieved at the level of the classification maps 

independently derived from optical and radar data. 

The Podest and Saatchi (Podest and Saatchi, 2002) work refers to the GRFM 

project and to mapping of the Amazonian rainforest and so it is specifically linked to 

the geographical and thematic context of this thesis. They adopt a multi-scale texture-

based classifier for mapping tropical forest land cover types (forest, non forest, terra 

firme, floodplain, grassland and woodland savanna). Various combinations of first 

order statistic as texture measures at different scales are used as feature vector into a 



 

 18 

supervised multi-scale maximum likelihood classifier. Interesting for the purposes of 

our work, the JERS-1 backscatter and texture measures can discriminate forest from 

non forest with very high accuracy (above 90%) while the radar data may have 

limited sensitivity to separate old secondary regrowth from mature dense forest and 

various types of herbaceous savanna vegetation. 

This bibliographic survey, although non exhaustive of all the scientific work in 

this field, highlights the fact that a rigorous methodology for an operational usage of 

global scale radar data and in particular quantitative validation and error analysis of 

regional scale estimation still need to be worked out and consolidated.  

Research work presented here tries to make progress along this line. Results 

achieved so far can lay the groundwork for future use of radar mosaics in an 

operational way and in synergy with optical satellite imagery to improve the 

reliability, timeliness and accuracy of estimates of tropical forest cover change. 

We are anyway aware that satellite cannot provide information on all the 

parameters related to changes in a forest cover. A purely satellite-based system may 

miss significant features or events, which indicate on-going or impending changes. 

Such knowledge is usually available locally where first-hand information is gathered 

by foresters, scientists, project managers and local inhabitants. In our opinion this last 

component must be more and more involved in the knowledge process and in the 

decisions for sustainable usage of their land resources. One of the problems is to 

insert such local knowledge into a broader context where it can be interpreted and 

linked to information at more generalized levels. The Tropical Forest Information 

System (TFIS) within the TREES Project context is an example that demonstrates the 

feasibility of applying space observation techniques towards better monitoring of 

tropical forest area.  

Local initiatives for testing and teaching to local people techniques for forest 

sustainable usage are the other complementary ways of attacking the problem. We 
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personally think in fact, that only if the tropical forest ecosystem is conceived by 

local people as an important resource to be maintained and used in a sustainable way, 

there will be hope to save this threatened ecosystem. 

 

 

1.6 Highlights and novel aspects 
 

1.6.1 Data set 
The high-resolution (100 m) Global Rain Forest L-band JERS-1 radar mosaic 

over South America provides a unique and unprecedented snapshot of the humid 

tropical ecosystem of the Amazon Basin. The coverage extends from 14° S to 12° N 

in latitude and from 50° W to 80° W in longitude. 

Several features have made JERS-1 space-borne SAR particularly suitable for 

tropical forest monitoring.  Most notably the all weather acquisition capability, an 

important asset in the tropical belt that is frequently affected by cloud coverage. The 

low L-band frequency is more sensitive to aboveground biomass. The orbital 

configuration - adjacent passes on two consecutive days – is particularly suitable for 

large-area mapping and yields a temporally homogenous data coverage. 

 

1.6.2 Thematic information extraction 
Few research works (Saatchi et al., 2000; De Grandi et al., 1998; De Grandi et 

al., 2000a, De Grandi et al., 2001b; Hoekman and Quiñones, 1997d) are geared to 

mapping bio-physical parameters in this ecosystem by radar remote sensing on a 

regional scale and high spatial resolution. 

 A new classification scheme for producing a high-resolution (100 m) regional 

scale forest-non-forest thematic map using the GRFM mosaic is developed here. In 
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the specific thematic context regional scale image segmentation into a limited set of 

classes (e.g. forest, non-forest, and degraded forest) is obtained. 

The underpinning method is based on a wavelet signal approximation technique 

developed by the Global Vegetation Monitoring (GVM) unit for the Joint Research 

Center (JRC) that can lend support to SAR image processing problems, such as 

speckle filtering and segmentation. In our specific case we must take into account the 

following characteristics of the radar imagery: 

1) The SAR signal is affected by multiplicative noise 

2) Some classes of interest (e.g. forest) correspond to highly textured regions. 

These signal characteristics make conventional clustering techniques ill suited 

calling for novel image processing techniques. 

In the wavelet reconstruction algorithm we introduce an adaptive wavelet 

coefficient threshold applied to the scale where the wavelet coefficients carry 

predominantly information on strong persistent edges and the noise influence has 

decayed significantly. In that way we can distinguish the local maxima related to the 

transition between classes of interest we want to separate (i.e. Forest/Non-forest 

transitions) from local maxima related to textural within-class variation. 

Per-pixel (non contextual) and segment-based (contextual) clustering technique 

are tested. A non-conventional clustering technique appears to be near-optimal and 

stable, and performs better in terms of quantization error minimization than several 

clustering technique found in the literature. 

Moreover a processing chain capable of facing the computational load due to 

data volume is developed. 

 

1.6.3 Results validation 
Quantitative validation and error analysis of regional area scale estimation are 

carried out comparing JERS-1 SAR maps with Landsat Thematic Mapper (TM) 
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optical maps used as reference. This comparison reveals spectral and spatial 

differences between the optical and SAR imaging systems, which detect different 

wave scattering mechanisms.  

Class degraded forest is the major source of classification error. The 

discrepancy between TM maps and SAR maps increases with the increment of the 

landscape spatial fragmentation. 

SAR maps are derived using a new SAR image wavelet-based clustering 

technique; the relative performance between the wavelet-based technique and a 

conventional clustering technique (ISODATA) is then assessed. 

The issue of detecting the degraded-forest class - generally ignored by 

Amazonian deforestation mapping programs - is attacked using data acquired by both 

optical and SAR instruments. A novel three-stage classification scheme for forest 

degradation phenomena detection in Landsat TM images is proposed. A multi 

temporal speckle filtering technique is applied to a time-series of a full-resolution 

JERS-1 SAR images (12.5 m pixels size) to catch those small isolated and elongated 

bare soil regions regularly distributed in the forest and related to selective logging 

degradation. 

Starting from the consideration that the discrepancy between TM maps and SAR 

maps increases with the increment of the landscape spatial fragmentation we test an 

inductive learning methodology, capable of correcting SAR regional-scale maps 

using local classification estimates at a higher resolution. 

 

1.7 Structure of the thesis 
The data sets used in this work, including remote sensing imagery, reference 

maps, training and test data, are presented in Chapter 2. The South America GFRM 

radar mosaic characteristics are given together with a short overview of the basic 

processing engine for the mosaic generation. Problems related to training and testing 
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data set compilation using GRFM Mosaic as semi-continental geographical reference 

are then detailed. Criteria for the selection of these training and testing sets are also 

highlighted. 

The classification problem is the subject of Chapter 3. Both classification 

methods and the thematic class definition are dealt with. At first an overview is given 

of the basic underlying theory and the state of the art of classification in the context 

of applied remote sensing. The focus is then narrowed on the specific methods 

conceived and adopted for the task pertinent to this research work. A special purpose 

classification method, suitable for large area radar mosaics, such as the GRFM one, is 

introduced. An important component of the method is a pre-processing step based on 

a wavelet decomposition / reconstruction algorithm that generates piece-wise smooth 

approximations of the SAR imagery. This method is not part of the original 

developments of this thesis and is therefore only summarized for the sake of 

completeness.  On the other hand, an original extension of the method to cope with 

within-class textural edges was devised, and is described next. Finally a detailed 

description of the classes of interest is given. On one side, this description gives an 

appreciation of the vast amount of ecological and geographical information content of 

the GRFM South America mosaic. On the other side, it helps in better understanding 

the technical problems that have to be overcome to detect the classes of interest in our 

thematic context.  

Validations of the classification map and error analysis are reported in Chapter 

4. Causes of discrepancy between maps derived from radar and optical data are also 

discussed. Class degraded forest is identified as the major source of 

misclassification, using both optical and SAR imaging system. 

The relative performance of a wavelet-based region growing technique and a 

conventional clustering technique (ISODATA) is assessed in Chapter 5.  



 

 23

An extension of the thematic problem to include the degraded-forest class, 

generally ignored by Amazonian deforestation mapping programs, is discussed in 

Chapter 6. 

In Chapter 7, an inductive learning methodology, capable of correcting SAR 

regional-scale maps starting from local classification estimates at higher resolution is 

proposed. 

Chapter 8 gives a summary of the results obtained in this research work. 

Advantages of forest monitoring by radar remote sensing and future perspectives are 

discussed. Finally some ideas and projects are put forward which are meant to be 

working hypotheses for future actions and projects aimed at reducing the pressure 

over the tropical forest ecosystem. 

An application for mapping swamp forests in the Amazonian basin using the 

GRFM radar mosaic is also described in Appendix A. This application is based on a 

modified version of the classification scheme of this thesis, and shows therefore the 

potential of the methods presented here when applied in a different context.  

Color pictures are figures are grouped in Appendix B. 
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Chapter 2 

Remote sensing imagery, reference, training 

and test data  

 

 

2.1 Introduction 

The principal remote sensing data-set adopted in that research is the South 

America SAR mosaic generated by JPL in the framework of the Global Rain Forest 

Mapping (GRFM) project, with the data acquired during September-November 1995 

by Japanese satellite JERS-1. 

The GRFM dataset extends over the area latitude 14º S to 12º N and Longitude 

50º W to 80º W. The area coverage was acquired two times during September-

November 1995 and again in May-June 1996 respectively. The first acquisition 

coincides with annual low water mark of the Amazon River. The second acquisition 

corresponds to the high peak and includes also the Pantanal wetland in Mato Grosso 

Brazilian state, the North West part of South America up to the Atlantic Cost 

(Venezuela, Guyana, Suriname, and French Guyana) and Central America. The low-

water mosaic, used for this research, is mainly centered on the Brazilian State of 

Amazonia, Mato Grosso and Parà. Along the East Cost, the Amapà State is 

comprised. On the North side, French Guyana, Suriname and Guyana are also 

included, while the Venezuela is partially covered along the south boundary with the 

Roraima Brazilian State. The coverage of South America West Coast comprises 

South Colombia, Equador and Peru. North Bolivia and Mato Grosso without the 

Pantanal area delineate the south border of the data set. The SAR mosaic 

geographical coverage can be seen in the figure 2.1. 
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Figure 2.1 GRFM low-water dataset extends over the area latitude 14º S to 12º N and 

Longitude 50º W to 80º W, approximately 8 million km2 (35000 x 41000 pixels). 

 

Amazon rainforest is the dominant vegetation of the Amazon Basin. Several 

types of forest varying in term of structure, biomass, phenology, and floristic 

characteristics are included in the area covered by the GRFM data set (see Chapter 3). 
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According to the TREES map (Eva et al., 1999), five main forest types can be 

identified: lowland dense moist forest, submontane forest, montane forest, 

mangroves-coastal swamp forest, and dry forest (interface with savanna). 

Anthropogenic disturbances in the forest domain due for example to ranching, 

shifting cultivation or more generally colonization can be spatially distributed in 

linear, diffuse or massive pattern of deforestation. Although closest forest is the 

dominant vegetation of the Amazon basin, some types of savanna are conspicuous on 

the mosaics owning to their low backscatter. The two largest savannas on the mosaic 

are situated at the northern (the Roraima-Rupunumi savannas) and southern (the 

Llanos de Mojos of northern Bolivia) bounders of the basin. 

The method adopted to evaluate the maps derived from SAR data is based on the 

comparison with high-resolution optical Landsat Thematic Mapper (TM) data, 

traditionally used for deforestation mapping at high resolution at local scale. 

Landsat TM optical imagery and derived maps, produced by the Tropical Rain 

Forest Information Center (TRFIC-NASA’s Earth Science Information Partnership 

program) and FAO’s Forest Resource Assessment Programs (FAO, 1996), are then 

adopted as reference data. The comparison with Landsat TM optical raw data and 

derived maps is done at 2 dates (92 and 95) with an interval in time that allows 

monitoring anthropic changes during the 90’.  

The comparison methodology can be sub-divided in two steps:  

1) comparison of single date images for area estimation. 

2) comparison of two dates images for change detection. 

The first step consists in the comparison between a single date TM image with the 

corresponding single date L-band mosaic in order to assess: 

1) the spectral differences of the SAR data with respect to the optical data; where are 

the errors of commission and omissions when making independent 

classifications? 
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2) the spatial limitations; how do area estimates of forest areas from the SAR (100 m 

pixel size) derived classifications compare to those from reference Landsat TM 

(30m pixel size) derived classifications? 

3) How do the errors relate to the spatial fragmentation of the landscape (hence to 

the land-use practices)? What are the implications for regional monitoring? 

The second step will consist in the comparison between two dates TM images with 

the corresponding two dates SAR data in order to assess: 

1) the feasibility of change detection with radar data; 

2) the errors associated with change detection when using the JERS radar mosaics. 

In this thesis we mainly focus on the comparison of single date images for area 

estimation providing some indications for a future monitoring system based on for 

change detection (Rignot and Chellappa, 1992; Rignot and van Zyl, 1993). The 

general scheme the methodology is reported in figure 2.2. 

Acquisition frequency and geographical coverage of the optical reference data are 

dependent from cloud coverage. Consequently we can derive training estimate and 

the associated errors at local scale, selecting three sites within the entire mosaic 

representative of the different forest cover pattern and deforestation dynamics in the 

Amazon basin. One additional testing site of interest is selected to assess the 

generalization ability of the adopted classifier over a fourth independent site. 

In order to overlap in time with the 92 optical data set, we locally replicate the 

processing chain from 92 JERS-1 PRI data to generate small mosaics over the three 

training sites. 

Details on the South America SAR mosaic generated by JPL in the framework of the 

GRFM project are given in section 2.2. The criteria for the training and testing site 

selection are detail in section 2.3. Details on training and testing data set compilation 

is given in section 2.4; generation of ‘small’ SAR mosaic for 92-93 period is 

described in section 2.4.1; problems of geographical reference of the optical dataset 
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according with the GRFM are detail in section 2.4.2. Conclusions are reported in 

section 2.5. 

 
Figure 2.2: Conceptual scheme of the methodology for the comparison between 

forests estimates from SAR data and high-resolution optical Landsat TM data at local 

scale. 
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2.2 GRFM South America mosaic 

During September-November 1995, and again in May-June 1996, high-

resolution L-band HH-polarized SAR imageries of the entire Amazon basin are 

acquired by NASDA’s JERS-1 satellite, as part of NASDA’s GRFM project. In a 

cooperative effort between NASDA and Alaska SAR facility (ASF), the approximately 

2500 scene for each date are processed and NASA’s JPL mosaics them into two 

digital datasets with 3 arc-second (approximately 100 m) resolution.  

JERS-1 satellite, launched by NASDA and Japanese Ministry of International 

Trade and Industry (MITI) in February 1992, operated until October 1998 an L-band 

SAR (23.5 cm/1275 MHz) with horizontal (HH) co-polarization, 35 look angle and a 

recurrence cycle of 44 days. NASDA performed the data acquisition schedule for the 

GRFM project and the recorded data (same 13,000 scene) are down-linked either at 

the NASDA Earth Observation Center (EOC) in Japan or at the ASF to be processed 

to full resolution (12.5 m ground resolution at three looks) ground range amplitude 

16-bit ‘Level 2.1’ product from NASDA (Shimada, 1996) and 8-bit high resolution 

product from the ASF respectively (Bicknell, 1992).  

The raw data for South America Mosaic NASA JPL Mosaic are (mostly) 

processed by the Alaska SAR Facility (ASF) in Fairbanks, Alaska. According with 

the ASF processor the conversion of DN values to Sigma 0 is: 

 

Sigma 0 = 20*log10 (DN)+F                                  (2.1) 

 

where DN is the DN value of each pixel (between 0 and 255), and F is the calibration 

factor. For the South American data, the calibration factor F = -48.54. The result will 

be in dB. The noise equivalent sigma 0 is about -18 dB.  

Description of the relevant parameter of the JERS-1 data used for the South 

America GRFM low-water mosaic generation by JPL are reported in Table 2.1. 
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Table 2.1: The relevant parameter of the JERS-1 data used for the South America 

GRFM low- water mosaic generated by JPL. 

Frequency L-band (1275 MHz, 23.5 cm ) 

Polarization HH 

Incident angle 35 +/- 2.7 degrees 

Single scene dimension (max) 1024 x 1024 100 m pixels 

Number of looks (theoretical) 64 x (3 looks per 12.5 m pixel) 

Orbit and processing specifics 57 orbits, one orbit per day, 1583 scenes, 

15 km cross track overlap and 20 km 

along track overlap between scenes 

Collection period September - December 1995 

 

Next steps in the GRFM processing chain - down-sampling of the full-resolution 

scene from 12.5 m pixel spacing to 100 m pixel size, validation of images radiometry 

and geometry, additional calibration an the 100 m resolution framelets, mosaic 

generation and CD-ROM generation - are separately developed at NASDA, JPL and 

JRC according to the project division into three geographical regions: South and 

Central America (JPL), Central and Western Africa (JRC), South East Asia and 

Northern Australia (NASDA, ERSDAC). These image mosaicking procedures 

developed and utilized at NASDA, JPL and JRC vary in several steps (Rauste et al., 

1999a, b).  

As far as our research is concerned, the work is focused on the South America 

GRFM mosaic generated by JPL.  

The full resolution scenes are down-sampled from 12.5 m full resolution to 100 

m-pixel size by block averaging in power domains within 8x8 pixels window. 
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Image mosaicking is preformed by means of block adjustment using the 100m 

framelets. The iterative block adjustment is applied to data from one season only and 

the second season coverage rectified scene-by-scene to the first ‘master’ mosaic. In 

the adjustment procedure relative scene displacements, calculated by image 

correlation in the overlapping area between scenes, are used as observations and 

ground control points, derived from existing maps or from the World Vector 

Shoreline data set, are added as additional observation for absolute geo-location 

(Siqueira et al., 2000). 

The GRFM data-set over South America comprises three layers: low-water 

amplitude, high-water amplitude, and low-water texture calculated as variance on 

mean ratio within 8x8 pixels used for the down-sampling from 12.5 m full resolution 

to final resolution of about 100 m. The final characteristics of the South America JPL 

output are 3 arcseconds pixel spacing in latitude and longitude (approximately 89-93 

meters) amplitude and texture mosaics on an equiangular latitude/longitude grid. 

For the objectives of this research we focus only on information extraction from 

the low-water amplitude data set. We want to extract a high-resolution forest-non-

forest map using only 1 radar-band posing the basis for replicating in the future the 

coverage with radar mosaics adequately distributed in time to monitor anthropic 

changes. 

In any case thematic information that can be extracted from low water amplitude 

and texture combined with high water mosaic is much higher than what we need for 

our simple thematic definition as we demonstrate in Appendix A. 
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2.3 Training and testing sites set selection 

The location of the three training sites for this study are chosen taking as 

guidelines the Tropical Forest Ecosystem Environments monitoring by Satellites 

(TREES) (Malingreau et al., 1995) stratification of the tropical forests into “hot 

spots” and “cool spots” of deforestation (Achard et al., 1998). The three training sites 

cover different forest and savannah ecosystems along with different land uses. These 

land use types reflect the major forms of anthropogenic activity within the Amazon 

basin (large scale ranching, selective logging, shifting cultivation, organized 

colonization projects and mining) (Peralta and Mather, 2000). The Amazon basin is 

under anthropogenic pressure from two main areas. From the region of dynamic 

forest change, along the Brazilian sates of Para and Mato Grosso, the first front has 

been extended into the forest domain by the construction of roads, both along the 

north of Para state up into Roraima and from the south of Mato Grosso through 

Rondonia to Acre.  

Two of the selected sites are respectively located in Mato Grosso and Rondonia 

as representative of this front of deforestation. The third site is in Colombia where the 

second front of deforestation is formed by migrant’s incursions into the Amazon 

basin at its western end. For clarity, we will indicate each site with the Landsat TM 

path and row codes – Mato Grosso site: 226-69, Rondonia site: 230-69, Florencia-

Napo site: 8-59. The fourth study area, located in the North Rondonia state of Brazil, 

is identified as testing site 231-68. 

Training and testing site geographical position and the relative hot spot area are 

shown in figure 2.3; 
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Figure 2.3: Training site (1, 2, 3) and testing site (4) geographical position and the 

relative hot spot area (A, B, C). 

 

Figures 2.4 a, b, c show the SAR L-band 100 m and the corresponding Landsat 

TM data for each training site. The location, vegetation type, deforestation pattern, 

deforestation causes, initiator and driving forces are given as descriptive parameters 

of those sites.  

 



 35

 

 

 

 

 

 
Figure 2.4 a: SAR L-band 100 m and the corresponding Landsat TM over Mato 

Grosso site. Descriptive parameters of this site are also reported (see color Figure B.3 

- Appendix B, pp. 202). 
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Figure 2.4 b: SAR L-band 100 m and the corresponding Landsat TM over Rondonia 

site. Descriptive parameters of this site are also reported (see color Figure B.4 - 

Appendix B, pp. 203). 
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Figure 2.4 c: SAR L-band 100 m and the corresponding Landsat TM over Florencia-

Napo site. Descriptive parameters of this site are also reported (see color Figure B.5 - 

Appendix B, pp. 204). 
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2.4 Training and testing data sets compilation 

 

2.4.1 Generation of ‘small’ JERS-1 L-band mosaic for 92-93 period 
The area covered by a Landsat TM images is 185 km * 185 km, while the area 

covered by JERS-1 L-band (Level 2.1) images is 75 km * 75 km so about 9 JERS-1 

images are necessary to cover adequately a Landsat TM image. In order to have an 

adequate coverage with JERS-1 L-band data in correspondence of Landsat TM 

optical images for 92-93 period we build three small mosaics with JERS-1 L-band 

images. 

To build a data set of JERS-1 comparable with TM images, in terms of area 

covered we follows the next steps: 

1) Selection from NASDA archive of JERS-1 L-band images in 1992-93 in 

correspondence of TM 1992-93 images 

2) Wavelets Multi-resolution Decomposition from 12.5 to 100 m  

3) Mosaic generation. 

 

1) The available scenes in NASDA archive in 92/93 partially cover the Landsat TM 

scene and the relative NASA – JPL Mosaic samples coverage. 

The relative position between the 92/93 JERS-1 L-band images and the Landsat 

TM image coverage for each training site are schematically shown in the figure 2.5.  
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Figure 2.5: Schematic representation of the relative position between the 92/93 JERS-

1 L-band images and the Landsat TM image coverage for each training site. Radar 

image acquisition dates and path/row numbers are also reported. 
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2) Wavelets Multi-resolution Decomposition   

In that phase of the work mosaic post processing tools developed by the Radar 

Remote Sensing Team of the Global Monitoring Vegetation (GVM) to generate the 

GRFM Project Africa mosaics are used. To maintain high radiometric resolution, the 

down sampling from 12.5 meter pixel spacing to lower resolution is performed by 

wavelet decomposition - in effect a low pass filtering process resulting in more than 

100 looks per pixel. This processing product may consist of calibrated SAR scene at 

100 m pixel spacing to be mosaicked. The calibration of most space-borne SAR 

sensors is based on the use of the tropical forest as a calibration target. Usually the 

antenna pattern, determined on the ground before the launch of the satellite, is revised 

based on the fact that the backscattering coefficient of the tropical forest is constant 

over a wide range of incidence angles. The revised antenna pattern is then used in 

connection with SAR processing to produce calibrated SAR products. This approach 

works well if all the necessary spacecraft (such as platform altitude, angles) and 

processing parameters remain constant or are known with the required accuracy. 

Uncontrolled drift in these parameters may cause changes in the SAR range pattern 

and degrade the (relative) calibration accuracy. 

The NASDA archive scenes, used for the three “small” mosaics generation, are 

processed (NASDA level 2.1) at different times and probably with different processor 

version. This can explain the fact that in some scenes the range pattern shows an 

anomalous behavior whereby the average amplitude decreases from near range to far 

range (see the histograms reported in figure 2.6). This anomalous backscatter 

behavior could be due under-correction of the antenna pattern and it generates a 

striping effect between one path and the other. 

 

 

 



 41

 

 

 
Figure 2.6: Histogram comparison between 3 overlapping sample selected on the far 

range of a frame and on the near range of the adjacent path and on the same row 

frame. 

 

A calibration constant value (2.2) as function of the pixel range location is 

applied for the unbalanced scenes reducing the far range near-range unbalance (see 

figure 2.7): 

ref

i

k
F

α
α

sin
sin1

=                                                      (2.2) 

where calibration constant , iα  distributed target incident angle and refα  reference 

incident angle.  
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Figure 2.7: Frame means profiles from far range to near range: profile A - before 

calibration, profile B - after calibration 

 

The effect to the of this calibration is principally visible in stripe effect reduction 

(see figure 2.8 a and b) 
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Figure 2.8 a: Stripe effect between two frames of different paths 

 
Figure 2.8 b: Calibration effect in stripe problem reduction 

 

3) Mosaic generation. 

In order to generate the three “small” mosaics, the low-water JPL mosaic is used 

as geographical reference. Each frame is manually co-registered respect the mosaic 

and then mosaicked with the neighboring frame. 

The final mosaic results are shown in Figure 2.9 a-c. 
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Figure 2.9 a: JERS-1 SAR  92/93 “small mosaic”: Mato Grosso training site. 
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Figure 2.9 b: JERS-1 SAR  92/93 “small mosaic”: South Rondonia training site.  
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Figure 2.9 c: JERS-1 SAR 92/93 “small mosaic”: Colombia-Equador training site. 
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Finally we want to underlain that we generate this second data set for 1992/93 

because even though at local scale it was acquired with a temporal interval respect to 

the GRFM low water mosaic that is sufficient for capturing the changes due to 

deforestation phenomena distributed. On the contrary the low water and high-water 

GRFM mosaic are too close in time for these purposes and less representative of the 

anthropic changes during the 90’ in the Amazon Basin. 

 

2.4.2 Optical data set compilation: raw data, maps 
According to the method adopted for SAR map evaluation, optical Landsat 

Thematic Mapper (TM) data and derived map are collected. Landsat TM maps, 

produced by the Tropical Rain Forest Information Center (TRFIC-NASA’s Earth 

Science Information Partnership program) and FAO’s Forest Resource Assessment 

Programs (FAO, 1996) are assumed as validated reference. Nevertheless also Landsat 

TM raw data are collect for a direct comparison with SAR data in order to evaluate 

spectral and spatial differences between the two imaging systems. 

For the Mato Grosso (226-69) and South Rondonia (230-69) sites, TRFIC maps 

are adopted. For the Florencia-Napo site (8-59) a forest map is derived from Landsat 

TM raw data through a classification scheme called hierarchical NMP (HNMP) (De 

Grandi, 2001b). For this training site FAO’s maps are used as reference for class 

labeling.  For the North Rondonia site (231-68), a TRFIC is available (for detail on 

reference map see chapter 4).  

A summary of optical raw data and the optical maps is presented in table 2.1. 
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Table 2.1: Summary of optical raw data and the optical adopted as reference data set. 

Site 

(Landsat TM path-row) 

 

Landsat TM raw data Landsat TM reference 

map 

Landsat TM (Band 3,4,5) 

19 May 1992 

TRFIC 

TM 19 May 92 

 

226-69 

Mato Grosso 

(training) 

 Landsat TM (Band 3,4,5) 

31 July 1996 

TRFIC 

TM 31 July 96 

 

Landsat TM (Band 3,4,5) 

3 August 1992 

TRFIC 

TM 15 May 92 

 

230-69 

South Rondonia 

(training) 

 Landsat TM (Band 3,4,5) 

13 July 1996 

TRFIC 

TM 13 July 96 

 

Landsat TM (Band 3,4,5) 

3 February 1991 

FAO 1990 8-59 

Florencia Napo 

(training) Landsat TM (Band 3,4,5) 

11 August 1996 

FAO 96 

231-68 

North Rondonia 

(testing) 

- TRFIC 

TM 13 July 96 
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2.4.3 Images calibration  
Calibration is the process of quantitatively defining the system response to 

known, controlled signal inputs. Calibration increases in importance if the intent is to 

obtain geophysical or biophysical information about the surface of the Earth. 

Calibration becomes critical when we consider analyses that require multiple images. 

For example the basic premise in using optical remote sensing data for change 

detection is that changes in land cover result in changes in radiance values and 

changes in radiance due to land cover change are large with respect to radiance 

changes caused by other factors (Singh, 1987). Some authors carried out comparative 

studies of change detection techniques and found that post-classification comparison 

was less effective than enhancement procedures (Singh, 1989). Other authors found 

that post-classification comparison is the most accurate procedure and present the 

advantage of indicating the nature of the changes (Mas, 1999). 

In this thesis we mainly focus on the comparison of single date images for forest 

assessment. Some indications for a future monitoring system are based on the 

comparison between forest maps at different time (see section 2.1). Moreover same 

calibration problems problem are found both for optical and SAR data, as detailed 

afterward.  

For these reasons in this research work post-classification comparison is 

adopted. 

 

 

Landsat TM calibration problems 

In the optical data set compilation (section 2.4.2), satellite images acquired by 

Landsat-5 TM system, are collected.  

Investigators have founds that the top-of-the-atmosphere (TOA) reflectance is 

getting too low over time to allow a proper atmospheric correction. Before the lunch 
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of Landsat-7 on April 15, 1999, there was not official update to the Landsat TM 

calibration and the latest article on Landsat TM absolute radiometric calibration was 

by Thome (Thome et al., 1994). With the success of Landsat 7, renewed efforts are 

underway to ensure radiometric calibration across the Landsat series of sensors. The 

Landsat Project Science Office (LPSO) has developed an analysis plan that 

establishes a framework for cross-calibration between Landsat-7 ETM+ and Landsat 

5 TM (Teillet et al., 1999). For more information see: 

http://www.ccrs.nrcan.gc.ca/ccrs/  

Being the process on going, we will applied post-classification comparison 

between temporal different scenes is applied, not to introduce wrong factors with an 

incorrect calibration. 

 

JERS-1 SAR calibration problems 

When we talk of SAR calibration we must be distinguish between absolute or 

relative calibration. If the proper calibration steps are taken (range-spread loss, 

antenna pattern removal, and effective ground scattering area correction) and the 

proper absolute calibration is used, it would be possible to estimate the radar 

backscattering coefficient within the intrinsic calibration uncertainties. 

The conversion of DN values could be written as in (2.1). 

The Amazon data acquired for South America Mosaic NASA JPL Mosaic are 

(mostly) processed by the Alaska SAR Facility (ASF) in Fairbanks, Alaska. NASDA 

EOC processed the NASDA archive JERS-1 frames selected in correspondence of 

TM 1992-93 images. Using the calibration factor for the two processors the formula 

become respectively:  
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(2.3) 

(2.4) 

 

 

A radiometric relative balancing could therefore done assuming a system model 

whereby the radiometric imbalance is due to a gain factor a and an offset b in the 

transfer function. Selecting homogeneous targets in same areas, assuming the 

normality in the statistical distribution of the target, the problem is reduced to the 

liner transformation of normal random variable. 

By the following equation system, the gain a and bias b could be computed from 

the mean and standard deviation in the two overlapping area (x,y): 

bmeanamean xy +⋅=                                               (2.5) 

xy stdevastdev ⋅=                                                   (2.6) 

Then the linear transformation could be applied to the whole image. 

Because of calibration problems, for the optical date post-classification 

comparison is used. The same methodology is coherently used for SAR data; the 

forest mapping classification was therefore applied on DN values. 

 

2.4.4 SAR and optical data co-registration 
 In order to compare different data set, images co-registration is required. The 

purpose of the co-registration process is to have a imagery data set (optical and SAR 

raw data, optical and SAR thematic map) in the same map reference system (U.S. 

Geological Survey, 1993). The low-water JPL mosaic is used as geographical 

reference in this co-registration process.  

The JPL mosaic projection is a standard geographic equiangular projection, in 

which each pixel is a fixed angular number of degrees. The datum of the mosaics is 

NASDA EOC  processing 20.60)(log20 100 −⋅= DNσ  

ASF                 processing 54.48)(log20 100 −⋅= DNσ
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WGS-84. The mosaic pixel spacing is nominally 3 arcseconds. The longitudinal 

ground pixel spacing changes with Latitude. At the equator, 3 arcseconds corresponds 

to 93 meters in Latitude and Longitude. Moving away from the equator, the pixel 

spacing in meters - in Longitude - decreases with Latitude. At 15 degrees North or 

South of the equator, the pixel spacing corresponding to 3 arcseconds is 89 meters. 

To convert the Longitude angular pixel spacing (in decimal degrees) to meters, the 

angular value must be multiply by 111,319.5, and by the cosine of the Latitude. For 

the Latitude angular pixel spacing, must be multiply by 111,319.5.  

The imagery registration to the reference mosaic requires to estimates the 

parameter of a geometrical transformation. The transformation parameters can be 

estimates through a manual selection of homologous points between the two images 

if the  transformation can be assimilates to a roto-translation with scale variation; the 

identification of a large number of homologous point is  required if the orbital 

geometry and geographical projection parameters must be estimates.  

To reduce the manual point selection, Landsat TM orbits information is used to 

convert raw data to an equiangular projection referred to Clarke Ellipsoid.  

Given X=(TM image matrix along along-scan and across-scan satellite direction) 

and known from the orbital geometry model (Mather, 1987):  

• M1= scale change 

• M2=Earth rotation correction 

• M3=Skew correction  

The raw data can be transformed through 2.2 

X I=M1*M2*M3*X                                                       (2.2) 
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From the knowledge of the orbit characteristic of the satellite platform, the 

coordinates of the image center can be derived according to UTM (Universal 

Transversal Mercator) or SOM (Space Oblique Mercator). Through this first 

approximate co-registration, the position differences between images are reduced to a 

plane translation and a note scale variation. (Landsat TM: 0.003*0.003 deg. (dλ, dφ), 

SAR JPL Mosaic: 0.000833*0.000833 (dλ, dφ)). The refined registration is 

performed by the manual selection of homologous point between SAR end optical 

images. The optical map is registered to the JPL mosaic according to the same 

transformations.  

The JPL mosaic is used as geographical reference also for the 92/93 JERS-1 

mosaics, as detailed in section 2.4.1. 

  

2.5 Summary and conclusions 
Compilation of remote sensing data set adopted in this research work is 

described in this chapter. Criteria for data selection and data characteristics – satellite 

sensor, geographical coverage, and imagery format - of the satellite imagery data set 

are detailed. 

The South America GRFM SAR mosaic generated by JPL with the data acquired 

during September-November 1995 by JERS-1 satellite is used as principal data-set to 

derived forest map.  

Landsat Thematic Mapper (TM) optical imagery and derived maps, produced by 

the Tropical Rain Forest Information Center (TRFIC-NASA’s Earth Science 

Information Partnership program) and FAO’s Forest Resource Assessment Programs 

(FAO, 1996), are adopted as reference data to evaluate the maps derived from JERS-

1. Within the entire SAR mosaic three training sites, which cover different forest and 

savannah ecosystems along with different land uses, are selected: 
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1) to apply classification training phase, as prerequisite for up scaling to whole 

Amazon data set. 

2) to provide classification accuracy in comparison with Landsat TM optical maps 

which are locally available respect to the mosaic geographical coverage. 

One additional testing site of interest is selected to assess the generalization 

ability of the adopted classifier over a fourth independent site. 

Landsat TM data are available at 2 dates (1992 and 1995) distributed in time to 

monitor anthropic changes during the 90’. The GRFM data-set overlaps in time with 

the 1995 data; to compare optical and SAR data at the 2 dates, small SAR mosaics 

from 1992 JERS-1 PRI data over the three training sites are also generated. 

For the data-set compilation the GRFM mosaic is revealed to be as semi-

continental geographical reference for: 

1) 1992 small SAR mosaics, 

2) optical raw data (Landsat TM),  

3) thematic maps. 

The compilation of a remote sensing data set requires to define the criteria for 

data selection and to establish a common reference system to compare the satellite 

imagery. The low water GRFM mosaic generated by JPL over South America used as  

principal data-set to derived forest map, is reveal to be geographical reference 

systems for the optical and SAR imagery and for the derived thematic maps used in 

this research. The SAR mosaic for the continuous coverage, the geographical 

consistencies, and higher resolution comparing with other semi-continental data set, 

is reveal to be a useful geographical reference for the comparison of different imagery 

data-set and it can be adopted as base reference for future remote sensing research. 
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Chapter 3 

The classification problem: methods and 

thematic class definition 
 
 

3.1 Introduction 
3.1.1 Fundamentals of the image classification process 

In remote sensing literature “image classification” refers to the process of 

creating thematic maps from satellite imagery. The general term classification 

describes the entire process from the raw image up to the assignment of a label to 

each portion of an image resulting in a thematic map. A thematic map is an 

informational representation of an image which shows the spatial distribution of a 

particular theme.  

In the image analyses and pattern recognition literature classification methods 

are usually identified as image-labeling algorithms specifying. The image-labeling 

algorithms are part of more complex processes generally called image analysis 

(Gonzales and Richard, 1992). The image analysis process can be divided the three 

basic conceptual areas:  

1) Low-level processing,  

2) Intermediate-level processing,  

3) High-level processing.  

Figure 3.1 illustrates these concepts; the overlapping dashed lines indicating that 

clear-cut boundaries between processes do not exist and the techniques adopted can 

involve different blocks. For example, image threshold may be viewed as a pre-
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processing step (low-level processing) or a used for segmentation (intermediate-level 

processing).  

Image acquisition and pre-processing require less basic knowledge on the 

thematic context and more about image signal characteristic and are considered as 

low-level processing. Intermediate-level processing (segmentation and clustering) 

deals with the task of extracting and characterizing regions in an image resulting from 

a low-level process. Finally, high level-processing (labeling) involves recognition and 

interpretation. The process requires strong knowledge about the images’ thematic 

context. 

 

 
Figure 3.1: Image analysis process scheme divided in three basic conceptual areas: 

Low-level processing, Intermediate-level processing, High-level processing. 



 

 57

From the methodological point of view, classification processes are generally 

distinguished in:  

1) Unsupervised: In an unsupervised classification, the objective is to group 

single or multi-band spectral response patterns into clusters that are 

statistically separable (features are separated solely on their spectral 

properties); or partitioning an image into homogeneous regions 

(segmentation) without ground information regarding segment properties. 

2) Supervised: In a supervised classification we use some prior or acquired 

knowledge of the classes in a scene in setting up training sites to estimate and 

identify the spectral and spatial characteristics of each class. 

Entering in the detail of the image analysis process, image labeling algorithms, 

which can be ascribed both to the intermediate-level and high-level processing, can 

be subdivided into three principal categories: 

1) Clustering: A process in the spectral domain only that groups pixels with 

comparable spectral properties (in statistical sense) into categories. A region 

of the spectral space that belongs to a category is called a cluster. Clustering is 

therefore based only on spectral information. 

2) Segmentation: partition of an image in the space domain into sets of 

connected neighboring pixels with comparable spectral properties (e.g. 

belonging to the same category). Segmentation is therefore based on 

topological and spectral information. 

3) Labeling: the process of assigning a semantic meaning (e.g. a land-cover type) 

to a category. 

Clustering and segmentation algorithm can moreover be classified in:  

1) Parametric and Non-parametric 

2) Non contextual (per pixel), contextual 
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Parametric algorithms make assumptions of the functional form and the 

parameters of the PDF for the classes to establish decision boundaries between them. 

As a consequence, it provides a way to estimate the error of the classification process 

itself. It is commonly divided in two steps. Non parametric algorithm any assumption 

on the PDF for the classes (i.e. Level-Slice Classifier, K Nearest-Neighbors 

Classifier) 

Contextual algorithms are capable of exploiting spatial (contextual) information 

around the single image pixel, while non-contextual algorithm analyse behaviour o 

the single pixel (per pixel). 

A further distinction can be done in the final labelling step. The way of assigning 

a semantic meaning to the image class can be: 

1) ‘Hard’ or ‘Crisp’  

2) Fuzzy 

One important limitation of classification of statistical approaches to land cover 

mapping is that the output derived consists only of the code of allocated class. This 

type of output is often referred to as being ‘hard’ or ‘crisp’ and is wasteful of 

information of the strength of class membership generated in the classification. An 

alternative to the ‘hard’ classification representation of land cover is therefore often 

required and should allow for partial and multiple class membership (Wang, 1990). 

This could be achieved by softening the output of a ‘hard’ classification. For instance, 

measure of the strength of class membership, may be output. Thus, for example, with 

a probability based classification a probability vector containing the probability of 

membership a pixel has to each defined class could be output. In this probability 

distribution the partitioning of the class membership probabilities between the classes 

would, ideally, refer to some extent the land cover composition of a mixed pixel. This 

type of output may be considered to be fuzzy, as an imprecise allocation may be 

made and a pixel can display membership to all classes 
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Many image-labeling techniques according with the previous definition scheme 

belong to one of several categories briefly described next. 

Per-pixel (non-contextual) parametric (e.g., Gaussian maximum likelihood) or 

non-parametric classifiers (e.g., the k-nearest neighbor classification rule), followed 

by a post-processing low-pass filtering stage, capable of regularizing the 

classification solution (i.e., capable of reducing salt-and-pepper classification noise 

effects), based on some heuristics or empirical criteria. Although inadequate to detect 

fine image details when spectral classes overlap in feature space, this approach is 

widely adopted by the remote sensing community (e.g., in commercial image 

processing software toolboxes) owing to its conceptual and computational simplicity. 

Neural networks that employ, in the image domain, sliding windows or banks of 

filters. On the one hand, neural networks are non-parametric classifiers featuring 

important functional properties. They are: i) distribution-free, i.e., they do not require 

the data to conform to a statistical distribution known a priori; and ii) importance-

free, i.e., they do not need information on confidence level of each data source, 

which are reflected in the weights of the network after training. On the other hand, 

the dependence of results on the shape and size of the processing window (which are 

usually fixed by the user on a priori basis) is a well-known problem.  

Bayesian contextual image labeling systems where Maximum A Posteriori 

(MAP) global optimization is pursued by means of local computations (Jhung and 

Swain, 1996). Because of the local statistical dependence (autocorrelation) of 

images, there has been an increasing emphasis on using statistical techniques based 

on Markov Random Fields (MRFs) to model image features such as textures, edges 

and region labels. In MRFs, each point is statistically dependent only on its 

neighbors. Thus, an MRF model is often imposed on the prior probability term to 

enforce spatial continuity in label assignment (inter-pixel class dependency) 

(Krishnamachari and Chellappa, 1997). Among the Bayesian contextual image 
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labeling systems we cite the Modified Adaptive Pappas Clustering (MPAC), recently 

published in the image processing literature. This method is also proposed in this 

research work as a valuable tool for forest degradation monitoring using Landsat TM 

imagery (see chapter 6). In (Pappas, 1992), after speculating that an MRF model of 

the labeling process is not very useful unless it is combined with a good model for 

class-conditional densities, Pappas presents a contextual clustering technique, where 

a novel context-sensitive (i.e. locally adaptive) spectral model for class-conditional 

densities is proposed. This algorithm is hereafter referred to as the Pappas Adaptive 

Clustering (PAC) algorithm. Starting from the PAC architecture, the MPAC 

algorithm employs both local and global (image-wide) spectral statistics in the class-

conditional model plus contextual information in the MRF-based regularization term 

to smooth the solution while preserving genuine but small regions (Baraldi et al., 

2000). 

In recent years there has been a great development of new methods for image-

labeling algorithms. Unfortunately, owning to their functional, operational, and 

computational limitations, many labeling techniques, both supervised and 

unsupervised, have had a minor impact on their potential field of application 

(Zamperoni, 1996; Jain and Binford, 1991; Kunt, 1991). Related to remote sensing 

applications, like the one described in this research work, we can make the following 

considerations: 

1) Improved adaptability and data-driven learning capabilities would make 

image-labeling algorithm easier to use and more effective when little prior 

ground truth knowledge is available. 

2) Computationally efficient algorithms and architectures should be made 

available when training and processing time may still considered a burden, 

e.g. in classification tasks at regional or continental scale. 
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3) Preserving fine structures, especially man-made objects, would increase the 

impact of labeling methods in cartography or analyses of agricultural sites.  

In the next section image-labeling adopted in this research particularly for GRFM 

SAR mosaic will be detailed. 

 

3.1.2 Overview of a special purpose classification process for the 

GRFM SAR mosaic 
Automatic extraction of thematic information from the high-resolution GRFM 

SAR mosaics calls for suitable image processing techniques. In general, issues to be 

considered are related to: i) the nature of the SAR signal (speckle): ii) sensitivity of 

the signal to the geophysical parameters, iii) the scaling properties of the phenomena 

of interest, iv) the computational load due to the size of the data sets.  

In our specific thematic context the goal is to obtain unsupervised image 

classification into a limited set of classes (e.g. forest, non-forest, and degraded 

forest). The image-labeling techniques must take into account the following 

characteristics of the radar imagery: 

1) the SAR signal is affected by multiplicative noise 

2) some classes of interest (e.g. forest) correspond to highly textured regions.  

First attempts to extract thematic information on the vegetation cover either by 

visual inspection or by automatic classification has already proved that the GRFM 

mosaics can provide a new and important characterization of some geophysical 

parameters related to tropical forests (see Chapter 1 for details). However, 

quantitative validation and error analysis of regional-scale estimation, even for a 

simple thematic definition the forest cover assessment and forest cover changes, still 

need to be worked out and consolidated (Mayaux et al., 2002; Saatchi et al., 1999; 

Simard et al., 1997 and 1999). 
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Conventional per-pixel (i.e. non-contextual) clustering techniques, e.g., 

ISODATA  (Tou and Gonzalez, 1974), that employ a distance criterion in the 

measurement (feature) space, as well as contextual clustering algorithms, like the 

MPAC that work in the joint spatial/spectral image domain based on a piecewise 

constant signal model eventually affected by an additive white Gaussian noise field 

independent of the scene, are incapable of dealing with texture (correlation) and/or 

multiplicative noise, i.e. they are affected by salt-and-pepper classification noise 

effects (over-segmentation) when dealing with radar images.  

Bayesian contextual image-labeling systems, where a MAP global optimization 

is pursued by means of local computations, may employ Markov MRFs to model 

image features such as textures, edges and region labels (Smits and Dellepiane, 

1997). Unfortunately, GMRFs are good at describing a variety of smooth textures, 

but perform poorly when sharp edges or small isolated features are to be preserved. 

Other texture classifiers may consist of neural networks employing, in the spatial 

image domain, sliding windows or multi-resolution filter banks. On the other hand, 

the dependence of results on the shape and size of the processing window (which are 

usually fixed by the user on a priori basis, i.e. these parameters are neither data-

driven nor adaptive) is a well-known problem and further investigation is needed in 

this context.  

The image labeling algorithm to be designed would take into due account 

multiplicative noise, and still would solve the problem of textured classes.  

We propose here a new classification scheme for producing a high-resolution 

regional scale forest map of the Amazon. The main components of the scheme are 

shown in Fig. 3.2 and are summarized next. 

The GRFM data-set volume (1.3 Gb) calls for processing smaller (660*660) 

partially overlapping tiles extracted from the mosaic (see figure 3.2, block 1). The 
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overlapping area prevents border effects when the output map is generated from the 

mosaic of single tiles.  

A novel wavelet multi-resolution decomposition/reconstruction technique is 

employed to generate an edge-preserving piecewise constant radar image (see figure 

3.2, block 2). The radiometric characteristics of the reconstructed signal are at this 

stage a closer approximation to the piece-wise constant model required by 

segmentation algorithms (Simard et al., 1998b). 

Two image-labeling techniques are proposed for thematic information extraction 

from each tile (see figure 3.2, block 3a, 3b): 

1) Region growing technique  

2) Two-stage Nearest Multiple Prototype (NMP) classifier.  

The regional scale map is finally obtained mosaicking together each labeled tile 

(see figure 3.2, block 4). 

The first image-labeling technique, henceforth be dubbed region-growing 

technique, is based on a region-growing algorithm. The wavelet decomposition 

supplies additional information on the edge chains and this fact suggests that the 

combined radiometric and structural information should be exploited in the 

segmentation phase. This is achieved by the region-growing algorithm that 

incorporates boundaries defined by the first order statistic of the amplitude data and 

by the edge maps. Each segment is merged into segments categories based on a 

Jeffries-Matusita pairwise minimum distance criteria.  

The second image-labeling technique is a two-stage Nearest Multiple Prototype 

(NMP) classifier. The NMP first stage employs a near-optimal vector quantization 

algorithm called Enhanced Linde-Buzo-Gray (ELBG). At the second stage of NMP, 

vector prototypes are combined into land cover classes of interest with the help of 

expert photo interpreters. In the pattern recognition phase, each pixel is labeled 

according to the nearest labeled prototype. This second technique will henceforth be 
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dubbed "per pixel two-stage hybrid classifier" (per pixel indicates that the classifier 

does not use spatial contextual information, hybrid indicates that, after an 

unsupervised learning phase, supervised many-to-one relationships are established for 

the final labeling). 

A summary of the image processing techniques adopted in this research both for 

SAR and optical data classification is summarized in Table 3.1.; the algorithm 

adopted in the different processing steps (preprocessing, segmentation or clustering, 

labeling) are reported. 

 

Table 3.1: General overview on image processing techniques adopted in this research 

both for SAR and optical data classification 

 SAR Landsat TM 

Preprocessing  Wavelet multi-resolution 
decomposition/reconstruction 

IHS color 
transformation

Region growing 
Segmentation 

or 
Clustering 

ISODATA 
Jeffries-Matusita 

pairwise 
minimum 

distance criteria 

ELBG ELBG 

Labeling 
Unsupervised 

photo-
interpretation 

Unsupervised 
photo-

interpretation 

Unsupervised 
photo-

interpretation 
MPAC 

 

An overview of the wavelet multi-resolution decomposition/reconstruction 

technique, together with the extension of the technique developed specifically for the 

present application, is presented in section 3.4. The image-labeling techniques are 

described in section 3.5. The thematic class definition and characterization is reported 

in section 3.6. Conclusions are given in section 3.7. 
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Figure 3.2: Flow chart of the 4 building blocks of the classification scheme for 

producing a high-resolution regional scale forest map of the Amazon. Block 1:  

partially overlapping tile (660*660 pixels) extraction from the mosaic. Block 2: 

wavelet multi-resolution decomposition/reconstruction technique to generate an edge-

preserving piecewise constant radar image. Block 3: region growing technique and 

per pixel two-stage hybrid classifier proposed for thematic information extraction 

from each tile. Block 4: labeled tiles mosaicking. 

 

3.2 A wavelet algorithm for edge-preserving smooth 

approximation of SAR imagery  
Wavelets have been applied to radar image analysis and understanding in recent 

years (Simard  et al., 98a; Stewart et al, 93; Fukuda et al. 98 and 99a, b; Niedermeier 

et al, 2000; Ferretti et al.,  99; De Grandi et al.,  99a, 2000c, 2001a). De Grandi et al. 

have proposed in (De Grandi et al., 2001a) a wavelet based edge-preserving 
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smoothing algorithm for SAR images. This algorithm is at the core of the pre-

processing step of our classification scheme. Although the algorithm is not strictly 

part of the developments which are the objective of this thesis, an overview is given 

in this section to set the ground for understanding the overall classification approach. 

The basic wavelet algorithm was extended to take into account the problem of 

smoothing within-class textural edges. This original work is documented in section 

3.4.5. 

As an example of the algorithm in action, a subset of the original GRFM data and 

the corresponding reconstructed smoothed image are shown in Fig. 3.3 a) and (b).  

 

3.2.1 Underlying theory 
The proposed smooth image approximation strategy is inspired by several works by 

Mallat in which a particular mother wavelet acts as a multi-scale differential operator 

(Mallat, 1989, Mallat, 1999, Mallat and Zhong, 1992, Mallat and Hwang, 1992).The 

starting point in Mallat’s derivation is the definition in the space 2L (square integrable 

functions) of a mother wavelet ψ  which is the derivative of a smoothing functionθ . 

A smoothing function is any function that is differentiable, whose integral equals 1, 

and that converges to 0 at infinity. A mother wavelet defined in this way satisfies 

automatically the admissibility condition because its integral equals 0. 
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 (a) 

 (b) 

Figure 3.3: A tile extracted from the GRFM SAR data mosaic (a). Imaged area is 

66x66 km2. The corresponding smooth image generated by the wavelet 

reconstruction algorithm is shown in (b). 
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The continuous wavelet transform of a function )(xf at scale s and position x is 

defined as: 

)/(1)(),( sx
s

xfsxfW ψψ ⊗=                            (3.1) 

where ⊗  is the linear convolution operator.  

An important consequence of the mother wavelet’s definition is that the wavelet 

transform at scale s is proportional to the derivative of the signal smoothed by the 

scaling function at scale s: 

( ) 















⋅⊗⋅=

s
x

s
xf

dx
dssxW θ1)(,                           (3.2) 

 

A discrete dyadic wavelet providing a complete and stable signal representation 

based on the continuous transform (1) is also introduced in (Mallat, 1999), together 

with a fast numerical algorithm based on a filter bank. This algorithm uses separable 

convolutions (rows and columns) with discrete filters h  and g  (corresponding to the 

scaling function and the mother wavelet) whose impulse responses are dilated at each 

dyadic scale j2 , { }Ζ∈j , by inserting 12 −j  zeros between each coefficient of the 

filter. The algorithm is dubbed “algorythme a` trous” in French, because the inserted 

zeros create holes in the filter. Wavelet coefficients at dyadic scales j2  are computed 

by cascading convolutions with the dilated filters (see figure 3.13). Numerical values 

of the high- and low-pass filter coefficients are given in (Mallat and Hwang, 1992). 

This discrete wavelet transform is over-sampled (i.e. there is no decimation between 

successive stages); therefore the low-pass filtered images jS
2 and wavelet coefficient 

images x
jW2
 and y

jW
2

 have the same size at all scales. 

Since the discrete dyadic wavelet transform provides a stable representation, 

inversion is possible through the definition of a dual dyadic wavelet. The 2-D signal 
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(image) jS
2

 at dyadic scale 2j can be reconstructed given the smooth approximation 

12 +jS and wavelet coefficients x
jW 12 +  and y

jW 12 +  at dyadic scale 12 +j using a fast filter 

bank algorithm with dual filters h~ , k , l ( Mallat and Hwang, 1992). 

 Let us identify with jM
2

 the gradient modulus image, 2
2

2
22

)()( yx
jjj WWM += , 

and ( )xy
jjj WW 222

/arctan=α  the image holding the local direction of the gradient at 

scale j2 . It is demonstrated in (Mallat and Zhong, 1992) that local maxima of the 

gradient modulus defined along the direction of the gradient and their evolution with 

scale can be used to detect sharp image transitions and characterize their regularity. 

Mathematically the regularity of a function at one point can be characterized by 

the Lipschitz condition (Davis, 1975). In turn the Lipschitz condition can be 

estimated by the trajectories in space-scale of the wavelet modula maxima. 

The pointwise Lipschitz condition is: 
αλ 0101 )()( xxxfxf −≤−                                             (3.3) 

Basically one considers increments of a function in the neighborhood of a point 

0x , and tries to understand whether the function is bounded and at which order α  in 

the increment (notice that the order can be non-integer). Nearly full reconstruction or 

approximation (de-noising) of the signal is possible taking into account only the 

information carried by the wavelet modulus maxima (Mallat and Zhong, 1992). 

These properties of the wavelet representation are exploited by our de-noising 

method which is outlined below. A block diagram of the algorithm is shown in Fig. 

3.4 and 3.5. 



 

 70 

 
Figure 3.4:  Block diagram of the direct 2D discrete wavelet transform. jS  is the 

smooth image at scale j2 . x
jW 1+ , y

jW 1+  are the wavelet transform components along 

respectively the row and column directions and at scale 12 +j . jh  and jg  are the low 

pass and high pass filters dilated by inserting )12( −j  zeros between each coefficient. 

 
Figure 3.5: Block diagram of the inverse discrete wavelet transform. jS  is the smooth 

image at scale j2 .  x
jW y

jW  are the wavelet transform components along respectively 

the row and column directions and at scale j2 . jh
~

 , jk  and jl  are the low pass and 

high pass filters associated to the dual mother wavelet and dilated by inserting  

)12( −j  zeros between each coefficient. 
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3.2.2 Image model 
Our radar image model takes into account how the radar backscatter changes 

with scale for: i) homogeneous areas featuring stationary texture and speckle 

statistics, and ii) non-stationary image structures like image contours, lines and point 

targets (De Grandi et al., 1999b).  

Let us consider the smooth approximation of a radar image generated by the 

low-pass branch of the decomposition filter bank. At fine spatial resolution (small 

scale) sharp transitions of the signal may occur due to speckle in homogeneous 

constant reflectivity areas, across contours between adjacent homogeneous areas 

featuring different constant reflectivity, across textured areas (texture edges), and in 

correspondence of point targets. As the spatial resolution decreases (scale increases), 

texture and noise are progressively wiped out and the smoothed signal tends to 

become piecewise constant or slowly varying. Also weak transitions associated with 

fine features (genuine but small regions) tend to disappear or fall under the noise 

threshold. On the other hand strong transitions associated with contours between 

homogeneous or textured areas tend to persist across increasing spatial scales. In 

other words, starting from a suitably coarse resolution, strong signal transitions (i.e. 

transitions that persist through increasing spatial scales) may be identified by tracking 

their positions while moving from coarser to finer resolution levels. The choice of the 

coarse resolution level from which image synthesis (reconstruction) starts depends on 

the signal characteristics (e.g., how much texture one wants to wipe out), from the 

noise model, and from the type of discontinuities to be preserved. For example, fine 

resolution levels are suitable as starting points for the reconstruction of fine features, 

while coarse resolution levels are suitable for the reconstruction of large 

homogeneous areas. 
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An example of wavelet modulo dependency with the scale related to a signal 

profile extracted in correspondence of a “strong” edge (forest, non-forest) is 

presented in figure 3.6. 

 

 
Figure 3.6: Strong edge delimiting a non-forest (clear cut) area from a forest area. In 

the three signal profiles: a) Original signal (S0) and smoothed signal Sj on scales 

21,22,23.; b) Gradient modula (M1, M2, M3) on scales 21,22, 23. 
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3.2.3 Wavelet modulus maxima tracking 
Tracking positions and values of the wavelet modulus maxima through spatial 

scales is the fundamental mechanism underpinning the edge-preserving smoothing 

algorithm by image synthesis (reconstruction). 

To illustrate the issue concerning the properties of wavelet modulus maxima, it 

is instructive to consider the case of simple isolated singularities in a mono-

dimensional continuous space. Using (1), that is convolving the dilated mother 

wavelet with the function representing the singularity, and estimating the Lipshitz 

exponent by (3) one can demonstrate that: 

1) The Lipschitz exponent of the Dirac δ  distribution is equal to –1. The modulus of 

the wavelet transform decays as 1/s, and the maxima (approximatingδ ) are 

shifted in position proportionally to scale s.  

2) The Lipschitz exponent of the Heaviside unit step function is equal to 0. The 

wavelet modulus maximum does not decay with scale and is not shifted in 

position.  

3) A smooth step with n continuous derivatives has positive Lipschitz exponent. The 

wavelet modulus maximum increases with scale and its position does not change. 

These simple cases suggest that the evolution in position and value of the 

gradient modulus maxima with scale carries information about: i) the regularity of 

the function, and ii) the Lipschitz exponent of the signal discontinuity. In other 

words, this information may be employed to categorize signal discontinuities and 

estimate the Lipschitz exponent associated with a signal discontinuity. 

In the discrete case, discontinuities can be only approximated at the finite 

resolution of the smallest scale (i.e. at the finest resolution level). The discrete cases 

corresponding to the continuous functions discussed above are shown in figure 3.7a 

(Dirac), 3.7b (step), 3.7c (smooth edge). In 3.7d, a rectangular pulse smoothed by a 

Gaussian function is shown. In this case the wavelet modulus maxima evolution with 
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scale is not monotonic: it starts increasing with the first few dyadic scales, and then 

decreases because, at a certain scale, the support of the analyzing wavelet becomes 

larger than the width of the smoothed signal. Therefore the true steepness of the 

rising (or falling) front cannot be sensed. 

Note that, up to this point, isolated discontinuities have been considered 

exclusively. At the scale where the spatial separation of neighboring discontinuities 

becomes smaller than the resolution of the analyzing wavelet, wavelet modulus 

maxima merge together (see 3.7 e). 

The maxima follower operation can be summarized as follows. First, persistent 

maxima at the coarse scale of choice are searched. The maxima location problem is 

reduced to a one-dimensional problem by intersecting the gradient with a plane in the 

direction of the gradient. 

Once the modula maxima are detected at coarse scale, they need to be tracked in 

position and value at the finer scales. Maxima positions can change with scale 

according to the type of discontinuities (e.g. relative to the size of the support of the 

scaling function). 

One more problem is that the wavelet coefficients become increasingly noisy 

towards finer scales. At scale 21 the coefficients are too noisy to be useful. The 

wavelet coefficients at this critical scale are therefore reconstructed by extrapolation 

from the selected maxima at scale 22 using the Lipshitz exponent estimated by the 

maxima trajectories with scale. 

Summarizing, the wavelet maxima follower algorithm produces information on 

the position and amplitude at each scale of the wavelet modula maxima that define 

contours of areas of interest. This information is used for de-noising the fine scale 

wavelet coefficients, to refine the maxima thresholding of small features using a 

comparison between two scales and for the reconstruction algorithm. 
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a) b) c)

d) e)

 
Figure 3.7: Wavelet modula decay with scale for different type of discontinuities and 

in case of a discrete signal. Frame a) shows the case of a one pixel wide pulse that 

approximates a Diracδ  . Frame b) a step edge that approximates a Heaviside 

function. Frame c) a smoothed step edge. Frame d) a Gaussian function that 

approximates an impulse. Frame e) two non-isolated discontinuities (a step edge and 

an impulse). The solid line corresponds to scale 12 . The dotted line to scale 22 . The 

dashed line to scale 32  . The dash dotted line to scale 42  . 

 

3.2.4 Reconstruction from regularized neighborhoods of selected 

wavelet modulus maxima 
The second step in the de-noising method aims at reconstructing, while moving 

from coarser to finer resolution, an edge-preserving smoothed signal. The 

reconstruction is achieved by means of an inverse wavelet transform and exploiting 

the evolution with scale of wavelet modulus local maxima detected by the tracking 
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algorithm. Algorithms for the reconstruction of a signal from the extrema of its 

wavelet transform have been proposed in (Carmona, 1995; Mallat and Zhong, 1992). 

In these works, starting from values and positions of modulus local maxima, the 

wavelet transform is estimated at all points to be used as input to the inverse wavelet 

transform for signal reconstruction. In our setting the wavelet transform is already 

known at all points; thus a simpler and computationally efficient signal reconstruction 

algorithm can be adopted.  

In one dimension, the reconstruction algorithm proposed here searches right and 

left neighborhoods of the retained gradient modulus maxima characterized by a 

monotonic derivative. A regularized version of the wavelet modulus is used for the 

estimation of the two neighborhoods to avoid non-monotonicity due to noise. 

Wavelet coefficients are retained in these neighborhoods and set to zero everywhere 

else (trimmed coefficients). 

In the two dimensional case (image), the left and right neighborhoods are 

searched along the cross section of the regularized gradient modulus (2D) in the 

direction defined by the gradient angle. The values of the gradient modulus and angle 

within the neighborhoods are then used to compute the wavelet coefficients. 

Finally missing coefficients among the trimmed ones are reconstructed by 

interpolation from the nearest neighbors.  

Image reconstruction at scale 20 is obtained by the inverse wavelet transform 

using the smoothed image at scale 2S and the trimmed and interpolated wavelet 

coefficients at scales 2S to 21. 

The second step in the de-noising method aims at reconstructing, while moving 

from coarser to finer resolution, an edge-preserving smoothed signal by means of an 

inverse wavelet transform exploiting the evolution with scale of wavelet modulus 

local maxima detected by the tracking algorithm. Algorithms for the reconstruction of 

a signal from the extrema of its wavelet transform have been proposed in (Mallat, 
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1999; Mallat and Hwang, 1992). In these works, starting from values and positions of 

modulus local maxima, the wavelet transform is estimated at all points to be used as 

input to the inverse wavelet transform for signal reconstruction. In our setting the 

wavelet transform is already known at all points; thus a simpler and computationally 

efficient signal reconstruction algorithm can be adopted.  

In one dimension, our reconstruction algorithm searches right and left 

neighborhoods of the retained gradient modulus maxima characterized by a 

monotonic derivative. A regularized version of the wavelet modulus is used for the 

estimation of the two neighborhoods to avoid non-monotonicity due to noise. 

Wavelet modulus regularization is obtained by applying smoothing spline filters as 

described in (Unser et al., 1993). Wavelet coefficients are retained in these 

neighborhoods and set to zero everywhere else (trimmed coefficients). 

In the two dimensional case (image), the left and right neighborhoods are 

searched along the cross section of the regularized gradient modulus (2D) in the 

direction defined by gradient angle. The values of the gradient modulus and angle 

within the neighborhoods are then used to compute the wavelet coefficients. 

Finally missing coefficients among the trimmed ones are reconstructed by 

interpolation from the nearest neighbors.  

To summarize, identifying as 2ns the application-dependent coarsest resolution 

level where wavelet analysis (decomposition) is conducted, image reconstruction at 

scale 20 is obtained by the inverse wavelet transform employing the smoothed image 

at scale 2ns plus the trimmed and interpolated wavelet coefficients computed at scales 

2ns to 21. 

 

3.2.5 Wavelet thresholding for de-noising and texture smoothing 
Multiplicative speckle noise in radar imagery poses a number of problems in the 

reconstruction of an edge-preserving smoothed signal. In homogeneous areas at fine 
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resolution, speckle generates strong gradients proportional to the mean value of the 

signal. If speckle is white then it tends to behave like a series of δ  distributions; 

therefore, the amplitude of wavelet modulus maxima decays with scale. If speckle is 

correlated, it tends to behave like a series of pulse functions. In this case the 

amplitude of gradient modulus maxima increases with scale up to the point where the 

wavelet support becomes comparable to the correlation length, and then its starts 

decreasing. However since singularities created by speckle noise are not isolated, 

wavelet modulus maxima tend to merge so that their tracking from coarser resolution 

to finer resolution becomes difficult. Therefore, de-speckling criteria based 

exclusively on the Lipschitz condition have to be ruled out.  

If the strength of speckle at the scale chosen as starting point for the 

reconstruction is relevant, then wavelet coefficients must be suitably threshold to 

filter out noise effects. Because of the multiplicative nature of speckle, wavelet 

coefficient thresholding must be spatially adaptive. For instance a technique proposed 

in (Simard et al., 1998b) calls for normalizing the gradient modulus at scale s by the 

smooth image at the same scale. 

In our application the GRFM data set at 100 m pixel size is generated from high 

resolution JERS-1 imagery by low pass filtering and down-sampling, and the 

equivalent number of looks is approximately equal to 59. Therefore most of the 

effects related to speckle are only relevant at scale 12  and the gradient does not need 

to be normalized.  

To summarize, on the one hand wavelet coefficients at scale 12  bear important 

information related to image sharp transitions. On the other hand these coefficients 

are likely to be affected by noise. Thus, special care must be taken in dealing with 

wavelet coefficients at scale 12 . Filtering or regularizing these coefficients induces 

blurring of the image. In our image reconstruction strategy, the position of 

meaningful singularities at scale 12  are estimated in correspondence of the gradient 
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modulus local maxima detected at scale 22  while their values are extrapolated from 

the Lipschitz exponents estimated by the evolution with scale of the corresponding 

gradient local maxima.  

With regard to texture smoothing, strong texture edges due to within-class 

variance (i.e. within-class texture edges) also propagate through scales and can persist 

up to the scale chosen as starting point for signal reconstruction. If a slowly varying 

signal is required over texturally uniform image areas, then wavelet coefficients 

relative to textural edges must be adaptively threshold based on their context. For 

example, in our application, within-forest class texture contours may persist at 

scale 32 , which is the one chosen to initiate image reconstruction.  

Therefore a novel application-specific rule-based mechanism was developed to 

distinguish between gradient modulus local maxima related to forest/non-forest inter-

class transitions (to be preserved), from those related to forest within-class texture 

variations (to be removed) (see figure 3.8). For each gradient modulus local 

maximum detected in 32
M  along the direction of gradient 32

α   at scale 32 , two pairs 

of mean and standard deviation values extracted from the smoothed signal 32
S   are 

estimated along an image profile. This image profile is: i) centered on the position of 

the gradient local maximum, ii) oriented along the direction of the gradient, iii) up to 

10 pixel-long, and iv) shorter than 10 pixel if it intersects another gradient local 

maximum. Pairs of signal mean and standard deviation values extracted from 32S    

along the right and left side of such a profile are identified as data pairs ( 21  , mm ) and 

( 21 , SDSD ) respectively. Reference forest statistics (
ii FF SDm  , ), i=1,..,N, are 

collected off-line from a set of N low-textured forest area samples extracted from 32
S . 

Three hierarchical rules are adopted to filter out within-class forest edges (see Table 

3.2), i.e. edges featuring class forest on both sides, given a pixel where a gradient 

local maximum is localized at scale 32 : 
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Table 3.2: Three hierarchical rules adopted to filter out within-class forest edges 

 
Rule I.  Preservation of non-forest inter-class transitions 

Wavelet maximum identified by ( )( 1 iFSDSD <  and )( 2 iFSDSD <  ), for all 
i=1..N,  is not threshold  because it correspond to an edge pixel which is 
not involved with class forest on both sides (i.e. this is not a within-forest 
class edge). 

  

ELSE 

  
Rule II.  Comparison between backscatter mean values in the right and left  

wavelet maximum neighborhoods   
At least one neighborhood (right or left) is representative of class forest 
then backscatter mean values in the right and left neighborhoods  are 
comparable if:  
(( )2()2( 11211 SDmmSDm ⋅+<<⋅− ) AND )( 21 SDSD <  ) or 
(( )2()2( 22122 SDmmSDm ⋅+<<⋅−  ) AND )( 21 SDSD > ) 
 

 
THEN 

 
Rule III.  Forest intra-class wavelet modulus local maximum threshold 

According to rule II this is a within-class type of edge. If the mean 
backscatter is near the prior forest class: 

( )2(
2

)(
)2( 21

iiii FFFF SDmmmSDm ⋅+<
+

<⋅− ), for all i=1,..,N 

this wavelet modulus local maximum is removed because it belongs to a 
within-forest class contour. 

 
 

( 21  , mm ) = pairs of signal mean values extracted from 32S    along the right and left 
side of a profile 

( 21 , SDSD )= pairs of signal standard deviation values extracted from 32S    along the 
right and left side of a profile respectively.  

( (
ii FF SDm  , ), i=1,..,N ) =reference forest statistics. 
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Figure 3.8: a) and b) signal statistics (mean, standard deviation) collected along the 

profile from the local maxima position up to the closest local maxima are indicated 

by triangles. c) Diagram illustrating the principle of the rule-based mechanism used 

to distinguish between gradient modulus local maxima related to forest/non-forest 

inter-class transitions (to be preserved), from those related to forest within-class 

texture variations (to be removed).Statistics from profile a) correspond to intra-class 

signal variation (forest signal textural variations) and the related modula maxima will 

be not considered for the image reconstruction. b) Correspond to inter-class signal 

variation (forest – non-forest signal textural variations) and the related modula 

maxima will be considered for the image reconstruction (see color Figure B.6 - 

Appendix B, pp. 205). 
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3.3 GRFM specific classification techniques 

3.3.1 Region growing technique 
This image-labeling technique - dubbed region-growing -, consist of 2 steps: 

1) An application-dependent region growing algorithm for image segmentation.  

2) A segment-based two-stage hybrid learning classifier. 

First a region-growing algorithm is used to build a segmentation map from the piece-

wise smooth reconstructed image and the edge map generated by the wavelet 

decomposition. In support to the segmentation step at first connections are created 

between neighboring maxima along a path where the gradient has similar properties 

(modulus and angle) with respect to the maxima. This closure operation allows for a 

better definition of the contours; also a vector representation of the contours can be 

generated. The algorithm for maxima linkage uses a growing window to explore the 

neighborhood of each maximum. The window is grown until either at least one more 

maximum is included or a prefixed size is reached. If no more maxima are included, 

the maximum under consideration is considered to be either an isolated singularity or 

the terminal point of the current chain. Otherwise the nearest maximum is analyzed, 

and is included in the chain if two conditions are satisfied: 1) the gradient angles 

(extrapolated from scale 32 ) are aligned within a tolerance; 2) the relative magnitudes 

of the modula are comparable within prefixed bounds. Each chain is represented by a 

linked list. When all maxima have been examined, a second pass is performed to 

check maxima labeled as terminal nodes of the chains, and to connect them if their 

gradient values satisfy the criteria mentioned above. 

The region-growing algorithm for image segmentation works as follows. 

We call a stitch a point belonging to the maxima linked lists (see previous definition). 

From a random position a seed region is grown including recursively all neighboring 

pixels that do not include a stitch. In our case 49 pixels are counted in for obtaining a 
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sufficient statistics. The local statistic of the seed point is computed; the sample 

variance is used as the point estimate of the variance; an interval estimate of the 

variance based on the assumption of normality of the data is derived. Also given the 

sample mean, the theoretical variance for a homogeneous area is computed assuming 

multiplicative noise in the data. The signal model in our case foresees Raleigh 

distributed correlated speckle amplitude data, the statistical properties of which are 

modified by a series of low pass filters in the wavelet decomposition. If the lower 

bound of the interval estimate of the local variance is greater than the theoretical 

variance of a homogeneous area then the seed point is discarded since its local 

statistic is not representative of a homogeneous area. The seed point is also flagged as 

a non-classified point, while the points that were included in the region are still kept 

as candidates for future assignments. If the local variance is compatible with the 

theoretical variance, pixels in the seed region are assigned to a new segment and the 

region is grown further, always recursively-assigning neighbors that do not belong to 

stitches. Each new candidate pixel is compared with the local statistic and is accepted 

in the segment if its value falls between two standard deviations from the segment 

mean. While the segment is grown also the local statistic (mean and variance) are 

updated until they reach asymptotic values. Each assigned pixel is flagged as 

processed and assigned a progressive segment number in the output segment map. 

The growth process is stopped when no more neighbors can be accepted; then a new 

seed position is chosen as the nearest not yet processed pixel on the bisected distance 

of the original seed to the image origin. The overall segmentation process is stopped 

when all pixels have been flagged as processed. Three snapshots of different stages of 

the region growing process are shown in Fig. 3.9. 

As second step a segment-based two-stage hybrid learning classifier is adopted. 

Each segment is represented by a two-dimensional feature vector consisting of the 

per-segment mean and standard deviation of backscattered power. The unsupervised 
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learning first stage of the classifier iteratively gathers segments into segment 

categories based on a Jeffries-Matusita pairwise minimum distance criterion until a 

user-defined number of segment categories is reached. In the supervised learning 

second stage, unsupervised segment categories are gathered into supervised classes of 

interest according to expert photo-interpreters. 

 
Figure 3.9: representation of 2 steps in the region growing processes (a, b) up to the 

final thematic map (c) (see color Figure B.7 - Appendix B, pp. 206). 

 

3.3.2 Per pixel two-stage hybrid classifier 
The second image-labeling technique consists of a two-stage Nearest Multiple 

Prototype (NMP) classifier. The NMP first stage employs ELBG near-optimal vector 

quantization algorithm. At the second stage of NMP, the vector prototypes are 

combined into land cover classes of interest with the help of expert photo interpreters. 

To combine high classification accuracy with low processing time, a 

computationally efficient per-pixel (i.e. non-contextual) clustering algorithm is input 

with a smoothed approximation of the radar data at full resolution computed by the 

pre-processing block proposed in section 3.4.  
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A synoptic view of the main building blocks is given in figure 3.10. The first 

unsupervised learning stage consists of ELBG (see figure 3.10, block1). ELBG is a 

vector quantization algorithm recently proposed in the pattern recognition literature 

as an improvement over the well-known LBG (i.e. hard c-means) vector quantization 

algorithm (Patane` and Russo, 2000, 2001, 2002). It is a batch non-constructive 

vector quantizer, i.e. it tries to minimize a distortion error, or mean square error 

(MSE), with a fixed number of codewords which is user-defined. The original 

contribution of ELBG is to employ local optimization criteria, which may require 

codewords to move across non-contiguous Voronoi regions, to reduce the global 

distortion (quantization) error. It has been shown that ELBG (Patane` and Russo, 

2001):  

1) Is near-optimal and stable, i.e. its output results are virtually independent of 

the initial position of templates; 

2) In terms of quantization error minimization, performs better than several 

clustering techniques found in the literature; 

3) Is fast to reach convergence; 

4) Features low computation overhead (<10%) with respect to the traditional 

LBG.  

At the second stage of the NMP classifier, template vectors are labeled, i.e. 

many-to-one relationships between unsupervised template vectors (codewords) and 

land cover classes of interest are defined with the help of expert photo-interpreter. In 

the pattern recognition phase, each pixel is labeled according to the minimum-

distance-to-prototype criterion (see figure 3.10, block2).  

As an alternative to the labeling method proposed here, the non-contextual 

ELBG clustering step may be followed in cascade by the contextual Modified Pappas 

Adaptive Clustering (MPAC) algorithm. This algorithm segments image data in a 

joint spatial/spectral image domain. The drawback of this approach is a greater 
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computational overhead while the advantage is that no additional user supervision is 

required by the system to run. Owing to its Bayesian maximum a posteriori 

contextual adaptive multi-resolution labeling scheme, MPAC is considered superior 

to several alternative labeling algorithms, including ELBG, in terms of image detail 

detection capability and robustness to changes in the user-defined number of input 

clusters. 

 

 
Figure 3.10: Main building blocks of the per pixel two-stage hybrid classifier 
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3.4 Definition and characterization of thematic 

classes  
Out of the wide amount of ecological and geographical information content of 

the GRFM South America mosaic, our attention is focused on a simple thematic 

context comprising the following land-cover classes: forest (F), degraded forest (DF), 

non-forest (NF) and water (W). 

Our thematic goal here is here is to produce a land-cover map, where classes are 

defined in connection with what overlays or currently covers the ground. It is 

reminded that a land-use map refers on the other hand to the predominant purpose for 

which an area is employed (USDA Forest Service, 1989). 

Synoptic description and radiometric characterization of the selected land cover 

thematic classes are reported in figure 3.11. Homogeneous clusters for the classes 

forest, non-forest and degraded forest are extracted in the learning phase of the 

classification process. The statistical properties of the clusters (mean and standard 

deviation) are shown in the graph at the center of the figure. The graph is surrounded 

by a number of images (icons) that depict the radar view of the thematic classes. In 

the forest class (first icon, top-left) we include open and dense forest, without 

phenological distinction or distinction of species.  

Figure 3.12 shows pictorially the difference between evergreen forest in 

alluvium plains with a homogeneous and dense canopy (high backscatter, DN= 110, 
0σ = -7.71; area 1) and evergreen up-land forest with dryer and open canopy (low 

backscatter, DN=106, 0σ =-8.03; area 2) in the Mato Grosso state of Brazil.  

Figure 3.13 shows the difference between lowland floodplain forest (DN=130, 
0σ =-6.26; area1) and mangrove forest (DN=105, 0σ =-8.11; area2) in the coastal 

area of Guyana. The presence of different species and phonological diversity explain 

the radiometric variability within the same thematic class.  
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The flooded forest is characterized by high digital number as can be seen in 

figure 3.14 (DN=255, 0σ =-0.41; area1). 

 

 
Figure 3.11: Synoptic description and radiometric characterization of the selected 

land cover thematic. 
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Figure 3.12: Forest class: evergreen forest in alluvium plains with a homogeneous 

and dense canopy (DN=110, 0σ =-7.71; area 1) and evergreen up-land forest with 

dryer and open canopy (DN=106, 0σ =–8.03; area 2). Image area: 30x30 km2. 
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Figure 3.13: Forest class: lowland floodplain forest (DN=130, 0σ =–6.26; area 1) and 

mangrove forest (DN=105, 0σ =–8.11; area 2). Image area: 30x30 km2. 
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Figure 3.14: Forest class: flooded forest (DN=255, 0σ =-0.41; area 1). Image area: 

30x30 km2. 

 

All the anthropogenic disturbances in the forest domain (owning to ranching, 

shifting cultivation, selective logging) fall into the classes non-forest and degraded 

forest. We use the action term “degraded forest” to describe any intermediate state 

from forest class to deforestation. Degraded forest can also be a mosaic of isolated 

forest patches within non-forest regions or vice versa isolated bare-soil regions 
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surrounded by a forest area (see the schematic representation indicated as “original 

data” in figure 3.15).  

It is worth while noticing that this type of degradation may be identified as a 

homogeneous class using the wavelet multi scale edge preserving smoothing (section 

3.4). The wavelet-based zooming procedure progressively dilates the receptive field 

until these ‘mosaic’ regions tend to become piece-wise constant and surrounded by 

sharp transitions that we will call intra-class edges. The adaptive wavelet coefficient 

threshold applied at this scale is capable of distinguishing these intra-class edges from 

the so-called inter-class transitions (textural edges). In the reconstructed signal these 

mixed classes will be perceived as a piece-wise region with a radiometric 

intermediate behavior from forest class to deforestation (see the schematic 

representation indicated as “reconstructed data” in fig 3.15). 

 
Figure 3.15: Schematic representation of degraded forest class (i.e. mosaic of isolated 

forest region surrounded by a forest area). In the reconstructed signal these mixed 

classes will be perceived as a piece-wise region (see color Figure B.8 - Appendix B, 

pp. 206). 
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With a single-date classification, changes from forest to clear-cut degradation cannot 

be discriminated from an area of partial re-growth like the abandoned pasture framed 

by the 2 red boxes of figure 3.16 (DN=100, 0σ =-8.54). 

 

 
Figure 3.16: Degraded forest class: abandoned pasture with partial re-growth forest in 

the 2 red boxes (DN=100, 0σ =-8.54). Image area: 30x30 km2 (see color Figure B.9 - 

Appendix B, pp. 207). 
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The different spatial arrangement of deforestation included in the non-forest 

classes and characterized by low backscatter clusters (105<DN<130, -8.11< 0σ <-

6.26) are shown in figure 3.17a, b, c that refer to areas in Mato Grosso, Rondonia, 

and Colombia respectively. 

 
Figure 3.17 a: Non-forest class: different spatial arrangement of deforestation: big 

ranches in Mato Grosso (Brazil), (105<DN<130, -8.11< 0σ <-6.26). Image area: 

30x30 km2. 
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Figure 3.17 b: “Herring bone” patterns in Rondonia (Brazil), (105<DN<130, -

8.11< 0σ <-6.26). Image area: 30x30 km2. 
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Figure 3.17 c: Non-forest class: different spatial arrangement of deforestation: 

widespread and small forest cuts in Colombia (105<DN<130, -8.11< 0σ <-6.26). 

Image area: 30x30 km2. 

 

The non-forest class includes also natural areas not covered by forest like natural or 

cultivated savanna (see figure 3.18; 30<DN<90, -18.99< 0σ <-9.45). 
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Figure 3.18: Non-forest class: natural savanna (area 1) and cultivated savanna (area 

2), (30<DN<90, -18.99< 0σ <-9.45). Image area: 30x30 km2. 

 
The water class including lakes and rivers is characterized by low backscattering 

values (DN=30, 0σ =-18.99) sometimes comparable with bare-soil backscatter (see 

figure 3.19). 

The seawater bodies can be both high and low backscatter depending on wind effects. 
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Figure 3.19: Non-forest class: Rio Negro (north) and Rio Solimoes (south) becoming 

Amazon rivers and characterized by low backscattering values (DN=30, 0σ =-18.99). 

Image area: 30x30 km2. 

 

New clear cuts can be characterized by high-backscatter (DN=235, 0σ =-1.11) when 

partial logging occurred or the stems are still lying on the ground. Radar signals 

penetrate the more open canopy and the cut trunks on the ground increase the double-
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bounce backscatter. In that case the geometric shapes of these areas help in the 

distinction from natural high backscatter targets (figure 3.20). 

 

 
Figure 3.20: Non-forest class: new clear cuts where the trees have not been 

completely cut and the cut trunks lain on the ground increase the double-bounce 

backscatter (DN=235, 0σ =-1.11). Image area: 30x30 km2. 
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3.5 Summary and conclusions 
In this chapter operational classification scheme suitable for processing large 

coverage radar data sets, such as the GRFM South America mosaics, is presented and 

detail from the technical and operational point of view. The proposed classification 

approach consists of: i) wavelet multi-resolution decomposition/reconstruction pre-

processing technique capable of backtracking the value and position of image 

singularities from coarse to fine resolution levels of analysis, and ii) two per-pixel 

image-labeling techniques for thematic information extraction. The first image-

labeling technique, dubbed region-growing technique, is based on an application-

dependent region growing algorithm. Then the classifier iteratively gathers segments 

into segment categories based on a Jeffries-Matusita pairwise distance. As second 

image clustering technique a two-stage NMP classifier is proposed. The NMP first 

stage employs ELBG near-optimal vector quantization algorithm. At the second stage 

of NMP, the vector prototypes are combined into land cover classes of interest with 

the help of expert photo interpreters. 

Both the techniques are easy to use, requiring minor user interaction, but the per 

pixel two-stage hybrid classifier runs faster. 

Two major issues have to be tackled for extracting thematic information from the 

GRFM mosaics: i) high variance of the radar signal in high backscattering 

homogeneous areas or in non-homogeneous textured areas reduces the clusters 

separability and tends to produce over-segmentation, ii) large data volume (1.3 Gb). 

Due to the first problem, conventional clustering techniques (ISODATA) are ill 

suited (see the results in Chapter 4). The proposed wavelet multi-resolution 

decomposition/reconstruction technique is capable of generating an edge-preserving 

piecewise constant radar image with radiometric characteristics of the reconstructed 

signal closer to the piece-wise constant model required by a certain class of image-

labeling algorithms. The designed image-labeling technique takes into due account 
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multiplicative noise and contemporary solves the problem of some classes of interest 

(e.g. forest) corresponding to highly textured regions. 

 A special purpose processing chain that works on partially overlapping tiles 

extracted from the mosaic had to be developed to solve the second problem. 

Two clustering techniques are proposed for thematic information extraction 

(region-growing algorithm, per pixel two-stage hybrid classifier). Classification 

results, performance characterization and validation of the techniques are reported in 

Chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 102 

 

 

 

 

 

 

 

 

 



 

 103

Chapter 4 

Validation of the classification maps and error 

analysis 

 

 

4.1 Introduction 

In chapter 3 we proposed a new classification scheme for producing a high-

resolution regional scale forest map of the Amazon. A novel wavelet multi-resolution 

decomposition/reconstruction technique was employed to generate an edge-

preserving piecewise constant SAR image and two image-labeling techniques were 

proposed for thematic information extraction.  

Quantitative validation and error analysis of the regional area deforestation 

estimates are presented in this section. In this application field, Landsat TM is widely 

employed as a valuable data source (INPE, 1996; FAO, 1990 and 1996; TRFIC; 

Stone and Lefebvre, 1998). Therefore it was decided to use maps derived from 

Landsat TM as reference data for our assessment. The TM maps were produced by 

the Tropical Rain Forest Information Center (TRFIC) – a NASA’s Earth Science 

Information Partnership program - and by the FAO’s Forest Resource Assessment 

Programs (FAO, 1996).  

In our context the purpose of forest mapping and in particular of deforestation 

estimation is to evaluate the anthropogenic disturbance on the forest domain. 

However the disturbance - transition from forest to non-forest - is sensed in different 

ways by different instruments (in our case Landsat TM and JERS-1 SAR), because 

each instrument is sensible to different scattering mechanisms. It is therefore difficult 

to define a unique measurable quantity that can be used to compare results derived 
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from the two instruments. We assume that Landsat TM maps are the validated 

reference data but we keep into account possible spectral and spatial differences 

between these two imaging systems during the comparison analyses. 

The reference data are described in section 4.2, methods and tools adopted for 

results validation are presented in section 4.3. Results of classification accuracy 

analysis are presented in section 4.4. First the overall accuracy of vegetation maps 

(SAR and optical reference data) is reported (section 4.4.1). Second, analysis by test 

site of the confusion maps is presented (section 4.4.2). Conclusions are reported in 

section 4.5. 

 

 

4.2 Available reference data 
For validation of the results and error analysis, three training areas and one 

testing site have been selected. The three training site locations are: the Mato Grosso 

State, and the South Rondonia State in Brazil, the Florencia-Napo region in 

Colombia. The sites are identified respectively as sites 226-69, 230-69 and 8-59 

according to the Landsat TM path-row codes of the related images. They include 

different forest and savannah ecosystems and present different land use types 

reflecting the major forms of anthropogenic activity within the Amazon basin (see 

Chapter 2). The generalization ability of the per-pixel two-stage hybrid classifier is 

assessed over a fourth independent site in North Rondonia State (identified as testing 

site 231-68). 

Forest classification maps from SAR data, acquired in 1992/93 and 1995/96 over 

the three sites, are derived using the two proposed image-labeling techniques (see 

chapter 3). The region growing technique is applied to the JERS-1 1992/93 data sets 

available from the NASDA archive. The hybrid classifier is applied to the 1995 

JERS-1 data set extracted from the GRFM South America low water mosaic. Sites 
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226-69, 230-69, and 8-59 are used for ELBG training; site 231-68 is used for the 

testing phase. 

For each acquisition epoch (1992/93 and 1995), two Landsat TM thematic maps 

of the Mato Grosso and South Rondonia sites are taken as reference data sets. These 

maps were produced by the NASA Tropical Rain Forest Information Centre (TRFIC). 

A third independent classification of Landsat TM data for the Florencia-Napo site is 

used. A TRFIC Landsat TM thematic map was available over the North Rondonia 

site (231-68) for the testing phase of the hybrid classifier. Maximum time difference 

between the acquisition dates of SAR data and optical data is less than one year 

(Salvador and Pons, 1998). 

TRFIC validated the accuracy of their classifications through a field-based 

accuracy assessment program. The map pixel spacing is 30 m and the geographic 

localization error is rated as 500 m. The classes in the TRFIC thematic product are: 

Forest, Deforested, Regrowing Forest, Water, Cloud, Cloud Shadow, Cerrado. To 

compare the SAR maps with the TRFIC thematic maps, we combine these seven 

classes as indicated in table 4.1 

 

Table 4.1: Class correspondence between the TRFIC thematic maps and the SAR 

maps. 

TRIFIC  thematic classes SAR thematic classes 
5. Cloud 
6. Cloud Shadow 0. No correspondence  

4. Water 1. Water  
1. Forest 2. Forest  
3. Re-growing Forest 3. Degraded forest 
2. Deforested 
7. Cerrado 4. Non-forest 

 

A map at 30 m pixel spacing of the Florencia-Napo site (8-59) was derived from 

a third independent classification of Landsat TM imagery acquired in 1991 and 1996, 
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and using a classification scheme called hierarchical NMP (HNMP) (De Grandi, 

IGARSS 2001). This scheme comprises 2 stages. At the first stage – unsupervised 

learning – a vector quantization algorithm is used (Patane` and Russo, 2000 and 

2001). At the second stage template vectors are labeled, i.e. many-to-one 

relationships between unsupervised template vectors and land cover classes of 

interest are established. Two maps produced by the FAO’s Forest Resource 

Assessment (FAO, 1996) are used as reference for class labeling. The FAO data 

consist of a forest classification derived from the visual interpretation of 1990 and 

1996 Landsat TM scenes adopting a minimum mapping unit of 100 hectares. To 

retain the same spatial location and scale in the comparison, the optical maps are co-

registered with SAR maps and scaled from 30 m to 100 m . Manually selected tie 

points are used for registration to avoid spatial relative errors in the comparison.  

A summary of the reference and SAR maps used in the validation step and in a 

performance comparison of the methods is presented in Table 4.2 
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Table 4.2: Reference maps and SAR maps used in the validation phase and for the 

performance comparison of the methods. In the column “Optical maps”: TRFIC 

indicates thematic maps produced by the NASA Tropical Rain Forest Information 

Centre; HNMP indicates an independent classification of Landsat TM  data. 

 

SAR maps Site 
(Landsat 
TM path-

row) 

ISODATA 
 

Region 
growing 
classifier 

two-stage 
hybrid 

classifier 

Optical maps 

JERS-1 Ampl. 
15 Nov. 92 

JERS-1 Ampl.
15 Nov. 92 

 
_ 

TRFIC 
TM 19 May 92 226-69 

Mato 
Grosso 

(training)  
_ 

 
_ 

GRFM Ampl. 
Sept.-Dec.95 

TRFIC 
TM 31 July 96 

JERS-1 Ampl. 
5 April 93 

JERS-1 Ampl.
5 April 93 

 
_ 

TRFIC 
TM 15 May 92 

 
230-69 
South 

Rondonia 
(training)  

_ 
 

_ 
GRFM Ampl. 
Sept.-Dec.95 

TRFIC 
TM 13 July 96 

JERS-1 Ampl. 
14 Nov. 92 

JERS-1 Ampl.
14 Nov. 92 

 

 
_ 

 
HNMP 

TM 2 March 91 
8-59 

Florencia 
Napo 

(training)  
_ 

 
_ 

GRFM Ampl. 
Sept.-Dec.95 

HNMP 
TM 11 Aug. 96 

231-68 
North 

Rondonia 
(testing) 

 
_ 

 
_ 

GRFM Ampl. 
Sept.-Dec.95 

TRFIC 
TM 1996 
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4.3 Methods and tools  
To examine the mapping accuracy, confusion matrices between SAR and 

Landsat TM maps are computed. Moreover we present the confusion matrix 

information in a form termed confusion map. In this representation we color code 

those image pixels that represent commission and omission errors in the matrix (see 

(Congalton and Green, 1999) for a definition of commission and omission errors).  

In accordance with the mathematical representation of the error matrix given in 

table 4.3, the overall accuracy is defined as: 

n

n
A

k

i
ii∑

== 1                                                             (4.1) 

Where iin  denote the number of samples classified in the same category i in the 

two classifications and n is the total number of samples. The overall accuracy is a 

measurement of the degree of discrepancy between SAR and reference maps.  

In the agreements and disagreements budget, the following causes must be taken 

into account together with the classification errors (Arbia and  Haiming, 1993):  

1) Real changes of the vegetation between the SAR and the TM acquisition dates. 

Those changes could have a natural (phenology) or an anthropic cause. 

2) Differences of the imaging systems and wave scattering mechanisms. 

3) Co-registration problems. 

It is difficult to establish a unique parameter that could define how the 

forest/non-forest transition is measured by optical and SAR instruments; therefore we 

expect high discrepancies between maps derived by the two instruments for the 

degraded forest class and in the boundary regions between cerrado (natural savanna) 

and the humid forest ecosystem. 
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The confusion map shows spatially where these discrepancies occur, facilitating 

the analysis of the problem.  

The confusion matrix layout and codes are reported in table 4.3. The confusion 

matrix columns represent the reference data, while the rows indicate the remote 

sensing classification. For example the matrix element 23 is an area classified as non-

forest in the reference map and forest by the maps to be assessed. The pixel 

percentage content in matrix element 23 is given by 35n  in the confusion matrix. 

Matrix elements 0 to 4 – Unclassified, Water, Forest, Degraded Forest, and 

Non-forest - are the ones that feature comparable accuracy in the two classifications. 

Matrix elements from 5 to 24 are the discrepancies between the two maps. 

 

Table 4.3: The confusion matrix layout and codes for confusion maps. 

 unclassified water forest deg-forest non-forest  

unclassified 0 11n
 

9 12n
 

13 13n
 

17 14n
 

21 15n
 

+1n
 

water 5 21n
 

1 22n
 

14 23n
 

18 24n
 

22 25n
 

+2n
 

forest 6 31n
 

10 32n
 

2 33n
 

19 34n
 

23 35n
 

+3n
 

deg-forest 7 41n
 

11 42n
 

14 43n
 

3 44n
 

24 45n
 

+4n
 

non-forest 8 51n
 

12 52n
 

16 53n
 

20 54n
 

5 55n
 

+5n
 

  1+n
  

2+n
  

3+n
  

4+n
  

5+n
 

 
 

 C M C M C M C M C M  
C = class identifiers used in the confusion maps 
M= confusion matrix values 
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The relationship between discrepancies in the remote sensing maps and the 

deforestation pattern was investigated. Visual inspection of the satellite images 

collected for the study over three different sites reveals the different ways human 

intervention can carve deforestation patterns into the forest landscape. A variety of 

measurements can be performed to numerically describe these different spatial 

patterns. In our analysis we used the average perimeter-over-area-ratio “PA” 

(Johnston, 1998), defined by (4.2). 

∑
=

=
m

k k

k

A
P

m
PA

1

1
                                                   (4.2) 

Where m=total number of patches, ( ) == mkPk ....1 perimeter of single patches, 

( ) == mkAk ....1 area of the single patches. 

In a labeled image, segments are defined as connected image areas featuring the 

same label type. Intuitively, a labeled segment (e.g., class forest) is: i) compact where 

it features low PA values; and ii) fragmented (patchy) where PA values tend to 

increase (see figure 4.1). 

 

Figure 4.1: Examples of compactness characterization using the Perimeter-over-Area 

(PA) measure. 
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4.4 Results 
4.4.1 Overall accuracy  

For the three sites (226-69, 230-69, 8-59) we calculate the overall accuracy 

between optical reference data and radar maps. The radar maps are derived using two 

classifiers (region growing and hybrid classifier). The degree of agreement between 

optical and radar data is higher using the former.  

In Table 4.4 the overall accuracy is reported when only the class sub-set forest – 

non forest is considered. 

The 1992 and 1996 TRFIC maps and the radar maps for the Mato Grosso site are 

shown figure 4.1 for visual comparison. 

 

Table 4.4: Overall accuracy for class set forest/non-forest. Results obtained using 

1992 and 1995 data sets. 

 

Overall training accuracies of the hybrid classifier over Mato-Grosso (226-69), South 

Rondonia (230-69) and Florencia-Napo (8-59) sites are compared with the overall 

testing accuracy for the North Rondonia (231-68) site in table 4.5. Note that in this 

table, elements (row, column) 2, 3 and 2, 4 are empty because class cerrado is not 

detected either in the Florencia-Napo training site or in the North Rondonia test site. 

Site 
(Landsat 
path-row) 

SAR region 
growing 

- 
Reference maps 

(1992 data set) 

SAR hybrid 
classifier 

- 
Reference maps 

(1995 data set) 

226-69 91% 92% 
230-69 73% 84% 
   8-59 57% 82% 
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Figure 4.1: 1996 and 1992 TRFIC maps for the Mato Grosso site (a, c.). Hybrid 

classifier map (1995 data set) (b). ISODATA and region growing (1992/93 data set) 

(d, e) (see color Figure B.10 - Appendix B, pp. 208). 

 

Table 4.5 shows that, when class set A (water, forest, degraded-forest, non-

forest) is involved, the testing accuracy (77%) is: i) better than that obtained in 

related works (Sgrenzaroli, 2001) and ii) in line with training accuracies. The major 

source of misclassification is identified in the degraded forest class. If this class is 

removed, the average testing accuracy increases to 87%.  

These experimental results are consistent with theoretical expectations: low 

backscattering values of the degraded forest class (due to partially logging or forest 

regrowth) are comparable to those of the cerrado class and/or open canopy forest 
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class. This effect is documented by row B of table 4.5, where accuracy results are 

reported for the case when the cerrado class is omitted from classification. On the 

other hand high backscattering values of class degraded forest (due to recently cut 

trunks still lying on the ground and causing double-bounce effects) may overlap those 

of class flooded forest. 

SAR maps derived by the hybrid classifier and the reference map over the three 

training sites (226-69, 230-69, and 8-59) are shown for visual comparison in figure 

4.2.  

The capability of the hybrid classifier to generalize over the entire data set is 

documented in figure 4.3. Here the SAR map over the testing site (231-68), the SAR 

map over the South Rondonia site (230-69), the corresponding TRFIC map over the 

same testing site are shown. 

 

 

Table 4.5: Overall training accuracy of the hybrid classifier over Mato-Grosso (226-

69), South Rondonia (230-69) and Florencia-Napo (8-59) compared with the overall 

testing accuracy for the North Rondonia (231-68) test site (results obtained with 1995 

data set). 

 Training 
(1995 data set) 

 Testing 
(1995 data set) 

 230-69 226-69 8-59  231-68 
A 83% 72% 58%  77% 
B 86% 75%    
C 92% 84% 82%  87% 
A:  water, forest, deg. forest, non-forest 
B:  water, forest, deg. forest, non-forest excluding 

cerrado 
C:  forest, non-forest 

230-69 Mato Grosso 
226-69 South Rondonia 
    8-59 Florencia-Napo 
231-68 North Rondonia 
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Figure 4.2 a: Comparison between the SAR map using the hybrid classifier and the 

TRFIC reference map of the Mato Grosso training site (226-69) This site is 

characterized by ranching and selective logging (see color Figure B.11 - Appendix B, 

pp. 209). 
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Figure 4.2 b: Comparison between the SAR maps derived using the two-stage hybrid 

classifier and the TRFIC reference map of the South Rondonia training site (230-69). 

This site is characterized by linear (“herring bone”) and massive deforestation (see 

color Figure B.12 - Appendix B, pp. 210). 
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Figure 4.2 c: Comparison between the SAR maps derived using the two-stage hybrid 

classifier and the Landsat TM classification of the Florencia-Napo training site (8-

59). This site is characterized by linear and widespread deforestation (see color 

Figure B.13 - Appendix B, pp. 211). 
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Figure 4.3: The SAR map of the testing site (231-68) and the SAR map of the South 

Rondonia site (230-69). The two maps are overlaid to a sub-set of GRFM SA mosaic 

in the inset on the left. The SAR map of the testing site (231-68) is compared with the 

corresponding TRFIC map of the same testing site (the location on the GRFM data 

set is framed by a red box). Training sites (1. Mato Grosso, 2. South Rondonia, 3. 

Florencia-Napo) and testing site (North Rondonia) are highlighted in the inset 

showing the entire GRFM SA mosaic (see color Figure B.14 - Appendix B, pp. 212). 
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To investigate whether our test results hold true for the entire mosaic, the hybrid 

classifier is applied to the entire South America data set down-sampled at 1200 m 

pixel spacing. In this case, ELBG is run with 32 prototype vectors using the down-

sampled GRFM South America data set, while the wavelet-based data pre-processing 

is not used. The classification at 1.2 km resolution is qualitatively consistent with the 

forest map produced by the Tropical Forest Ecosystem Environments monitoring by 

Satellites (TREES) project (Malingreau et al., 95; Eva et al., 95). This product was 

derived from 300 ERS ATSR-2 optical images acquired between 1998 and 2000. The 

TREES map and the map derived from the GRFM mosaic are shown in Figure 4.4. 

The thematic classes in the TREES map are: Water, evergreen forest, dry forest, 

mangrove, open/fragmented forest, plantation, non-forest, and semi-evergreen 

forest/shrubs (‘Chaco’). To facilitate the visual comparison we have combined and 

color-coded evergreen forest, dry forest, and mangrove as class forest, 

open/fragmented forest as class degraded forest. Classes plantation, non-forest, and 

semi-evergreen forest/shrubs (‘Chaco’) as class non-forest. 

Yet another important issue that we have investigated (using the 100 m products) 

is the dependency of the classification discrepancies on different deforestation 

patterns. The discrepancy increases with the degree of deforestation pattern 

complexity as measured by PA. Possible explanations are: 

1) Differences in spatial sampling between the SAR data (100 m) and the 

Landsat TM data (30 m). 

2) Increase of co-registration errors with the landscape complexity. 

3) Higher dynamics of change in highly fragmented zones (mainly due to 

changes in the natural target between two acquisition dates) 

Table 4.6 confirms that the discrepancy between SAR and reference maps 

increases with the PA values. The PA is computed for class forest in the reference 

map. 
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Table 4.6: Overall accuracy of the SAR maps as a function of different landscape 

patterns as measured by PA for class forest. Reference maps are both the TRFIC 

maps (226-69, 230-69) and the independent classification of Landsat TM raw data (8-

59). (Results obtained using the 1992/93 data set). 

 

Site (Landsat path-row) SAR map Accuracy PA 
 

226-69 91% 0.057 
230-69 73% 0.144 
   8-59 57% 1.037 
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Figure 4.4a: Forest map (1.2 km pixel spacing) derived from the whole GRFM SAR 

South America mosaic (see color Figure B.15 - Appendix B, pp. 213). 



 

 121

 
Figure 4.4b: The TREES project South America forest map. This product was derived 

from 300 ERS ATSR-2 optical images acquired between 1998 and 2000 (see color 

Figure B.16 - Appendix B, pp. 214). 

 

4.4.2 Analysis by site 
In this section confusion matrices are presented in a form termed confusion map to 

show where errors occur in space. The confusion maps between reference maps 

(TRFIC maps and independent classification of Landsat TM data) and SAR maps 

(region growing) are analyzed by site. This analysis refers to data acquired in 

1992/93, regarding SAR maps, is conducted using the region growing classifications 

and helps to detail and localize the discrepancies and similarities between the two 

thematic products.  



 

 122 

Confusion maps and the related confusion matrices are presented for three sites: 

Mato Grosso, South Rondonia and Florencia-Napo. Results are presented in 

decreasing order of overall accuracy and starting from the matrix element 

characterized by a higher percentage of coverage. In the confusion matrix the 

columns refer to the reference map and the rows to the SAR map. In addition we 

report the commission and omission errors for classes’ forest, degraded forest and 

non-forest. The unclassified class for the SAR classification refers to the criteria 

expounded in chapter 3 section 3.5. If, during the growing process the lower bound of 

the interval estimate of the local variance is greater than the theoretical variance of a 

homogeneous area then the seed point is discarded and flagged as a non-classified 

point. For the TRIFIC map the unclassified class corresponds to the Cloud, Cloud 

Shadow classes, where there no correspondence with SAR map, according to table 

4.1. 

 
Mato Grosso (226-69) site 
Table 4.7: The confusion matrix for the site Mato Grosso 226-69. The TRFIC map 

and the SAR map obtained by the region growing classification are considered. 

 
 unclassified water 1 forest 2 deg forest 3 non-forest 4 Total 
unclassified 0 0.000 9 0.000 13 0.274 17 0.003 21 0.011 0.288 
water 1 5 0.000 1 0.000 14 0.000 18 0.000 22 0.000 0.000 
forest 2 6 0.000 10 0.014 2 68.524 19 1.503 23 4.824 74.865 
deg forest 3 7 0.000 11 0.000 15 0.922 3 0.284 24 0.104 1.310 
non forest 4 8 0.000 12 0.026 16 0.859 20 0.316 4 22.334 23.535 
Total 0.000 0.041 70.580 2.107 27.273 100.00 
Class Commission (%) Omission (%) Accuracy (%) 
forest 2 8.985 2.912 97.088 
deg forest 3 48.708 86.505 13.495 
non forest 4 4.406 18.109 81.891 

 

The confusion map for the Mato Grosso site is reported in figure 4.5 on the left. 

The related confusion matrix is reported in Table 4.7. The matrix element 23 exhibits 

the highest confusion. The matrix element 23 – SAR classification: 4.824%- 
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corresponds spatially to an area of shrub-land coverage, at the boundary between the 

cerrado (savanna) and the humid forest ecosystems. This suggests that the transition 

from closed forest to agricultural land, predominantly ranching, is discriminated 

differently by the SAR and by the optical sensor. In those areas vegetation coverage 

is often determined by a fluctuating water table that is very high between the rainy 

and the dry seasons (Furley et al., 1992). 

 
Figure 4.5: Two confusion maps of Mato Grosso site (226-69) between reference 

maps and SAR maps: Region growing on the left, ISODATA classifications on the 

right (see chapter 5). The area enlarged in figure 4.6 is framed by a white box. The 

area enlarged in figure 4.7 is framed by a black box (see color Figure B.17 - 

Appendix B, pp. 215). 
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The SAR sensor is particularly sensitive to soil conditions and therefore the main 

source of discrepancy in this case is due to natural changes that occur between the 

Landsat TM and SAR acquisition dates. It must be noted that the region growing 

classification technique is able to distinguish at least partially these areas classifying 

them as degraded forest.  

The degraded areas - detected by the optical sensor and not by SAR - are 

grouped in small patches. The scale of the disturbed area and the canopy coverage are 

most likely different at the two dates when the SAR and the optical data were 

acquired. This fact could explain the low accuracy reported in matrix element 19 

(SAR classification accuracy: 1.503%). 

The same analysis applies to matrix element 15: (SAR classification accuracy: 

0.922%). Here however the class forest is detected in the optical maps and class 

degraded forest in the SAR maps. The confusion matrix element 15 is present in 8 

spots in the forest domain of the related confusion map when using the region 

growing classifier. Visual inspection of the full resolution Landsat TM scene reveals 

a canopy coverage discontinuity in those spots. The regular spatial arrangements of 

these spots suggest anthropogenic disturbances. We can infer that the discrepancies 

described by the confusion matrix element 15, are due to a misclassification of the 

optical data (see the zoomed-in area in figure 4.6).  

The radar backscatter statistics of those areas with regular spatial patterns are 

compared with samples corresponding to forest and non-forest classes. The mean 

backscatter of the textured areas with regular spatial patterns is near the value of the 

nominal backscatter for the forest class. 
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Figure 4.6: The zoomed-in area in the TM image shows spatial arrangements that are 

suggestive of anthropogenic disturbances. However these patterns are not included in 

the TRFIC map. In the region growing map he same area is classified as degraded 

forest while in the TRFIC map it is classified as forest. In this case the discrepancy, 

relative to confusion matrix elements 15, is due to a misclassification of the optical 

data (see color Figure B.18 - Appendix B, pp. 216). 

 

Despite the radiometric proximity, the region growing technique is able to detect 

those transition areas. This is due to the fact that in the region growing process the 

presence of edges and small radiometric variations around the considered seed 

position is taken into account.  

A synoptic description of data flow in the generation of the thematic maps when 

using the region growing classifier and ISODATA is given in figure 4.7. The images 

in the inset at top right (SAR classification) and the inset at bottom right (TRIFIC 

map) are suggestive of the relative agreement for the class forest between the two 

maps when the region growing classifier is used. 
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Figure 4.7: Synoptic description of data flow in the generation of the thematic maps 

and for the different classification methods. 

Pictures at the right of the figure show the relative agreement for the class forest 

between the SAR map derived by wavelet–based region growing – first inset top right 

- and the reference TRFIC –last inset bottom right. 

In the center right inset the SAR map derived by ISODATA technique is shown (see 

section 4.6) (see color Figure B.19 - Appendix B, pp. 217). 
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Rondonia (230-69) site 
Table 4.8: The confusion matrix for site 230-69: TRFIC map, SAR wavelet-based 

region growing classification. 

 
 unclassified water 1 forest 2 deg forest 3 non-forest 4 Total 
unclassified 0 0.000 9 0.000 13 0.000 17 0.000 21 0.000 0.000 
water 1 5 0.000 1 0.000 14 0.000 18 0.000 22 0.000 0.000 
forest 2 6 0.030 10 0.000 2 55.033 19 5.884 23 5.227 66.174 
deg forest 3 7 0.006 11 0.000 15 4.110 3 1.319 24 1.828 7.263 
non forest 4 8 0.040 12 0.000 16 5.001 20 4.521 4 17.000 26.562 
Total 0.077 0.000 64.144 11.724 24.054 100.00 
Class Commission (%) Omission (%) Accuracy (%) 
forest 2 17.369 14.205 85.795 
deg forest 3 50.703 88.750 11.250 
non forest 4 39.756 29.329 70.671 

 

The Rondonia site is partially characterized by the transition between cerrado 

and forest vegetation. At the margin between forest and cerrado the difference 

between acquisition dates plays a predominant role in explaining the matrix element 

23 with highest confusion– SAR classification: 5.227%. 

Spatially this element is localized in the transition zone. Soil moisture conditions 

are relevant in this type of interface area where the low canopy density allows the 

SAR signal to penetrate. In any case this analysis shows that the wavelet-based 

method can differentiate the interface areas because of the higher sensitivity to local 

signal variations. 

Matrix element 19 - SAR classification: 5.884%- is mostly localized in two 

zones: areas characterized by herringbone deforestation patterns, and areas affected 

by micro-topographic effects. In the first case the rapid changes of strongly degraded 

areas and the scale of the changes are causes of discrepancies. It is therefore difficult 

to differentiate classification errors from real land cover changes that have occurred 

between the optical and SAR acquisition dates. The errors increase in areas with 
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micro-topography: in this case a visual interpretation is required to highlight variation 

due to topography from deforestation patterns. 

For matrix element 16 it is difficult to distinguish recent clear-cuts detected by 

SAR from misclassification errors – SAR classification 5.001%. Areas with regular 

spatial arrangement, observed in a Landsat TM scene acquired later than the TRFIC 

map, confirm the presence of clear-cuts. Changes, ascribed to new clear-cuts using 

Landsat TM acquired on May 15, 92 and the Landsat TM scene acquired on August 

3, 92, are around 0.6%. 

Matrix element 15 is mostly localized in areas with regular spatial arrangement 

in the wavelet segmentation map (35% of matrix element 15). Classified as forest in 

the May 12, 1992 TM scene, after three months these areas present new clear-cuts 

that are visible in a TM image acquired on August 3, 1992. The region growing 

classification seems to be able to detect degradation due to new clear cuts (i.e. 

selective logging). 

 

Colombia (8-59) site 
Table 4.9: The confusion matrix for site 8-59: TRFIC map, SAR wavelet-based 

region growing classification. 
 unclassified water 1 forest 2 deg forest 3 non-forest 4 Total 
unclassified 0 0.000 9 0.000 13 0.000 17 0.000 21 0.000 0.000 
water 1 5 0.000 1 0.636 14 0.544 18 0.610 22 3.260 5.050 
forest 2 6 0.000 10 0.228 2 43.890 19 11.689 23 15.458 71.265 
deg forest 3 7 0.000 11 0.000 15 0.000 3 0.000 24 0.000 0.000 
non forest 4 8 0.000 12 0.180 16 5.525 20 4.745 4 13.234 23.684 
Total 0.000 1.044 49.960 17.044 31.952 100.00 
Class Commission (%) Omission (%) Accuracy (%) 
forest 2 9.678 8.041 8.041 
deg forest 3 54.794 12.149 12.149 
non forest 4 32.705 58.582 58.582 

 

In this area the available FAO visual interpretation of the Landsat TM scene has 

a coarse minimum mapping unit (100 ha).  Consequently comparison with the SAR 
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results was performed using the map generated by an independent classification of 

the 1991 Landsat TM scene (see section 4.2). The FAO visual interpretation was used 

only as a guideline for class identification and combination. The lack of a high-

resolution visual interpretation must be taken into account in the evaluation of the 

discrepancies between SAR and optical data 

The region growing classification does not detect the degraded forest class. 

Many factors conspire to create difficulties in distinguishing degraded forest from 

forest class: the nature of the terrain, the micro-topography associated with small-

scale drainage networks and small dimension of each deforested patch. The 

intermediate state of degradation, between forest and clear-cuts, is consequently 

confused with natural features. For these reasons we have decided to label the classes 

only as forest or non-forest. As a consequence there are many off diagonal cell zero 

values in the confusion matrix (tables 4.9). The matrix element 23 with the higher 

confusion incorporates all these sources of errors - SAR classification: 15.458%. 

Besides this widespread pattern, deforestation is also characterized by rapid 

changes from clear-cut to abandoned and partially re-grown patches. Therefore real 

changes between optical and SAR scenes are an important source of the high 

discrepancies and are difficult to quantify. Changes from clear-cut to partially re-

grown forest can explain the matrix element 19 - SAR classification: 11.689% - 

where a high percentage of pixels is labeled as degraded in the 1991 Landsat TM and 

as forest in the 1992 SAR maps.  

The rapid changes from forest to non-forest are revealed by the comparison with 

a Landsat TM scene acquired 2 years before - from 26.142% of non-forest area in 

1989 to 31.952% in 1991. This rapid decrease of forest area is a possible explanation 

for the matrix elements 16 - SAR classification: 5.525%.  



 

 130 

Finally the poor agreement between optical and SAR maps can be due to 

coregistration errors that become relevant when the frequency of spatial variations 

within each class is high. 

 

4.5 Summary and conclusions 
Quantitative validation of the classification maps and error analysis of the 

deforestation estimates are addressed in this chapter.  

Maps derived from Landsat Thematic Mapper (TM) are used as reference data to 

evaluate the maps derived from JERS-1 data. This comparison allows us to highlight 

spectral and spatial differences between these two imaging systems, which are 

sensible to different wave scattering mechanisms. Confusion matrices between maps 

derived from SAR and Landsat TM are used to examine the mapping accuracy. 

Confusion matrix information is presented in a form termed confusion map to show 

where errors occur in space.  

Specific analyses by site allow us to draw the following conclusions: 

1. Major source of misclassification is attributed to the degraded-forest class. 

2. Discrepancies with respect to reference data increase with the degree of 

deforestation pattern complexity. 

 

A first result of the validation process is that the wavelet-based classifier 

provides a classification accuracy of 87% in forest/non-forest mapping. The high 

performance of the wavelet-based algorithms can be ascribed to several factors. The 

zooming capability of the wavelet transform makes it possible to generate by 

inversion a synthetic image with a better signal to noise ratio in areas corresponding 

to the thematic classes of interest. The adaptive wavelet coefficient thresholding is 

the core component of the algorithm; it enables the distinction of the local maxima, 

related to the transitions between classes of interest we want to separate, from 
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“textural” edges. The thresholding is applied at that scale where the wavelet 

coefficients carry predominantly information on strong persistent edges and the noise 

influence has decayed significantly. This adaptive system improves for example the 

detection of fragmented areas with anthropogenic disturbances. 

The performance of a region-growing algorithm and a per-pixel two-stage hybrid 

classifier was compared. Both approaches rely on the wavelet pre-processing. The 

hybrid classifier is computationally more efficient.  The degree of agreement between 

optical and radar data is higher using the hybrid classifier technique than the region 

growing technique. 

Therefore the hybrid classifier was selected for mapping the entire GRFM South 

America dataset. The capability of this classifier to generalize over the entire data set 

was demonstrated. 

A further confirmation that our test results hold true when the entire mosaic is 

considered comes from the comparison of the map extracted from the entire GRFM 

South America SAR data set classification and the TREES map that was derived 

from 300 ERS ATSR-2 optical-images.  

In the analysis by  site, a cartographic representation of the confusion matrix was 

used that results is a powerful technique for quantifying and locating spatially points 

of agreement and disagreement between SAR and Landsat TM maps.   

Comparison of the results derived from the SAR imagery with reference optical 

data reveal a number of factors that influence this quantitative assessment. 

1. A high percentage of discrepancies between the two sources of information (SAR, 

optical) are due to real changes, which occurred between the two acquisition 

dates. This suggests that the rapid dynamic of the selected “hot spot” areas must 

be taken into due account. 

2. SAR and optical observations are driven by different scattering mechanisms that 

arise in the landscape evolution during the deforestation process. This fact is 
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particularly evident at the interface area between forest and clear-cuts, where it is 

more difficult to establish a unique descriptor of the intermediate deforestation 

steps (degraded forest, partial re-growth). The canopy density and soil conditions 

(roughness, moisture) play important roles in the radar backscatter from those 

interface areas. 

3. A spatial pattern measurement (perimeter over area) indicates a dependency 

between the deforestation pattern complexity and the degree of agreement 

between SAR and TM derived maps. The decrease of agreement with the increase 

of landscape complexity can be mainly attributed to under-sampling of the spatial 

fragmentation in degraded forest areas at 100 m resolution.  

The discrepancy between optical and radar derived maps for the degraded forest class 

requires a deeper analysis in order to asses whether these discrepancies can be 

ascribed to errors in the radar derived maps or to omissions in the maps derived by 

optical instruments. 
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Chapter 5 

Relative performances of a wavelet-based 

segmentation technique and ISODATA clustering 

 

5.1 Methods and tools for comparison of estimates 
Kappa statistic (Congalton and Green, 1999) is adopted to measure the 

significance of the difference in accuracy between the wavelet-based region growing 

classifications and those derived by a conventional ISODATA clustering technique. 

An error matrix is created by sampling 300 points per category of interest – forest, 

degraded forest, non-forest. Stratified random samples extracted from the 1992/93 

data sets are used. 

Let SegK
)

and IsoK
)

 denote the estimate of Kappa for the error matrix [SAR 

wavelet-based region growing -TM map] and [SAR ISODATA -TM map] 

respectively. Let also ( )SegKrâv
)

 and ( )IsoKrâv
)

 be the corresponding estimates of the 

variance computed using the Delta method (Congalton and Green, 1999). For testing 

the significance of a single error matrix we use (5.1), while (5.2) is used to test if the 

two independent error matrices are statistically significantly different. 

( )Seg

Seg
Seg

Krâv

K
Z )

)

=                                              (5.1) 

 

 ( ) ( )IsoSeg

IsoSeg
IsoSeg

KrâvKrâv

K̂K̂
Z ))

+

−
=−                                    (5.2) 

where Z is standardized and normally distributed (Congalton and Green, 1999). 
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5.2 Results 
In the inter-comparison, both ISODATA clustering and the wavelet 

segmentation are applied to 1992/93 SAR data sets. 

For a visual comparison between classifications derived by the two techniques 

for the Mato Grosso site see figure 4.1 in chapter 4. 

Overall accuracy of the vegetation maps derived from SAR is calculated with 

respect to maps derived from optical data for class set forest – non-forest. Table 5.1 

shows that maps generated by the wavelet segmentation have higher accuracy than 

the ones derived by ISODATA for each site. 

 

Table 5.1: Overall accuracy of the vegetation map from SAR using ISODATA and 

wavelet-based region growing techniques with respect to optical reference data for 

class set forest – non-forest (results obtained using 1992 data sets). 

Site 
(Landsat 
path-row) 

ISODATA 
(SAR) 

- 
Reference Map 
(optical data) 
(1992 data set) 

wavelet-based 
region growing 

(SAR) 
- 

Reference Map 
(optical data) 
(1992 data set) 

226-69 86% 91% 
230-69 66% 73% 
   8-59 55% 57% 

 

The relative performance of the two classification techniques is assessed through 

the Kappa analysis. Table 5.2 presents, for the three sites (226-69, 230-69, and 8-59), 

the results of the analysis of the error matrices related to the wavelet segmentation 

and ISODATA clustering. The ranges of Kappa are ranked as strong 
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agreement ( )8.0K >
)

, moderate agreement ( )8.0K̂4.0 << , and poor agreement 

( )4.0K̂ <  (Landis et al., 1977). Wavelet segmentation maps reach moderate 

agreement for both Mato Grosso (226-69) and Rondonia (230-69) sites. Only the 

ISODATA map of the Mato Grosso site exceeds the poor agreement threshold. 

Table 5.2 also presents the variance of Kappa and Z statistic. The Z critical value 

for determining if a classification is significantly better than random results is 1.96 at 

95% confidence level. The Z statistic values are greater then 1.96 for all the 

classifications.  

Results in table 5.3 indicate whether the two classification techniques are 

significantly different. The test ISOWaveZ − shows that the wavelet-based region growing 

technique is significantly more accurate than the ISODATA technique. We have 

earlier assessed that the overall training accuracies the two stage hybrid classifier 

over the Mato Grosso (226-69), South Rondonia  (230-69), and Florencia-Napo (8-

59) sites are higher than the ones related to the  wavelet-based region growing 

technique (see section 4.4.1, table 4.4); we can therefore conclude that the hybrid 

classifier is significantly more accurate than the ISODATA  technique. 
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Table 5.3: Results of Kappa analyses, variance of Ẑ , Z statistic and of ISOWaveZ −  for 

the wavelet-based region growing and the ISODATA classification methods. 

Site 
(Landsat 

path row) 

Classification 

method 

KHAT Var. 

KHAT 

Z statistic Delta Z 

Wavelet r. g. 0.605 0.000457 28.30 
226-69 

ISODATA 0.603 0.000482 27.47 
27.43 

Wavelet r. g. 0.407 0.000557 17.24 
230-69 

ISODATA 0.265 0.000681 10.18 
200.50 

Wavelet r. g. 0.303 0.000780 10.86 
8-59 

ISODATA 0.205 0.000967 6.61 
101.67 

Wavelet r. g. = wavelets-based per pixel two stage hybrid classifier 

 

The overall accuracy takes into account only the diagonal elements of the error 

matrix while the Kappa accuracy includes information on the off-diagonal elements. 

An analysis by site of the off-diagonal classes using confusion maps (see figure 4.5 in 

chapter 4) helps to detail and localize the factors that conspire to the discrepancy 

between maps derived by the two classification methods (for details see: Sgrenzaroli 

et al., 2002).  

From the analysis by site of the off-diagonal classes using confusion maps, we 

derive the following conclusions: 

1) The spatial arrangement of the off-diagonal classes reveals high discrepancy 

between wavelet region-growing and ISODATA classifications. 

2) Differences between the wavelet-based region growing and ISODATA 

classifications are mostly localized in areas with regular spatial arrangement. The 

so-called salt-and-pepper classification effect, which is typical of per-pixel (non-

contextual) classifiers, affects ISODATA classifications.   
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3) Speckle is probably the principal cause of discrepancy: the wavelet-based 

technique uses a reconstructed signal, where the speckle strength is further 

reduced but the spatial resolution is maintained, while the ISODATA is applied to 

the original 100 m imagery.  

The  data flow in the generation of the thematic maps using the wavelet-based region 

growing and ISODATA  techniques is presented in  figure 4.7 in chapter 4. 

  

5.3 Summary and conclusions 

The relative performances between a wavelet-based region growing 

segmentation technique and a conventional clustering technique (ISODATA) are 

assessed in this chapter. The Kappa statistic measures the significance of the 

differences between results obtained by the two approaches when applied to SAR 

imagery. 
Outcome of the test shows that the wavelet-based technique provides better 

accuracy and is capable of generalizing over the entire data set. 

Results of the error analysis with respect to maps derived from Landsat TM 

show higher agreement for the two wavelet-based techniques rather than the 

ISODATA classification. This classification is based only on a distance criterion in 

the radiometric domain. The results are confirmed by confusion matrices, overall 

accuracy, visual comparison of the derived maps, and from estimates for the Kappa 

statistic. 
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Chapter 6  

Extension of the thematic problem to include 

the degraded forest class 
 

 

6.1 Introduction 
A recent work (Nepstad et al., 1999) has pointed out that forest disturbances 

(forest degradation phenomena) that reduce tree cover but do not eliminate it, such as 

surface fires in standing forest or selective logging, are not included in deforestation 

mapping programs. To assess deforestation phenomena in the Amazon basin crisp 

and binary forest / non-forest classification may be incapable of describing the variety 

of land use types corresponding to the major forms of anthropogenic activities within 

the Amazon basin.  

The results reported in chapter 4 show that the discrepancy between maps 

derived from SAR and optical instruments increases when the class degraded forest is 

taken into account. 

To assess whether these discrepancies can be ascribed to the SAR-derived maps 

or to omissions in the Landsat maps (TRFIC, classification using FAO’s maps as 

reference), the problem of forest degradation monitoring is investigated using both 

optical and SAR imagery.  A forest degradation monitoring technique using Landsat 

TM imagery is proposed in section 6.2. Forest degradation monitoring using multi-

temporal high resolution SAR imagery is described in section 6.3. Conclusions are 

given in section 6.4. 
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6.2 Forest degradation monitoring using Landsat TM 

imagery 
As a first step, we identify two forest degradation types by visual inspection in 

the Landsat TM raw images covering the Mato Grosso site and a test site in the 

Brazilian Parà State. 

The first type of forest degradation consists of small isolated bare soil regions, 

which may be due to the beginning of forest colonization or selective logging, 

surrounded by the forest area. As shown in figure 6.1, the regular spatial distribution 

of this phenomenon reinforces the hypothesis that some anthropogenic activity has 

taken place in the forest area. This first type of forest degradation phenomena is 

identified as the Vegetation-Bare Soil class (VB) to indicate the presence of small 

regions of bare soil within the forest area. VB bare soil is spectrally different from 

bare soil outside the forest domain (i.e. clear cuts). These small regions are probably 

partially covered from vegetation under-story that is left when the trees are felled 

during selecting logging and this should explain the spectral behavior. 

The second type of forest disturbance consists of clear-cut regions that are 

abandoned and where forest re-growth takes place. These are wide areas with a 

regular shape, known as “capoeira”, that have a spectral behavior quite similar to the 

forest one (see figure 6.2). Such second type of forest degradation phenomena is 

identified as Vegetation-Forest class (VF) to indicate its spectral similarity to the 

Forest class (F).  

Both VB and VF are separate independent spectral classes that can be 

discriminated from forest and bare soil.  
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Figure 6.1: A first type of forest disturbance (marked by white arrows). It consists of 

isolated bare soil patches surrounded by the forest domain. The patches are readily 

visible in the Landsat TM 226-69 (1992) image (R: Band5, G: Band4, B: Band3).  

This forest degradation phenomenon is identified as Vegetation-Bare Soil class (VB) 

(see color Figure B.20 - Appendix B, pp. 218). 
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Figure 6.2: A second type of forest disturbance is visible in the Landsat TM 222-62 

(1999) image (R: Band5, G: Band3, B: Band3). White contours indicate two large 

regions of forest degradation featuring a regular shape and a spectral signature quite 

similar to that of the forest class. This second forest degradation phenomenon is 

identified as Vegetation-Forest class (VF) (see color Figure B.21 - Appendix B, pp. 

219). 

 

To provide a complete partition of our Landsat TM test scenes we select the 

following land cover classes: 

1. Water (W). 

2. Forest, close canopy (F) 

3. Bare soil and agricultural areas (BA). 

4. Degraded forest DF=VB+VF. 
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Bare soil and agricultural areas (BA) coincide with the non-forest class adopted 

in the classification legend of chapter 4; Vegetation-Bare Soil (VB) and Vegetation 

Forest (VF) are included in the degraded forest class that was previously defined.  

The design of a classification system, capable of automatically detecting classes 

VB and VF, is driven by a set of requirements derived from the pictorial attributes of 

the degraded areas that are visually detected in Landsat TM images (see figure 6.1 

and 6.2). These requirements are listed next: 

1) To detect forest degradation phenomena of type VB, the labeling algorithm 

should be able to detect small but genuine regions by working at high spatial 

resolution. In other words, our minimum mapping unit should be equal to the 

pixel size. 

2) To degradation phenomena of type VF, the labeling algorithm should be sensitive 

to local spectral variations, i.e., capable of detecting weak spectral boundaries 

between slowly varying or piecewise constant image intensity areas (such as 

between VF and F image areas). 

3) To avoid image over-segmentation, the labeling algorithm should be insensitive 

to natural within-class spectral variance, i.e., to local spectral variations due to 

shadows or micro-topographic effects. In other words, our labeling scheme should 

be provided with a class-conditional noise model. By avoiding over-

segmentation, i.e., the so-called salt-and-pepper classification effect which is 

typical of per-pixel (non-contextual) classifiers, labeled output can be obtained 

that features cartographic quality. 

4) In terms of user interaction, the labeling algorithm should be intuitive and easy to 

use, i.e., user-defined parameters should be as few as possible and with an 

intuitive physical meaning. 

A novel three-stage classification method is proposed to comply with these 

requirements. The first classification stage is a pre-processing module consisting of 
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an Intensity-Hue-Saturation (IHS) color transformation (Daily, 1983) that emphasizes 

quantitative (spectral) and qualitative (visual) separability of the two forest 

degradation phenomena of interest (VB and VF). The second stage consists of a 

contextual clustering algorithm for image labeling. The third stage is the output 

module providing a many-to-one relationship between second stage output categories 

(clusters) and desired output classes. 

The second classification stage, which is the core of the classification procedure, 

is the Modified Pappas Adaptive Clustering (MPAC) which is a Bayesian, maximum-

a-posteriori, spectral (applies only to images with little textural information), iterative 

(sub-optimal), hierarchical (coarse-to-fine), contextual and adaptive optimization 

process for image labeling. MPAC: i) easy to use (i.e., it employs few and intuitive 

user-defined parameters); ii) robust to changes in initial conditions; and iii) capable of 

providing smooth output maps while preserving genuine but small regions. 

To test the robustness of our classifier and accuracy of the derived maps we 

select two contiguous Landsat TM scenes acquired in 1999 during the same satellite 

pass (Path-Row: 222-62, 222-63) over the Pará site. Digital photos were collected 

along a transect in this area (Setzer, personal communication, 1999). The data 

collection was part of an aerial survey organized by the Brazilian Space Research 

Agency (INPE) in 1999. We use these digital photos for validation of our 

classification map. 

The Pará site is well representative for degradation forest phenomena. The 

predominant vegetation is evergreen terre firme forest with above ground biomass of 

250-300 t/ha (tons/hectares). Timber extraction has become a major industry over the 

last 15 years, centered on Paragominas, leading to a landscape of logged and 

"superlogged" forests (see below), along with pasture (Uhl and Vieira, 1989). The 

cycle of exploitation begins with selective logging for the most valuable species. 

These regions are later revisited for less lucrative timber and become a fragmented, 



 

 145

open canopy forest, termed “super-logged forest”, which is increasingly prone to fire 

(Cochrane et al., 1999). In the final phase the remnant forest is cleared for pasture. 

From the selected TM scenes of the Pará test site we extract three sub-images 

(test1, test2, and test3), 450 x 450 pixels in size to be compared with aerial images 

(see figure 6.3). 

 
Figure 6.3: Three Landsat TM scenes cover the Pará and Mato Grosso test sites in the 

Amazon basin. Three TM sub-images (identified as test1, test2, and test3) are 

extracted from this data set in correspondence to the flight path followed during an 

aerial photo campaign.  

 

Over the Mato Grosso site (226-69) the two Landsat TM raw images available 

(1992 and 1995) coincide with the TRFIC maps (see table 4.2, chapter 4), and a FAO 



 

 146 

classification (derived from 1996 Landsat TM – path/row 226-69). Relevant 

omissions in the TRFIC and FAO maps are assessed by comparison of our Landsat 

TM classification and TRFIC or FAO maps. 

The validation procedure analyzes in particular those parts of the TM sub-maps 

(corresponding to raw sub-images test1 to test3, see figure 6.3) that overlap with 

aerial photos and are characterized by VB and VF forest degradation type (se figure 

6.4 and 6.5 respectively).  

According to an expert photo-interpreter the degree of match between visually 

detected degradation phenomena in aerial photos and automatically detected VB 

pixels in TM images is satisfactory. This statement is reinforced by considering that 

areas with label VB in the TM image become areas labeled as new clear-cuts in aerial 

photos acquired about two months later. This is consistent with the fact that the 

degraded forest type VB is expected to be involved in rapid and strong changes in the 

forest cover (figure 6.6).  

For more details on of the classification methodology and a quantitative 

assessment see (Sgrenzaroli et al., 2002a) 

In the Mato Grosso test site, the two selected multi-temporal TM scenes, 

1245x1245 pixels in size, cover an area of approx. 139,502 ha (the geographical 

location is indicated in  figure 6.3). In the two TM maps, the VF class extension is 

approx. 9,141 ha (6.5%) in 1992 and 13,175 ha (9.4%) in 1996. Extension of class 

VB is approx. 17,612 ha (12.6%) in 1992 and. 8,922 ha (6.4%) in 1996. 

To compare the 1992 TM map with the TRFIC deforestation map, first, the 

TRFIC classes are reduced to label types water, forest, degraded forest and non-

forest (see table 4.1, chapter 4). Second, cover types of the TM classification map are 

reduced to classes water, forest and non-forest, by aggregating classes VF, VB, and 

BA into the non-forest metaclass. 
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Figure 6.4: Comparison between aerial photos and a TM thematic map (see the white 

outline at the bottom right) in which the density of the VB degradation class is 

considered “high” (see color Figure B.22 - Appendix B, pp. 220). 
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Figure 6.5: Comparison between aerial photos and a TM thematic map where 

Vegetation-Forest (VF) degradation phenomena are detected (see color Figure B.23 - 

Appendix B, pp. 221). 
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Figure 6.6: High dynamics of change in areas affected by forest degradation 

phenomena. Class Vegetation-Bare soil (VB) detected in the Landsat TM image 

becomes new clear- cuts in aerial photos taken about two months later, where 

recently cut stems are still lying on the ground (position of the river can be used to 

localize the aerial photo with respect to the TM image and the corresponding 

thematic map) (see color Figure B.24 - Appendix B, pp. 222). 

 



 

 150 

 

Finally, from these two re-aggregated maps, classification statistics of the water, 

forest and non-forest classes are computed as shown in table 6.1. This table points out 

that, overall, the three-stage classifier assigns to the forest class 13.0% fewer pixels 

than the TRFIC map. Conversely, the three-stage classification system assigns to the 

non-forest metaclass 12.8% more pixels than the TRFIC map.  

 

Table 6.1: Comparison between the TRFIC classification and the MPAC-based 

classification. Water, forest, and non-forest classes are considered for comparison. 

 TRFIC 
classification (%) 

Three-stage 
classifier (%) 

Water 0.03 0.15
Forest 72.85 59.88

Non-forest 27.12 39.97
Total 100.00 100.00

 

The related confusion matrix is reported in table 6.2, where the percentage of 

non-forest pixels detected by the three-stage classifier is presented according to its 

class components BA, VB, and VF. This table shows that, respectively, 18.2% (= 

12.0% + 6.2%) of the TRFIC forest metaclass and 21.6% (= 14.2% + 7.4%) of the 

TRFIC non-forest metaclass overlap with TM forest degradation areas. These 

percentages are equivalent to a ground coverage of 26,723 ha (= 18,525 ha + 8197 

ha), corresponding to 19.1% (= 100 x 26,723 ha / 139502 ha) of the total surface 

coverage. Note that 55% of the TRFIC water class (equivalent to 30 ha) overlaps with 

forest degradation types VB and VF. 

Concerning the 1996 FAO classifications map of the Mato Grosso test site, a 

direct comparison with the 1996 TM data map is difficult because: i) the FAO land 

use/land cover legend is quite different from land cover classes detected by the three-

stage classifier; and ii) the two output maps employ different minimum mapping 
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units. The FAO map mapping unit is equal to 100 hectares; the derived maps have a 

pixel size of 100 m; the TM thematic map is derived from the 1996 TM raw data with 

a pixel size equal to 30 m. 

 

Table 6.2: Confusion matrix between the TRFIC classification and the three-stage 

classifier. Pixels belonging to the non-forest metaclass detected by the MPAC-based 

classifier are divided into elementary classes BA, VB and VF. 

 
TRFIC classification (%) 

Overall 
accuracy=85% Water Forest Non forest Total 

Water 25.82 0.17 0.06 0.15  
Forest 2.47 80.99 3.21 59.88  

Non-forest 71.71 18.84 96.73 39.97  
Total 100.00 100.00 100.00 100.00  

BA 16.28 0.61 75.04 20.79 
VB 54.93 11.99 14.25 12.62 
VF 0.50 6.24 7.43 6.55 

T
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Total 71.71 18.84 96.73 39.97 
 

For the sake of comparing results, the following strategy has been adopted. First, 

the TM classification map is sub-sampled at the pixel size of 100 m. Next, the sub-

sampled TM data map, the FAO map and the corresponding Landsat TM 226-69 

(1996) image are visually compared by an expert photo-interpreter as shown in figure 

6.7.  

This qualitative inspection confirms that the closed canopy forest class defined 

by FAO includes forest degradation phenomena detected in TM data (no open canopy 

forest as defined by FAO is present in this area of interest). Quantitatively, the FAO 

closed canopy forest class exceeds class forest detected by the three-stage classifier 

by approximately 10%. In particular, class VF appears to be the first cause of 

discrepancies between the two maps. Sometimes the VF class overlaps with the FAO 
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mosaic forest-shrubs class, although it is generally included in the FAO closed 

canopy forest class. The VB forest degradation class overlaps with the FAO class 

short/long fallow, closed canopy forest, other land covers and shrubs in decreasing 

order. 

 
Figure 6.7: Comparison between a subset a Landsat TM 226-69 (1996) image, the 

corresponding TM thematic map (down-sampled at 100 m), and the FAO map (see 

color Figure B.25 - Appendix B, pp. 223). 
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This investigation shows that, in the three 1999 Landsat TM Parà sub-maps, 

forest degradation phenomena account for 13% up to 45% of the ground coverage. 

This result is in line with the work of Stone and Lefevbre who estimated a forest 

alteration of 12% due to selective logging in the Brazilian State of Pará from the year 

1988 to 1991 (Stone and Lefevbre, 1998).  

In the Mato Grosso test site, two maps, generated from 1992 and 1996 TM 

scenes, reveal that forest degradation areas: i) account for, respectively, 19% and 16% 

of the ground coverage; and ii) overlap with 10% and 18% of the forest class detected 

by the FAO and TRFIC deforestation mapping programs in 1992 and 1996 

respectively. This result is in agreement with the work by Nepstad et al. who 

speculate that present estimates of annual deforestation for the Brazilian Amazon 

capture less than half of the forest area that is impoverished each year (Nepstad et al., 

1999).  

Finally these results confirm the hypothesis that some discrepancies related to 

class degraded forest between maps derived from optical and radar instruments can 

be ascribed to omissions in the maps derived from optical data (TRFIC, Landsat TM 

classification using FAO’s maps as reference) and point to the need for proper 

classification techniques to monitor forest degradation phenomena. 
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6.3 Forest degradation monitoring using multi-

temporal high resolution SAR imagery. 
Accuracy assessment of the forest maps from SAR (100 m pixel size) using 

optical reference data (30 m-pixel size) proves that the classification accuracy of the 

radar maps decreases with the landscape spatial fragmentation (see section 4.2 and 

4.3 in chapter 4). Moreover the major source of misclassification is identified in class 

degraded forest which can be visually perceived in high resolution Landsat TM 

images (30 m) as consisting of small isolated bare soil patches.  

To what extent can these discrepancies be ascribed to spatial limitation of the 

GRFM SAR mosaic at 100 m resolution? 

We’ll try to give an answer considering the full resolution JERS-1 SAR images 

used for the GRFM mosaic generation. The radar instrument ground range resolution 

is 18m., while pixel spacing in the GRFM South America mosaic data is 3 arcsecond 

(89-93 meter). Radiometric resolution of the full-resolution JERS-1 ground range 

products is 3 looks. The GRFM mosaic data have approximately 200 looks due to 

averaging. 

The main problem is to improve the signal to noise ratio of JERS-1 full 

resolution data (reduce the speckle strength) to achieve a better interpretation. 

A set of 8 JERS-1 images, acquired over the same area in the Mato Grosso 

training site from 1992 to 1996 and having the same acquisition geometry (i.e. same 

orbit and frame number), was made available by NASDA's archive (Level 2.1 

NASDA products, NASDA Hatoyama Earth Observation Center – HEOC). 

Acquisition dates of 8 JERS-1 images over the same area in the Mato Grosso training 

site are: November 15, 1992; May 23, 1993; September 19, 1993; July 24, 1994; 

October 20, 1994; December 03, 1994; October 7, 1995; May 14, 1996. 
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We co-registered the 8 images manually selecting tie- points by visual inspection 

of homologous features recognizable in all images. A multi-temporal speckle filtering 

technique (De Grandi et al., 97b) was then applied to the co-registered time-series of 

full-resolution JERS-1 images. The filter reconstructs the underlying radar reflectivity 

time-evolution at the highest possible spatial resolution of the signal and for each 

image in the series. Therefore 8 filtered images were generated with significant 

improvement of the signal to noise ratio. A visual comparison of a 4-look JERS-1 

image and the corresponding filtered image over a zoomed area of the Mato Grosso 

site (October 7, 1995) is shown in figure 6.8. 

 
Figure 6.8: Comparison between 4-look JERS-1 image over a zoomed area of the 

Mato Grosso site (October 7, 1995) and the corresponding filtered image. 

 

In a single filtered SAR image at high resolution (12.5 m) degradation 

phenomena are now clearly detectable.  As shown in figure 6.9, small isolated and 

elongated bare soil regions that are distributed in a regular  pattern in the forest 

domain (degradation phenomena due to selective logging) are detected both by 
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Landsat TM (30 m pixel size) and 12.5 m JERS-1 filtered image, while these 

phenomena are not visible in the 100m GRFM mosaic. 

 

 
Figure 6.9: Small isolated and elongated bare soil regions distributed regularly in the 

forest (degradation phenomena due to selective logging) are captured (black arrows) 

both by Landsat TM (30 m pixel size, acquisition date: 31-07-96) (a), and 12.5 m 

JERS-1 filtered image (acquisition date: 07-10-95) (b) (see color Figure B.26 - 

Appendix B, pp. 224). 

 

Moreover, the use of a time series of high resolution filtered images sets the 

ground for monitoring in time deforestation phenomena (see figures 6.10). 

This short section in not exhaustive of all possibilities opened up by the use of 

temporal sequence of filtered high-resolution JERS-1 images and more work is 

needed for automatic extraction of thematic information from these multi-temporal 

data sets. 

However, these preliminary considerations may be put forward: 
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1) By increasing the radiometric and spatial resolution of JERS-1 imagery 

degradation phenomena corresponding to narrow and short spatial patterns 

can be detected. The same features are not detectable in the maps derived 

from SAR imagery at 100 m resolution. This is one of the main causes of 

discrepancy with respect to maps derived from optical instruments with a 

resolution of 30 m. 

2) High resolution and speckle-filtered time-series of JERS-1 images are a pre-

requisite for monitoring deforestation in time. 

JERS-1 data collected in the NASDA archive constitute a valuable historical 

data set from 1992 to 1997; the foreseen NASDA ALOS mission will assure 

continuity for the future in providing such multi-temporal data. 

 

November 15, 1992 May 23, 1993 September 19, 1993 July 24, 1994

October 20, 1994 December 03, 1994 October 07, 1995 May 14, 1996

November 15, 1992 May 23, 1993 September 19, 1993 July 24, 1994November 15, 1992 May 23, 1993 September 19, 1993 July 24, 1994

October 20, 1994 December 03, 1994 October 07, 1995 May 14, 1996October 20, 1994 December 03, 1994 October 07, 1995 May 14, 1996  
Figure 6.10: Temporal sequence of filtered images allows for monitoring in time of 

deforestation phenomena that becomes visible since the July 24, 1994 image. 
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6.4 Summary and conclusions 
The issue of detecting the degraded-forest class, generally ignored by 

Amazonian deforestation mapping programs (INPE, 1996 and 1998; FAO, 1997; 

TRFIC), is attacked using data acquired by both optical and SAR instruments. To the 

purpose: 

1) A novel three-stage classification scheme is proposed for forest degradation 

phenomena detection in Landsat TM images. 
2) A multi-temporal speckle filtering technique is applied to a series of full-

resolution JERS-1 SAR images (12.5 m pixels size). In a single high resolution 

filtered SAR image degradation phenomena are detectable and evolution from 

degradation to deforestation can be monitored through the time series of images. 
A three-stage classification procedure is developed for detecting degraded forest 

classes in Landsat TM images. The method is tested over two areas in Mato Grosso 

and in the Para’ Brazilian state. This classifier is capable of managing spectral 

information on a different scale to preserve small but genuine regions. It is easy to 

use and robust to changes in input conditions. In the Para’ site degradation 

phenomena detected by the three-stage classifier are confirmed as anthropic 

disturbances in the forest area by visual interpretation of aerial photos. Nepstad et al. 

speculated that present estimates of annual deforestation for Brazilian Amazzonia 

capture less than half of the area that is impoverished every year. This statement is 

confirmed by our experiment. Indeed the TM thematic maps of the Mato Grosso test 

site reveal that forest degradation areas: i) account for 19.17% and 15.83% of the 

total mapped area (45 x 45 km2) in 1992 and 1996 respectively; ii)  overlap with 10% 

and 18% of the forest class detected by FAO and TRFIC deforestation mapping in 

1992/93 and 1996. These results reinforce the hypothesis that some discrepancies 
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between maps derived from optical and radar instruments can be ascribed to 

omissions in the former. 

To understand how much these discrepancies are due to spatial resolution of the 

GRFM SAR mosaic (100 m)  we use a set of 8 JERS-1 full resolution (12.5 m) 

images acquired over the Mato Grosso training site from 1992 to 1996. A multi-

temporal speckle filtering technique generates 8 filtered images with a significant 

improvement of the signal to noise ratio. In this filtered imagery small isolated and 

elongated bare soil regions that are regularly distributed in space are now visually 

detectable in a forest area. These details could not be detected in the GRFM SAR 

mosaic. 

Automatic extraction of these features for producing a degradation forest map 

will be the topic of future work.  In any event these first results reveal the possibility 

of zooming in the GRFM data set where higher spatial resolution is required using 

historical JERS-1 multi-temporal datasets. A mapping strategy based on multi-scale 

continental coverage (from 100 m down to 12.5 m) using all-weather SAR 

acquisitions could be supported by the foreseen NASDA ALOS mission. 
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Chapter 7  

A model for correcting global estimates from 

local ones 
 
 

7.1 Introduction 
In chapter 4 we observed that the discrepancy between SAR maps (100 m pixel 

size) and Landsat TM maps (30m pixel size) increases with the degree of 

deforestation pattern complexity.  A possible explanation can be the difference in 

spatial sampling between the SAR and the TM data sets. We assume that the local 

error estimates could be used to correct globally the SAR classification maps. To the 

purpose we define a parameter that depends on the fragmentation figures and is 

proportional to the errors measured between Landsat TM maps and the SAR maps. 

A method for calibrating area estimates of tropical forest by inverting a model of 

the influence of the spatial forest fragmentation on the spatial aggregation bias as 

characterized by two nested regression models has been tested by Mayaux and 

Lambin (Mayaux and Lambin, 1995 and 1997). In that case the correction function 

was calibrated on the basis of tropical forest maps derived from AVHRR 1 km data 

for the entire inter-tropical belt and a random sample of 13 Landsat TM scenes 

distributed among the main tropical forest regions. 

In our case the input data for the regression are area estimates from Landsat TM 

maps at 30 m pixel size and SAR maps at 100 m pixel size. The regression 

parameters are then applied to the GRFM SAR (100 m pixel size) mosaic to predict 

land-cover proportions (at 30 m resolution). 
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Methodology and results are given in section 7.2; conclusions are reported in 

section 7.3. 

 

 

7.2 Methodology and results 

In Chapter 4 (section 4.4.1) we showed that SAR map accuracy decreases with 

forest spatial fragmentation index. The index consists of a spatial measure, the 

perimeter-over-area (PA) ratio (see formula 4.2). 

Tests for correction function estimation indicate that the PA index is sometimes 

not univocally defined. Indeed for certain forest patterns two different spatial 

fragmentation configurations result in the same PA numerical value as shown in 

figure 7.1. Note that these deforestation patterns were not considered in the 

experiment described in Chapter 5. 

For the task described here we prefer to introduce the Matheron (MI) index 

because it presents the same trend as PA but does not suffer from ambiguity. MI is 

defined as: 

 

pixel) ofnumber  (total)pixelforest  of(number 
pixel cover typeother  andforest between  runs ofnumber 

MI =                       (7.1) 

 

In our test case the South America GRFM mosaic (100 m pixel size) is used as a 

global data source. A set of Landsat TM maps (30 m resolution) is used as local data 

source. More specifically, the Landsat TM maps cover three sites in Mato Grosso, 

South Rondonia, and Florencia-Napo that are representative of different deforestation 

patterns ("hot spot" areas) (see table 4.2). 
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Figure 7.1: Two different fragmentation patterns – highlighted by boxes – are 

characterized by the same PA index; the Matheron index can discriminate the two. 
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The correction function for the regional-scale SAR classification is derived 

through the following 9 steps: 

 

Data analysis 

1) Maps derived from SAR data (100 m) and optical data (30 m) are fully partitioned 

into non-overlapping blocks of equal ground resolution areas.  

2) Spatial measure (SM) values are computed for each block in the SAR map (these 

values approximately correspond to those extracted from optical data). 

3) Forest percentage pairs, identified as %FH and %FL, are computed for each block 

at fine (TM) and coarse (SAR) resolution respectively.  

4) Blocks with most similar SM values are grouped into subsets of equal cardinality. 

Each group of blocks is characterized by an average SM value, ASM. 

5) A linear regression model is applied to each set of per-group (%FH, %FL) forest 

percentage pairs, i.e., each group provides one pair of linear parameters, e.g., an 

angular coefficient, )( jj ASMm  and an intercept value, )( ii ASMc   

6) Two continuous functions (i.e. m=A+B*(ASM) and c=C+D*(ASM) in the linear 

case) can be fitted in least square sense from a set the liner parameter - 

)( jj ASMm , )( ii ASMc - of the first liner regression process. 

 

Data synthesis 

7) The whole SAR mosaic of the Amazonian basin is classified and partitioned into 

non-overlapping blocks.  

8) Per-block SM values and forests percentage, %FL, is computed at the resolution 

of the SAR mosaics (100 m).  

9) Forest coverage %FH at the resolution of optical data (30 m) is estimated as %FH 

= m(ASM) %FL + c(ASM).  

The analysis and synthesis steps are schematically represented in figure 
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Figure 7.2: Schematic representation of analysis and synthesis steps to estimate and 

apply the correction function to the low resolution SAR classification (see color 

Figure B.27 - Appendix B, pp. 225). 
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The described method is applicable if the following conditions are verified: 

1) The coarse resolution SM is a good proxy variable for the fine scale spatial 

pattern. 

2) The coarse resolution SM and forest percentage, % FL, are independent variables. 

Low correlation value (0.544) between SM computed from the SAR map at 

coarse resolution and SM computed from the TM map at fine resolution indicates that 

the first condition is not verified (see Figure 7.3). 

Both conditions have been verified in the case that SM values at two resolutions 

are computed from data acquired by the same sensor. A simulation case is developed 

using local classifications at higher resolution derived from Landsat TM data (30 m) 

and the same products scaled to 100 m as lower resolution classifications. Correlation 

analysis between SM values computed at two resolutions (correlation=0.958) proves 

that the first condition is verified in this case (see Figure 7.4). 

Based on this simulation we expect that the conditions underpinning the 

correction method will also be met when using high resolution (12.5 m) speckle 

filtered SAR images (see Chapter 6)  as local classification estimate, and the GRFM 

mosaic as lower resolution global data source. 
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Figure 7.3: Correlation analysis between SM computed from a SAR map at coarse 

resolution and SM computed from a TM map at fine resolution. 

 
Figure 7.4: Correlation analysis between SM computed from TM map at 100m pixel 

size and SM computed from TM map at 30m pixel size. 

 

 



 

 168 

7.3 Summary and conclusions 
The production of global-scale thematic maps largely relies on remote sensing 

data at course resolution (order of several kilometres). Estimation of land-cover 

proportion at large scale can be affected by systematic errors. Cases in point are the 

discrepancies that are found between maps derived from the GRFM SAR mosaics 

(100 m pixel size) at regional scale and local high resolution Landsat TM maps (30 m 

pixel size). 

An inductive learning methodology, capable of correcting vegetation map at 

regional-scale starting from local classification estimates at higher resolution, is 

proposed in this chapter. The methodology has been successfully tested in a previous 

work (Mayaux and Lambin , 1995 and 1997) where a coarse spatial resolution map of 

the entire inter-tropical belt derived from AVHRR data (1 km pixel size) is corrected 

using random samples of Landsat TM maps. The methodology is applicable if some 

assumptions are verified.  

We prove that these assumptions are not verified when Landsat TM maps are 

used as local classifications to correct regional-scale maps derived form GRFM radar 

mosaics. Correction is possible when using maps at different resolution but derived 

from the same satellite sensor. An experiment using simulated data is set up to verify 

this proposition. In the experiment Landsat TM maps are used as local estimates at 

higher resolution for correcting the same maps scaled at a pixel size of 100 m. The 

simulated maps are a good proxy of regional scale coarse-resolution maps.  This test 

suggests that GRFM regional maps could be corrected using maps derived from 

speckle-filtered high-resolution (12.5 m) SAR imagery. 

An inductive learning methodology aimed at correcting regional-scale low-

resolution classifications which are affected by errors induced by the landscape 

fragmentation is tested. The method is based on a linear regression between an 

“auxiliary” variable, which can be measured over the entire population from coarse 
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resolution data, and the “target” variable (land cover proportion at fine resolution), 

that is measured over a sample of calibration sites, is tested. The parameters of this 

linear regression can be estimated using samples of fine and coarse resolution data 

and then applied over the entire population of coarse resolution data if two conditions 

are verified.   

By correlation analysis we prove that this correction method is not applicable 

using Landsat TM maps (30 m pixel size) as local estimates to correct GRFM SAR 

map (100 m pixel size) because the coarse resolution SM is a not good proxy variable 

for the fine scale spatial pattern.   

A simulation exercise using Landsat TM maps at 30 m pixel size as local high 

resolution classification estimates and the same maps scaled at 100 m as lower 

resolution classification indicates that in this case the conditions underpinning the 

method are met. 

In line with this simulation where thematic maps from the same sensor at 

different pixel size are used, we expect the correction method to work also in the case 

where maps derived from high-resolution (12.5 m) speckle filtered SAR images are 

used to correct regional-scale maps derived from the GRFM SAR mosaics. 
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Chapter 8  

Overall summary and conclusions 
 

8.1 Introduction 

This final chapter gives a summary of the main points touched upon and 

conclusions reached in the research work presented in this thesis. Main theme is 

mapping of the tropical forest in South America at regional scale using radar mosaics 

derived from JERS-1 (L-Band) satellite data. Summarized items are listed following 

criteria of importance within the chapter organization. Advantages of forest 

monitoring by radar remote sensing are emphasized and future perspectives are 

discussed. Novel aspects and results of this research work are finally summarized and 

listed. 

Finally some ideas are put forward which are meant to be working hypotheses 

for future actions and projects aimed at reducing the pressure over the tropical forest 

ecosystem. 

 

8.2 Main items and conclusions in topical order 
8.2.1 Remote sensing imagery, reference, training and test data 

The South America GRFM SAR mosaic generated by JPL with the data acquired 

during September-November 1995 by NASDA’s JERS-1 satellite is used as principal 

data-set to derive the forest map. The high-resolution L-band HH-polarized SAR 

imagery of the entire Amazon basin corresponds to the low-water period in the 

Amazon ecosystem. The approximately 2500 scene are processed and mosaiced into 

two digital datasets with 3 arc-second (approximately 100 m) resolution. 
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The GRFM mosaic offers important advantages  with respect to other semi-

continental optical data set such as: i) continuous coverage, ii) good geo-referencing 

accuracy, iii) higher spatial resolution. Due to these peculiar characteristics, the 

GRFM mosaics can be taken as geographical reference systems for deriving thematic 

maps and co-registering other remote sensing data sets and it constitutes a good 

baseline that can underpin future remote sensing research. 

 

8.2.2 The classification problem: methods and thematic class 

definition 
Tropical Forest mapping is achieved through an operational classification 

scheme suitable for processing large coverage radar data sets, such as the GRFM 

South America mosaic. The two main steps are: i) a wavelet multi-resolution 

decomposition/reconstruction pre-processing and ii) two image-labeling techniques: 

region-growing, per pixel two-stage hybrid classifier. 

Two major issues have been tackled for extracting thematic information from the 

GRFM mosaics: i) high variance of the radar signal in high backscattering 

homogeneous areas or in non-homogeneous textured areas reduces the clusters 

separability and tends to produce over-segmentation, ii) large data volume (1.3 Gb). 

For the first problem, the proposed wavelet multi-resolution 

decomposition/reconstruction technique is capable of generating an edge-preserving 

piecewise constant radar image. The radiometric characteristics of the reconstructed 

signal are closer to the piece-wise constant model required by a certain class of 

image-labeling algorithms. The proposed image-labeling techniques take into account 

multiplicative noise and within-class texture.  

Large data volume problem was tackled by developing a special purpose 

processing chain that works on partially overlapping tiles extracted from the mosaic. 
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8.2.3 Validation of the classification maps and error analysis 
Maps derived from Landsat Thematic Mapper (TM) are used as reference data to 

evaluate the maps derived from JERS-1 data. 

The quantitative validation of the classification maps and error analysis of the 

deforestation estimates reveals that the classification approach, with wavelet image 

approximation pre-processing steps, provides a classification accuracy of 87% in 

forest/non-forest mapping.  

The high performance of the wavelet-based algorithms can be ascribed to: i) the 

zooming capability of the wavelet transform which provides a better signal to noise 

ratio in areas corresponding to the thematic classes of interest; ii) an adaptive image 

approximation technique based on adaptive wavelet coefficient thresholding – a novel 

addition to the core algorithm – that improves the detection of fragmented areas with 

anthropogenic disturbances. 

From the comparison between the two image-labeling techniques, it follows that 

the hybrid classifier results are computationally more efficient than the region-

growing algorithm.  The higher performance is confirmed by the degree of agreement 

between optical and radar data when the hybrid classifier is used.  

The hybrid classifier was then selected for mapping the entire GRFM South 

America dataset. The comparison between the regional-scale vegetation map derived 

from the entire GRFM South America SAR data set and the TREES forest map - 

derived from 300 ERS ATSR-2 optical images - confirms the capability of the hybrid 

classifier to generalize over the entire GRFM data set. 

A specific analysis by site allowed to highlight spectral and spatial differences 

with the reference data and to detect the major source of discrepancies and 
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misclassifications. A novel cartographic representation of the confusion matrix – 

dubbed confusion map – is introduced for quantifying and locating spatially points of 

agreement and disagreement between maps derived from different data sources. 

The quantitative assessment of the mapping accuracy reveals that a high 

percentage of discrepancies between the two sources of information (SAR, optical 

data) are due to real changes of the imaged target that occurred between the two 

acquisition dates. This suggests that the rapid dynamic of the selected “hot spot” 

areas must be taken into due account. 

SAR and optical observations are driven by different scattering mechanisms that 

arise in the landscape evolution during the deforestation process. This fact is 

particularly evident at the interface area between forest and clear-cuts, where it is 

more difficult to establish a unique descriptor of the intermediate deforestation steps 

(degraded forest, partial re-growth). The canopy density and soil conditions 

(roughness, moisture) play important roles in the radar backscatter from those 

interface areas.  

The degree of agreement between SAR and TM derived maps depends on the 

deforestation pattern complexity measured by means of a spatial pattern measurement 

(perimeter over area). The decrease of agreement with the increase of landscape 

complexity can be mainly attributed to under-sampling of the spatial fragmentation in 

degraded forest areas at 100 m resolution. 

 

8.2.4 Relative performances of a wavelet-based segmentation 

technique and ISODATA clustering 
The relative performance of the wavelet-based region growing segmentation 

technique assessed with respect to a conventional clustering technique (ISODATA) 

revealed that the wavelet-based technique provides better accuracy and is capable of 

generalizing over the entire data set. The results are confirmed by confusion matrices, 
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overall accuracy, visual comparison of the derived maps, and from estimates for the 

Kappa statistic. 

 
8.2.5 Extension of the thematic problem to include the degraded 

forest class 
Discrepancy between maps derived from SAR and optical instruments turns out 

to increase when the class degraded forest is taken into account. The problem of 

forest degradation monitoring, generally ignored by Amazonian deforestation 

mapping programs, is investigated using both optical and SAR imagery.   

For optical data, a three-stage classification procedure is developed for detecting 

degraded forest classes in Landsat TM images. The classifier is capable of managing 

spectral information on a different scale to preserve small but genuine regions. It is 

easy to use and robust to changes in input conditions. A test over two areas in Mato 

Grosso and in the Para’ Brazilian state confirms Nepstad’s speculation that present 

estimates of annual deforestation for Brazilian Amazonian capture less than half of 

the area that is impoverished every year.  

For SAR data, a time-series of 8 JERS-1 full resolution (12.5 m) images 

acquired over the Mato Grosso is used to investigate the influence of spatial 

resolution on the thematic maps discrepancies by comparison with results obtained 

using the GRFM SAR mosaic (100 m). A multi-temporal speckle filtering technique 

is used to improve of the signal to noise ratio and obtain better estimates of the 

underlying SAR reflectivity for each image in the time series. In the filtered imagery 

small isolated and elongated bare soil regions that are regularly distributed in space 

are visually detectable in forest areas. These details could not be detected in the 

GRFM SAR mosaic. More future work is required for automatic extraction of these 

features but these preliminary results point to the possibility of zooming in the GRFM 

data set where higher spatial resolution historical JERS-1 multi-temporal datasets are 
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available. A mapping strategy based on multi-scale continental coverage (from 100 m 

down to 12.5 m) using all-weather SAR acquisitions could be supported by the 

forthcoming NASDA ALOS mission. 

 

8.2.6 A model for correcting global estimates from local ones 
An inductive learning methodology for correcting regional-scale low-resolution 

classifications which are affected by errors induced by the landscape fragmentation is 

tested. By correlation analysis we prove that this correction method is not applicable 

when Landsat TM maps (30 m pixel size) are used as local estimates to correct 

GRFM SAR maps (100 m pixel size). This is due to the fact that a spatial pattern 

measure – such as perimeter over area – at coarse resolution is not a good proxy 

variable for the fine scale spatial patterns.   

A simulation exercise is set up using Landsat TM maps at 30 m pixel size as 

local high resolution classification estimates and the same maps scaled at 100m as 

lower resolution classifications. The trial indicates that in this case the conditions 

underpinning the method are met. Based on this simulation, we expect the correction 

method to work also in the case where maps derived from high-resolution (12.5 m) 

speckle filtered SAR images are used to correct regional-scale maps derived from the 

GRFM SAR mosaics. 

 

8.2.7 Novel aspects and results 
First novel aspect of this research work consists on the SAR dataset adopted. The 

Global Rain Forest L-band JERS-1 radar mosaic over South America provides a 

unique and unprecedented snapshot of the humid tropical ecosystem of the Amazon 

Basin due to: i) the semi-continental continuous coverage, ii) the approximately 

100m resolution.  
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Only a few examples can be found in the literature with reference to the use of 

radar mosaics for global/regional scale mapping. A new classification scheme for 

producing a high-resolution (100 m) regional scale forest-non-forest thematic map 

using the GRFM mosaic is developed in this research work. The underpinning 

method is based on a wavelet signal decomposition/reconstruction technique. In the 

wavelet reconstruction algorithm, we introduce an adaptive wavelet coefficient 

threshold applied to the scale where the wavelet coefficients carry predominantly 

information on strong persistent edges and the noise influence has decayed 

significantly. In that way we can distinguish the local maxima related to the transition 

between classes of interest we want to separate (i.e. Forest/Non-forest transitions) 

from local maxima related to textural within-class variation.  

Two image-labeling techniques are tested and compared: i) region-growing 

algorithm and ii) a per-pixel two-stage hybrid classifier. Both approaches rely on the 

wavelet pre-processing. The hybrid classifier is computationally more efficient.   

As to regional/continental scale, the generation of thematic products from the 

high resolution GRFM radar mosaics poses challenging problems also with respect to 

the determination of the accuracy of these estimates. Quantitative validation and error 

analysis of regional area scale estimation are carried out comparing JERS-1 SAR 

maps with Landsat TM optical maps used as reference. A first result of the validation 

process is that the wavelet-based classifier provides a classification accuracy of 87% 

in forest/non-forest mapping.  The analysis by site reveals that class degraded forest 

is the major source of classification error. The discrepancy between TM maps and 

SAR maps increases with the increment of the landscape spatial fragmentation.  

 A test on relative performances between the wavelet-based region growing 

segmentation technique and a conventional clustering technique (ISODATA) shows 

that the wavelet-based technique provides better accuracy and is capable of 

generalizing over the entire data set. 
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A novel three-stage classification scheme for forest degradation phenomena 

detection in Landsat TM images is proposed. Nepstad et al. speculated that present 

estimates of annual deforestation for Brazilian Amazonia capture less than half of the 

area that is impoverished every year. This statement is confirmed by our experiment.  

The issue of detecting the degraded-forest class is attacked also using SAR data. 

A multi temporal speckle filtering technique is applied to a time-series of a full-

resolution JERS-1 SAR images (12.5 m pixels size) to catch those small isolated and 

elongated bare soil regions regularly distributed in the forest and related to selective 

logging degradation. First results reveal the possibility of zooming in the GRFM data 

set where higher spatial resolution is required using historical JERS-1 multi-temporal 

datasets. 

Starting from the consideration that the discrepancy between TM maps and SAR 

maps increases with the increment of the landscape spatial fragmentation we test an 

inductive learning methodology, capable of correcting SAR regional-scale maps 

using local classification estimates at a higher resolution. It is proven that the 

methodology is not applicable when Landsat TM maps are used as local 

classifications to correct regional-scale maps derived form GRFM radar mosaics. 

Correction is possible when using maps at different resolution but derived from the 

same satellite sensor. An experiment using Landsat TM maps - as local estimates at 

higher resolution - for correcting the same maps scaled at a pixel size of 100 m, 

suggests that GRFM regional maps could be corrected using maps derived from 

speckle-filtered high-resolution (12.5 m) SAR imagery. 
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8.3 Seed ideas on ways to reduce the pressure over 

the tropical forest ecosystem  
8.3.1 Deforestation detection in the tropics  
Earth observations by satellite provide a unique technology to acquire quantitative 

information on forest ecosystems at regional scale. As a case in point we propose 

here an approach to estimate tropical vegetation cover using as data source 

continental scale Synthetic Aperture Radar (SAR) mosaics at 100 m spatial 

resolution. Estimates provided by satellite observations constitute one input in the 

panoply of data needed by forest management and for the preservation process.   

The objective of all people involved in forest management (local population, 

politicians, and industry executives) should be to preserve and use this resource with 

sustainable criteria, which means that the forest should be able to fulfill its functions 

now and in the future (Lammerts van Bueren and Blom, 1997). The extreme 

vulnerability of tropical rainforest ecosystem calls for adequate forest management 

techniques. 

Just enclosing tropical forests in wide parks was proven to be inadequate against 

tropical rain forest depletion. Many examples of ‘paper parks’ draw the attention to 

two fundamental factors to be considered for tropical forest protection:  

1. Forest protection must involve its human inhabitants and several 

contextual factors must be taken into account.  

2. Tropical rainforests are mainly geographically located in developing 

countries for which they constitute a fundamental resource. Starvation 

and poverty are priority problems in many of these countries. 

Many national, continental and global efforts to manage in a sustainable way and 

protect tropical rain forests exist. It is beyond the scope of this thesis to give an 

exhaustive description of these efforts. We want only to cite a particular example of 
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an effort to reduce the pressure over the tropical forest. This case seems particularly 

interesting because it offers at the same time support and resources for the local 

population. The example refers to the forest management methodology proposed and 

taught by Agricultural School “Rainha Dos Apostolos” in Manaus, which we had the 

chance to visit during a field trip in the Brazilian Tropical Forest. 

 
8.3.2 “Agro-Forest Systems”: a starting point against deforestation 

Agricultural methods traditionally used for temperate climate are inadequate for 

tropical area. As a consequence degradation and the soil impoverishment are 

increased. Forest exploitation for massive ranching and pasture, typically applying 

complete forest clear-cuts, is the major cause of the unrecoverable soil 

impoverishment in South America.  

The pasture scenario, chosen to represent deforestation in Amazonia, shows that 

nutrient-poor soils and poor pasture management practices accelerate the 

degradation of soil and vegetation cover, causing its abandonment after a few years 

of use. Soil in the undisturbed forest presents small amounts of phosphates with 

stable bounds with Fe and Al which guarantee low-acidity soil conditions. 

Deforestation practices, based on clearing and burning, decrease the soil acidity; 

release cations (positively charged ions) and phosphates into the soil and increase 

fertility for a couple of years. Thereafter, cations leaching from the system, increase 

of soil acidity, phosphates unavailability and the reduced buffering capacity of the 

dwindling supply of organic materials renders the soil structure more like a clay than 

a loam, as it is in the forest domain. The reduced soil fertility pushes farmers to clear 

new forest area starting an unsustainable cycle. (Prance and Lovejoy, 1985; Wilding 

et al., 1983; Uhl et al., 1998).  
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The inhabitants of the Amazonian region have been living for centuries of the 

products offered by the forest, while today they are recording a remarkable decrease 

of these products. Etno-botanists have observed that Kajapò Indios know the 

particular soil properties and they use to leave the papaya seeds within ashes of the 

fires in their villages. In that way a new plant has a higher the probability to grow. 

 It is therefore necessary to learn from these examples how to cultivate the forest, 

respecting it, and at the same time to increase productivity. However, it is not 

possible to leave the digging out stage and enter the production phase, failing the 

technical and cultural tools necessary to make a qualitative leap in the approach to 

environment. 

The school of agriculture "Rainha dos Apolostolos", located 30 km from 

Manaus, in the heart of the Amazonian forest (see figure 8.1), is an attempt to meet 

this requirement. Every year the school welcomes some 300 "indios", sons of small 

agricultural producers of the internal regions, to offer them a human and vocational 

training. Teaching includes production and breeding techniques and methods that 

may be reproduced in the places of origin, to contribute to the improvement of the 

living conditions of the local communities and at the same time to safeguard and 

maintain the Amazonian ecosystem. The school represents a unique reality of this 

kind: in the Amazonian region there are very few public or private institutes training 

technicians for the agricultural world, but all of them are more oriented toward work 

in large farming activities, rather than in the small internal realities which represent 

the majority. In particular the school is applying for educational purposes the so-

called “Agro-Forest System” (AFS). 

 AFS is an agricultural technique that is adequate for an eco-sustainable usage of 

the tropical forest ecosystem based on the following principal criteria: 
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1) The highest trees (valued species) are maintained in order to adequately 

guarantee organic soil nutrition, to prevent sunlight to penetrate to the forest 

floor drying out the organics debris and to avoid soil erosion caused by rains. 

2) The free spaces in the understory is used for plantation of fruiting plants 

adequately distributed on the ground and with an height profile that 

guarantee good sunlight penetration. 

This Agricultural school was founded in 1970 for children coming form the 

small rural areas of the Amazon Region.  Now 250 pupils follow the primary and 

secondary courses learning how to use the deforested area for a sustainable 

agriculture and pasture. During the courses they learn how to handle land-use cycling 

in order to reduce the soil nutrients impoverishment. 

A research program with ENBRAPA / CPAA (Manaus) is set up to assure re-

growth of vegetation with the same bio-diversity present in the primary forest. The 

school is sustained by Municipal Prefecture of Manaus, the International N.G.O.  

A.V.S.I., the European Community (C.E.E.) and Episcopal Italian Conference 

(C.E.I.) (de Benayon et al., 1999). 
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Figure 8.1:  Agricultural School “Rainha Dos Apostolos”: the students can also 

learn aquaculture techniques (see color Figure B.28 - Appendix B, pp. 226). 
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Appendix A 

 
Swamp forest map from high-water, low-water and 

texture GRFM mosaics 
 

The GRFM data set over South America comprises three layers: radar 

backscatter acquired in the dry season (when the river staging is low, and therefore 

dubbed low-water mosaic), radar backscatter acquired in the wet season (when the 

river staging is high, and dubbed high-water mosaic), and a texture measure 

calculated using the high resolution backscatter data (12.5 m pixel spacing) acquired 

in the dry season (dubbed texture mosaic). The texture measure is the normalized 

standard deviation of intensity estimated by an 8x8 blocking window of the high 

resolution data. The color composite of high water mosaic (red channel), low water 

mosaic (green channel), and low water texture (blue channel) is reported in figure A1. 

As explained in chapter 2, the core of the work presented in this thesis is based 

on the analysis of the low-water amplitude data set only, which is sufficient with 

respect to the stated thematic goal, namely deforestation mapping. However the 

thematic information that can be extracted from a combination of the low water, high 

water and texture mosaic is obviously much richer (Rosenqvist et al., 1998 and 

1999). 

A similar passage from single source to multi-source data strategy can be found 

historically in the context of TREES project. Here a first “TREES 1” map of the 

humid forest of tropical South America was based on a single NOAA-AVHRR data 

source (Eva et al., 1999). A new map was created in 2002 featuring a larger 

geographical region and providing a richer thematic content (Eva et al., 2002). To the 
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purpose data sets from four instruments were used: Along Track Scanning 

Radiometer (ATSR-2) onboard the ERS-2 satellite, SPOT VGT onboard the SPOT 4, 

NASDA  JERS-1 SAR, and Defense Meteorological Satellite Program (DMSP) 

Operational Linescan System (OLS). Each data source contributed to mapping a 

specific ecosystem or land cover, seasonality or water regime. 

 
Figure A.1:  Color composite of the GRFM radar mosaic layers.  High water 

amplitude (red channel), low water amplitude (green channel), low water texture 

(blue channel) (see color Figure B.29 - Appendix B, pp. 227). 
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In particular, the GRFM mosaic layers are used to map areas of flooded forest. 

The new vegetation map of South America is described in this Appendix. The 

usefulness of a multi-sensor approach and the added thematic value offered by the 

GRFM mosaics are clearly demonstrated by this product. Also the possibility of 

adapting the classification approach proposed in this thesis to other thematic contexts 

is proven. 

 

Methodological Approach 
The proposed classification approach consists of: i) pre-processing stage for the 

generation of edge-preserving smooth approximations of the radar imagery, and ii) 

decision tree, ruled based,  clustering technique for thematic information extraction. 

The wavelet multi-resolution decomposition/reconstruction technique, described in 

chapter 3, is employed in the pre-processing phase to generate an edge-preserving 

piecewise constant low-water texture image. The radiometric characteristics of the 

reconstructed signal are at this stage a closer approximation to the piece-wise 

constant model required by the clustering algorithm. 

The image labeling method consists of a decision tree clustering technique that 

comprises the following steps (see figure A1): 

1) The piecewise constant low-water texture image is clustered according to 

thresholds derived from a training set. A segmented image is generated.  

2) Inside each segment a threshold is applied to the low-water amplitude. A 

segmented image is generated. 

3) Inside each segment a threshold is applied to the high-water amplitude. The 

final thematic map is generated. 
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Figure A.2: Schematic view of the image labeling method 

 

Two properties of the imagery underpin the classification method: i) the radar 

backscatter is enhanced by the presence of water under the forest canopy, due to 

double bounce scattering between the trunks and the water table, ii) in the texture 

image the primary rain forest features higher values than the swamp forest due to the 

spatial heterogeneity of the upper canopy layers of the former (micro-topography 

effect) (Williams, 1997; De Grandi et al., 2000a). 

  We define the following land-cover classes (in agreement with the TREES 

map) and the following rules: 

1) Swamp forest- permanently flooded: characterized by low texture values (≤  

70 DN) and high amplitude values in both seasons ( > 100 DN) 
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2) Swamp forest- seasonally flooded: characterized by low texture values (< 70 

DN) and low amplitude values during one season ( < 100 DN) and high 

amplitude values in the other one ( > 75 DN). 

3) Low land forest seasonally flooded: characterized middle low texture values 

(58 DN <Txr ≤ 70 DN) and low amplitude values (<100 DN) during one 

season and high amplitude values in the other one ( >100 DN). 

4) Low land forest: characterized middle low texture values (58 DN <Txr ≤ 70 

DN) and in both the seasons amplitude values: 75< DN < 125 

5) Up land forest: characterized by high texture values (70 DN <Txr ≤ 95 DN) 

and amplitude values: 75 < DN < 125. 

6) Non forest - savanna: characterized by high or texture values (70 DN <Txr 

≤ 95 DN or Txr > 96 DN) and low amplitude values (DN < 100) 

7) Non forest: characterized by very low texture values (Txr < 50 DN) and 

variable amplitude values (<100 DN or > 145 DN) 

8) Water: (rivers and lakes) characterized by very high texture values (Txr > 96 

DN) and very low amplitude values.  

Swamp forest differs from lowland forest mainly for the low texture value due to 

its different structure. Also up land forest can be discriminate from lowland forest due 

to its higher texture values. In this case the differences in texture values are mainly 

related to the terrain topography. Generally low land forest is in flat area with no 

topography or "micro-topography" effects, while up-land forest grows in undulated 

terrains where topography influences the texture values. 

Nine training/testing sites were selected within the geographical GRFM mosaic 

coverage to be representative of the thematic context. Within the nine sites 186 

regions of interest (ROI) were defined. For each site a vector map was derived from 

optical images (Landsat TM, SPOT). These images were made available by the 
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TREES project. The high water GRFM mosaic with 9 overlaid training/testing sites is 

shown in figure A.3. 

 
Figure A.3: The high water GRFM mosaic with 9 overlaid training/testing sites (see 

color Figure B.30 - Appendix B, pp. 228). 

 

Two scatter plots (DN low water texture vs. DN low water amplitude, DN low 

water texture vs. DN high water amplitude) were used to establish the thresholds for 

the decision tree. By this process 37 classes were obtained and were combined into 

the 8 classes of interest. The thresholds for the decision tree and the corresponding 

thematic classes are reported in table A1 (where LW = GRFM low water amplitude 

(DN), HW = GRFM high water amplitude (DN), Txr = GRFM low water texture 

(DN). 
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Table A.1: Threshold values for the decision tree (DN values) 

HW ≥  100 1 Swamp forest- permanently flooded 
LW ≥  100  

HW < 100 2 Swamp forest- seasonally flooded 

HW ≥  100 3 Swamp forest- seasonally flooded 
Txr ≤  50  

LW ≤  100 
HW < 100 4 Swamp forest- seasonally flooded 

HW ≥  100 5 Low land forest  
LW ≥  100 

HW < 100 6 Swamp forest- seasonally flooded 

HW ≥  100 7 Swamp forest- seasonally flooded 
50<Txr ≤ 58 

LW ≤  100 
HW < 100 8 Non classified 

LW > 145 HW >1 45 9 Swamp forest- permanently flooded 

HW >1 45 10 Low land forest seasonally flooded 

125< HW≤  145 11 Low land forest seasonally flooded 125< LW ≤  145 

HW ≤  125 12 Low land forest 

HW > 125 13 Low land forest 

100< HW≤  125 14 Low land forest 100< LW ≤  145 

HW ≤  100 15 Low land forest 

HW > 100 16 Swamp forest- seasonally flooded 

75< HW≤  100 17 Swamp forest- seasonally flooded 75< LW≤  100 

HW ≤  75 18 Swamp forest- seasonally flooded 

58<Txr ≤ 70 

 LW ≤  75 HW ≤  75 19 Non forest - savanna 

LW > 145 HW >1 45 20 Non forest 

HW >1 45 21 Non classified 

125< HW≤  145 22 Non classified 125< LW ≤  145 

HW ≤  125 23 Up land forest 

HW > 125 24 Up land forest 

100< HW≤  125 25 Up land forest 100< LW ≤  1425 

HW ≤  100 26 Up land forest 

HW > 100 27 Up land forest 

75< HW≤  100 28 Up land forest 75< LW≤  100 

HW ≤  75 29 Non forest - savanna 

70<Txr ≤ 95 

 LW ≤  75 HW ≤  75 30 Non forest - savanna 

HW ≥  100 31 Non forest - savanna 
LW ≥  100 

HW < 100 32 Non forest  

HW ≥  100 33 Non classified 
LW < 100 

HW < 100 34 Non classified 

Txr > 96 

LW< 50  35 Water  
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A sample color composite of the high water amplitude, low water amplitude and low 

water texture (wavelet filtered) GRFM images of the Peru site (training/testing site 

number 4) is reported in figure A.4a. 

The SAR mosaics can be compared with a Landsat TM auxiliary image available on 

the same area (figure A.4b) where sites a) and b) are indicated from ground surveyors 

as permanently flooded forest ( a) Pantanos del sistema botenico del Pastaza, b) 

Pantanos en el sistema desposicional de Ucamara ). The two scatter plots (DN low 

water texture vs. DN low water amplitude, DN low water texture vs. DN high water 

amplitude), relative to the Peru site are reported in figure A.5 a and b. 

 

 
Figure A.4 a: The color composite of high water amplitude, low water amplitude and 

low water texture (wavelet filtered) GRFM images of the Peru site (training/testing 

site number 4) (see color Figure B.31 - Appendix B, pp. 229). 
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Figure A.4 b: Landsat TM auxiliary image available over the Peru site. Sites a) and b) 

are indicated from ground surveyors as permanently flooded forest (see color Figure 

B.32 - Appendix B, pp. 230). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5 a and b: The two scatter plots (DN low water texture vs. DN low water 

amplitude, DN low water texture vs. DN high water amplitude) relative to the Peru 

site. 
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Results 
The final thematic map was obtained processing smaller (660*660) partially 

overlapping tiles extracted from the mosaics (see Chapter 3). The overlapping area 

prevents border effects when the output map is generated by assembling the 

classifications of the single tiles.  

 Some examples of the original GRFM mosaics and the derived thematic maps 

over four sites geographically distributed within the Amazon basin are shown in 

figure A.6 (delta Amazon River), figure A.7 (delta Orinoco river), figure A.8 (Rio 

Negro river), and figure A.9 (region in Peru). The thematic maps can be compared 

with the color composite of the high water amplitude, low water amplitude and low 

water texture images.  

Several continental and country maps covering the 9 training/testing sites were 

used for map validation based on visual comparison by an expert photo-interpreter.  

A more complete validation exercise was performed on the final TREES map 

resulting from the combination of GRFM, ATSR-2, SPOT VGT and DMSP-OLS 

data sets. A list of maps consulted for the validation is reported in (Eva et al., 2002).  

The GRFM swamp forest map is shown in figure A.10 
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Figure A.6: GRFM color composite image and swamp forest map over the 

delta of the Amazon River (see color Figure B.33 - Appendix B, pp. 231). 
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Figure A.7: GRFM color composite image and swamp forest map over the 

delta of the Orinoco River (see color Figure B.34 - Appendix B, pp. 232). 
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Figure A.8: GRFM color composite image and swamp forest map over an 

area around the Rio Negro River (see color Figure B.35 - Appendix B, pp. 

233). 
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Figure A.9: GRFM color composite image and swamp forest map over a region in 

Peru state (see color Figure B.36 - Appendix B, pp. 234). 
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Figure A.10: The  GRFM swamp forest map of South America (see color 
Figure B.37 - Appendix B, pp. 235). 
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 201

Appendix B 

Color Figures 
 

 

 
Figure B.1: Geographical location of the Tropical forest belt 

 

 

 

 

 
Figure B.2: The photo, taken in Brazilian Amazonia, shows a deforested area where 

the ground was cleared by fire. 
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Figure B.3: SAR L-band 100 m and the corresponding Landsat TM over Mato Grosso 

site. Descriptive parameters of this site are also reported. 
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Figure B.4: SAR L-band 100 m and the corresponding Landsat TM over Rondonia 

site. Descriptive parameters of this site are also reported. 
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Figure B.5: SAR L-band 100 m and the corresponding Landsat TM over Florencia-

Napo site. Descriptive parameters of this site are also reported. 
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Figure B.6: a) and b) signal statistics (mean, standard deviation) collected along the 

profile from the local maxima position up to the closest local maxima are indicated 

by triangles. c) Diagram illustrating the principle of the rule-based mechanism used 

to distinguish between gradient modulus local maxima related to forest/non-forest 

inter-class transitions (to be preserved), from those related to forest within-class 

texture variations (to be removed).Statistics from profile a) correspond to intra-class 

signal variation (forest signal textural variations) and the related modula maxima will 

be not considered for the image reconstruction. b) Correspond to inter-class signal 

variation (forest – non-forest signal textural variations) and the related modula 

maxima will be considered for the image reconstruction. 
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Figure B.7: Representation of 2 steps in the region growing processes (a, b) up to the 

final thematic map (c). 

 

 
Figure B.8: Schematic representation of degraded forest class (i.e. mosaic of isolated 

forest region surrounded by a forest area). In the reconstructed signal these mixed 

classes will be perceived as a piece-wise region. 
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Figure B.9: Degraded forest class: abandoned pasture with partial re-growth forest in 

the 2 red boxes (DN=100, 0σ =-8.54). Image area: 30x30 km2. 
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Figure B.10: 1996 and 1992 TRFIC maps for the Mato Grosso site (a, c.). Hybrid 

classifier map (1995 data set) (b). ISODATA and region growing (1992/93 data set) 

(d, e). 
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Figure B.11: Comparison between the SAR map using the hybrid classifier and the 

TRFIC reference map of the Mato Grosso training site (226-69). This site is 

characterized by ranching and selective logging. 
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Figure B.12: Comparison between the SAR maps derived using the two-stage hybrid 

classifier and the TRFIC reference map of the South Rondonia training site (230-69). 

This site is characterized by linear (“herring bone”) and massive deforestation. 
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Figure B.13: Comparison between the SAR maps derived using the two-stage hybrid 

classifier and the Landsat TM classification of the Florencia-Napo training site (8-

59). This site is characterized by linear and widespread deforestation. 

 

 

 

 

 

 

 

 

 



 

 212 

 
Figure B.14: The SAR map of the testing site (231-68) and the SAR map of the South 

Rondonia site (230-69). The two maps are overlaid to a sub-set of GRFM SA mosaic 

in the inset on the left. The SAR map of the testing site (231-68) is compared with the 

corresponding TRFIC map of the same testing site (the location on the GRFM data 

set is framed by a red box). Training sites (1. Mato Grosso, 2. South Rondonia, 3. 

Florencia-Napo) and testing site (North Rondonia) are highlighted in the inset 

showing the entire GRFM SA mosaic. 
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Figure B.15: Forest map (1.2 km pixel spacing) derived from the whole GRFM SAR 

South America mosaic. 
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Figure B.16: The TREES project South America forest map. This product was 

derived from 300 ERS ATSR-2 optical images acquired between 1998 and 2000. 
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Figure B.17: Two confusion maps of Mato Grosso site (226-69) between reference 

maps and SAR maps: Region growing on the left, ISODATA classifications on the 

right (see chapter 5). The area enlarged in figure 4.6 is framed by a white box. The 

area enlarged in figure 4.7 is framed by a black box.  
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Figure B.18: The zoomed-in area in the TM image shows spatial arrangements that 

are suggestive of anthropogenic disturbances. However these patterns are not 

included in the TRFIC map. In the region growing map he same area is classified as 

degraded forest while in the TRFIC map it is classified as forest. In this case the 

discrepancy, relative to confusion matrix elements 15, is due to a misclassification of 

the optical data. 
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Figure B.19: Synoptic description of data flow in the generation of the thematic maps 

and for the different classification methods.  

Pictures at the right of the figure show the relative agreement for the class forest 

between the SAR map derived by wavelet–based region growing – first inset top right 

- and the reference TRFIC –last inset bottom right. 

In the center right inset the SAR map derived by ISODATA technique is shown (see 

section 4.6) 
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Figure B.20: A first type of forest disturbance (marked by white arrows). It consists 

of isolated bare soil patches surrounded by the forest domain. The patches are readily 

visible in the Landsat TM 226-69 (1992) image (R: Band5, G: Band4, B: Band3).  

This forest degradation phenomenon is identified as Vegetation-Bare Soil class (VB). 
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Figure B.21: A second type of forest disturbance is visible in the Landsat TM 222-62 

(1999) image (R: Band5, G: Band3, B: Band3). White contours indicate two large 

regions of forest degradation featuring a regular shape and a spectral signature quite 

similar to that of the forest class. This second forest degradation phenomenon is 

identified as Vegetation-Forest class (VF). 
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Figure B.22: Comparison between aerial photos and a TM thematic map (see the 

white outline at the bottom right) in which the density of the VB degradation class is 

considered “high.” 
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Figure B.23: Comparison between aerial photos and a TM thematic map where 

Vegetation-Forest (VF) degradation phenomena are detected. 
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Figure B.24: High dynamics of change in areas affected by forest degradation 

phenomena. Class Vegetation-Bare soil  (VB) detected in the Landsat TM image 

becomes new clear- cuts in aerial photos taken about two months later, where 

recently cut stems are still lying on the ground (position of the river can be used to 

localize the aerial photo  with respect to the TM image and the corresponding 

thematic map). 
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Figure B.25: Comparison between a subset a Landsat TM 226-69 (1996) image, the 

corresponding TM thematic map (down-sampled at 100 m), and the FAO map. 
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Figure B.26: Small isolated and elongated bare soil regions distributed regularly in 

the forest (degradation phenomena due to selective logging) are captured (black 

arrows) both by Landsat TM (30 m pixel size, acquisition date: 31-07-96) (a), and 

12.5 m JERS-1 filtered image (acquisition date: 07-10-95) (b) 
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Figure B.27: Schematic representation of analysis and synthesis steps to estimate and 

apply the correction function to the low resolution SAR classification. 
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Figure B.28:  Agricultural School “Rainha Dos Apostolos”: the students can also 

learn aquaculture techniques. 
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Figure B.29:  Color composite of the GRFM radar mosaic layers.  High water 

amplitude (red channel), low water amplitude (green channel), low water texture 

(blue channel). 
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Figure B.30: The high water GRFM mosaic with 9 overlaid training/testing sites 
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Figure B.31: The color composite of high water amplitude, low water amplitude and 

low water texture (wavelet filtered) GRFM images of the Peru site (training/testing 

site number 4). 
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Figure B.32: Landsat TM auxiliary image available over the Peru site. Sites a) and b) 

are indicated from ground surveyors as permanently flooded forest. 
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Figure B.33: GRFM color composite image and swamp forest map over the 

delta of the Amazon River. 
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Figure B.34: GRFM color composite image and swamp forest map over the 

delta of the Orinoco River. 
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Figure B.35: GRFM color composite image and swamp forest map over an 

area around the Rio Negro River. 
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Figure B.36: GRFM color composite image and swamp forest map over a 

region in Peru state  
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Figure B.37: The  GRFM swamp forest map of South America. 
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Abbreviations and Acronyms 
AFS Agro-Forest Systems  

ELBG Enhanced Linde-Buzo-Gray 

FAO Food Agriculture Organization 

GRFM Global Rain Forest Mapping 

GVM Global Vegetation Monitoring 

INPA Instituto Nacional de Pesquisas da Amazonia (Brazil’s National Institute for 

Amazon Research) 

INPE Instituto Nacional de Pesquisas Espaciais (Brazilian Space Research Agency) 

JERS – 1 Japanese Earth Resources Satellite 1 

JPL Jet Propulsion Laboratory 

JRC Joint Research Centre  

Landsat TM Landsat Thematic Mapper 

MAP Maximum A Posteriori 

MI Matheron indices 

MPAC Modified Pappas Adaptive Clustering 

MRFs Markov Random Fields 

NASDA National Space Development Agency of Japan 

NMP Nearest Multiple-Prototype 

PA Perimeter-over-area ratio indices 

SA  South America 

SAI Space Applications Institute 

SAR Synthetic Aperture Radar  

SM Spatial Measurement 

TREES Tropical Forest Ecosystem Environments monitoring by Satellites. 

TRFIC Tropical Rain Forest Information Centre  

IHS Intensity-Hue-Saturation colour transformation 

i.i.d. independent and identically distributed  

MSE mean square error 

RMS root means square 
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Cover: Over the South America forest map derived from GRFM South America 
Mosaic, 4 sample tiles of different deforestation patterns within the Amazon Basin. 
Samples extracted from GRFM South America Mosaic. 


