MAPPING INVASIVE PLANT SPECIES IN TROPICAL RAINFOREST USING POLARIMETRIC RADARSAT-2 AND PALSAR DATA

Abduwasit Ghulama, Karen Freemanb, An Bollenb, Robert Ripperdana, Ingrid Portonc

aDepartment of Earth and Atmospheric Sciences and Center for Environmental Sciences, Saint Louis University, St. Louis, MO 63103, USA
bMadagascar Fauna Group, BP442, Toamasina 501, Madagascar
cSaint Louis Zoo, 1 Government Drive, St. Louis, Missouri 63110, USA
Study area

- Area: 68 sq km
- one of the last remnants of intact lowland rainforest in Madagascar
- a sanctuary for a vast diversity of flora and fauna
Study area - Tropical Rainforest
Why Invasive Species?

- An indication of eco-system degradation

- Introduced through anthropogenic activities such as illegal logging and urbanization, and climate change

- Animal and plant species diversity in the reserve has become critically endangered through forest degradation and the introduction of invasive species
Invasive Species

- Guava (P. cattleianum)
- Piste Principale
- Wild ginger (A. angustifolium)

Invasive plant species differ in canopy structure than native forest.
Invasive Species

Rubus – a type of invasive raspberry

Longoza

AFRAMOMUM ALBOVIOLACEUM (RIDL.) K.SCHUM

Invasive plant species differ in canopy structure than native forest
Our goal

- to explore the capabilities of Radarsat-2 quad-pol data (C band) and both dual and quad-pol PALSAR in mapping invasive plant species and forest degradation in Betampona Natural Reserve

- assess native forest health and diversity to monitor the effectiveness of in-situ conservation efforts
Hypothesis

- Leaves reflect shorter (e.g., C) but not longer wavelengths (e.g., L)
- Reflections from bare forest floor may introduce some noise in longer wavelengths
- C band (5.6 cm) have a limited ability to penetrate to the forest understory and floor, and therefore, may be more useful in mapping plant species in forest canopies or sub-canopies?

Credit: Rosen, JPL
Hypothesis

Steeper incidence angle is better to map invasives?

A - Steep beam position ("Small" incidence angle)
B - Shallow beam position ("Large" incidence angle)
Datasets

- Shallow incidence angles
 - useful for delineation of land use activities, e.g. illegal logging

- Steep (small) incidence angles:
 - may be more useful for vegetation type mapping

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Product</th>
<th>Orbit/ Path</th>
<th>Frame</th>
<th>Acquisition date</th>
<th>Off-nadir angle</th>
<th>Spatial Resolution</th>
<th>Orbit direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radarsat-2</td>
<td>FQ10/L1.1</td>
<td>36-71D</td>
<td></td>
<td>05/18/2010</td>
<td>29.32°</td>
<td>8 m</td>
<td>Descending</td>
</tr>
<tr>
<td>PALSAR</td>
<td>PLR/L1.0</td>
<td>474</td>
<td>620</td>
<td>05/18/2008</td>
<td>21.5°</td>
<td>12.5 m</td>
<td>Ascending</td>
</tr>
<tr>
<td>PALSAR</td>
<td>FBD/L1.1</td>
<td>550</td>
<td>6820</td>
<td>07/23/2007</td>
<td>34.3°</td>
<td>12.5 m</td>
<td>Ascending</td>
</tr>
</tbody>
</table>
Methodology: Polarimetric Features

- **Polarimetric Features**
 - Co-pol correlation coefficient
 - Co-Polarization ratio (HH/VV)
 - Polarimetric phase difference (HH-VV) in radians
 - Linear depolarization ratio (in dB)

\[
LDR(dB) = 10 \cdot \log_{10} \left(\frac{\langle S_{HV}S_{HV}^* \rangle}{\langle S_{VV}S_{VV}^* \rangle} \right)
\]

Rodriguez & Martin, 1992
Drinkwater, et al, 1992
Shriever, et al, 2003
Kennedy, et al., 2001
Methodology: target decomposition theorems

- **Pauli Basis**
 \[k_P = \frac{1}{\sqrt{2}} \begin{vmatrix} S_{hh} + S_{vv} \\ S_{hh} - S_{vv} \end{vmatrix} - 2S_{hv} \]
 - Direct scattering
 - Double bounce
 - Multiple scattering

- **coherency matrix**
 \[T_{11} = \text{single bounce}, \quad T_{22} = \text{double bounce}, \quad T_{33} = \text{volume scattering} \]

- **Freeman-Durden model based decomposition**
 Freeman and Durden, 1998

- **Cloud-Pottier eigenvalue-eigenvector decomposition**
 Cloude and Pottier, 1997
Methodology: Wishart Classification

WISHART PDF

\[P([\mathbf{T}] / [\mathbf{T}_m]) = \frac{\mathbf{L}^{T_p} [\mathbf{T}]^{L_p - 1} e^{-\mathbf{L}^{T_p} [\mathbf{T}]} \Gamma(L) \cdots \Gamma(L - p + 1) [\mathbf{T}_m]^{T_p - 1}}{\pi^{L_p} \Gamma(L) \cdots \Gamma(L - p + 1) [\mathbf{T}_m]^{L_p - 1}} \]

UNSUPERVISED POLSAR CLASSIFICATION

H / A / \alpha DECOMPOSITION THEOREM

©ESA
Results: Polarimetric Features - pol-ratio, linear depol ratio

- Radarsat-2
- PALSAR FBD
- Ground truthing

PALSAR FBD campsite gives better results.
PALSAR PLR pol ratio and LDR are noisy!!!
Results: Polarimetric Features – phase differences/coherences

PolInSAR \rightarrow HH-VV Phase Difference (PPD) \rightarrow Coherences
Results: Pauli Decomposition

Radarsat-2

Ground truthing

PALSAR PLR

PALSAR FBD campsite gives better results!!!
Results: EAA Decomposition/Wishart Classifications

Radarsat-2
Wishart Classification

Ground truthing

PALSAR PLR EAA Classes

EAA classification → Clustering

Embarrassing results???
Results: PALSAR PLR w/ FBD

Greater exposed bare soil (21.9 incidence angle)
Conclusion

- PALSAR polarimetric data are superior for inventorying invasive forest species in rainy forest
- Phase information is crucial, e.g., HH and VV, HH and HV phase differences, and polarimetric coherences should be exploited
- RADARSAT-2 data did not perform well, perhaps a steeper incidence angle may be useful
- PALSAR FBD HH, HV, HH/HV composite is equally impressive as PLR results

Ikonos-2 4m PCA
Hillshade vs. Local Incidence angels

ASTER and Radarsat-2 represent surface elevation while PALSAR and DTEM showing the terrain.
Questions, comments Please!!!

Future work