SHALOM: SPACEBORNE HYPERSPECTRAL APPLICATIVE LAN D AND OCEAN MISSION: A JOINT PROJECT OF ASI-ISA AN UPDTAE FOR 2014

halom

Tel Aviv University

Avia Kafri Israel Space Agency (ISA)

Giancarlo Varacalli Italian Space Agency (ASI)

IGARSS Quebec July 2014, a special session on hyperspectral sensor in orbit organized by ISIS

l by ISIS 🧹

<u>ASI – ISA joint collaboration agreement</u>

The Agenzia Spaziale Italiana (ASI) and Israeli Space Agency (ISA) signed on 16 June 2009 a Cooperation Agreement in the area of Earth Observation .

International Collaboration between Italy and Israel Space Agencies

Highlight - SHALOM

Supported by Ministry of Science Technology and Space (Israel) and Ministry of of Education, Universities and Research (Italy)

Industry involvement

Italian side:

- Selex Galileo
- ThalesAlenia
- Telesprazio

Israeli side:

• Israel Aerospace Industry

• Elbit System (ElOP)

SHALOM is an HSR Earth observation mission driven by operational and <u>commercial needs</u> that will provide high spatial, spectral and temporal resolutions of the Earth from space.

The Concept of SHALOM

The **Mission Data Users** are the primary beneficiaries of the Mission.

- Only <u>civilian operational</u> users and <u>scientific entities</u> are currently foreseen to exploit the system according to their needs.
- Establishing commercial RND segments in both countries to **commercialize** "thematic" data.
- Support the <u>scientific community</u> in both countries using HSR technology

Coverage Area

- Imagery area selection rules:
 - Sun zenith angle > 30°
 - Within ±70 ° latitude).
 - Imaging above all terrestrial areas and sea-shores,

2019 Launch

2012 2013 2014

SHALOM - Spaceborne Hyperspectral Applicative Land and Ocean Mission

- System characteristics:
 - Spatial resolution
 - Pan 2.5 m @ 600 Km Orbit height
 - Hyperspectral 10 meters @ 600 Km Orbit height
 - Spectral bands 241 bands @ 0.4μm 2.5μm
 - Spectral resolution ~ 10nm
 - Swath 10km
 - Daily area coverage 200,000Km²
 - Revisit time 2 days

PARAMETER THRESHOLD		
	Low Earth Orbit	
Out it to a	Sup Supervise	
Orbit type	Sun-Synchronous	
	Frozen	
	Altitude 500900 km	
Orbit geometry		
	Local Time at equator 10.0 11.30	
Along Frack Image length	200 Km	
Maximum Solar Zenith angle for imaging		
from the center of the swath	±30 deg Swath within	
Acceptable cloud coverage with quick look	30%	
	10 Km	
Ground Sampling Distance (GSD)		
VNIR, SWIR	10m	
PAN	2.5 m	
Spectral coverage Hyperspectral		
VNIR	400-1010 nm	
SWIR	920-2500 nm	
Spectral band PAN	400 –700 nm	
Spectral resolution (FWHM)		
VNIR	10 nm	
SWIR	10 nm	
Spectral sampling interval		
VNIR	10 nm	
SWIR	10 nm	
SNR (VNIR)		
@ approx. 650nm	≥600:1	
between 400nm and 1000nm.	≥200:1	
SNR (SWIR)		
@ approx. 1550nm	≥400:1	
between 1000nm and 1750nm.	≥200:1	
@ approx. 2100nm	≥200:1	
between 1950nm and 2350nm.	≥100:1	
SNR (PAN)	≥240:1	

241 bands

SHALON vs. other HSR Sensors

Mission Objectives

- Provide high-resolution (spectral, spatial, temporal) data of geo-chemical geo-physical and geo-biological variables
- Provide thematic digital maps of the above parameters such as: environmental quality, crisis monitoring, search for mineral and natural resources, monitoring water bodies, assisting precision agriculture activity etc..
- Enable quantitative measurement of currently immeasurable (space) parameters that are required by a wide range of end users
- Provide high quality calibrated data as input for generating thematic maps and models for monitoring those parameters

Major Scope and Activities:

TO:

- Define users' needs and work on market development
- Acquire HSR Images
- Generate products (all levels)
- Disseminate of (available) thematic products
- Provide a taylor made suit for potential end user
- Exploit the huge amount of HSR algorithms available in the literature and implement them for the benefit of the end user

SHALOM S/C BUS is based on OPTSAT 3000

A Mission operations and Satellite control facility

Will be shared by the countries to meet the following:

- Ground Stations for data reception
- Facilities for data processing and archiving
- Sales and purchase order management system
- Means for distribution of data to potential users

IGARSS Quebec July 2014, a special session on hyperspectral sensor in orbit organized by ISIS

THE REMOTE SENSING

The ground segment will include :

Satellite
Manufacture

- A Mission Control Centre (MCC)
- A Satellite Control Centre (SCC)
- An Image Data Handling and Processing (IDHS)
- A ground communication network (GSNet)

A Commercial discriminating Centre (CDC)

Users

A Market Survey Analysis

shows that:

- HSR products will be demanded by many end-users
- Good products will be required and customers are willing to pay
- Many applications are not yet available and the "application per suit" concept is promising
- The HSR market has a promising potential

Product Name

Crop, Rangeland and Invasive Species Map

Burnt Area Map

Vegetation Status Indicators

Vegetation Damage and Stress Indicators

Fire Fuel Map

Mineral Map

Coastal Bathymetry Map

Urban And industrial Functional Area Map

Lithological Map

Lava Flow Parameters

Soil Surface Pollutants Map

Volcanic Gas And Aerosol Emission Map

Forest Species Map

Forest Biomass Map

Ice Cover Map

Soil Characterization Map

Land Cover Map

Land Cover Change Detection Map

Snow Cover Map

Forest Nitrogen and Chlorophyll Map

Wetlands Classification Map

Marine And Aquatic Quality And Productivity Indicators

Lava and ash distribution map

Snow And Ice Cover Characterization

1.Main Possible applications/products: 1.MARKETING PLAN

Product Level	Product Type	Bands	Description
Level 1	At sensor radiance	VNIR/SWIR	At-sensor radiance: absolute radiometric correction applied, coregistration (spatial and spectral) performed. lat and lon data of each pixel provided.
		PAN	Visual data after applied non- uniformity correction, 'contrast stretch' and cloud corrections. Lat and lon data of each pixel provided.
	Cloud mask		Clear/cloudy pixels
Level 1_geo	Geocoded at- sensor radiance	VNIR/SWIR PAN	Geocoded Level 1 product
Level 2	Surface reflectance	VNIR/SWIR PAN	Surface reflectance, geographic pixel location (lat, lon) provided.
Level 2_geo	Geocoded Surface Reflectance	VNIR/SWIR PAN	Geocoded Level 2 products
Level 3	Geophysical / geochemical / biophysical / biochemical		Surface cover map of geophysica, geochemical, biophysical, biochemical parameters, derived from level 1 and level 2 products.
Level 3_geo	parameters		Geocoded Level 3 products
Level 4	Geocoded Info		Info derived from post-processing of Level 3_geo products, e.g. trend computation for selected geophysical, geochemical, biophysical, biochemical parameters

Product Synchron : Marine and Acquatic Quality and Productivity Indicators Productivity Indicators

A THE REAL PROPERTY AND

Chl-a [µg L-1]

400

600

200

Raw Data policy

- The ground segment allows storing all level 0 products, together with their relevant calibration data applied.
- All products having level higher than 0 can be forever generated at any time.
- The ancillary data shall be archived for the same period as level 0.
- The data archived shall be maintained without degradation for at least of 10 years after commissioning.

Summary and Conclusions

- SHALOM in an ambitious HSR mission carrying out by a joint agreement between ASI & ISA
- The data quality and characteristics (spatial , spatial and temporal resolutions) will meet new standards
- A commercial needs for HSR products shows a promising potential
- A commercial operational concept is the driving force behind the SHALOM mission
- The scientific community will have an open door for the SHALOM mission and data
- Phase B is waiting for funding agreement between the two governments.

Makhtesh Ramon Israel, as a supper site for HRS vicarious calibration

THE REMOTE SENSING LABORATORIES