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Abstract
The main focus of this thesis is blind hyperspectral unmixing. The proposed unmixing
methods seek to exploit the characteristics of remote sensing hyperspectral data. This
is achieved by using regularization methods such as total variation, `q sparsity, and
roughness penalties. The total variation regularization is used to capture the spatial
piecewise smoothness of the data. Sparsity regularization reflects the inherent sparsity
of abundance maps, and a roughness penalty is used to promote smooth endmembers.
Due to the high spectral correlation of hyperspectral images, the methods assume a
low rank model for the data.

The effects of the tuning and model parameters on the unmixing solution are examined
in detail, with respect to the mean square error, spectral angle distance, and also
classification accuracy.

The thesis concludes by investigating semi-blind unmixing methods, two methods that
combine supervised and unsupervised unmixing are proposed and two methods that
make the pure pixel assumption.

The main contributions are the following;

- A new sparse unmixing method using a novel combination of regularization terms.
The regularization terms are a first order roughness penalty, and an `q sparsity reg-
ularizer. The first order roughness penalty is able to promote smooth endmembers
while retaining known discontinuities in the endmember spectrum. The `q regularizer
promotes sparsity in the abundance maps.

- An improved sparse unmixing method that combines `q and total variation regular-
ization. Hyperspectral images are spatially piecewise smooth and the addition of the
TV regularizer improves the unmixing by incorporating spatial information into the
sparse unmixing.

- Two new variations of semi-supervised unmixing, where a priori information about
endmembers that are known to be in the image is incorporated into unmixing. The first
method uses hard regularization to constrain some of the endmembers to be identical
to known library endmembers, while the latter method uses soft regularization to
constrain some of the endmembers to be similar to known library endmembers. The
unknown endmembers are estimated along with the abundances for all endmembers.

- Two unmixing methods that make the assumption that pure pixels are present in
the image. The endmembers will be selected from a dictionary constructed from the
image itself. This guarantees that the endmembers can be fully explained by material



seen in the image. The two methods use different regularization terms to promote
sparsity in the solutions, the first method uses `2 regularization and the second uses
vector `0 regularization.
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Ágrip
Megin áheyrsla þessarar ritgerðar er á aðgreiningu fjölrása fjarkönnunarmynda (e.
blind hyperspectral unmixing). Aðferðirnar sem eru kynntar leitast við að nýta sér
einkenni fjarkönnunarmynda. Það er gert með því að nota reglun, t.d. heildarviksreglun
(TV) (e. total variation), `q reglun og fyrstu gráðu reglun. Notkun á heildarviksreglun
endurspeglar að gögnin eru þjál á köflum í rúmi (e. spatially piecewise smooth). Hlut-
fallslegt magn (e. abundances) efna í fjarkönnunarmyndum er rýrt (e. sparse), og rýra
`q reglunin er notuð til að ná fram þeim eiginleika. Fyrsta gráðu refsifall er notað til
að þvinga lausnina til að hafa þjál grunnlitróf (e. endmembers). Sökum þess að fylgni
litrófa myndanna er mikil, þá gera aðferðirnar ráð fyrir því að gögnin lifi í rúmi af
lágri gráðu (e. low rank model).

Áhrif mismunandi stika (e. model and tuning parameters) á lausnina eru grandskoðuð,
með tilliti til meðalfervikskekkju (e. mean square error), hornfjarlægðar (e. spectral
angle distance) og flokkunar nákvæmni.

Í lok ritgerðarinnar er fjallað um stýrðar aðgreiningar aðferðir (e. supervised unmixing).
Tvær aðferðir sem eru stýrðar að hluta (e. semi-superised unmixing) eru kynntar, svo
og tvær aðferðir sem gera ráð fyrir því að grunnlitrófin séu að finna í gögnunum (e.
pure pixel assumption).

Megin framlag ritgerðarinnar er eftirfarandi:

- Ný rýr aðgreiningaraðferð sem notar frumlega samsetningu reglunarliða. Reglu-
narliðirnir eru `q liður og fyrstu gráðu refsiliður. Fyrstu gráðu refsiliðurinn þvingar
grunnlitrófin til þess að vera þjál og getur einnig varðveitt ósamfellur á skilgreindum
stöðum í litrófinu. `q reglunarliðurinn stuðlar að rýrum hlutfallskortum (e. abundance
maps).

- Ný endurbætt aðgreiningaraðferð sem sameinar `q og TV refsiliði. Fjölrása fjarkön-
nunarmyndir eru þjálar á köflum í rúmi. Með því að bæta við TV liðnum, er sá
eiginleiki nýttur til að endurbæta rýru `q aðgreiningaraðferðina.

- Tvær úgáfur að aðgreiningaraðferðum sem eru stýrðar að hluta eru kynntar. Fyrri
aðferðin notar harða reglun (e. hard regularization) til að þvinga ákveðin grunnlitróf
til að vera nákvæmlega eins og fyrirfram ákveðin litróf. Sú senni notar mjúka reglun til
að þvinga ákveðin grunnlitróf til að vera áþekk fyrirfram ákveðnum litrófum. Óþekktu
litrófin eru fundin samhliða því að hlutfallskort allra litrófana eru fundin.

- Tvær aðgreiningaraðferðir sem gera ráð fyrir því að grunn-litrófin séu að finna í
gögnunum eru kynntar. Grunn-litrófin eru valin úr gögnunum sjálfum. Aðferðirnar
nota mismunandi reglun til að þvinga fram rýra lausn. Fyrri aðferðin notar `2 reglun
en sú seinni notar `0-vigur reglun.
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Chapter

Introduction 1
This chapter begins with introducing remote sensing hyperspectral images. The
concept of hyperspectral unmixing is explained and main approaches used in un-
mixing are reviewed. Dimensionality reduction and its relationship to hyperspectral
unmixing is also discussed. The chapter concludes with the goals and novelties of
the work presented here, along with an overview of the thesis.

•

1.1 Hyperspectral Images

Hyperspectral images (HSI) are acquired using sensors that measure reflected light
in hundreds of narrow spectral bands from across the electromagnetic spectrum [1].
These sensors cover the visible to the near infrared spectral region. For each pixel
in a hyperspectral image, a spectrum is obtained. Different materials reflect light
differently, so the reflected spectra of one material may be different from the reflected
spectra of another material. Since the spectral resolution of hyperspectral sensors
is high, it is possible to identify different material in the HSI using spectroscopic
analysis [2].

The primary advantage of hyperspectral imaging is the fact that an entire spectrum is
acquired for each pixel in the scene. This advantage comes at a cost, the complexity
and sensitivity of hyperspectral systems is large and the computational processing
power needed to analyze HSI is considerable. These factors greatly increase the cost
of acquiring and analyzing hyperspectral data.

Hyperspectral data is often presented as a three dimensional data cube. One such data
cube is shown in Figure 1.1. The three dimensions of the cube are the spatial (X and Y )
and spectral (Z) dimensions. The data in Figure 1.1 is a remote sensing hyperspectral
image of an urban landscape and is created with the HYDICE hyperspectral sensor.
The spatial resolution of this sensor is 20m×20m and the spectral resolution is 10nm.

HSI were originally used in mining and geology, but have spread into other fields such
as oil industries, manuscript research, medical imaging, forensic applications, food
processing, astronomy, quality control and and remote sensing [2].
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Figure 1.1: A visual representation of hyperspectral data. On the left
is the hyperspectral data cube with an RGB image of the scene on top.
At the top right is the spectral reflectance from one location. At the
bottom right is the reflectance from all locations, as a map, at one specific
wavelength, shown as a white line on the cube. X and Y represent the
spatial dimensions and Z represents the spectral dimension.

1.2 Remote Sensing Hyperspectral Images
Remote sensing dates back to the 1950s and refers to observing and acquiring infor-
mation about an object or a scene without coming into contact with it. In modern
terms remote sensing involves using airborne sensors that remotely detect objects on
earth. Remote hyperspectral imaging has been defined as measuring, analyzing, and
interpreting the spectra acquired from a given scene (or specific object) at a short,
medium or long distance by an airborne or satellite sensor [3].

Remote sensing HSI are created using airborne sensors. These sensors measure the
sunlight (radiance) that reflects from the ground level. The HSI used here, are re-
mote sensing HSI that are created by sensors that cover the visible, near-infrared and
shortwave spectral bands (0.3µm to 2.5µm). These HSI are described in Appendix
B. Both the spatial and spectral resolution varies between sensors, and developers
are constantly improving these sensors so the quality is improved and the resolution
is increased.

Remote sensing HSI are corrupted in a number of ways. The radiance that is measured
by the sensor has been degraded by atmospheric effects. The light that travels to the
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sensor is subject to absorption and scattering from atmospheric gases and aerosols.
These effects must be removed from the data if it is to be used for qualitative remote
sensing. Atmospheric correction is an active research topic and it is an important step
in hyperspectral imaging. Many different methods have been developed to tackle this
problem [4–6].

The instruments and circuits of the hyperspectral sensors are susceptible to noise,
such as thermal, quantization, and shot noise. Thermal and quantization noise are
typically modeled as signal independent Gaussian additive noise, while shot noise can
be modeled by variance dependent additive noise [7–10].

There are spatial artifacts in HSI that originate from the way that the sensors capture
the images. Non periodic partially deterministic disturbance patterns typically appear
in HSI [11]. These artifacts can be horizontal or vertical lines, if the imaging method
is the push-broom method [12]. Other acquisition methods may have different types
of spatial artifacts dependent on the imaging method.

Mixed Pixel

Pure Pixel

Incident
Re
fle
cte
d

Figure 1.2: An illustration of the hyperspectral mixing process. The
green, red and gray areas represent different material on the ground
surface. The grid represents the resolution of the sensor. Indecent light
reflects off the surface and is captured by an airborne hyperspectral
sensor. Some of the pixels may be mixed pixels while others may be
pure.

The spatial resolution of remote sensing HSI is such that more than one material can
be within the spatial boundaries of one pixel. The pixels that contain multiple material
are called mixed pixels, in contrast to pure pixels (PP) that are pixels containing only
one material [13]. Figure 1.2 illustrates this. Each pixel in a HSI is thus a sum of
spectral reflectances from the different materials within the spatial boundaries of the
pixel.
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1.3 Hyperspectral Unmixing

The spectral reflectance of one specific material is called an endmember. A measured
reflectance cannot be negative, so most unmixing methods constrain the endmembers
to be nonnegative. The endmembers in a HSI represent the pure material in the image.
The number and types of endmembers in a HSI can vary quite a bit depending on the
type of scene. In an urban area the endmembers may be rooftops, asphalt, trees, grass,
etc., while a mining district may have endmembers that represent different types of
minerals.

An abundance vector states how much of each material is in a pixel and an abundance
map specifies the amount of one specific material in all the pixels. The abundances
are also constrained to be nonnegative, since a negative abundance is not logical. This
constraint is termed abundance nonnegativity constraint (ANC). An abundance is often
viewed as a percentage value, and that the abundance represents the cross-regional
relative area of the corresponding endmember in the pixel. This has been confirmed
in laboratory experiments [2]. In addition to viewing the abundances as percentages,
researchers have also constrained the sum of the abundances for each pixel to be one.
This constraint is called the abundance sum constraint (ASC). If this constraint is
applied, then the unmixing method must account entirely for each pixel in the image.
The ASC has also been enforced softly in some unmixing methods [14–18].

However, small highly reflective surfaces that dominate other less reflective material
may give misleading abundances. Incident angles may also cause the reflected light
to differ for the same material, e.g., slanted rooftops may have the same endmember
but the measured intensities may differ greatly between surfaces that are not parallel.
The measured spectra of a material in a shaded area will also be much lower than
of the spectra of the same material not in shade. For these reasons, viewing the
abundances as percentages may not be entirely correct and applying the ASC may
not be appropriate for all the pixels in a HSI.

Hyperspectral unmixing is the task of identifying the endmembers and abundances in
a HSI [13]. Most classical approaches to unmixing have been based on the low rank
model (LRM). This model is often referred to as the linear mixing model (LMM).
These models assume that the signal lives in a low dimensional subspace. LRM as-
sume that the spectral reflectance is a linear function of the cross-sectional area of
the material. This is in essence a nonnegative matrix factorization (NMF) problem
where the hyperspectral image is represented by a matrix, which is factorized into two
nonnegative low rank matrices. These two matrices are composed of the endmembers
and abundances, respectively.

The LRM is considered valid and sufficient when the incident light only reflects off
one surface and the scale is macroscopic. When this is not the case, and the reflected
light reflects off more than one surface, or if the mixture is intimate, then the LRM
is not considered acceptable. Figure 1.3 illustrates the difference between an intimate
nonlinear mixture and a linear mixture. In this thesis, only the LRM is considered.
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Linear mixture Nonlinear mixture

Figure 1.3: Mixture scenarios. Linear (left) and nonlinear (right) mix-
tures.

Readers interested in nonlinear unmixing are referred to [19–22].

Unmixing methods are often categorized into geometrical, statistical, and sparse re-
gression based methods:

1. Geometrical approaches assume that the spectral vectors are positioned in a
simplex set or in a positive cone.

2. Statistical approaches use parameter estimation methods to identify the end-
member and abundance parameters.

3. Sparse regression methods assume that the abundances are sparse and formu-
late the task as a sparse regression problem. These methods rely on spectral
dictionaries.

Early approaches to determining endmembers in HSI were mainly manual [23,24], but
there have been many recent methods that have estimated the endmembers either
automatically or semi-automatically. Most methods associate only one spectral signa-
ture to each endmember, some researchers have used multiple signatures to describe
an endmembers [25–29]. These endmember bundles account for variability between
pixels that represent the same material. These variations are referred to as endmember
variability [30].

1.3.1 Geometrical Approaches

The geometrical approach to unmixing can be further split into two categories: PP
approaches, and minimum volume (MV) approaches.

Pure Pixel Approaches

Many methods have made the PP assumption, which assumes that every material in
the image is represented by at least one PP. This assumption facilitates the design of
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very computationally efficient methods. Having each endmember represented by at
least one representative pixel in the data can make the validation process simple. It
can also be easier for practitioners in the field to interpret the endmembers if they
are constructed from actual data elements. This behavior is also important in other
fields of research [31, 32]. Endmember determination algorithms that make the PP
assumption have been widely used in remote sensing [33–53].

Well known methods that use this approach are (among others) the pixel purity index
(PPI) [33], N-FINDR [34] and VCA [37]. PPI begins by reducing the dimensionality
of the data using maximum noise fraction (MNF) [54]. A large set of random vectors
(skewers) is defined, and then every spectral vector in the data is projected onto these
skewers. Following this, the pixels are scored and the pixels with the highest score
are defined to be the purest pixels in the data. N-FINDR inflates a simplex inside the
data, and finds the set of pixels that maximize the volume of the simplex. VCA is
an iterative procedure that uses the subspace already defined by the endmembers and
projects the data onto a direction orthogonal to this subspace. The extreme of this
projection (the pixel corresponding to the maximum value) corresponds to the new
endmember. This procedure is repeated until the endmembers are exhausted.

Minimum Volume Approaches

This approach does not assume that the endmembers are represented by pure pixels
in the data, which makes the optimization nonconvex, and thus is much harder to
solve. This approach attempts to find a set of endmembers that minimize the volume
of the simplex that the endmembers define. This is done, subject to constraint that
the observed data be confined within the simplex [2]. This constraint may be soft or
hard. These methods rely on the presence of at least n−1 spectral vectors on each
facet of the simplex. When the data is highly mixed, this condition may however not
hold. Methods that adopt this approach are [15,55–62].

Three well known methods using the minimum volume approach are the minimum
volume simplex analysis (MSVA) [58], the simplex identification via variable splitting
and augmented Lagrangian (SISAL) [59] and minimum volume transform-nonnegative
matrix factorization (MVC-NMF) [15]. MSVA and SISAL allow the nonnegativity
constraint to be violated and thus are able to gain a certain amount of robustness.
MVC-NMF does not violate the nonnegativity constraint and the minimization is done
by alternately estimating the abundances and endmembers in an iterative manner.
MVC-NMF does not reduce the dimensionality of the data while SISAL and MSVA
do.

1.3.2 Statistical Approaches

When the scenarios are highly mixed, the number of spectral vectors on the simplex
facets decreases and this will cause the geometrical methods to yield worse results.
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In these scenarios, researchers have looked towards statistical approaches as alterna-
tives. These approaches are very powerful but the computational complexity of these
methods is higher than the complexity of the geometrical methods. Using a statistical
framework, the unmixing can be formulated into a statistical inference problem and
the properties of the underlying distribution can be deduced by analyzing the data.

When both, the abundances, and endmembers themselves need to be estimated, the
unmixing is an BSS problem. Independent Component Analysis (ICA) [63,64], a well
known method for solving BSS problems, has been proposed for unmixing hyperspec-
tral data [65–69].

ICA makes the assumptions that the endmembers are linear mixtures weighted by
the correspondent abundance fractions and that the abundances are independent.
For HSI, the former of these assumptions is true, but the latter is not valid, due to
physical constraints on the acquisition process [70]. In [70], both simulated and real
hyperspectral data are considered and the authors come to the conclusion that ICA
will always have endmembers that are incorrectly mixed and that the performance
of ICA tends to increase, both with signal variability and with increasing number
of endmembers. NMF is another BSS method that has been extensively used for
hyperspectral unmixing. Following the publication of the Lee-Seung algorithm for
NMF [71,72], NMF became widely used in many fields. Hyperspectral unmixing using
NMF was first used in 2005 [73]1, and again in 2006 [74]. In the following years
many variants or extensions of NMF for hyperspectral unmixing have been published,
see for example [15–18, 52, 75–78]. All NMF based unmixing methods are iterative.
They alternate between estimating the abundances and the endmembers and this is
repeated until convergence is achieved. NMF based unmixing methods often apply a
sparsity regularization on the abundances with the `1 norm being the most common
regularizer [79].

Two well known methods that use NMF are MVC-NMF [15] and L1/2-NMF [76].
MVC-NMF was briefly explained in Section 1.3.1. L1/2-NMF incorporates an `1/2
sparsity term that promotes sparse abundances.

Bayesian approaches are among the statistical approaches that have been applied to
unmixing. These methods treat the endmembers as distributions and are thus able
to account for spectral variability. However, exact knowledge about the distributions
may not be available in practice. When this is the case, the unknown distributions and
the parameters, along with the abundances are jointly estimated during the unmixing.
A prominent statistical distribution used for endmembers is the normal compositional
model (NCM) [80]. In [81], a Markov chain Monte Carlo sampling approach is taken,
where the mean values of endmembers are assumed to be known. In [82], a similar
approach is taken, but the endmember covariance values are assumed to be known,
but not the endmember means. Other models have also been used in hyperspectral
unmixing, such as the Beta composition model [83], and the method of higher moments
[84].

1No hyperspectral unmixing methods that use NMF, prior to this one, are known to the author.
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1.3.3 Sparse Regression Approaches

When a library of spectral signatures is available, the unmixing may be achieved by
identifying the endmembers in a HSI from this library of endmembers. The endmem-
bers that compose the library can be collected from the location of the image using
field-sensors or obtained from a laboratory. There may however be calibration mis-
matches between the real image spectra and the spectra available from a library [85].
The HSI may be acquired under different circumstances than the library and may also
be degraded by atmospheric effects.

This type of unmixing has been achieved by using linear regression based on sparsity
inducing regularizers. The optimal set of endmembers is identified by reducing the
support of endmembers in the library that are not in the HSI. This is done recursively,
and in each iteration the library is reduced, until an optimal set of endmembers is left.

Classical methods have been used to solve similar problems, such as orthogonal match-
ing pursuit (OMP) [86] which uses an `0 norm as a sparsity inducing regularizer, basis
pursuit (BP) and basis pursuit denoising (BPDN) [87] which use an `1 norm. OMP
and BPDN were not specifically designed for hyperspectral unmixing, but there have
been many sparse regression methods published that are designed specifically for hy-
perspectral unmixing [85,88–97].

Well known hyperspectral unmixing methods that use sparse regression are SUn-
SAL (sparse unmixing by variable splitting and augmented Lagrangian) [90, 91] and
SUnSAL-TV [85, 94]. SUnSAL and its variants are based on the alternating direc-
tion method of multipliers (ADMM) [98] and solve the constrained least squares, the
constrained BP, and the constrained BPDN problems. SUnSAL-TV is similar to SUn-
SAL, with the addition of a total variation (TV) [99, 100] regularization term which
exploits the fact that abundance maps are piecewise smooth.

Along with the availability of spectral libraries, methods to prune the libraries have
emerged. Pruning the spectral library before unmixing, can both, reduce the com-
plexity dramatically, and improve the unmixing results. In [88], a spectral library is
pruned prior to unmixing. First, a low dimensionality subspace is found using HySime
(hyperspectral signal identification by minimum error) [101], then the distance from
each member of the library to the estimated subspace is calculated. This distance
measure is used to prune the library. Collaborative sparse regression [89] is then used
to find the endmembers. In [92], a slight extension to [88] is proposed and a framework
is presented for monitoring plant production systems.

1.4 Dimensionality Reduction
Hyperspectral images are composed of hundreds of spectral bands while the number
of endmembers in each image is typically much lower. Hyperspectral unmixing is
synonymous to dimensionality reduction (DR) and subspace identification in the sense
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that it tries to find a low rank representation of the data. In hyperspectral unmixing,
the rank of this representation is equal to the number of endmembers. Having a low
rank representation of the data can be very advantageous, operating on the data in
the signal subspace is much less computationally intensive, the data storage required
is less, and the signal-to-noise ratio (SNR) can also be increased. DR for hyperspectral
data can be split into two approaches, i.e., unsupervised and supervised.

There are differences between DR and hyperspectral unmixing. While DR is a way to
achieve a low rank representation of the data, the goal may not specifically be to find
the endmembers and abundances, DR may attempt, e.g., to remove noise, maximize
SNR, improve classification results. The constraints made on the bases of the vectors
that span the low rank subspace may not result in endmembers that are physically
meaningful. Hyperspectral unmixing attempts a DR with the constraints that the
(bases) endmembers represent physical material in the scene. This is often achieved
by incorporating prior knowledge about the data into the unmixing method, such as
assuming the endmembers are nonnegative and that the abundances be both sparse
and piecewise smooth.

Estimating the number of endmembers in HSI is a very important and challenging
problem in hyperspectral data analysis. Classical methods such as Akaike’s infor-
mation criterion (AIC) [102], Bayesian information criterion (BIC) [103] and Stein’s
unbiased risk estimation (SURE) [104, 105] have been used for low rank model esti-
mation [106–111].

Principal component analysis (PCA) [112] has also been used for rank estimation.
This is often done by using the cumulative proportion of the variance accounted for
by the current and all preceding principal components (PC). When the ith component
retains a specified percentage of the cumulative variance explained by the PCs, i is set
as the rank. Estimating the number of endmembers in HSI is a very active research
topic.

1.4.1 Unsupervised Dimensionality Reduction

The bands in hyperspectral images are highly correlated and this has been exploited
by methods to select a few informative spectral bands [113, 114]. Techniques that
project the data into another subspace have been very popular for DR. PCA min-
imizes the sum of squares, which can be efficiently computed using singular value
decomposition (SVD) [115]. MNF, and equivalently noise adjusted principal compo-
nents (NAPC) [116] try to maximize the SNR. HySime [101], which is unsupervised
and eigen decomposition based, begins by estimating the signal and noise correlation.
In the next step, the least squares error is used to select subset of eigenvalues that
best represent the signal subspace. In [117], a framework for DR using graph em-
bedding is presented. ICA has also been used and studied as a DR method prior to
classification [118].
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1.4.2 Supervised Dimensionality Reduction

If classification ground-truth is available for the HSI, then some of the pixels in the
image are labeled as belonging to a specific class. This ground-truth information has
been used to supervise DR. Well known supervised DR methods are, e.g., Decision
boundary feature extraction (DAFE) [119, 120] and nonparametric weighted feature
extraction (NWFE) [121].

1.5 Thesis Contributions and Organization
The main topic of this thesis is blind hyperspectral unmixing. All of the unmixing
methods presented here are based on the LRM. The LRM is used since HSI are highly
spectrally correlated.

The different characteristics of the HSI are exploited using appropriate regularization
terms. The usage of sparse regularization reflects the fact that abundance maps are
inherently sparse. HSI are also piecewise spatially smooth and TV regularization is
used to incorporate this knowledge into the unmixing. The spectral resolution of HSI
is high and the endmember spectra is thus a smooth function. Roughness penalties
are used to promote smooth endmembers.

In Chapter 2, the low rank model is detailed along with the classical constraints that
have been proposed for unmixing in the literature.

In Chapter 3, sparse `q unmixing is introduced, the novelties within this chapter are
the use of sparse regularization terms that reflect and exploit the characteristics of
HSI, and the methods used to solve the blind unmixing problem. The regularization
terms that are used, are the `0 [122], the `q (0<q<1) [123] and the `1 [124] terms, re-
spectively. These sparsity inducing regularization terms are applied on the abundance
maps. A first order roughness penalty is applied alongside the sparsity term and it
promotes smooth endmembers. A new majorization-minimization unmixing algorithm
is developed that minimizes a novel cost function which combines these regularization
terms. Extensive evaluations of the method are performed, w.r.t. the tuning param-
eters, using both simulated and real hyperspectral data. The effects of imposing the
ASC are also examined using a real data set.

In Chapter 3, the sparse properties of the abundance maps are exploited using sparse
regularization. HSI do have other properties that can be exploited to further improve
the unmixing. One such property is the spatial piecewise smoothness of the abun-
dance maps. In Chapter 4, TV regularization is introduced into the unmixing. The
TV regularizer exploits the spatial piecewise smoothness of the abundance maps. The
unmixing method [125] combines the `q and TV regularizers and is thus able to pro-
mote sparse and spatially piecewise smooth abundances. A new unmixing method is
developed using the dyadic expansion, `q regularization and a split Bregman imple-
mentation of TV denoising. The effects of the tuning parameters on the unmixing
solution are thoroughly examined. The chapter concludes by using the abundance
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maps generated by the proposed method as features for classification [126], where the
tuning parameters are selected using cross-validation.

The first two methods in Chapter 5 partially rely on spectral libraries, or a priori
information about the HSI. These methods are semi-supervised hyperspectral un-
mixing methods. The first method is an endmember constrained semi-supervised
method [127]. A priori information about the endmembers is incorporated into the
objective function with hard regularization. This information can be acquired from
a spectral library or from the data itself. The second method uses soft regulariza-
tion to incorporate a priori information about the endmembers into the objective
function [128].

It can however be appealing to have the endmembers coincide with certain pixels in
the image. This is the PP assumption, and guarantees that the endmembers can be
fully explained by material seen in the image.

The latter two methods proposed in Chapter 5, make the PP assumption and the
unmixing is done using the sparse regression approach. The methods [129] decompose
the data matrix into nonnegative endmembers and abundance maps. The endmembers
will be selected from a dictionary constructed from the data matrix. Each endmember
will coincide with certain columns of the data matrix.

1.6 Publications
Chapter 3 is based on the following publications:

[a] J. Sigurdsson, M.O. Ulfarsson, and J.R. Sveinsson, “Hyperspectral unmixing
with `q regularization,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 52, no. 11, pp. 6793–6806, Nov 2014.

[b] J. Sigurdsson, M.O. Ulfarsson, and J.R. Sveinsson, “Smooth and sparse hyper-
spectral unmixing using an l0 penalty,” Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing (WHISPERS), June 2013.

[c] J. Sigurdsson, M.O. Ulfarsson, J.R. Sveinsson, and J.A. Benediktsson, “A smooth
hyperspectral unmixing method using cyclic descent,” in IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), July 2012, pp. 3082–
3085.

Chapter 4 is based on the following publications:

[d] J. Sigurdsson, M.O. Ulfarsson, and J.R. Sveinsson, “Hyperspectral image un-
mixing using dyadic cyclic descent, total variation and `q sparse regularization,”
submitted.

[e] J. Sigurdsson, M.O. Ulfarsson, and J.R. Sveinsson, “Total variation and `q
based hyperspectral unmixing for feature extraction and classification,” in IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), July 2015.
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penalty,” in IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), July 2013, pp. 2160–2163.
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[g] J. Sigurdsson, M.O. Ulfarsson, and J.R. Sveinsson, “Semi-supervised hyperspec-
tral unmixing,” in IEEE International Geoscience and Remote Sensing Sympo-
sium (IGARSS), July 2014, pp. 3458–3461.

[h] J. Sigurdsson, M.O. Ulfarsson, and J.R. Sveinsson, “Endmember constrained
semi-supervised hyperspectral unmixing,” Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing (WHISPERS), June 2014.

[i] J. Sigurdsson, M.O. Ulfarsson, J.R. Sveinsson, and J.A. Benediktsson, “Sparse
representation of hyperspectral data using CUR matrix decomposition,” in IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), July 2013,
pp. 433–436.
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Chapter

Low Rank Models 2
In this chapter, low rank models are considered. The constraints and regularization
terms that are typically used in hyperspectral unmixing are given, along with some
well known solutions. Next, two methods that include sparse regularization terms
to promote sparsity in the low rank model are given. The chapter concludes with
by showing that the ASC cannot be used with the `1 norm.

•

2.1 The Low Rank Model and Constraints
Let us assume that a HSI has M spectral bands, r endmembers, and P pixels. For
one given pixel, the measured spectral signature, given by the low rank model (LRM)
is

yip =
r∑

n=1
ainsnp + wip, i = 1, . . . ,M, p = 1 . . . P, (2.1)

where ain ≥ 0 is the measured signature of endmember n at spectral band i, snp ≥ 0
is the fractional abundance of endmembers n, and wi denotes noise or modeling error.
The model is assumed to be of low rank, i.e., min(P,M) > r. If the abundance should
represent a true fraction and the model should account for every endmember in the
HSI1, the the abundance sum constraint (ASC) is added to the model. Applying the
ASC, the abundance nonnegativity constraint (ANC) and endmember nonnegativity
gives

ANC snp ≥ 0, n = 1, . . . r,

ASC
r∑

n=1
snp = 1,

(2.2)

and the endmember nonnegativity constraint is given by

ain ≥ 0, n = 1, . . . r. (2.3)

Define the r× 1 abundance vector as s = [s1, . . . , sr]T, with s(p) being the abundance
vector at pixel p. Let A be an M × r unknown mixing matrix where each column
represents one unknown endmember, and y(p) = [y1p, . . . , yMp]T is an M × 1 vector
representing the spectral vector at pixel p. The LRM for one pixel can now be written
as

y(p) = As(p) + n(p), p = 1, . . . , P, (2.4)

where n(p) = [w1p, . . . , wMp]T is a noise or model error vector.

1See Section 1.3 for a discussion about the validity of the ASC.

13



2.1 The Low Rank Model and Constraints

Given a HSI with p pixels, we denote the image as theM×P matrix Y = [y(1), . . . ,y(P )],
and the r × P abundance matrix as S = [s(1), . . . s(P )]. If the HSI is in the form of
an image cube as presented in Section 1.1, then the data is transformed into a matrix
where each column is composed spectral signature of one pixel. The LRM for the
whole image can be written neatly in matrix formation as

Y = AS + N , (2.5)

where the noise matrix is N = [n(1), . . . ,n(P )].

A cost function that is often used for finding a solution to the LRM is the Frobenius
norm,

J(A,S) = 1
2‖Y −AS‖2 = 1

2

M∑
i=1

P∑
p=1

(yip − aT
i s(p))2. (2.6)

The solution is found by minimizing (2.6) w.r.t. A and S. If the ASC and nonnega-
tivity constraints are used, then the minimization problem is,

min
A,S

J(A,S)

s.t. A,S ≥ 0, 1T
r s(p) = 1, p = 1, . . . , P.

(2.7)

This minimization problem is not uniquely determined, which mean that there are
many different values of A and S, resulting in the same value of the cost function, but
the quality of these solutions with respect to the true abundances and endmembers
may differ greatly.

In the next section a well known method to softly enforce the ASC will be discussed,
and following that, methods to solve (2.7) will be detailed.

2.1.1 Softly constraining the ASC

The ASC can be softly constrained using matrix augmentation when minimizing (2.6).
A early use of this method in hyperspectral unmixing was in [131], but the methodology
was published earlier [132, 133]. This is very simple and computationally easy to
implement. An additional term is added to (2.6), which softly enforces the ASC using
a tuning parameter,

J2(A,S) = 1
2‖Y −AS‖2 + δ2

2 ‖1
T
p − 1T

rS‖2. (2.8)
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Low Rank Models

The larger that δ is set, the more forcefully the ASC is enforced. With δ = 0, the ASC
is not enforced. Continuing with (2.8),

J2(A,S) = 1
2‖Y −AS‖2 + δ2

2 ‖1
T
p − 1T

rS‖2

= 1
2tr
(

Y TY − 2STATY + STATAS
)

+ δ2

2

(
1p1T

p − 21p1T
rS + sT1r1T

rS
)

= tr1
2

(
(Y TY + δ21p1T

p )− 2
(
ST(ATY + δ21r1T

p )
)

+ ST(ATA + δ21r1T
r )S

)
= tr1

2

([
Y
δ1T
p

]T [
Y
δ1T
p

]
− 2ST

[
A
δ1T
r

]T [
Y
δ1T
p

]
+ ST

[
A
δ1T
r

]T [
A
δ1T
r

]
S

)

= 1
2tr
(

Y T
f Yf − 2AT

fSTYf + STAT
fAfS

)
= 1

2‖Yf −AfS‖2,

where tr(·) is the trace operator and the augmented matrices are given by

Af =
[

A
δ1T
r

]
and Yf =

[
Y
δ1T
p

]
. (2.9)

Softly enforcing the ASC can be achieved replacing Y and A in (2.6) with Yf and
Af from (2.9), respectively. This method is used many NMF-type unmixing methods,
e.g. [14–18,76,78].

2.2 Nonnegative Matrix Factorization
NMF became popular for unmixing, following the update rules published in [71, 72].
In [72], two measures between two nonnegative matrices, C and D, are given, with
the first being the Euclidean distance,

D1 = ‖C −D‖2, (2.10)

and the second being

D2(C||D) =
∑
ij

(
cij log cij

dij
− cij + dij

)
. (2.11)

Both of these metrics are zero only when C = D. The second metric is not a distance
measure, since it is not symmetric in C and D, and it reduces to the Kullback-Leibler
divergence when

∑
ij cij =

∑
ij dij = 1. Two formulations for NMF are considered:

min
A,S
‖Y −AS‖2, s.t. A,S ≥ 0. (2.12)

min
A,S

D2(Y ||AS), s.t. A,S ≥ 0. (2.13)
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2.3 Other methods

Both (2.12) and (2.13) are convex in A only, or S only, but they are not convex in
both variables together, so finding a global minima is a challenging task.

The formulation in (2.12) has received much more attention than (2.13) for hyperspec-
tral unmixing. To solve (2.12), [72] proposes elementwise multiplicative update rules2,
that are said to be a good compromise between speed and ease of implementation,

S ← S � (ATY )� (ATAS) and A← A� (Y ST)� (ASST), (2.14)

where � and � are elementwise multiplication (Hadamard product) and division
operators, respectively. The update rules in (2.14), along with matrix augmentation
in (2.9) can be used to find a solution to (2.7) (with ASC softly constrained). An
algorithm that solves this problem shown in Algorithm 1.

Algorithm 1: NMF Algorithm
1 Initialize k = 1, A(k) ≥ 0, S(k) ≥ 0
2 while J(A(k),S(k)) has not converged do
3

S(k+1) = S(k) � (A(k))TY )� ((A(k))TA(k)S(k)) (2.15)
A(k+1) = A(k) � (Y (S(k))T)� (A(k)S(k+1)(S(k+1))T) (2.16)
k = k + 1

4 end

The update rules in (2.14), and variants of them have been extensively used in hyper-
spectral unmixing. See Subsection 1.3.2 for references of methods that use or modify
these update rules for hyperspectral unmixing.

In [134], theoretical issues such as convergence, correctness and uniqueness of the
NMF solution are addressed. Geometrical conditions are derived under which the
factorization is essentially unique in [134].

2.3 Other methods
The NMF method in Algorithm 1 is a special case in a framework which alternatively
fixes one matrix and improves the other:

Find S(k+1) such that J(A(k),S(k+1)) ≤ J(A(k),S(k)).

Find A(k+1) such that J(A(k+1),S(k+1)) ≤ J(A(k),S(k+1)).

The alternative least squares method finds the best point in the scheme, and it is
shown in Algorithm 2.

2These multiplicative update rules are derived in Appendix C.
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Algorithm 2: Alternating nonnegative least squares
1 Initialize k = 1, A(k) ≥ 0, S(k) ≥ 0
2 while J(A(k),S(k)) has not converged do
3

S(k+1) = arg min
S≥0

J(A(k),S) (2.17)

A(k+1) = arg min
A≥0

J(A,S(k+1)) (2.18)

k = k + 1
4 end

This is referred to as the block coordinate descent or cyclic descent method in bound-
constrained optimization [135], where one block of variables is minimized while all
other blocks of variables are fixed. In the case of NMF, there are only two block
variables, S and A.

In [136], a study of using projected gradients for NMF is presented, several modifi-
cations are done that lead to efficient implementations, exhibit strong optimization
properties and converge faster than the multiplicative update approach given in Algo-
rithm 1.

Nonnegative quadratic programming can also be used to solve (2.6). By formulating
(2.6) into a quadratic cost function of either A (v = a(i)) or S (v = s(p)),

J(v) = 1
2vTCv + bTv, (2.19)

and assuming that C is symmetric, the quadratic programming update rules proposed
in [137] can be used. Let C+ and C− denote the nonnegative matrices, with entries
defined as

c+
ij =

{
cij if cij > 0
0 otherwise, and c−ij =

{
|cij | if cij < 0
0 otherwise.

The updates rules are then given by

v
(k+1)
i = v

(k)
i

(
−bi +

√
b2
i + 4(C+v)i(C−v)i
2(C+v)i

)
. (2.20)

2.4 Sparsity in The Low Rank Model
Inducing sparsity in low rank models has been studied extensively. Most NMF-based
hyperspectral unmixing methods apply sparse regularization terms on the abundances
to induce sparsity. In the next two subsections, well known methods that extend NMF
to include sparsity are described.

17



2.4 Sparsity in The Low Rank Model

2.4.1 Nonnegative Sparse Component Analysis
The goal of linear nonnegative sparse coding is similar to NMF, however with the
important distinction that the components be sparse. This means that the original
data can represented using only a few nonzero coefficients. To accomplish this, a
sparsity inducing penalty term can been added to (2.6). In [138], the `1 norm is used
in the following cost function

J(A,S) = 1
2‖Y −AS‖2 + λ‖S‖1

= 1
2‖Y −AS‖2 + λ

∑
ij

|sij |,

s.t. A,S ≥ 0, ‖a(i)‖ = 1, λ > 0.

(2.21)

Optimizing for S, given a fixed A, yields

S(k+1) = S(k) � (A(k))TY )� ((A(k))TA(k)S(k) + λ). (2.22)

Projected gradient descent, with step size µ, is used to optimize for A. Three steps
are involved:

1. A′ = A(k) + µ(A(k)S − Y )ST.
2. Negative values of A′ are set to zero.
3. Rescale each column of A′ to have unit norm, then set A(k+1) = A′.

Using these steps, the algorithm, termed nonnegative sparse coding [138], is shown in
Algorithm 3.

Algorithm 3: Nonnegative Sparse Coding
1 Initialize k = 1, A(k) ≥ 0, S(k) ≥ 0
2 while J(A(k),S(k)) has not converged do
3

A′ = max(0,A(k) + µ(A(k)S(k) − Y )(S(k))T) (2.23)

a′(i) =
a′(i)

‖a′(i)‖
,∀i (2.24)

S(k+1) = S(k) � (A(k))TY )� ((A(k))TA(k)S(k) + λ) (2.25)
k = k + 1

4 end

In [139], (2.21) is reformulated to work with normalized vectors as

J(A,S) = 1
2
∑
p

∥∥∥∥∥y(p) −
M∑
i=1

sij
ai
‖a(i)‖

∥∥∥∥∥
2

+ λ
∑
ij

|sij |. (2.26)
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The update rule for estimating S is the same as (2.25), but the update rule for A is

A(k+1) = A(k) �
(

Y (S(k))T + A(k) �
(

1MM (A(k)(S(k)(S(k))T)�A(k))
))

�
(

A(k)S(k)(S(k))T + �
(

1MM (Y (S(k))T �A(k))
))

.

(2.27)

This update rule can be using instead of (2.23) in Algorithm 3. This method has the
advantage that no step size (µ in (2.23)) parameter is needed.

2.4.2 `1/2-NMF
In [76], NMF is extended by incorporating an `1/2 regularizer in a method the authors
term L1/2-NMF. The authors claim that the `1/2 regularizer induces sparsity and that
it is also a good choice among `q (0<q≤1) regularizers. The cost function used is

J(A,S) = 1
2‖Y −AS‖2 + λ‖S‖1/2, (2.28)

where ‖S‖1/2 =
∑
ij s

1/2
ij . The update rules proposed in [76] for minimizing (2.28),

are

A(k+1) = A(k) � (Y (A(k))T)� (A(k)S(k)(S(k))T), (2.29)

S(k+1) = S(k) � (A(k+1))TY )�
(

(A(k+1))TA(k+1)S(k) + λ

2 (S(k))−1/2
)
, (2.30)

with S−1/2 being the elementwise square roots of S.

2.4.3 The ASC and the `1 norm
Using the `1 penalty along with the ASC will not further induce sparsity. To under-
stand why, let us consider (2.21) with the ASC softly constrained as in (2.8). Note
that when S is nonnegative, we can write 1T

r s(p) = ‖s(p)‖1. Now we write (2.21),
discarding terms that do not depend on S as

JS =1
2‖Y −AS‖2 + δ2

2 ‖1
T
P − 1T

rS‖2 + h

2

P∑
p=1

1T
r s(p)

=1
2‖Y −AS‖2 + δ2

2

P∑
p=1

{
1− 2(1T

r s(p)) + (1T
r s(p))2 + h

δ2 1T
r s(p)

}
,

=1
2‖Y −AS‖2 + δ2

2

P∑
p=1

{
(b− 1T

r s(p))2 + 1− b2}
=1

2‖Y −AS‖2 + δ2

2 ‖b
T
p − 1T

rS‖2 + C, (2.31)
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2.4 Sparsity in The Low Rank Model

where b = 1 − h/(2δ2), bp is a p × 1 vector of with all entries equal to b and C is a
constant. In (2.31), we can see that the sparsity term has been rendered ineffective.
Applying the `1 penalty along with the ASC will neither further induce sparsity nor
will it force the columns of S to sum to one. It will force the column of S to sum to
b without further inducing sparsity.
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Chapter

Sparse Hyperspectral Unmixing
Using `q Regularization

3
In this chapter, a novel hyperspectral unmixing method using `q sparse regulariza-
tion is detailed. A first order roughness penalty is applied to promote piecewise
smooth endmembers. An iterative algorithm for simultaneously estimating the end-
members and the abundances is developed and tested both on simulated and two
real hyperspectral data sets. An extensive simulation study is done where both
the SNR and the sparsity of the simulated data are varied and the model param-
eters that minimize the reconstruction errors and the spectral angle distance are
identified. The effects of the imposing the abundance sum constraint using a real
hyperspectral data set are also examined.
•

3.1 Introduction
A high intensity pixel in an abundance map means that the corresponding material
is abundant in the pixel. It is unlikely that all the materials in the image will be
present in every pixel. Thus, there will be locations in the abundance maps that
have low or zero value pixels. This means that the abundance maps are sparse in
nature. To exploit this fact, sparsity promoting regularization has been widely used in
hyperspectral unmixing [2, 140, 141]. The most common sparsity regularization term
is the `1 regularizer. There are exceptions to this, and some researchers have used an
`q regularizer, with 0≤q<1 [76, 122,123].

Due to the high spectral resolution of HSIs, the spectrum of the endmembers varies
smoothly in wavelength [142]. Noisy bands and water absorption bands are however
often removed. This may lead to discontinuities at specific wavelengths in the spectrum
of the endmembers.

The approach presented here solves the unmixing problem by optimizing a novel pe-
nalized cost function. Nonnegativity is enforced and the ASC can also be enforced.
Piecewise smoothness of the endmembers is promoted, as is sparseness in the abun-
dances. As was shown in Subsection 2.4.3, the l1 penalty will not further promote
sparsity while the ASC is enforced. The `q penalty is able to promote sparsity (al-
beit to a varying extent) while enforcing the ASC. A first order roughness penalty
will be used to encourage piecewise smooth endmembers while maintaining known
discontinuities in the spectrum.

Using simulated data, the effects of the `q penalty on the unmixing solution is evalu-
ated, and the set of parameters that results in the best unmixing results are identified.
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3.2 Related Work

The metrics that use are the reconstruction error, the abundance reconstruction error
and the spectral angle distance, as defined in Appendix A. Simulation data with dif-
ferent SNR is used, and the sparsity of the data is also varied. The method is applied
on two real hyperspectral images, the first is the Urban data set and the second is the
Cuprite data set. These data sets are detailed in Appendix B.

The Urban image is unmixed both when the ASC is enforced and not enforced, respec-
tively. The results are evaluated using an RGB image of the scene and the differences
between the solutions obtained are discussed. The Cuprite image is unmixed without
enforcing the ASC and the endmembers found are compared to a spectral library.

3.2 Related Work

Unmixing methods that use the `1 penalty term to induce sparsity in the abundance
matrices [79, 91, 124] have gained interest. Relatively few publications have examined
hyperspectral unmixing using of penalties of lower degree, that is `q penalties when
0 ≤ q < 1. There are some exceptions to this, e.g., [122] where and `0 penalty term
was used in a majorization-minimization (MM) approach and in [76] where the main
focus is the `1/2 penalty.

`q penalties and norms have been used in other fields, e.g., in signal reconstruction and
in matrix completion problems. In [143], the matrix completion problem is addressed
by using an `q penalty term, in MM approach, with the focus on recovering a low
rank matrix from a given subset of its entries. In [144], it is shown that exact signal
reconstruction is possible using substantially fewer measurements by replacing the
standard `1 norm with an `p norm.

In [145], a smooth nPCA method is presented. By adding a first roughness penalty
term to the likelihood function which is then maximized for the parameters of interest
with an expectation maximization (EM) algorithm.

3.3 The Hyperspectral Model and Cost Function

Using the definitions given in Section 2.1, the hyperspectral LRM used here is

Y = AS + N . (3.1)
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The penalized cost function that is optimized to estimate A and S in (3.1), is given
by

J(A,S) =1
2‖Y −AS‖2 + δ2

2 ‖1
T
P − 1T

rS‖2

+γ

2 ‖DA‖2
F + h

2

P∑
p=1
‖s(p)‖q (3.2)

s.t. S,A ≥ 0.

The first term in the cost function is the fidelity term. The second term is controlled
by δ and promotes the ASC. The third term encourages piecewise smoothness in the
columns of A. The last term will promote sparseness in S. The term, ‖s(p)‖q with
0 ≤ q ≤ 1, is the lq norm [143] of s(p), and is defined as

‖s(p)‖q =


‖sp‖0 if q = 0,∑r
j=1 |sjp|q if 0 < q < 1,∑r
j=1 |sjp| if q = 1.

(3.3)

In (3.3), ‖s(p)‖0 is the number of non zero components in s(p). A value of q = 1 will
penalize entries in S relative to their values, while setting q = 0 will penalize all non
zero entries the same, regardless of their values. Figure 3.1 shows, how the penalty
changes with different values of q.

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

s

|s
|q

q = 0
q = 1/4
q = 1/2
q = 1

Figure 3.1: The `q penalty for different values of s and q. When q = 0,
every nonzero value of s is penalized equally. When q = 1, s is penalized
in proportion to its value.

The h parameter controls the sparsity of the abundance matrix. Choosing a high value
for h will zero out many values in the abundance matrix. This will result in sparse
abundance vectors which means that each pixel in the image is associated with few
endmembers.

The D matrix is (M − 1)×M and is defined as

D =


−1 1 0 0 . . . 0
0 −1 1 0 . . . 0

. . .
0 0 . . . 0 −1 1

 . (3.4)
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3.4 Estimation Method

By choosing the D matrix in this manner a first order roughness penalty is added to the
cost function and this will encourage the solution to have smoother endmembers [146].
The parameter γ controls the smoothness of the endmembers. A large value enforces
the endmember spectra to be very smooth, while a low value results in very little
smoothing. If there are known discontinuities in the endmember spectra it is possible
to negate the roughness penalty by replacing the appropriate row in the D matrix
with zeros.

3.4 Estimation Method
The optimization approach used is a (block) cyclic descent algorithm [135]. The al-
gorithm consists of two steps, an abundance estimation step and an endmember esti-
mation step. The abundances are estimated while holding the endmembers fixed and
then the endmembers are estimated while holding the abundances fixed. This process
is repeated until the cost function has converged to its final value.

3.5 Abundance Estimation
To estimate the abundances, or equivalently minimizing (3.2) w.r.t. S, a [147] MM
approach is used. The MM approach works by finding and iteratively minimizing a
majorizing function. In each iteration, the objective function is driven downward until
a local minima is found. The terms that are dependent on S are,

JS = 1
2‖Yf −AfS‖2 + h

2

P∑
p=1
‖s(p)‖q, (3.5)

where Yf and Af are augmented using (2.9) to softly enforce the ASC. The majorizing
function [148] that will be minimized is

F (S,S(k)) =JS + 1
2tr(S − S(k))T(αIr −AT

fAf )(S − S(k))

=1
2tr(αSTS − 2BTS + C) + h

2

P∑
p=1
‖s(p)‖q, (3.6)

where S(k) is an estimate of S, C is a constant,

B = AT
fYf + αS(k) −AT

fAfS(k),

and α is the maximum eigenvalue of AT
fAf . Choosing α in this manner ensures that

(αIr −AT
fAf ) is non-negative definite, so the following will hold,

F (S(k),S(k)) = JS and F (S,S(k)) ≥ JS .

Eq. (3.6) is minimized for all three cases: 0 < q < 1, q = 0 and q = 1.
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3.5.1 0 < q < 1

The majorizer function, (3.6), can be written as

F (S,S(k)) =α

2

r∑
j=1

P∑
p=1

s2
jp −

r∑
j=1

P∑
p=1

sjpbjp + h

2

P∑
p=1
|s(p)|q

=
r∑
j=1

P∑
p=1

f(sjp, s(k)
jp ),

where
f(sjp, s(k)

jp ) = α

2 s
2
jp − sjpbjp + h

2 |sjp|
q. (3.7)

Now, (3.7) is reformulated and multiplied with a constant to obtain

g(sjp, s(k)
jp ) = 1

α
f(sjp, s(k)

jp )

= 1
2(sjp −

1
α
bjp)2 + h

2α |sjp|
q + C

= 1
2(β − z)2 + λ|β|q + C, (3.8)

where C is a constant. The objective is to minimize (3.8), that is, find a solution to

min
β

1
2(β − z)2 + λ|β|q. (3.9)

This problem is solved using Theorem 1 in [143]. The theorem states that if 0 < q < 1
and with the following constants defined as

βa = [2λ(1− q)]
1

2−q and ha = βa + λqβq−1
a .

Then the solutions, β̂ = τ(z), of (3.9) are

τ(z) =

 0 if |z| < ha
{0, sgn(z)βa} if |z| = ha,
sgn(z)β∗ if |z| > ha,

(3.10)

where for |z| > ha, β∗ ∈ (βa, |z|) solves

β + λqβq−1 = |z| where β > 0. (3.11)

When |z| > ha there are two solutions to (3.11) and β∗ is the larger one which may
be computed from the iterations,

β(k+1) = ρ(β(k)) where ρ(β) = |z| − λqβq−1, (3.12)

with the initial condition β(0) ∈ [βa, |z|].
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3.6 Endmember Estimation

3.5.2 q = 0
In this case, the majorizer function is

F (S,S(k)) = 1
2tr(αSTS − 2BTS + C) + h

2

P∑
p=1

r∑
j=1
‖sjp‖0. (3.13)

Eq. (3.13) is first minimized, ignoring the `0 regularization (since it is a constant),
the solution is Ŝ = 1

αB. Then, the nonzero solution, F (Ŝ,S(k)), is compared to the
zero solution, F (0), and the solution that gives the lower value of F is chosen. The
following is compared (ignoring constants)

F (ŝjp, s
(k)
jp ) =

−b2
jp

α
+ h and F (0) = 0. (3.14)

That is,

ŝjp =
{

bjp

α if F (0)− F (ŝjp, skjp) ≥ 0,
0 otherwise. (3.15)

This minimization yields

B = [bjp] = AT
fYf + αS(k) −AT

fAfS(k),

sjp = bjp
1
α
I(bjp ≥

√
hα),

S(k+1) = [sjp],

where I(a > b) is 1 if a > b and 0 otherwise and S(k+1) is the new estimate of S. The
`0 regularization is incorporated into the solution using hard thresholding.

3.5.3 q = 1
The minimizing of (3.6) is now acheived with

S(k+1) = soft
(

S(k) + 1
α

AT(Y −AS(k)), h2α

)
, (3.16)

where soft(·) is the soft thresholding function defined as

soft(x, T ) =

 x+ T if x ≤ −T,
0 if |x| ≤ T,
x− T if x > T.

(3.17)

3.6 Endmember Estimation
The nonnegative quadratic programing approach [137] shown in Section 2.3 is used to
estimate the endmembers. Let R = DTD = R+ −R− where

R+
ij =

{
Rij if Rij > 0
0 otherwise, and R−ij =

{
|Rij | if Rij < 0
0 otherwise.
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Now, (3.2) can be rewritten as

JA =− tr(Y TAS) + 1
2(STATAS)

+ γ

2 tr(ATR+A)− γ

2 tr(ATR−A). (3.18)

By defining v = vec(A), b = −vec(Y ST) and using the rule [149]

tr(ABCD) = vecT(D)(A⊗CT)vec(BT),

(3.18) can be rewritten as a quadratic cost function,

JA = 1
2vTC+v − 1

2vTC−v + bTv, (3.19)

where

C+v = vec(ASST + γR+A),
C−v = vec(γR−A).

In each iteration, the multiplicative update rule given in (2.20) is used to decrease the
cost function.

3.7 The `q Unmixing Algorithm
The methods given in the previous sections are used for estimating S and A. A cyclic
descent algorithm is used where A and S are alternatively estimated until the cost
function has converged to its final value. The algorithm is considered converged if

J(A(k−1),S(k−1))− J(A(k),S(k))
J(A(k−1),S(k−1))

< 10−4, (3.20)

where k is the number of the current iteration and A(k) and S(k) are the current
estimations of the endmembers and abundances, respectively. The inputs to the algo-
rithm are the data (Y ), the initial estimates of A and S and the tuning parameters.
Algorithm 4 details this procedure.

3.8 Experimental Results
The method is evaluated using real and simulated data. The simulated data is created
using six spectral signatures as endmembers and the abundance maps are generated
following a Dirichlet probability density function. The first real data set is the Urban
data set detailed in Appendix B.1. The second real data set is the Cuprite data set
detailed in Appendix B.2.
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Algorithm 4: The `q Unmixing Algorithm.
1 Require Y , r, h, γ, δ, A(0) and S(0)

2 while the cost function has not converged do
3 Abundance step:
4 while S has not converged do
5 S(k+1) = arg min

S
J(A(k),S(k))

6 end
7 Endmember step: while A has not converged do
8 A(k+1) = arg min

A
J(A(k),S(k+1))

9 end
10 k ← k + 1
11 end

3.8.1 Simulated Data

A quantitative analysis of our methods is done using simulated data. Six spectral
signatures from the United States Geological Survey (USGS) digital spectral library1
make up the columns of the A matrix. To reduce the computational complexity, the
signatures are resampled so the number of bands is 80. The spectral signatures are
shown in Figure 3.2.
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Figure 3.2: The six spectral signatures used in the simulations for `q
unmixing.

Each column in the S matrix is generated following a Dirichlet probability density
function, with parameter equal to one. The signal variability is also controlled to
be within [0.7, 1.3]. This means that the sum of each column in S will be in the
aforementioned range. The number of pixels in the data are P = 300, so S will be of
size 6× 300. Additive Gaussian white noise is added uniformly to all bands according
to (3.1).

To evaluate the method, the SAD, nMSES and nMSEAS , as defined in Appendix A
1http://speclab.cr.usgs.gov/spectral.lib06
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(A.2-A.4) are used. These evaluation metrics will be referred to as the metrics.

Four scenarios will be examined, the first two scenarios will be dedicated to examining
how the metrics change while varying q and h. The third scenario will focus on the
smoothness parameter, γ, and the fourth scenario examines the sparsity of S.

In the first and third scenario, the effects of noise in the data will be examined. In
the second scenario, the effects of sparsity of the S matrix will be examined.

The fourth scenario is dedicated to examining the sparsity of S, i.e., how the sparsity
changes while varying q and h.

To begin with, both δ and γ are set to zero in these simulations and the number of
endmembers, r is set to the true number of endmembers used to create the data, that
is, r = 6. A is initialized using vertex component analysis [37] (VCA). S is initialized
with constants, 1/r.

Varying noise - examine q and h

In this scenario the noise in the data is varied. Four different SNR will be considered:
25dB, 30dB, 35dB and 40dB. The sparsity of S is fixed at 40%. This means that 40%
of all entries in S will be randomly set to zero.

The metrics are calculated for 0 ≤ q ≤ 1 and 0 ≤ h ≤ 0.03. A surface area with the
metrics is calculated for all combinations of h and q and plotted as a function of q and
h. In this manner the changes in the metrics with respect to the choices of h and q
can be evaluated. The results are shown in Figures 3.6 and 3.7.
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Figure 3.3: The values of q that minimize the metrics for SNR values
of 25, 30, 35 and 40 (dB), respectively, in the `q unmixing simulations.

The minima of the metrics are marked in Figures 3.6 and 3.7. The minima for each
SNR value occur within the same regions. E.g., when the SNR is 25dB, the minima of
all the metrics are found when 0.4 < q < 0.6, and 0.005 < h < 0.006. It is also noted
that when the SNR increases, lower values of h and higher values of q minimize the
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Figure 3.4: The values of h that minimize the metrics for SNR values
of 25, 30, 35 and 40 (dB), respectively, in the `q unmixing simulations

metrics. When the SNR is 40dB, q ≈ 1 gives the lowest values in the metrics.

However, the value of h at the minima is very low which indicates that the penalty
term has a small impact on the solution. This behavior can be better observed in
Figures 3.3 and 3.4. The value of q that minimizes the metrics increases when the
SNR increases while the value of h decreases.

The endmember matrix was initialized using VCA. In Figure 3.5, the SAD of the
initial values is compared to the optimal SAD found. Our method always improved
the SAD, although the improvement is minor when the unmixing problem is not very
hard, as is the case when SNR>35dB.
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Figure 3.5: The initial SAD compared to the optimal SAD found by the
proposed method while varying the SNR, in the `q unmixing simulations.
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Figure 3.6: `q unmixing results. With the sparsity fixed at 40%, the
SAD, nMSES and nMSEAS are calculated for snr equal to 25dB and
30dB, respectively. The white ’×’ shows the location where the SAD is
at a minima. The yellow ’◦’ shows the minima of nMSES and the green
’+’ shows the minima of nMSEAS . The black areas show values of h
and q where the number of endmembers were less than 6.
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Figure 3.7: `q unmixing results. With the sparsity fixed at 40%, the
SAD, nMSES and nMSEAS are calculated for SNR equal to 35dB and
40dB, respectively. The white ’×’ shows the location where the SAD is
at a minima. The yellow ’◦’ shows the minima of nMSES and the green
’+’ shows the minima of nMSEAS . The black areas show values of h
and q where the number of endmembers were less than 6.
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Varying sparsity - examine q and h

The sparsity of S will be controlled to be 10%, 30%, 50% and 70%, respectively. The
variance of the noise will be chosen fixed at a SNR of 30dB. As was done in the
previous simulations, the metrics will be calculated for 0 ≤ q ≤ 1 and 0 ≤ h ≤ 0.03.
The results are shown in Figures 3.10 and 3.11.

10 30 50 70
0

0.2

0.4

0.6

0.8

1

Sparsity (%)

q
va
lu
e

SAD
nMSES

nMSEAS

Figure 3.8: The values of q that result in the minima of the metrics
when the sparsity of S is 10%, 30%, 50%, and 70%, respectively, in the
`q simulations.
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Figure 3.9: The values of h that result in the minima of the metrics
when the sparsity of S is 10%, 30%, 50%, and 70%, respectively, in the
`q simulations.

In Figure 3.10, when the sparsity of S is at 10% and 30%, it can be seen that the
minima of the metrics occur in the same region. When the sparsity increases (Figure
3.11) the values of q and h that minimize the metrics are not confined to the same
region.
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Figure 3.10: `q unmixing results. With the SNR fixed at 30dB, the
SAD, nMSES and nMSEAS are calculated for when the sparsity of S
is 10%, 30%, respectively. The white ’×’ shows the location where the
SAD is at a minima. The yellow ’◦’ shows the minima of nMSES and the
green ’+’ shows the minima of nMSEAS . The black areas show values
of h and q where the number of endmembers were less than 6.

34



Sparse Hyperspectral Unmixing Using `q Regularization
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Figure 3.11: `q unmixing results. With the SNR fixed at 30dB, the
SAD, nMSES and nMSEAS are calculated when the sparsity of S is
50% and 70%, respectively. The white ’×’ shows the location where the
SAD is at a minima. The yellow ’◦’ shows the minima of nMSES and the
green ’+’ shows the minima of nMSEAS . The black areas show values
of h and q where the number of endmembers were less than 6.
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However, when S is very sparse, the surface areas of the metrics are relatively flat over
large regions. This is due to the fact that when S is very sparse, purity of the pixels is
higher and this makes the unmixing task easier. This is especially apparent in Figure
3.11, in the case when the sparsity is 70%. In this case, the SAD surface plot is very
flat excluding the upper right corner. Most combinations of q and h result in a low
SAD and a very good estimate of the endmembers.

In Figure 3.8, it can be seen that when the sparsity increases, lower values of q result
in lower metric values. This is partially supported by [143] where the authors state
that selecting q = 0 in sparse regression and matrix completion outperforms setting
q = 1 when the underlying model is very sparse.

In Figure 3.9, the value of h that minimizes the metrics does rise with increasing
sparsity, although it falls slightly for nMSES and nMSEAS when the sparsity is 70%.
In Figure 3.12, the SAD of the initial values is compared to the optimal SAD found.
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Figure 3.12: The initial SAD compared to the optimal SAD found by
the proposed method while sparsity the sparsity, in the `q simulations.

Varying noise - examine γ

The noise will be varied to be from 25dB to 40dB. The sparsity of S will be fixed at
40%, q = 0.8 and h = 2 × 10−3. There is no guarantee that these values of q and h
are optimal values for all the SNR values, but based on the results given in Figures
3.6 and 3.7, these parameters are expected to give good results.

For each SNR, the optimal values of γ is found. The values are optimal in the sense
that they minimize the SAD and nMSEAS . The results are shown in Figures 3.13 and
3.14.

In Figures 3.13 and 3.14, it can be seen that the roughness penalty can improve the
unmixing results when the SNR is lower than 32dB. Both the SAD and the recon-
struction error can be lowered by choosing the optimal γ value.
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Figure 3.13: The SAD, calculated when the SNR varies from 25dB to
40dB, in the `q simulations. The blue plot shows the SAD when γ = 0
and the green plot shows the SAD when the optimal γ value is used.
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Figure 3.14: The nMSEAS , calculated when the SNR varies from 25dB
to 40dB, in the `q simulations. The blue plot shows the nMSEAS when
γ = 0 and the green plot shows the nMSEAS when the optimal γ value
is used.

The SNR is now set to 30dB, and h and q are chosen so they are close to minimizing
all the metrics. Using Figure 3.6 (right column), the parameters are set to q = 0.75
and h = 0.0031.
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Figure 3.15: The SAD and nMSEAS , calculated when the SNR is 30dB,
in the `q simulations. The blue plot shows the SAD and the green plot
shows the nMSEAS .

In Figure 3.15, it can be seen that the roughness penalty improves the unmixing, even
when the optimal q and h have been chosen. The SAD and nMSEAS are at a minima
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when γ = 2× 10−3. This is however a marginal increase in performance.

Examine the sparsity of S

The sparsity of S will be calculated for 0 ≤ q ≤ 1 and 0 ≤ h ≤ 0.03. This is done with
δ = 0 and also when δ = 2. Setting δ = 2 promotes the ASC forcefully in the sense
that more than 90% of all columns of S will sum to 1 ± 0.05. The results are shown
in Figure 3.16.
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Figure 3.16: The sparsity (%) of S while varying h and q, in the `q
simulations. The left image shows the sparsity when δ = 0 and the right
image shows the sparsity when the ASC is enforced by setting δ = 2.

In Figure 3.16 it can be seen that when δ = 2, the sparsity of S does not increase when
q is decreased below ≈ 0.3, however when δ = 0 this is not the case, having q lower
than ≈ 0.3 can increase the sparsity of S. When the ASC is enforced, the sparsity of S
will be lower than when the ASC is not enforced for the same value of h, particularly
when q is close to 1. It can also be seen that when q = 1 it is not possible to promote
sparsity. When the ASC is enforced, the `1 penalty will not promote sparsity.

3.8.2 Real Data

Urban Data

The proposed method is now evaluated using the Urban data set. Low SNR bands,
[89, 90, 103-109, 130-152, 204-210] are removed. This yields 171 usable bands out of
the original 210. A RGB image is created by using spectral bands from the data to
represent the red, green and blue channels in the RGB image. The RGB image of the
data is shown in Figure 3.17.
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Two unmixing results will be shown, when the ASC is enforced and not enforced,
respectively. The two results will be compared and evaluated.
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67
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Figure 3.17: The RGB image of the Urban data set. The red x’s labeled
1-8 show the locations of the spectra used to initialize the `q algorithm.

The first step is to estimate the number of endmembers in the data set. This is done
using PCA and a visual inspection of the data. The principal components (PCs) and
their corresponding eigenvalues are calculated. Let λj be the jth eigenvalue and the
fraction of total variance retained be

Λ(n) =
∑n
j=1 λj∑M
j=1 λj

. (3.21)

In Figure 3.18, Λ(n) is plotted vs. the number of eigenvalues. This shows the marginal
explanatory power gained from including an additional PC in the model.
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Figure 3.18: The cumulative sum of first 25 normalized eigenvalues
(Λ(n)) found using the Urban data set. Retaining eight PCs explains
99.6% of the variance in the data. The red lines intersects with the 8th
PC.
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A visual inspection of the RGB image shows that there are at least eight different
macroscopic materials in the image: three different colored rooftops, asphalt, dirt,
shadow areas and two types of vegetation. Using PCA, and retaining eight PCs
explains 99.6% of the variance in the data. The number of endmembers (r) will thus
be set to eight.

To estimate suitable values of q and h for the Urban data set, when the ASC is not
enforced, the SNR is evaluated, and compared to the simulation data in the previous
section. The values of q and h that minimized the metrics in the simulation data
with same SNR are chosen for the Urban data set. To estimate the SNR the noise
estimation method in [101] is used. This method estimates the SNR to be 33.5dB.

Comparing this SNR to the simulation set (Figure 3.7), the parameters are set to
q = 0.8 and h = 0.002. These values are close to minimizing all the metrics when the
SNR in the simulation data is 35dB (left column in Figure 3.7). To make the two data
sets comparable, the Urban data is scaled to have the same variance as the simulation
data set.

Considering the estimated SNR of the Urban data set, it is unlikely that setting γ to
a high value will result in a large performance gain.

The same value that minimized the SAD in Figure 3.15 is chosen, i.e., γ = 0.002. This
is a very low value and will not have a large effect on the solution. The D matrix is
modified to allow for discontinuities between bands (100,101) and (120,121). These
discontinuities are a result of the removal of low SNR bands.

With the ASC enforced, the same parameter values will be used as when the ASC was
not enforced, with the exception that h = 0.008. This choice of h along with the ASC
will result in approximately the same sparsity of S as without the constraint.

The initial values for the A matrix are set by choosing 8 distinct unique macroscopic
material seen in the RGB image. The locations of the initial values are marked with
x’s and labeled 1-8 in Figure 3.17.

The Urban data set is now unmixed without enforcing the ASC, using r = 8, q = 0.8,
h = 0.002, γ = 0.002 and δ = 0. Enforcing the ASC, the same parameters are used
except that h = 0.008 and δ = 2. The unmixing results are shown in Figures 3.19 and
3.20, respectively.

When creating the abundance maps, 0.25% of the pixels with the highest intensity
values are ignored. Removing these outlier pixels makes visually evaluating the abun-
dance maps, and comparing the two solutions easier.

A ground truth for the Urban data set is not available, so these two solutions are
visually compared to each other and to the RGB image. By visually comparing the
abundance maps to the RGB image, the endmembers are labeled as the material that
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is present in the locations where the abundance maps have high intensity values. In
the following text, the term “associated with” refers to high intensity pixels in an
abundance map and the material seen in the RGB image at the same pixel locations.
The ASC solution refers to the unmixing results when the ASC is enforced and likewise
the non-ASC solution is when the ASC is not enforced.

1. The first endmember, labeled Asphalt, is associated with asphalt roads and
parking lots. The abundance map, in the ASC solution is noisier than without
the ASC, and it is also more noticeably associated with non-asphalt areas such
as dirt and light rooftops.

2. The second endmember is labeled Light Rooftops and the third is labeled Grass.
The endmember spectra and abundance maps are similar in both the ASC and
non-ASC solutions.

3. The third endmember is labeled Grass and both ASC and non-ASC solutions
are similar.

4. Endmember four is labeled Trees. The abundance maps in both solutions are
similar, but the ASC solution shows some association to grass areas.

5, 6. The fifth and sixth endmembers show associations to both dirt areas and red
rooftops.

7. The seventh endmember has some association with dirt areas and some rooftops.
The abundance maps have however low intensity values and are noisy.

8. The eighth endmember in the non-ASC solution is not associated with any spe-
cific material and the abundance map has low intensity values while the same
endmember in the ASC solution is associated with shadow areas.

The histograms of the sum of the columns if S are also shown in Figures 3.19 and
3.20. When the ASC is enforced, 99.5% of the columns of S sum to 1 ± 0.01. If the
ASC is not enforced, the sum of the columns ranges from 0 to 4.

Both enforcing the ASC and not enforcing it, results in good unmixing and most
abundance maps can be associated with few materials seen in the RGB image. A
ground truth of this data is not available so it is not possible to definitively state
which method is better. Not enforcing the ASC does though seem to give slightly
clearer abundance maps, and these maps can each be associated with fewer materials
in the RGB image, respectively.
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Figure 3.19: The `q unmixing results using the Urban data set with the
ASC not enforced. The endmembers are labeled by visually comparing
the abundance maps to the RGB image. The plot in the lower right
corner shows a histogram of the sum of the columns of S.
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Figure 3.20: The `q unmixing results using the Urban data set with the
ASC enforced. The endmembers are labeled by visually comparing the
abundance maps to the RGB image. The plot in the lower right corner
shows a histogram of the sum of the columns of S.
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Cuprite Data

Now the method is evaluated using the Cuprite data set. This site has received much
attention by researchers and several well documented minerals are exposed in the
landscape. These minerals are included in the USGS spectral library which holds
several hundred spectral signatures. However, as with the Urban data set, a ground
truth for this data set is not available.

The authors of [150] estimate 14 endmembers using the HySime [101] algorithm. The
same number of endmembers are used here, that is, r = 14. The energy contained in
the 14 first eigenvalues is 99.88% of the total signal energy.

The same methods as used in the previous section are used to estimate q and h. The
SNR of the Cuprite data set is estimated to be 39 dB. The parameter are set to
q = 0.95 and h = 0.001. These values minimize the metrics when the SNR of the
simulation data is 40 dB. We will not enforce ASC so δ = 0 and we set γ = 0.002.

To initialize A the image is first downsampled and then 14 endmembers are chosen
from the downsampled image that well represent the original data, in the least squares
sense. S is initialized with nonnegative regression. Low SNR bands, [1, 2, 105-115,
150-170, 223-224] are removed from the data set. This yield 188 usable bands out of
the original 224.

In Figure 3.21, three pairs of abundance maps and their corresponding endmembers
are shown. These are the abundance/endmember pairs that have the highest energy.
The signature of the material in the USGS library that has the lowest SAD from
the endmembers found is also shown. The signatures from the library are Muscovite,
Kaolinite-Smectite and Sphene. All of these material have been identified to be in the
area [37,151,152].

3.9 Conclusions

In this chapter an iterative cyclic descent algorithm, using an MM technique, for
unmixing hyperspectral data is presented. An `q sparsity penalty, where 0 ≤ q ≤ 1, is
used to promote sparseness in the abundances. Since the endmembers vary smoothly
in wavelength, a first order roughness penalty is used to promote smooth endmembers.
Both the degree of sparseness and the roughness can be varied via parameters. The
roughness penalty can also be canceled at known discontinuities in the endmember
spectra. The ASC can also be softly enforced using matrix augmentation.

The algorithm was tested using simulated data and the optimal parameters that min-
imized the reconstruction errors, and the spectral angle distance were found. How the
optimal parameters changed, when varying the SNR and the sparsity of the data was
examined.
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Figure 3.21: The `q unmixing results for the Cuprite data set. The top
four images show the RGB image and three abundance maps. The three
following graphs show the corresponding endmembers and the signatures
of the material in the USGS library that had the lowest SAD from the
endmembers.
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3.9 Conclusions

The simulations showed that choosing 0 < q < 1 could outperform the `1 norm, both
in terms of reconstruction errors and spectral angle distance.

In the simulations, it was observed that low values of q resulted in slightly better
unmixing results when the sparsity was increased. It was also noted that the value of
q that gave the best unmixing results decreased when the SNR of that data decrease.
Simulations also showed that in low SNR scenarios, the first order roughness penalty
could improve the unmixing results.

The algorithm was also tested using the Urban and Cuprite data sets. The Urban
data set was unmixed, both when the ASC was enforced and when it was not enforced.
These two results were compared and it was concluded that not enforcing the ASC
yielded better unmixing of this data set. The endmembers and their abundance maps
in both solutions were easily associated with clearly visible distinct material in the
RGB image. The Cuprite data set was unmixed and the most prominent endmembers
found were compared to a spectral library.
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Chapter

Hyperspectral Unmixing Using
TV and `q Regularization

4
In the previous chapter the sparse nature of the abundance maps was exploited to
aid the unmixing. In this chapter, the spatial characteristics of the abundance maps
are also used to further aid in the unmixing. A new cyclic descent algorithm for
blind hyperspectral unmixing using total variation (TV) and `q sparse regularization
is developed. The TV regularizer is used to encourage piecewise smooth images and
the `q regularizer promotes sparsity. The dyadic expansion decouples the problem
making a simple cyclic descent procedure possible, where one abundance map is
estimated, followed by the estimation of one endmember. The TV regularizer is
used to improve the method from the previous chapter. The effects of the tuning
parameters are examined using simulated data. The method is evaluated using real
hyperspectral images. Finally, the proposed method is used for classification. The
abundance maps are used as features for a Random Forest classifier, with the tuning
and model parameters chosen using cross-validation.

•

4.1 Introduction
Natural images are often composed of large monotone objects, e.g., large buildings,
vegetation fields. For this reason, neighboring pixels in hyperspectral images often
represent the same material. To exploit this characteristic, researchers have introduced
spatial regularization into the unmixing process. One such regularizer is the TV
regularizer [99, 100], which has been widely used in image processing [153–158]. The
TV regularizer promotes spatial homogeneity by penalizing differences in neighboring
pixels while conserving discontinuities [159].

Spatially smooth hyperspectral images translate into smooth abundance maps. If only
one specific material is locally abundant, then one of the abundance maps should have
relatively high intensity value pixels in that area while the other abundance maps
should have low or zero values in the same area.

As was discussed in the introduction of Chapter 3, the abundance maps are inherently
sparse, so the `q sparsity inducing regularizer that was used in Chapter 3 is also used
in the method presented here.

The ASC is often used in hyperspectral unmixing. The ASC forces the sum of the
abundances for each pixel to be one. This means that each pixel in the image should
be completely explained by the model. Adding the ASC to blind unmixing methods
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also avoids the degenerate solution. Unmixing algorithms are however not always able
to account for every material in an image and hyperspectral images contain noise. For
these reasons it is not obvious whether it is more appropriate to relax the ASC or not
use is at all and consider it as a part of the modeling error [2]. Also, the ASC does
not take into account variations in reflectance from the same material. This can be
caused by different incident reflectance angles or by shadowed areas. Despite these
shortcomings, the ASC has been widely used in many unmixing methods.

Another constraint that also avoids the degenerate solution is the endmember norm
constraint (ENC). This constraint puts a unit norm constraint on the endmembers.
The ENC constrains the endmembers to have the same energy and also stabilizes the
proposed algorithm.

4.2 Hyperspectral Unmixing
The hyperspectral model used is the low rank model (2.4), that is,

y(p) = As(p) + n(p), p = 1, . . . , P. (4.1)

Using the definitions for all variables in Section 2.1, the matrix representation of the
model is

Y = AS + N . (4.2)

The matrices, A and S, in (4.2), are found by solving,

Â, Ŝ = arg min J(A,S) (4.3)
s.t. S ≥ 0,A ≥ 0 and ‖a(n)‖2 = 1, n = 1, . . . , r,

where the cost function is given by

J(A,S) = 1
2

P∑
p=1
‖y(p) −As(p)‖2 + hq

r∑
n=1

Pq(sn) + γ

r∑
n=1

TV(sn). (4.4)

Here, 0 ≤ q ≤ 1, and the first penalty term is the `q regularizer, where

Pq(sn) =
{ ∑

p |snp|0 if q = 0,∑
p |snp|q if 0 < q ≤ 1, (4.5)

and
hq =

{
h2

2 if q = 0,
h2−q if 0 < q ≤ 1.

In (4.5), |snp|0 is equal to one if snp is nonzero, and zero otherwise. By adding the
unit norm constraint on the columns of A (the ENC) we ensure that the degenerate
solution is avoided.
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The last term in (4.4) is the isotropic [159] TV regularizer, given by

TV(sT
n) = ‖(zxn, zyn)‖ =

∑
i,j

√
z2
xn,ij + z2

yn,ij , (4.6)

where zxn = ∇xsn and zyn = ∇ysn.

The operators ∇x and ∇y are linear operators corresponding to horizontal and vertical
first order differences, respectively. The operation, ∇xsn, calculates the horizontal
differences of the column vector sn, where sn is first reshaped into a 2-dimensional
array, i.e., the inverse operation of vec(). Then the horizontal differences are calculated
for each pixel in the image.

4.3 Dyadic Cyclic Descent
There is no closed form solution available for solving (4.3), so a straight-forward ap-
proach could be to develop a two stage cyclic descent approach:

• Abundance Step: Fix A and estimate S.

• Endmember Step: Fix S and estimate A.

This approach has been used to solve similar optimization problems [76,122–124,130].
A different approach is taken here, where one column in A is estimated, followed by
one row in S. This is done by using the dyadic expansion [160], given by

AS =
r∑

n=1
a(n)s

T
n. (4.7)

Using (4.7), an r-step cyclic descent procedure is possible. To describe the cyclic
descent procedure, we first define the marginal cost function

Jn(a, s) = 1
2‖Rn − asT‖2 + hqPq(s) + γTV(s), (4.8)

where Rn = Y −A-nS-n.

The main observation regarding the cyclic descent algorithm is that when each variable
is fixed except an endmember a, then (4.3) is equivalent to

a = arg min
a
Jn(a, s)

s.t. a ≥ 0, ‖a‖2 = 1, n = 1, . . . , r.

and when each variable is fixed except an abundance s, then (4.3) is equivalent to

s = arg min
s
Jn(a, s)

s.t s ≥ 0, n = 1, . . . , r.
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4.3 Dyadic Cyclic Descent

4.3.1 Endmember Step

The endmember estimation step is the task of estimating A, i.e., minimizing

a
(k+1)
(n) = arg min

a
(k)
(n)

‖Rn − a
(k)
(n)(s

(k)
n )T‖2 (4.9)

s.t. a
(k)
(n) ≥ 0, ‖a(k)

(n)‖
2 = 1, n = 1, . . . , r.

Using Lagrange multiplier theory, the solution is

a
(k+1)
(n) = max

0, Rns
(k)
n∥∥∥Rns
(k)
n

∥∥∥
 . (4.10)

4.3.2 Abundance Step

Estimating the abundances is equivalent to minimizing

s(k+1)
n = arg min

s
(k)
n

1
2‖Rn − a

(k+1)
(n) s(k)

n ‖2 + hqPq(s(k)
n ) + γTV(s(k)

n )

= arg min
s

(k)
n

1
2‖(a

(k+1)
(n) )TRn − s(k)

n ‖2 + hqPq(s(k)
n ) + γTV(s(k)

n ), (4.11)

s.t. s(k)
n ≥ 0, n = 1, ..., r.

To simplify the notation, let u = s
(k)
n and f = (a(k+1)

(n) )TRn. The minimization
problem can thus be written as

u(k+1) = arg min
u

1
2‖f − u‖2 + hqPq(u) + γTV(u)

= arg min
u

µ

2 ‖f − u‖2 + h′qPq(u) + TV(u), (4.12)

s.t. u ≥ 0,

where µ = 1/γ and h′q = hq/γ. Having the minimization problem in the form given
in (4.12) makes it easy to use a modified version the split Bregman algorithm for
TV denoising from [158]. The method presented in [158] solves (4.12) without the
sparsity term. To solve (4.12), we combine the TV denoising method from [158] with
the method proposed in [143] for `q regularization.

The split Bregman formulation of the problem is

min
u,dx,dy

µ

2 ‖u− f‖2 + ‖(dx,dy)‖+ λ

2 ‖dx −∇xu− bx‖2

+ λ

2 ‖dy −∇yu− by‖2 + h′qPq(u).
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Defining mx = dx − bx and my = dy − by, then estimating u requires solving

u(k+1) = arg min
u

µ

2 ‖u− f‖2 + λ

2 ‖∇xu−mx‖2 + λ

2 ‖∇yu−my‖2 + h′qPq(u)

= arg min
u

1
2tr
{

uT(µI + λ∆)u− 2µuTf − 2λuT(∇T
xmx +∇T

ymy)
}

+ h′qPq(u), (4.13)

where ∆ = (∇T
x∇x +∇T

y∇y).

To develop a fast iterative algorithm that solves this minimization problem, the Gauss-
Seidel method, and thresholding is used. The Gauss-Seidel method involves estimating
one entry in u while holding all other entries fixed. Using the following definitions,

[∆u]i,j = 4ui,j − (ui+1,j + ui−1,j + ui,j+1 + ui,j−1)
= 4ui,j − vi,j ,

∆T
xmx,i,j = mx,i−1,j −mx,i,j ,

∆T
ymy,i,j = my,i,j−1 −my,i,j ,

wi,j = ∆T
xmx,i,j + ∆T

ymy,i,j

v = [v], w = [w],

the minimization problem can be written as

u
(k+1)
i,j = arg min

u

1
2‖u

(k)
i,j − g

(k)
i,j ‖

2 +
h′q

µ+ 4λPq(u
(k)
i,j ), (4.14)

where
g

(k)
i,j = 1

µ+ 4λ

(
µfi,j + λ(w(k)

i,j + v
(k)
i,j )
)
. (4.15)

• When q = 0, the solution to (4.14) is hard thresholding, that is

u
(k+1)
i,j =

{
g

(k)
i,j if g(k)

i,j >
√

2h′q
µ+4λ ,

0 otherwise.
(4.16)

• When 0 < q < 1 the solution is found using the thresholding method in [143],
slightly modified to enforce nonnegativity.

• When q = 1, the solution is soft-thresholding,

u
(k+1)
i,j = max

(
g

(k)
i,j −

h′q
µ+ 4λ, 0

)
. (4.17)

The updates for (d(k+1)
x ,d

(k+1)
y ) are [161]

d(k+1)
x = max(s(k) − 1/λ, 0)∇xu(k) + b

(k)
x

s(k) ,

d(k+1)
y = max(s(k) − 1/λ, 0)∇yu

(k) + b
(k)
y

s(k) ,
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where
s(k) =

∥∥∥(∇xu(k) + b(k)
x ,∇yu(k) + b(k)

y

)∥∥∥.
The update rules for bx and by are

b(k+1)
x = b(k)

x + (∇xu(k+1) − d(k+1)
x ),

b(k+1)
y = b(k)

y + (∇yu(k+1) − d(k+1)
y ).

The minimization algorithm is given in Algorithm 5.

Algorithm 5: Split Bregman `q sparse total variation algorithm. The type of
thresholding done by the thresholdq(g(k)), depends on q.

1 Require f , λ, q and h
2 Initialize u(0) = f , dx = dy = bx = by = 0, k = 0
3 while ‖u(k+1) − u(k)‖ > tol do
4 u(k+1) = thresholdq(g(k))
5 d

(k+1)
x = max(s(k) − 1/λ, 0)∇xu(k)+b(k)

x

s(k)

6 d
(k+1)
y = max(s(k) − 1/λ, 0)∇yu(k)+b(k)

y

s(y)

7 b
(k+1)
x = b

(k)
x + (∇xu(k+1) − d

(k+1)
x )

8 b
(k+1)
y = b

(k)
y + (∇yu(k+1) − d

(k+1)
y )

9 k = k + 1
10 end

4.4 Proposed Cyclic Descent Algorithm
The proposed hyperspectral unmixing algorithm for minimizing (4.4) is given in Algo-
rithm 6. The algorithm alternates between estimating one column in S, followed by
one column in A. These estimations are done using (4.10) and the algorithm given in
Algorithm 5, respectively.

The algorithm is terminated when the number of allowed iterations has been reached
or if the cost function (4.4) has converged to its final value, that is if

J (k−1) − J (k)

J (k) < tol, (4.18)

where tol is a predefined value. Estimating S is the most computationally intensive
part of the algorithm. This is done in Algorithm 5, and is called at line 6 in the main
algorithm. This part of the algorithm is implemented in C++. The C++ (Matlab
MEX) implementation provided by [158], is modified to handle the `q regularization
and used to estimate S. Approximately 80% of the computation time is spent running
this code. The rest of the algorithm is implemented in Matlab.
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Algorithm 6: The algorithm for sparse `q hyperspectral unmixing using the
dyadic expansion and total variation.

1 Require Y , r, γ, q and h
2 Initialize A(0) and S(0), k = 0
3 while the stopping criteria is not met do
4 for n = 1, ..., r do
5 s

(k+1)
n = arg min

s
(k)
n

Jn(a(k+1)
(n) , s

(k)
n )

s.t. s
(k)
n ≥ 0

6 a
(k+1)
(n) = arg min

a
(k)
(n)

Jn(a(k)
(n), s

(k+1)
n )

s.t. a
(k)
(n) ≥ 0, ‖a(k)

(n)‖
2 = 1

7 end
8 k = k + 1
9 end

4.5 Simulations

4.5.1 Simulation Data

A simulation data set is used to evaluate the proposed algorithm. Spectral signatures
(endmembers) from the United States Geological Survey (USGS) digital spectral li-
brary1 are used to create the true endmembers.

Some endmembers in the library are highly correlated so the library is pruned to
contain 62 endmembers. The minimum SAD between endmembers, after pruning, is
0.17rad (10◦). Each endmember was resampled from a length of 224 bands to 100
bands. Six endmembers are randomly selected from the library for the simulations.
The endmembers are scaled to have unit norm (‖a(n)‖2 = 1).

Each abundance map is generated as a checkerboard using 16 (4×4) squares of size
18×18 pixels. For each square in the image, an abundance vector is generated using a
Dirichlet distribution. Each square is thus spatially homogenous. Spectral variability
is also introduced into the abundance vectors by allowing the sum of each abundance
vector to be between 0.9 and 1.1. The sparsity of the abundance maps is set to
be approximately 0.35, so 35% of all entries in the abundance maps are set to zero.
Gaussian i.i.d. noise is added to the simulation data according to (4.1). Example
endmembers and two abundance maps are shown in Figure 4.1. The algorithm is
initialized with vertex component analysis (VCA) [37].

1http://speclab.cr.usgs.gov/spectral.lib06
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Figure 4.1: Examples of the signatures and two abundance maps used
in the TV umixing simulations. Each checker in the images is 18×18
pixels and the number of checkers is 16. The horizontal bar shows the
intensity values of the abundance maps.

4.5.2 Experiments

In the simulation experiments, the SNR is varied and the metrics defined in Appendix
A are calculated for different values of the tuning parameters, q, h and γ. The number
of endmembers is fixed at r = 6. For these experiments, it is assumed that the number
of endmembers is known. Surface plot of the metrics are generated. Four values of
q are considered for each SNR, q ∈ {0, 0.25, 0.5, 0.75, 1}. The values of h and γ are
varied such that the minima of the metrics show up on the surface plots.

In figures 4.2 - 4.4, the surface plots of the metrics are shown when the SNR value is
20dB, 25dB and 30dB. The white ’×’ marks the location of the surface minima. In
Table 4.1, the values corresponding to the minima are shown. The bold values are the
minimum values over all q. In the last two columns, the metrics calculated from the
initial values of A and S, and when both h and γ are set to zero are shown. Setting
h and γ to zero amounts to using the method with no regularization.

The same values of h and γ are not guaranteed to minimize all three metrics, but the
parameters that minimize the SAD and nMSES are often similar. Table 4.2 shows the
metrics when h and γ are chosen to minimize the nMSES . Choosing the parameter
values that minimize nMSES is a good compromise, the SAD is very close to its
minimum value and the nMSEAS does not increase much, compared to the minimum
value.
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Figure 4.2: The metrics, calculated for various values of q, γ and h when
the SNR is 20dB, in the TV unmixing simulations. The white ’×’ marks
the location of the surface minima.
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Figure 4.3: TV unmixing. The metrics, calculated for various values of
q, γ and h when the SNR is 25dB, in the TV unmixing simulations. The
white ’×’ marks the location of the surface minima.
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Figure 4.4: TV unmixing. The metrics, calculated for various values of
q, k and h when the SNR is 30dB, in the TV unmixing simulations. The
white ’×’ marks the location of the surface minima.
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Table 4.1: The minimum values of the metrics, in the TV unmixing
simulations. Bold values are the minimum values for each row.

SNR Metric q Initial h = 0
0 0.25 0.5 0.75 1 Values k = 0

20dB
SAD (rad) 0.068 0.059 0.066 0.083 0.078 0.111 0.176
nMSES (dB) -12.57 -15.12 -14.16 -11.58 -12.78 -9.77 -11.17
nMSEAS (dB) -40.33 -40.40 -40.83 -40.81 -41.32 -29.16 -32.18

25dB
SAD (rad) 0.048 0.026 0.025 0.029 0.062 0.086 0.106
nMSES (dB) -18.86 -20.82 -22.45 -18.82 -15.06 -11.97 -11.97
nMSEAS (dB) -44.80 -44.85 -44.92 -45.07 -45.89 -37.32 -37.19

30dB
SAD (rad) 0.044 0.036 0.032 0.033 0.049 0.081 0.076
nMSES (dB) -18.77 -19.98 -20.84 -20.27 -17.31 -12.30 -12.30
nMSEAS (dB) -49.79 -49.64 -49.37 -49.72 -50.53 -41.56 -42.23

Table 4.2: The metrics when γ and h minimize nMSES , in the TV
unmixing simulations. Bold values are the minimum values for each
row.

SNR Metric q

0 0.25 0.5 0.75 1

20dB
SAD (rad) 0.068 0.059 0.080 0.083 0.080
nMSES (dB) -12.57 -15.12 -14.16 -11.58 -12.78
nMSEAS (dB) -32.89 -38.97 -39.31 -33.29 -37.33

25dB
SAD (rad) 0.051 0.036 0.026 0.033 0.062
nMSES (dB) -18.86 -20.82 -22.45 -18.82 -15.06
nMSEAS (dB) -41.67 -43.74 -43.39 -38.44 -37.86

30dB
SAD (rad) 0.050 0.036 0.036 0.035 0.051
nMSES (dB) -18.77 -19.98 -20.84 -20.27 -17.31
nMSEAS (dB) -42.57 -42.58 -46.83 -43.43 -42.80

By examining Table 4.2, it can be seen that choosing q = 0.25 gives the best results
when the SNR is 20dB. Choosing q = 0.5 gives the best results when SNR is 25dB
and 30dB, respectively. In all of these cases, the best result is obtained when both h
and γ have nonzero values.

It is worth pointing out that choosing only sparsity, or only TV regularization, will
not yield good values for the reconstruction error (nMSEAS), but a combination of
sparsity and TV regularization (h > 0, γ > 0) can yield acceptable results for all
metrics.
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4.6 Real Hyperspectral Data

The proposed algorithm is evaluated using two real hyperspectral data sets. The first
is the Urban data described in Appendix B.1 and the second is the Cuprite data set
described in B.2.

Ground truth is not available for both of these data sets. However, the Cuprite
data set has been examined extensively by researchers and several well documented
minerals are exposed in the landscape. These minerals are included in the USGS
spectral library, which holds several hundred spectral signatures. We compare the
endmembers obtained to a subset of the spectral signatures in this library.

4.6.1 Urban

The Urban image is 307×307 pixels and the whole image is used. Bands numbered [89,
90, 103-109, 130-152, 204-210] are identified as water absorption or low SNR bands
and are removed, resulting in 171 usable bands. An RGB image, generated using the
hyperspectral data, is shown in Figure 4.5. The RGB image is split into two regions,
marked as a and b. The RGB image is created by using specific spectral bands from
the data set, to represent the red, green, and blue channels of the RGB image.

In the RGB image, at least eight different macroscopic materials are visible: asphalt,
dirt, three different colored rooftops, two types of vegetation and shadow areas. The
number of endmembers is therefore set to eight. The algorithm is initialized with VCA
as was done in the simulation part.

To select the tuning parameters for this data set we observe that the parameter set
(q = 0.5, h/σ = 0.5, γ = 0.002) gave good results for all the simulations done in Section
4.5.2. These parameter values are used for the Urban data set.

No ground truth is available for this data set, so a qualitative evaluation is done. The
obtained abundance maps are visually compared to the RGB image. The maps are
also compared to the abundance maps obtained using no regularization. Five out of
eight abundance maps are shown in Figure 4.5.

For the remainder of this paper the proposed sparse TV method is referred to as the
SpTv method, while NMF refers to unmixing using no regularization.

The sparsity of the SpTv abundance maps is 17% compared to 6% using NMF. There
are some important differences between the SpTv and NMF maps. The SpTv maps
are sparser and can be better associated with specific material in the RGB image.
Also, vertical artifacts that are clearly visible in the NMF maps are not as apparent
in the SpTv maps.
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Figure 4.5: SpTv unmixing results. The top left image is the RGB
generated image of the Urban data set, split into 2 regions marked ’a’ and
’b’. The other images are five out of eight estimated abundance maps.
The maps marked SpTv are the maps found with the proposed method,
and the maps marked NMF are the maps found with no regularization.

60



Hyperspectral Unmixing Using TV and `q Regularization

The maps in Figure 4.5 labeled 1, represent dirt areas. The main difference between
the SpTv and NMF map is that intensity of the SpTv map is higher at the locations
were the dirt is visible in the RGB image. Horizontal artifacts that are visible in the
NMF map are not visible in the SpTv map.

The maps labeled 2 are associated with grassy regions. The horizontal artifacts in the
NMF map are much less apparent in the SpTv map and the intensity values at the
grassy region are higher in the SpTv map.

The differences between the maps labeled 3 are not large but the intensity values of
the SpTv map are slightly higher in the areas covered by trees in the RGB image.

The high intensity pixels in the map labeled 4 represent asphalt roads. The SpTv map
is sparser than the NMF map and the high intensity pixels better reflect the asphalt
roads seen in the RGB map.

The NMF map labeled 5 represents tree areas and it is highly corrupted with horizontal
artifacts. The SpTv map however does not have these artifacts or any high value pixels.
This SpTv map has therefore little impact on the whole SpTv solution and could be
treated as noise while the NMF map cannot be treated as noise.

4.6.2 Cuprite

The method is now evaluated using the Cuprite data set detailed in Appendix B.2.
A 300×150 pixel subset of the whole image is used here. In [37], the number of
endmembers for this region is estimated to be 14 using the Virtual Dimensionality
method [106]. The number of endmember is set to r = 14. As was done in with
the Urban data set, the tuning parameters are set, q = 0.5, h/σ = 0.5 but the TV
parameter is set to a lower value. The generated RGB image of the Cuprite data set
does not exhibit the same spatially smooth characteristics of the Urban data set and
the TV parameter is thus set as γ = 2.5e-4.

The algorithm is initialized with random values for the endmembers and the abun-
dances are initialized using nonnegative regression. Low SNR bands numbered [1,
2, 105-115, 150-170, 222-224] are removed from the data set. This yields 187 usable
bands out of the original 224 bands.

To evaluate the unmixing, the endmembers are compared to the USGS digital spectral
library. This library contains laboratory spectra of minerals that are known to be in
the area [151]. This library contains hundreds of spectra of different variations of
minerals. Many of these spectra are very similar, so the library is pruned to contain
only minerals that are known to be in the region [37, 151]. Different variations of the
same mineral are also removed, to some extent, by constraining each spectra have
at least a SAD of 0.05rad (3◦) from all other spectra in the library. This leaves 245
signatures in the library.
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Table 4.3: The SAD between the endmembers found, using SpTv un-
mixing, in the Cuprite data set and the library endmembers.

Endmember # / Mineral SAD (rad)
SpTv VCA

1. Kaolin_Smect 0.055 0.070
2. Kaol_wxl+others 0.040 0.065
3. Andradite WS487 0.053 (Andradite HS111.3B) 0.081
4. Andradite WS474 0.061 0.067
5. Montmorillonite+Illite 0.059 (Kaolin_Smect) 0.060
6. Andradite WS487 0.056 (Montmorillonite-Na) 0.042
7. Sphene HS189.3B 0.052 (Andradite WS474) 0.067
8. Andradite WS487 0.065 (Andradite WS474) 0.045
9. Alun_Na+Kaol+Hemat 0.044 (Kaolin_Smect) 0.066
10. Montmorillonite+Illite 0.047 0.048
11. Alunite.5+Musc 0.106 (Alunite_K CU98-5C) 0.065
12. Alunite0.35K+.65Na 0.110 (Kaol_wxl+others) 0.105
13. Dolomit+Calcite+Talc 0.141 (Alunite+Dickite) 0.048
14. Alunite HS295.3B 0.111 (Buddingtonite) 0.077

In Table 4.3, the SAD from each estimated endmember to its closest match in the
library is shown. This is done for the proposed method (SpTv) and also for Vertex
Component Analysis (VCA). If the closest library endmembers are not the same for
both SpTv and VCA, the library endmembers that most resemble the VCA endmem-
bers are shown within brackets. Both methods find library endmembers that are very
close to the estimated endmembers. On four occasions, the methods find the same
library spectra for an endmember (endmembers numbered 1, 2, 4, 10). On three occa-
sions, the methods agree on the mineral but not on the spectra (endmembers numbered
3, 8, 11). On some occasions, the methods find the same library endmember for more
than one estimated endmember, e.g., endmembers 3 and 6 both have the lowest SAD
corresponding to Andradite WS487.

In Figures 4.6 and 4.7, six out of fourteen abundance maps and their corresponding
endmembers are also shown. Figure 4.6 also shows a generated RGB image of the
scene while Figure 4.7 also shows with the reconstruction error for each pixel in the
image.
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Figure 4.6: Unmixing results using SpTv. The first image in the top row
is the RGB generated image of the Cuprite data set. The other three
images in the top row are three out of fourteen abundance maps. The
plots show the corresponding estimated endmembers and also library
endmembers with the lowest SAD of the estimated endmembers. The
shaded area shows where noisy bands were removed.
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Figure 4.7: Unmixing results using SpTv. The first image in the top row
is the reconstruction error. The other three images in the top row are
three out of fourteen abundance maps. The plots show the corresponding
estimated endmembers and also library endmembers with the lowest
SAD of the estimated endmembers. The shaded area shows where noisy
bands were removed.
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4.7 Classification
The abundances created by the proposed sparse TV method will now be used as
features for classification. All tuning parameters (r, h and γ), excluding q, are chosen
using cross-validation. Here, q = 1 is used which results in `1 sparse regularization. A
Random Forest classifier [162] is used to classify the features. To evaluate the method,
two different data sets are used, the first is the Indian Pines and the second is the
Pavia University data set. These data sets are detailed in Appendices B.3 and B.4,
respectively.

4.7.1 Experimental Results

The classification results using the features obtained from the proposed sparse TV
method (SpTv) are compared to other feature extraction methods. The other methods
are PCA, unmixing using only TV (Tv) and unmixing using only sparsity (Sp).

The classification results using the features obtained from the proposed sparse TV
method (SpTv) are compared to other feature extraction methods. The other methods
are Principal Component Analysis (PCA), unmixing using only TV (Tv) and unmixing
using only sparsity (Sp). All tuning and model parameters for these methods, except
for q, are chosen using 5-fold cross-validation using only training data samples. For
these tests, q = 1.

A Random Forest classifier using 200 trees is used to classify the features. The clas-
sification results are shown in tables 4.4 and 4.5. The training samples for the Indian
Pines data set are chosen randomly for each experiment, but the training samples
for the Pavia University dataset have been manually selected [163]. The accuracy for
each class, the overall accuracy and the average accuracy are all given. The number
of training and test samples are also shown, along with the κ coefficient and the num-
ber of features selected for each method. The classification maps, ground truth, and
training samples, are shown in figures 4.8 and 4.9, respectively.

From the results given in tables 4.4 and 4.5 , it can be seen that using TV plays a key
role in increasing the classification accuracy. The accuracy of the Indian Pines data
set can be further increased by using sparsity. For the Pavia data set, cross-validation
chose hq = 0, so in that case only TV regularization is used.

The features found by the SpTv method yield much better classification results than
the features of PCA. This is accomplished using relatively few features.
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Table 4.4: The classification accuracies for the Pavia University data
set using the SpTv method. The bold numbers show the highest classi-
fication result.

Class name Test/Train PCA SpTv
1. Asphalt 6631/548 0.79 0.95
2. Meadows 18649/540 0.60 0.97
3. Gravel 2099/392 0.61 0.84
4. Trees 3064/524 0.98 0.99
5. Painted metal sheets 1345/265 1.00 1.00
6. Bare Soil 5029/532 0.94 0.90
7. Bitumen 1330/375 0.84 1.00
8. Self-Blocking Bricks 3682/514 0.88 0.98
9. Shadows 947/231 0.97 1.00
Average Class Acc. 0.844 0.959
Overall Acc. 0.747 0.957
κ 0.689 0.943
Number of features 10 13

Table 4.5: The average classification accuracies (and variance) for the
Indian Pines data set using the SpTv method. The values are aver-
aged from 20 Random Forest experiments. The bold numbers show the
highest classification result.

Class name Test/Train PCA / var Sp / var Tv / var SpTv / var
1. Corn-notill 1384/50 0.71 / 0.001 0.551 / 0.001 0.86 / 0.002 0.90 / 0.001
2. Corn-min 784/50 0.64 / 0.002 0.677 / 0.002 0.92 / 0.001 0.97 / 0.000
3. Corn 184/50 0.88 / 0.001 0.872 / 0.002 0.99 / 0.000 1.00 / 0.000
4. Grass/Pasture 447/50 0.90 / 0.001 0.859 / 0.001 0.96 / 0.001 0.96 / 0.000
5. Greass/Trees 697/50 0.92 / 0.001 0.903 / 0.001 0.99 / 0.000 0.99 / 0.000
6. Hay-windrowed 439/50 0.99 / 0.000 0.971 / 0.000 1.00 / 0.000 1.00 / 0.000
7. Soybean-no till 918/50 0.81 / 0.001 0.690 / 0.002 0.94 / 0.001 0.93 / 0.001
8. Soybean-min till 2418/50 0.63 / 0.003 0.600 / 0.002 0.89 / 0.001 0.94 / 0.001
9. Soybean-clean 564/50 0.87 / 0.001 0.734 / 0.001 0.93 / 0.001 0.95 / 0.000
10. Wheat 162/50 0.99 / 0.000 0.988 / 0.000 0.99 / 0.000 1.00 / 0.000
11. Woods 1244/50 0.87 / 0.002 0.847 / 0.002 0.97 / 0.000 1.00 / 0.000
12. Bldg-Grass-Trees-Drives 330/50 0.72 / 0.003 0.655 / 0.003 0.99 / 0.000 0.99 / 0.000
13. Stone-Steel-Towers 45/50 0.98 / 0.000 0.987 / 0.000 0.99 / 0.000 1.00 / 0.000
14. Alfalfa 39/15 0.72 / 0.007 0.779 / 0.005 0.98 / 0.002 0.97 / 0.001
15. Grass/pasture-mowed 11/15 0.82 / 0.007 0.864 / 0.008 0.98 / 0.002 0.98 / 0.001
16. Oats 5/15 0.98 / 0.004 0.970 / 0.005 1.00 / 0.000 1.00 / 0.000
Average Class Acc. 0.839 / 0.015 0.809 / 0.021 0.961 / 0.002 0.974 / 0.001
Overall Acc. 0.771 / 0.000 0.714 / 0.000 0.929 / 0.000 0.955 / 0.000
κ 0.741 0.679 0.919 0.949
Number of features 20 11 11 11
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(a) Training samples. The gray area shows all labeled pixels.

(b) Classification results. (c) Ground truth.
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Figure 4.8: Pavia University. The training samples, the ground truth
and the classification results using the features of SpTv.
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(b) Classification results.
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(c) Ground truth.

Figure 4.9: Indian Pines. The ground truth and the classification results
using the features of SpTv.

4.8 Conclustions
A sparse and smooth unmixing method is proposed. The method exploits both the
sparsity and the piecewise smoothness of abundance maps by minimizing a novel
penalized cost function. The method combines `q (0 ≤ q ≤ 1) and total variation
regularization to achieve sparse and piecewise smooth abundance maps. Both the
sparseness and the smoothness of the method can be varied via tuning parameters.

The dyadic expansion is used to decouple the minimization problem. This simplifies
the computations and optimized TV image denoising algorithms can be used, with
modifications to incorporate the `q sparsity regularization. The well known ASC is
not used but rather the ENC which constrains the endmembers to have unit norm.

Using simulated data, it is shown that neither sparse nor smooth regularization, re-
spectively, is able to minimize all three metrics that are used to evaluate the unmixing.
By combining sparseness and smoothness, a better solution is obtained where all the
metrics are close to their global minima. The simulations also show that using the `1
norm can yield a low reconstruction error, but better results w.r.t. the endmembers
and abundances can be achieved by using an `q norm with q < 1.

The method is also tested on two real hyperspectral data sets. The former is the
Urban data set and the unmixing solution is shown to improve when the proposed
regularization is used, compared to no regularization. The second real data set is
the Cuprite data set. The result obtained is compared to another well established
unmixing method and the estimated endmembers are compared to a spectral library.
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Both methods found similar endmembers, and library endmembers could be identified
that closely resembled the estimated endmembers.

The method is also used for classification, where the abundance maps are used as
features for a Random Forest classifier. All of the tuning parameters are selected
using cross-validation, with the exception that q = 1 which means that an `1 sparsity
regularizer is used. The Indian Pines and Pavia University data sets are classified in
this manner.

A combination of sparse and TV regularization yields the best classification results
for the Indian Pines. For the Pavia data set, cross-validation chose hq = 0, so in that
case only TV regularization was used.

The classification accuracies are significantly improved using the proposed method
compared to classification accuracies obtained using the features provided by PCA.
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Chapter

Semi-Supervised Hyperspectral
Unmixing

5
In this chapter we propose unmixing methods that rely on spectral dictionaries.
The first method uses hard constraints to force a subset of the endmembers to be
identical to known endmembers while the second method does the same using soft
constraints. This information about known endmembers can be acquired from a
spectral library or extracted from the data. The third and fourth methods make
the pure pixel assumption, and the endmembers will be selected from a dictionary
constructed from the data matrix. It may be appealing to have the endmembers
coincide with certain pixels in the image. By doing this, the dictionary will be
physically meaningful and may be interpreted unambiguously from the data set. All
of the methods are evaluated using both simulated and real hyperspectral data.

•

5.1 Semi-Supervised unmixing

In this section, two semi-supervised hyperspectral unmixing method are proposed.
Supervised and unsupervised unmixing is combined by using known endmembers while
estimating the unknown endmembers. The abundances are jointly estimated for both
the known and unknown endmembers. This process is repeated until the methods
have converged to their final solution. In the first method, the ASC is enforced using
the matrix augmentation given in (2.9).

The abundance sum constraint (ASC) which states that the sum of all the abundances
in each pixel should amount to one is often enforced in hyperspectral unmixing. This
constraint is enforced in the first method but it will not be enforced in the second
method. It has received some criticism in the literature [2,150]. An endmember norm
constraint (ENC), e.g. that the endmembers spectra should sum to one will however be
enforced in the second method. Adding this constraint will ensure that endmembers
are identified solely by their spectral signatures and not by their intensities. This
constraint also regularizes the method and avoids the degenerate solution.

If some material is known to be in the image and its spectral signature is known
(e.g. in a spectral library), then the unmixing will be improved by incorporating this
information into the unmixing process. In some cases it is possible to identity pure
pixels in an image. The spectral signatures of these pure pixels may be viewed as
noisy endmembers and they can be used to aid the unmixing process.
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5.1.1 Prior work

In [91] a sparse semi-supervised unmixing approach was presented. In that case a
spectral library was used, and the unmixing amounts to finding a small number of
materials in the library that best represent the observed data.

Semi-supervised unmixing similar to the methods proposed here has been used in other
fields. In [164], semi-blind independent component analysis (ICA [64]) of functional
magnetic resonance imaging (fMRI) data is proposed where the columns of the mixing
matrix are constrained to be close to pre-specified time courses. Supervised singular
value decomposition (SVD) for ICA of fMRI data is proposed in [165]. The approach
taken is to supervise the SVD by restricting it to find the best low rank approximation
within a certain subspace.

To distinguish between the two methods we will refer to the first hard constrained
method as hard-constrained-unmixing (HCU) and the second method as soft-constrained-
unmixing (SCU).

5.1.2 HCU Model

The low rank model is used to represent the hyperspectral data,

Y
M×P

= X
M×rk

B
rk×P

+ A
M×ru

S
ru×P

+ N .
M×P

(5.1)

Each pixel in the image is represented by one column in Y . Each column in X repre-
sents one known endmember, each column in A represents one unknown endmember.
The ith rows in S and B represent the abundance maps associated with the ith
columns in X and A, respectively. N is additive noise. The number of spectral bands
in the data is denoted M , rk is the number of known endmembers, ru is the number
of unknown endmembers and P is the number of pixels.

In (5.1), X and Y are the only known variables and the task is to estimate B, A and
S. To estimate these unknown variables, the following cost function is minimized,

J(A,S) = ‖Y −XB −AS‖2 + δ2‖1T
P − 1T

rZ‖2

= ‖Y −W Z‖2 + δ2‖1T
P − 1T

rZ‖2

= ‖Yf −WfZ‖2 (5.2)
s.t. A, B, S ≥ 0,

where W = [XA], Z = [BTST]T and 1r and 1P are column vectors of ones. The
parameter, δ, controls how strongly the ASC should be enforced. The matrices Yf
and Wf in (5.2) are augmented using (2.9).
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Estimation

A (block) cyclic descent algorithm [135] is used to minimize (5.2). The algorithm
consists of an abundance estimation step and an endmember estimation step. The
abundances are estimated while holding the unknown endmembers fixed and then the
unknown endmembers are estimated while holding the abundances fixed. This process
is repeated until the cost function has converged.

To estimate the abundances, a majorization-minimization (MM) [147] approach is
used. The MM approach iteratively minimizes a majorizing function. The objec-
tive function is driven downward in each step until a local minimum is found. The
majorizing function [148] used is

Q = tr(Z −Z(t))T(αIr −W T
f Wf )(Z −Z(t)), (5.3)

where tr() is the trace operator, Z(t) is an estimation of Z in iteration t and α is the
maximum eigenvalue of W T

f Wf . The cost function that will be minimize is given by

F (Z,Z(t)) = J +Q = ‖E −Z‖2 (5.4)

where E = W T
f Yf +αZ(t)−W T

f WfZ(t). By estimating Z, both B and S have been
jointly estimated.

To estimate the unknown endmembers, A, we minimize (5.2) with respect to A. We
write the terms of (5.2) that depend on A,

JA = ‖(Y −XB)+ −AS‖2 (5.5)

where (Y −XB)+ = max(0,Y −XB). A nonnegative quadratic programming method
similar to [137] (2.20) is used to minimize (5.5).

5.1.3 SCU model

The hyperspectral model used here is the low rank model (2.5),

Y
M×P

= A
M×r

S
r×P

+ N
M×P

, (5.6)

where all the variables are the same as defined in Chapter 2.1. The cost function that
is optimized to estimate the unknown variables is given by

J(A,S) = ‖Y −AS‖2 + h‖D −As‖2
F + g‖1T

r − 1T
MA‖2

s.t. A, S ≥ 0
(5.7)

where D is an M × rk matrix consisting of the library endmembers, rk is the number
of library endmembers, As are the estimated supervised endmembers, and 1r and 1M
are column vectors of ones.
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The first term in (5.7) is the fidelity term. The second term is controlled by the
tuning parameter, h, and dictates how strongly the supervised endmembers As, should
resemble the library endmembers in D. If h is very large, the endmembers in As will
be forced to be identical to the library endmembers. The third term is controlled by
g and promotes the columns of A (the endmembers) to sum to one. If g is set very
large, all endmembers will sum to exactly one.

Estimation

The MM approach that was used to estimate the abundances for the HCU model is
also used here. The majorizing function that is used is

QS = tr(S − S(k))T(αIr −ATA)(S − S(k)), (5.8)

where α is now the maximum eigenvalue of ATA. The cost function that will be
minimized is given by

FS(S,S(k)) = J +QS = ‖B − S‖2, (5.9)

where B = ATY + αS(k) −ATAS(k).

As with the abundances, an MM approach is used to estimate the endmembers. The
MM function is

QA = tr(A−A(k))T(αIr − SST)(A−A(k)), (5.10)

where A(k) is an estimation of A at iteration t and α is the maximum eigenvalue of
SST. The cost function that will be minimized is

FA(A,A(k)) =J +QA

=α‖B −A‖2 + h‖D −As‖2 + g‖1T
r − 1T

MA‖2, (5.11)

where B = 1/α(Y ST + αA(k) − SST). To minimize (5.11), a nonnegative quadratic
programming approach similar to (2.20) is used.

5.1.4 Simulations

Spectral signatures from the USGS spectral library1 are used to generate the simulated
data. The number of pixels is set P = 300 and the abundance maps are generated
following a Dirichlet probability density function. One pure pixel for each endmember
is included in the data. Spectral variability is introduced into the data so the sum of
the columns of S will range from 0.7 to 1.3.

1http://speclab.cr.usgs.gov/spectral.lib06
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HCU Simulations

In these simulations, eight endmembers are used and Gaussian white noise is added
to all bands uniformly so the signal to noise ratio is 40dB.

The method is evaluated using the spectral angle distance (SAD) given in (A.2), and
the normalized mean square error (nMSE) defined as

nMSE = ‖µ− µ̂‖
2
F

‖µ‖2
F

, (5.12)

where F denotes the Frobenius norm, µ = [XA][BTST]T and µ̂ is an estimate of µ.

In this simulation, the SAD ans nMSE are calculated while the number or endmembers
(ru) are varied. When ru = 8, there are eight unknown endmembers in the image and
when ru = 1 there is one unknown endmember and seven known endmembers. The
columns of X are populated with the spectral signatures from the pure pixels in the
data. The matrix A is initialized with selected pixels from the data set (not the
pure pixels). The ASC is very mildly enforced by setting δ = 0.3. In Figure 5.1, the
mean SAD from 100 simulations (along with one standard deviation) is plotted when
1 ≤ ru ≤ 8. A new abundance map is generated in each simulation. The mean SAD
is defined as

SAD = 1
L

L∑
l=1

SAD(Ŵl,W ), (5.13)

where Ŵl are the estimated endmembers (known and unknown) for simulation l, and
L = 100. The mean nMSE and mean running time are similarly defined. The mean
nMSE is shown in Figure 5.2. The mean running time of the algorithm for 1 ≤ ru ≤ 8
is shown in Figure 5.3. Both the SAD and the time needed for the method to converge
decrease when ru is decreased.

The nMSE does however increase when ru is decreased, note that the endmembers
used to populate X are endmembers corrupted with noise.
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Figure 5.1: Semi-supervised HCU. The mean spectral angle distance,
along with one standard deviation, for 1 ≤ ru ≤ 8.
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Figure 5.2: Semi-supervised HCU. The mean nMSE, along with one
standard deviation, for 1 ≤ ru ≤ 8.
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Figure 5.3: Semi-supervised HCU. The mean computational time, along
with one standard deviation,for 1 ≤ ru ≤ 8.

SCU Simulations

In these simulations, six endmembers are used and Gaussian white noise is added to
all bands uniformly so the signal to noise ratio is 35dB.

To evaluate the method, the spectral angle distance (SAD), and normalized mean
square error (nMSEAS), defined in Appendix A, are used.

The simulations are similar to the HCU case. The SAD and nMSEAS are varied while
changing the number of unknown endmembers (ru) and the tuning parameter, h. The
matrix D is initialized in the same way as in the HCU case. The tuning parameter
g is set to 1 which means the sum of each estimated endmember will be very close
to 1. Figure 5.4 gives the mean SAD for 1 ≤ ru ≤ 6 and 10−2 ≤ h ≤ 107 from
100 simulations. In each simulation, new abundance maps and noise components are
generated.

In Figure 5.4, it can be seen that when ru is decreased, the mean SAD can be lowered
and the minima is not always found when h is chosen very large. This means that a
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Figure 5.4: Semi-supervised SCU. The mean SAD when 1 ≤ ru ≤ 6 and
10−2 ≤ h ≤ 107.

soft constraint can result in better unmixing, if h is chosen correctly. The mean SAD
is at a minima for ru ≤ 3 when h = 6.95. In Figure 5.5, the mean SAD along with
one standard deviation is plotted for 1 ≤ ru ≤ 6 and h = 6.95.
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Figure 5.5: Semi-supervised SCU. The mean SAD, along with one stan-
dard deviation, when 1 ≤ ru ≤ 6 and h = 6.95.

In Figure 5.6, the mean nMSEAS along with one standard deviation is plotted for
1 ≤ ru ≤ 6 and h = 6.95. The nMSEAS does increase when ru decreases, but bear
in mind that the library, D was not populated with true endmembers but with noisy
pure pixels from the data.

5.1.5 Real Data
The real data set is the Urban hyperspectral image, detailed in Appendix B.1. A
generated RGB image of the data set is shown in Figure 5.7.

At least eight different macroscopic materials can be seen in the RGB image: asphalt,
dirt, three different colored rooftops, and two types of vegetation and shadow areas.
The number of endmembers is set to eight and the algorithm is initialized with pixels
at located at the regions marked with x’s and labeled 1-8 in the RGB image.
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Figure 5.6: Semi-supervised SCU. The mean nMSEAS , along with one
standard deviation, when 1 ≤ ru ≤ 6 and h = 6.95.

In the RGB image, there are also 3 regions of interest marked with yellow borders.
The first region in the top right corner of the RGB image shows an asphalt road, grass
and a parking lot. The second region in the lower left corner and shows a residential
area (rooftops, trees, and grass). The third area is in the lower right corner and shows
grass, trees and a road.

The same procedure as was used for the simulated data is applied here. The two
unmixing methods are used for 1 ≤ ru ≤ 8. When ru = 8 there are no known
endmembers. When ru = 7 the first endmember assumed to be known. This is
the endmember associated with asphalt roads. A spectral signature is generated by
averaging a small area around the ’x’ marked 1 in the image. This signature is assumed
to be an endmember and to represent asphalt. The signature is used to populate the X
matrix (or D for SCU) . When rk = 6 we populate X with two signatures, associated
with asphalt and rooftops (marked 1 and 2 in the RGB image). This procedure is
then repeated for 3 ≤ rk ≤ 8.

Three abundance maps for ru = {8, 7, 5, 3, 1} are given in Figures 5.8 and 5.9. The
top rows show the maps associated with asphalt (region 1), the middle rows show
the maps associated with rooftops (region 2) and the bottom rows show the maps
associated with grass (region 3).

It can be seen that the abundance maps improve when rk is increased. When rk > 0,
the quality of the abundance maps improves and they better represent the material
they are associated with.
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Figure 5.7: Semi-supervised unmixing. The generated RGB image of
the Urban data set. The red x’s labeled 1-8 show the locations of the
spectra used to initialize the algorithm. The yellow rectangles show the
locations of the regions of interest for the first three endmembers.
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Figure 5.8: Semi-supervised HCU. The abundance maps for the regions
of interest when ru = {8, 7, 5, 3, 1}.
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Figure 5.9: Semi-supervised SCU. The abundance maps of the regions
of interest when ru = {8, 7, 5, 3, 1}.

5.2 Matrix Decomposition Using the Pure Pixel
Assumption

Finding a low rank approximation of a matrix that lies in the span of few columns of the
matrix is a hard combinatorial problem. In the context of hyperspectral imaging this
amounts to finding endmembers that are already present in the data. The assumption
is made that there are pure pixels within the data. This assumption is a strong
requisite and may not hold for all data sets [2].

This methodology has also been called CUR [32] decomposition. The original CUR [32]
takes a randomized algorithmic approach. However, [31] proposed a convex optimiza-
tion version of CUR which methods here are loosely based on. The method proposed
in [77] can also be considered a relaxation of CUR. Related work that also estimate
endmembers using sparse regression is [95], where the sparsity regularization is applied
in a different manner than is done here.

The methods proposed here are useful for finding low rank approximations for hy-
perspectral data based on endmembers that appear in the data cube. The methods
can also be used for initializing other methods that further refine the solution. The
methods automatically select the rank of the data set, which usually is a very hard
problem. However, a sparseness tuning parameter which affects the rank of the data
set must be chosen. One novelty of the proposed methods is the use of the vector `0
penalty combined with the nonnegativity of the abundance maps.
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5.2.1 The Cost Function
Using the definitions given in Section 2.1, the cost function considered is given by

J(S) = 1
2‖Y − YmS‖2 + λ

2

P∑
i=1

Rq(si), (5.14)

s.t. S ≥ 0,

where Ym be a subset of m columns from Y . This subset will make up a dictionary, or
candidate endmembers. Rq(si) is the regularization term and the tuning parameter,
λ, is nonnegative and controls the sparseness of the solution, that is, the number of
nonzero rows in S.

Two sparsity inducing regularization terms are considered. The first is the standard
group lasso regularization, i.e. the `2 penalty (q = 2) defined as

R2(si) = ‖si‖2 =
( P∑
p=1

s2
ip

)1/2
. (5.15)

The second regularization term is the vector `0 (q = 0) penalty defined as

R0(si) = |||si|||0 = I(‖si‖ 6= 0) (5.16)

where I(·) is the indicator function.

Estimation

To estimate the abundance matrix, S, a majorization-minimization [147] (MM) ap-
proach is used. The majorizing function [148] that will be minimized is (ignoring
constants)

Q(S,S(k)) =J(S) + 1
2tr(S − S(k))T(αIr − Y T

mYm)(S − S(k)),

=1
2tr(αSTS − 2BTS) + λ

2

P∑
i=1

Rq(si) (5.17)

s.t. S ≥ 0,

where S(k) is an estimate of S,

B = Y T
mY + (αIr − Y T

mYm)S(k),

and α is the maximum eigenvalue of Y T
mYm. This choice of α ensures that (αIr −

Y T
mYm) is nonnegative definite.

The solution to the minimization problem with `0 regularization is

si
(k+1) =

{ 1
αbi+ if 1

αbi+bT
i+ ≥ λ

0 otherwise, (5.18)
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where bi is row i in B and (·)+ = max(0, ·). The solution to the minimization problem
with `2 regularization is

s
(k+1)
i = 1

α
(bi+bT

i+ − λ)+

(
bi+
‖bi+‖2

)
. (5.19)

Two iterative algorithms are implemented that solve these minimization problems,
respectively. Algorithm 7 uses (5.18) to solve the minimization problem with `0 reg-
ularization and Algorithm 8 uses (5.19) for the `2 case. Throughout the rest of this
chapter, Algorithm 7 will referred to as the `0 method and Algorithm 8 will referred
to as the `2 method.

Algorithm 7: An iterative algorithm for estimating S using `0 regularization.
1 Initialize: Ym, Ŝ(0) and set k = 0
2 while S(k+1) has not converged do
3 S(k+1) = S(k)

4 while S(k+1) has not converged do
5 B+ = max(0,Y T

mY + (αIr − Y T
mYm)S(k+1))

6 S(k+1) = 1
αB+

7 Calculate the thresholds, th = 1
αBTB

8 If min(thi) < λ then si
(k+1) = 0.

9 k = k + 1

Algorithm 8: An iterative algorithm for estimating S using `2 regularization.
1 Initialize: Ym, Ŝ(0) and set k = 0
2 while S(k+1) has not converged do
3 B+ = max(0,Y T

mY + (αIr − Y T
mYm)S(k+1))

4 s
(k+1)
i = 1

α (bi+bT
i+ − λ)+

(
bi+
‖bi+‖2

)
5 k = k + 1

5.2.2 Experimental Results

The methods are evaluated using both simulated and real data. The simulated data
set is created using 6 spectral signatures as endmembers and the abundance maps
are generated following a Dirichlet distribution. The real data set is Urban data set
described in Appendix B.1.
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Simulated data

The simulated data is generated according to the model,

Y
M×P

= A
M×r

S
r×P

+ N
M×P

. (5.20)

The number of endmembers is r = 6, the spectral bands are M = 160 and the number
of pixels is P = 1000 and N is Gaussian noise.

Spectral signatures from the USGS digital spectral library2 make up the columns of
the A matrix. The spectral signatures are shown in Figure 5.10. Each column in the S
matrix is generated following a Dirichlet probability density function, with parameter
equal to one.
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Figure 5.10: The six spectral signatures that are used in the PP simu-
lations.

To evaluate the method, the SAD, given in (A.2) in Appendix A is used.

The SNR in the data is varied from 20dB to 40dB. Ym is initialized by finding a subset
of 50 distinct spectral signatures in Y . Each signature in Ym is constrained to have
a SAD of at least 0.075 from all other signals in Ym. In Figure 5.11 the SAD can be
seen, calculated for SNR values ranging from 20dB to 40dB. For each specified SNR,
the SAD is calculated for 30 runs and the average value is shown. In each run, a new
noise matrix is added to the original noiseless data. The sparseness parameter, λ, is
chosen so the number of estimated endmembers is the same as the number of true
endmembers used to create the data set.

The `0 method gives a lower SAD for all SNR values and is thus able to find end-
members that are closer to the true endmembers that were used to generate the data
set.

2http://speclab.cr.usgs.gov/spectral.lib06
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Figure 5.11: Using the PP assumption. The SAD between the estimated
endmembers and the true endmembers for the simulation data.

Real data

The `0 method gave lower SAD values than the `2 method, so the focus will be on
the `0 method. This method will be evaluated using the Urban data set. Bands (89,
90, 103-109, 130-152, 204-210) are removed and the remaining 171 bands are used.
The same method that was used in the simulated data experiments is used here to
initialize Ym, and it is composed of 38 signatures that are present in the data set.

In Figure 5.12, the error, ERR = ‖Y −YmS‖2, is plotted w.r.t. the number of non-zero
rows (r) in the S (the number of endmembers in the solution). The error decreases
considerably when the number of endmembers increase from 1 to 5 and then decreases
slightly when 5<r<8. Increasing the number of endmembers beyond 8 does not yield
a lower error.
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Figure 5.12: Using the PP assumption. ERR = ‖Y − YmS‖ plotted
w.r.t. the number of endmembers.

The sparseness parameter, λ, is chosen so the algorithm converges having 7 endmem-
bers. An RGB image of the scene, the endmembers and their abundance maps are
shown in Figure 5.13. The abundance maps are clearly associated with macroscopic
material visible in the RGB image. Some of the endmembers are however not pure in
the sense that they are not associated with only one material. The abundance matrix,
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S estimated by the algorithm is very sparse, approximately 60% of all entries in the
matrix are zero.
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Figure 5.13: Using the PP assumption. The RGB image, the endmem-
bers and the abundance maps estimated from the Urban data set. The
red dots on the RGB image show the locations of the candidate end-
members that make up Ym. The green crosses show the location of the
7 endmembers found by the algorithm.
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5.3 Conclusions
Four hyperspectral unmixing methods that rely in part on endmembers dictionaries
have been proposed.

Two first methods combine supervised and unsupervised unmixing. A priori infor-
mation about known endmembers is added to the unmixing model and we estimate
endmembers that are not known. Using A priori information improves the unmixing
results and also reduces the computations. The first method employs the ASC and
uses hard constraints to force a subset of the endmembers to exactly match library
endmembers. The second method used the ENC and softly constrains the endmembers
to be similar to library endmembers.

The known endmembers can be identified in the data as pure pixels or be supplied
from a spectral library. The method was tested on both simulated data and a real
hyperspectral image. The methodology used here can easily be incorporated into other
NMF [72] type unmixing or more sophisticated cyclic-descent unmixing methods such
as sparsity inducing unmixing methods [122,123].

The latter two methods make the pure pixel assumption. The endmembers are se-
lected from a dictionary, constructed from the original data matrix. This allows us
to unambiguously interpret the endmembers from the data set. Both methods use
sparsity regularization to control the number of endmembers in the solution. In the
first method, `2 regularization is used, which is implemented using an iterative soft
thresholding algorithm. The second method uses `0 regularization, which results in a
hard thresholding algorithm.

These two methods were compared using simulated data by calculating the SAD be-
tween the estimated endmembers and the true endmembers. The method using `0
regularization performed better than the `2 method in the sense that the SAD was
lower for all simulations.

The `0 method was also tested using the Urban data set. The abundance maps were
clearly associated with distinct macroscopic material visible in the RGB image, al-
though some abundance maps were not associated with only one material.
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Chapter

Conclusions 6
In this chapter, the conclusions and main contributions are reviewed. Future re-
search topics are also discussed.

•

6.1 Main Contributions
The goal of this thesis is to present hyperspectral unmixing methods using the low
rank model. The methods are designed to exploit different characteristics of the hy-
perspectral data. These characteristics are incorporated into objective functions that
are then optimized. The main contributions of this thesis are listed here.

6.1.1 Sparse Hyperspectral Unmixing Using `q Regularization

An iterative cyclic descent unmixing algorithm, using an MM technique, is presented.
An `q sparsity penalty, where 0 ≤ q ≤ 1, is used to promote sparseness in the abun-
dances and a first order roughness penalty is used to promote smooth endmembers.
Both the degree of sparseness and the roughness can be varied with tuning param-
eters. The roughness penalty can also be canceled at known discontinuities in the
endmember spectra. The ASC can also be softly enforced.

The algorithm was tested using simulated data and the optimal parameters that min-
imized the reconstruction errors, and the spectral angle distance were found. The
simulations showed that choosing 0 < q < 1 could outperform the `1 norm, both in
terms of reconstruction errors and spectral angle distance.

In the simulations, it was observed that low values of q resulted in slightly better
unmixing results when the sparsity was increased. It was also noted that the value of
q that gave the best unmixing results decreased when the SNR of that data decreased.
Simulations also showed that in low SNR scenarios, the first order roughness penalty
could improve the unmixing results.

The algorithm was also tested using both the Urban and Cuprite data sets. The Urban
data set was unmixed, both when the ASC was enforced and when it was not enforced.
These two results were compared and it was concluded that not enforcing the ASC
yielded better unmixing of this data set. The endmembers and their abundance maps
in both solutions were easily associated with clearly visible distinct material in the
RGB image. The Cuprite data set was unmixed and the most prominent endmembers
found were compared to a spectral library.
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6.1.2 Hyperspectral Unmixing Using Total Variation and `q
Regularization

A piecewise smooth and sparse unmixing method is proposed. The method minimizes a
novel cost function that exploits the sparsity and piecewise smoothness of abundance
maps. The method combines `q (0 ≤ q ≤ 1) and total variation regularization to
achieve sparse and piecewise smooth abundance maps. Both the sparseness and the
smoothness of the method can be varied via tuning parameters.

The dyadic expansion is used to decouple the minimization problem. A TV image
denoising algorithm is modified to incorporate the `q sparsity regularization. This
modified algorithm is then used by the method. The well known ASC is not used but
rather the ENC which constrains the endmembers to have unit norm.

Simulations showed that neither sparse nor smooth regularization, respectively, was
able to minimize all three metrics that were used to evaluate the unmixing. A com-
bination of sparseness and smoothness, gave a better solution, where all the metrics
were close to their global minima. The simulations also showed that using the `1
norm can yield a low reconstruction error, but better results w.r.t. the endmembers
and abundances could be achieved by using an `q norm with q < 1.

The method was also tested using the Urban and Cuprite data sets. The solution
found, when unmixing the Urban data was improved using the proposed regulariza-
tion. The result obtained using the Cuprite data set was compared to another well
established unmixing method and the estimated endmembers were compared to a
spectral library. Both methods estimated similar endmembers and these endmembers
closely resembled endmembers found in a spectral library.

The method was also used for classification. The abundance maps were used as features
for a Random Forest classifier. All of the tuning parameters were selected using cross-
validation, with the exception that q = 1, which means that an `1 sparsity regularizer
was used. The Indian Pines and Pavia University data sets were classified in this
manner.

A combination of sparse and TV regularization gave the best classification results for
the Indian Pines. For the Pavia data set, cross-validation chose hq = 0, so in that
case only TV regularization was used. The classification accuracies are significantly
improved using the proposed method compared to classification accuracies obtained
using the features provided by PCA.

6.1.3 Semi-Supervised Hyperspectral Unmixing

Two methods for semi-supervised hyperspectral unmixing are proposed. Supervised
and unsupervised unmixing is combined in a way that allows certain known endmem-
bers to be specified, while others are estimated from the data. The abundance maps
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are estimated for all the endmembers. These known endmembers can be acquired
from a spectral library or extracted from the data. A priori information about known
endmembers is added to the unmixing model and we estimate endmembers that are
not known. Using A priori information improves the unmixing results and also reduces
the computations.

The first of these methods employs hard regularization, forcing the known endmembers
to be exactly identified beforehand. This method also employs the ASC.

The second method improves on the first method by using soft regularization to con-
strain the endmembers to be similar to the library endmembers. There may be cali-
bration mismatches between the real image spectra and the spectra available from a
library. If the library endmembers are identified as pure pixels in the data, they are
not noise-free and are thus not pure endmembers. To account for these problems, the
estimated endmembers are allowed to deviate from the library endmembers to some
degree. This is achieved with soft regularization.

Simulations show that the unmixing can be improved and that softly constraining the
supervised endmembers to be similar to specific pure pixels in the data could yield
better results than fixing specific pure pixels as the endmembers.

The methods were used to unmix the Urban data set. The results showed that the
abundance maps could be improved when using the proposed methods.

6.1.4 Matrix Decomposition Using the Pure Pixel Assumption

It may be appealing to have the endmembers coincide with certain pixels in the image.
This is the pure pixel assumption. This guarantees that the endmembers can be fully
explained by material seen in the image. Two hyperspectral unmixing methods are
proposed that make the pure pixel assumption. The endmembers are selected from a
dictionary, constructed from the original data matrix. Both methods use sparsity reg-
ularization to control the number of endmembers in the solution. In the first method,
`2 regularization is used, which is implemented using an iterative soft thresholding
algorithm. The second method uses vector-`0 regularization, which results in a hard
thresholding algorithm.

These two methods are compared using simulated data, and the method using vector-
`0 regularization is found to perform better than the `2 method.

The `0 method was also tested using the Urban data set. The abundance maps were
clearly associated with distinct macroscopic material visible in the RGB image, al-
though some abundance maps were not associated with only one material.

89



6.2 Further work

6.2 Further work
The work presented here can be extended or continued in a number of ways. Some
possible future research topics are listed below.

• Many unmixing methods are highly dependent on both tuning and model param-
eters. However, parameter estimation in hyperspectral unmixing is a daunting
task which has received some attention but there are many unexplored avenues
in this field.

• Some hyperspectral images are huge and in the future, they will increase in size
and resolution. This will strain the hardware used, and put a constraint on the
complexity of the unmixing methods. One possible way to tackle this issue is to
use distributed or parallel methods. This is however not a trivial problem. How
to split the data, and combine the results, is a interesting research topic that has
received some well deserved attention recently. Adapting the methods presented
here to work in a parallel or distributed manner is a worthy topic.

• The semi-constrained unmixing method could be further developed to simulta-
neously attempt to identify the correct endmembers in a spectral library while
also identifying the unknown endmembers.

• The methods presented here are applied on remote sensing hyperspectral data.
These methods can be applied on other different data, such as medical data, e.g.,
magnetic resonance images (MRI) and functional MRI (fMRI) signals. It can be
interesting to adapt the methods presented here to work with different data.
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Appendix

Evaluation Metrics A
Here are detailed three key metrics that are used to evaluate unmixing results.

•

To evaluate the quality of hyperspectral unmixing methods, three metrics will be
used: the spectral angle distance (SAD), the normalized abundance mean-square error
(nMSES ) and the normalized signal reconstruction mean-square error (nMSEAS ).

Given an endmember matrix, A, where each column represents one endmember, the
spectral angle distance (SADi) between an estimated endmember, â(i) and a true
endmember, a(i) is defined as

SADi(A, Â) = arccos
(

aT
(i)â(i)

‖a(i)‖‖â(i)‖

)
. (A.1)

This metric compares the similarity of an estimated endmember to the true endmem-
ber. An SADi of zero means that the two endmembers signatures being compared are
essentially the same (SADi ignores scale and sign). We define the SAD as the average
SADi of all of the endmembers, that is,

SAD = 1
r

r∑
i=1

SADi(A, Â). (A.2)

Two mean-square errors are also used, the former being normalized abundance mean-
square error, nMSES , defined as

nMSES = ‖S − Ŝ‖2

‖S‖2
F

. (A.3)

This metric compares the abundances estimate abundances, Ŝ, to the true abundances,
S. The latter mean-square error is the normalized reconstruction error, measuring
how accurately the real noise free data is estimated by the product of the estimated
endmembers and abundances,

nMSEAS = ‖AS − ÂŜ‖2

‖AS‖2
F

. (A.4)

We will refer to the SAD, nMSES and nMSEAS as the metrics. These metrics can
only be used when the true endmembers and abundances are known, as is the case
with simulated data.
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Appendix

Hyperspectral Data B
This appendix describes the hyperspectral data sets used in this thesis.

•

B.1 Urban
The first real data set is a 307 × 307 pixel HYDICE (Hyperspectral Digital Imagery
Collection Experiment) hyperspectral image. The area is an urban landscape, showing
trees, grass fields, houses, and roads. A ground truth is not available for this data set.
The data is composed of 210 spectral bands, has a spectral resolution of 10nm and
covers the 400− 2400nm spectral range.

Figure B.1: An RGB image of the Urban data set.
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B.2 Cuprite

B.2 Cuprite
The Cuprite data set is an AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)
hyperspectral image of the Cuprite mining district in Nevada. This data is composed
of 224 spectral bands, has a spectral resolution of 10nm, and covers the 400− 2500nm
spectral range. Here we use a 350×350 pixel subset of the whole image. This site
has received much attention by researchers and several well documented minerals are
exposed in the landscape.

Figure B.2: An RGB image of a 350×350 subset of the Cuprite data
set.
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Hyperspectral Data

B.3 Indian Pines
The Indian pines data set is composed of 145×145 pixels and 220 spectral bands, cap-
tured by the AVIRIS sensor. The spatial resolution is 20m and the spectral resolution
is 10nm, ranging from 400nm to 2500nm. There are sixteen classes of interest in this
data set.
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Figure B.3: An RGB image of Indian Pines and the classification ground
truth.
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B.4 Pavia University

B.4 Pavia University
The Pavia University data set was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS-03) sensor. There are 115 spectral band and cover the 400nm
to 900nm range, and the spatial resolution is 1.3m. The size of the image is 610×340
pixels. There are nine classes of interest in this data set.
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Figure B.4: An RGB image of the Pavia University and the classification
ground truth.
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Appendix

Multiplicative Update Rules
For NMF

C
In this appendix the multiplicative update rules for NMF as proposed in [71] are
derived.

•

To formulate the NMF rules, the cost function that is used is defined as

J = 1
2‖Y −AS‖2 =

P∑
p=1

1
2‖y(p) −As(p)‖2. (C.1)

C.1 Update Rule For S

First, (C.1) is minimized with respect to the rows of S. For one row, the minimization
problem is

min
s≥0

J(s), where J(s) = 1
2‖y −As‖2, (C.2)

where the (p) subscript has been dropped for brevity. Using a majorization-minimization
[147] (MM) approach, akin to the one used in Section 3.5, the minimization problem
becomes

s(k+1) = arg min
s≥0

F (s) = arg min
s≥0

1
2‖y −A(k)s‖+ 1

2(s− s(k))TH(s− s(k)), (C.3)

where s(k) and A(k) are current estimation of s and A, respectively,

H = diag(x)− (A(k))TA(k),

x = ((A(k))TA(k)s(k))� s(k).

Setting the derivative of F (s) to zero, gives

((A(k))TA(k) + H)s = (A(k))Ty −Hs(k). (C.4)

By using that Hs(k) = 0 and ((A(k))TA(k) + H) = diag(x), (C.4) can be written,

diag(((A(k))TA(k)s(k))� s(k)))s = (A(k))Ty (C.5)

⇒s = (A(k))Ty � s(k) � ((A(k))TA(k)s(k)). (C.6)

This rule can be used for all rows of S, giving

S(k+1) = S(k) � (A(k))TY )� ((A(k))TA(k)S(k)). (C.7)
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C.2 Update Rule For A

The the cost function, (C.1), can be written as

J = 1
2‖Y −AS‖2 = 1

2‖Y
T − STAT‖2, (C.8)

An update rule for each row in A (e.g., column in AT) can be derived using the same
MM approach as was done for S. By substituting Y → Y T, A(k) → (S(k))T, and
S(k) → (A(k))T in equation (C.7), the update rule for AT is

(A(k))T = (A(k))T � S(k)Y T � (S(k)(S(k))T(A(k))T), (C.9)

and by transposing, the update rule for A is found to be

A(k+1) = A(k) � (Y (S(k))T)� (A(k)S(k)(S(k))T). (C.10)
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