Coherence Linearity and SKP-Structured Matrices in Multi-Baseline PolInSAR

Stefano Tebaldini and Fabio Rocca

Politecnico di Milano
Dipartimento di Elettronica e Informazione

IGARSS 2011, Vancouver
Introduction

The availability of Multi-baseline PolInSAR data makes it possible to decompose the signal into ground-only and volume-only contributions.

Properties of the vegetation layer
- Vertical structure
- Polarimetry

• Phase calibration
• Digital Terrain Model
• Ground properties
Polarimetric SAR Interferometry (PolInSAR)

- The coherence locus is assumed to be a straight line in the complex plane
- G/V decomposition is carried out by fitting a straight line in each interferometric pair

Algebraic Synthesis

- The data covariance matrix is assumed to be structured as a Sum of 2 Kronecker Products
- G/V dec is carried out by taking the first 2 terms of the SKP decomposition of the data covariance matrix

Scope of this work:

Compare the two approaches from the algebraic and statistical points of view
Model of the acquisitions

We consider a multi-polarimetric and multi-baseline (MPMB) data

- Monostatic acquisitions: up to 3 independent SLC images per track

\[y_n(w_i) \Leftrightarrow Track\ n Polarization\ w_i \]

\[\begin{align*}
\text{Re}\{y_n(w_1)\} & \quad \text{Re}\{y_n(w_2)\} & \quad \text{Re}\{y_n(w_3)\} \\
\text{Im}\{y_n(w_1)\} & \quad \text{Im}\{y_n(w_2)\} & \quad \text{Im}\{y_n(w_3)\}
\end{align*} \]
PolInSAR is based on the variation of the interferometric coherence w.r.t. polarization

\[\gamma_{nm}(w_i, w_j) = \frac{w_i^H \Sigma_{nm} w_j}{\sqrt{w_i^H \Sigma_{nn} w_i w_j^H \Sigma_{mm} w_j}} \]

\[\Sigma_{nm} = E[y_n y_m^H] \]

\[y_n = \begin{bmatrix} y_n(HH + VV) \\ y_n(HH - VV) \end{bmatrix} \]

Coherence linearity (*):

RVoG model \(\Leftrightarrow \) ESM coherences describe a straight line in the complex plane

\[\gamma(w, w) = (1 - \mu(w)) \cdot \gamma^v + \mu(w) \cdot \gamma^g \]

(*) Papathanassiou and Cloude, “Single Baseline Polarimetric SAR Interferometry”
Coherence linearity

PolInSAR is based on the variation of the interferometric coherence w.r.t. polarization

\[\gamma_{nm}(w_i, w_j) = \frac{w_i^H \Sigma_{nm} w_j}{\sqrt{w_i^H \Sigma_{nn} w_i w_j^H \Sigma_{mm} w_j}} \]

\[\Sigma_{nm} = E[y_n y_m^H] \]

\[y_n = \begin{bmatrix} y_n(HH + VV) \\ y_n(HH - VV) \\ \sqrt{2}y_n(HV) \end{bmatrix} \]

\(w_i \neq w_j \Leftrightarrow \) Multiple Scattering Mechanisms (MSM)

\(w_i = w_j \Leftrightarrow \) Equalized Scattering Mechanisms (ESM)

Coherence linearity (\(*\)):

RVoG model \(\Rightarrow\) ESM coherences describe a straight line in the complex plane

Multiple baselines: one line per interferometric pair

\(n = 1 \quad m = 2 \)

\(n = 1 \quad m = 3 \)

\(n = 1 \quad m = 4 \)

\(\text{Volume coherence} \)

\(\text{Ground coherence} \)

\(\bullet \text{ESM coherences} \)

(* Papathanassiou and Cloude, “Single Baseline Polariometric SAR Interferometry
The SKP structure

Without loss of generality, the received signal can be assumed to be contributed by \(K \) distinct Scattering Mechanisms (SMs), representing ground, volume, ground-trunk scattering, or other

\[
y_n(w_i) = \sum_{k=1}^{K} s_k(n; w_i)
\]

\(s_k(n, w_i) \): contribution of the \(k \)-th SM in Track \(n \), Polarization \(w_i \)

Hp: the data covariance is structured as a Sum of Kronecker Products

\[
y_n(w_i) = \sum_{k=1}^{K} s_k(n; w_i) \iff W_K = E[yy^H] = \sum_{k=1}^{K} C_k \otimes R_k
\]

Each SM is represented by a Kronecker Product

- \(R_k \): interferometric coherences of the \(k \)-th SM alone [N\!x\!N]
- \(C_k \): polarimetric correlation of the \(k \)-th SM alone [3\!x\!3]

Note that \(R_k, C_k \) are positive definite
The SKP decomposition

The key to the exploitation of the SKP structure is the existence of a decomposition of any matrix into a SKP

\[\mathbf{W} \xrightarrow{\text{SKP Dec}} \sum_{p=1}^{P} \mathbf{U}_p \otimes \mathbf{V}_p \]

Theorem:

Let \(\mathbf{W} \) be contributed by \(K \) SMs according to H1,H2,H3, i.e.:

\[\mathbf{W} = \sum_{k=1}^{K} \mathbf{C}_k \otimes \mathbf{R}_k \]

then, the matrices \(\mathbf{U}_k, \mathbf{V}_k \) are related to the matrices \(\mathbf{C}_k, \mathbf{R}_k \) via a linear, invertible transformation defined by exactly \(K(K-1) \) real numbers

Corollary:

If only ground and volume scattering occurs, i.e.:

\[\mathbf{W} = \mathbf{C}_g \otimes \mathbf{R}_g + \mathbf{C}_v \otimes \mathbf{R}_v \]

then, there exist two real numbers \((a,b) \) such that:

\[\mathbf{C}_g = (a-b)^{-1}((1-b)\mathbf{U}_1 - b\mathbf{U}_2) \quad \mathbf{R}_g = a\mathbf{V}_1 + (1-a)\mathbf{V}_2 \]

\[\mathbf{C}_v = (a-b)^{-1}(-(1-a)\mathbf{U}_1 + a\mathbf{U}_2) \quad \mathbf{R}_v = b\mathbf{V}_1 + (1-b)\mathbf{V}_2 \]
Forested areas: how many KPs?

BIOSAR 2007 – Southern Sweden – P-Band

- **HH**
- **HV**

LIDAR Terrain Height
LIDAR Forest Height

BIOSAR 2008 – Northern Sweden – P-Band and L-Band

- **P-Band - HV**
- **L-Band - HV**

TROPISAR – French Guyana – P-Band

Courtesy of ONERA

- **HH**
- **HV**

Slant range [m]

Ground range [m]

Azimuth
Forested areas: how many KPs?

2 KPs account for about 90% of the information carried by the data in all investigated cases.

⇒ 2 Layered-models (Ground + Volume) are well suited for forestry investigations.
Forested areas: how many KPs?

Overview talk:

P-Band penetration in tropical and boreal forests: Tomographical results

Friday – 14:40

Room 1
Coherence linearity and 2KPs: Algebraic connections

- Polarimetric Stationarity (PS):
 - Introduced by Ferro-Famil et al. to formalize the widely considered – RVoG consistent – case where the scene polarimetric properties are invariant to the choice of the passage
 \[
 \Sigma_{nn} = E[y_n y_n^H] = \Sigma_{mm} = E[y_m y_m^H]
 \]
 - Always valid after whitening the polarimetric information of each image in such a way as:
 \[
 \Sigma_{nn} = I_{3x3} \quad \forall n
 \]
 \[\Rightarrow\] Always retained in the remainder

- Under the PS condition the ESM coherence can be decomposed into a weighted sum:
 \[
 W = \sum_{k=1}^{K} C_k \otimes R_k \quad \xrightarrow{\text{(PS)}} \quad \Sigma_{nm} = E[y_n y_m^H] = \sum_{k=1}^{K} C_k \cdot \gamma_{nm}^{(k)} \quad \{R_k\}_{nm} = \gamma_{nm}^{(k)}
 \]
 \[
 \gamma_{nm}(w, w) = \sum_{k=1}^{K} \mu_{k}(w) \cdot \gamma_{nm}^{(k)} \quad \mu_{k}(w) = \frac{w^H C_k w}{w^H \left(\sum_{k=1}^{K} C_k \right) w}
 \]
Algebraic connections

SKP decomposition

\[W = \sum_{k=1}^{K} C_k \otimes R_k \quad \leftrightarrow \quad (PS) \quad \gamma_{nm}(w, w) = \sum_{k=1}^{K} \mu_k(w) \cdot \gamma_{nm}^{(k)} \quad \text{ESM coherence decomposition} \]

- **2 KPs \implies Coherence Linearity**

\[
W = C_g \otimes R_g + C_v \otimes R_v \quad \leftrightarrow \quad \gamma_{nm}(w, w) = \mu_v(w) \cdot \gamma_{nm}^v + \mu_g(w) \cdot \gamma_{nm}^g
\]

\[
\mu_{g,v}(w) = \frac{w^H C_{g,v} w}{w^H (C_g + C_v) w}
\]

- **Coherence Linearity \implies N(N-1)/2 +1 KPs**

\[
\text{Im}(\gamma_{nm}(w, w)) = a_{nm} \text{Re}(\gamma_{nm}(w, w)) + b_{nm} \quad \forall w \quad \leftrightarrow \quad \text{Im}(\gamma_{nm}^{(k)}) = a_{nm} \text{Re}(\gamma_{nm}^{(k)}) + b_{nm}
\]

\[
\Rightarrow \quad \text{Each of the matrices } R_k \text{ is fully specified by the real parts (N(N-1)/2) plus one constant that multiplies the affine term } b_{nm}
\]

\[
\Rightarrow \quad \text{There are at most N(N-1)/2 +1 linearly independent KPs}
\]

Poor physical interpretation:

- N(N-1)/2 +1 Scattering Mechanisms whose interferometric coherences are constrained to belong to the same line
Algebraic connections

- Single baseline \((N=2)\): perfect equivalence

 \[2\text{KPs} \iff \text{Coherence Linearity} \]

- Multi-baseline \((N>2)\): assuming 2KPs entails more algebraic constraints than assuming coherence linearity:

 \[2\text{KPs} \implies \text{Coherence Linearity} \]

Poor physical interpretation:

\[N(N-1)/2 +1 \text{ Scattering Mechanisms whose interferometric coherences are constrained to belong to the same line} \]
Algebraic connections

⇒ In the multi-baseline case assuming 2KPs bring two advantages over coherence linearity:

1. Determination of physically valid solutions:

\[W = C_g \otimes R_g + C_v \otimes R_v \quad \text{with } C_g, C_v, R_g, R_v \text{ positive definite} \]

Assuming coherence linearity:
Imposing pair-wise positive definitiveness results in physically valid ground and volume coherences to be \(\leq 1 \) in magnitude

Assuming 2KPs:
The positive definitiveness constraint results in the regions of physical validity to shrink from the outer boundaries towards the true ground and volume coherences
⇒ The higher the number of tracks, the easier it is to pick the correct solution
Algebraic connections

⇒ In the multi-baseline case assuming 2KPs bring two advantages over coherence linearity:

1. **Determination of physically valid solutions:**

\[W = C_g \otimes R_g + C_v \otimes R_v \]

with \(C_g, C_v, R_g, R_v \) positive definite

Assuming coherence linearity:
 Imposing pair-wise positive definitiveness results in physically valid ground and volume coherences to be \(\leq 1 \) in magnitude

Assuming 2KPs:
 The positive definitiveness constraint results in the regions of physical validity to shrink from the outer boundaries towards the true ground and volume coherences
 ⇒ The higher the number of tracks, the easier it is to pick the correct solution

2. **Coherence identification:**

Assuming coherence linearity:
 Independent identification in each interferometric pair
 \(\Leftrightarrow 2^{N(N-1)/2} \) possibilities

Assuming coherence 2KPs:
 Joint identification on all interferometric pairs
 \(\Leftrightarrow 2 \) possibilities
Simulated scenario:

- 2 KPs: $W = C_g \otimes R_g + C_v \otimes R_v$
- Number of tracks : $N = 4$
- Number of independent looks: $L = \{9 – 169\}$

- Case 1: High ground coherences

- Case 2: Low ground coherences

2KP Estimators:

L2 norm minimization \Leftrightarrow fast but NOT optimal

1. Pair-Wise Estimator
 Each pair is processed independently
 \Leftrightarrow Equivalent to assuming coherence linearity

2. Joint Estimator
 All pairs are processed jointly

3. Preconditioned Joint Estimator
 All pairs are processed jointly
 \Leftrightarrow As above, but the retrieved coherence matrices are allowed to be slightly negative

Criteria for coherence retrieval:

- Volume: existence of a ground-free polarization
- Ground: coherence maximization

Note: coherence are assigned to ground or volume basing on knowledge of the true values
\Leftrightarrow coherence identification is NOT considered
Estimation from sample data

Case 1: High ground coherences

- $L = 16$

Remarks:

Pair wise:

Ground coherence is algebraically bounded to belong to the unitary circle

\Rightarrow Good accuracy when the true ground coherence is close to 1

\Rightarrow Systematic bias for low ground coherences

Joint:

Ground coherence is NOT bounded to belong to the unitary circle

\Rightarrow High coherence may be underestimated

Improved accuracy over the Pair Wise approach for lower volume coherences

Preconditioned Joint:

Ground coherence underestimation is partly recovered

Legend:

- \bigcirc True ground
- \bullet Estimated ground
- \bigcirc True volume
- \bullet Estimated volume
- \bigcirc Estimated volume after ground phase compensation
Case 1: High ground coherences

- $L = 49$

Remarks:

Pair wise:

Ground coherence is algebraically bounded to belong to the unitary circle

⇒ Good accuracy when the true ground coherence is close to 1

⇒ Systematic bias for low ground coherences

Joint:

Ground coherence underestimation is mitigated by increasing the number of looks

⇔ Not a systematic bias

Improved accuracy over the Pair Wise approach for lower volume coherences

Preconditioned Joint:

Underestimation of ground coherence is recovered

True ground **Estimated ground** **Estimated volume** **Estimated volume after ground phase compensation**
Estimation from sample data

Case 1: High ground coherences

- $L = 100$

Remarks:

Pair wise:

Ground coherence is algebraically bounded to belong to the unitary circle

⇒ Good accuracy when the true ground coherence is close to 1

⇒ Systematic bias for low ground coherences

Joint:

Ground coherence underestimation is mitigated by increasing the number of looks

⇔ Not a systematic bias

Improved accuracy over the Pair Wise approach for lower volume coherences

Preconditioned Joint:

Underestimation of ground coherence is recovered

![Graphs showing real and imaginary parts for different cases](image)
Estimation from sample data

Case 1: High ground coherences

Error on volume coherence

Error on ground coherence

Error on volume coherence after ground phase compensation

- Pair-wise
- Joint
- Preconditioned Joint
Estimation from sample data

Case 2: Low ground coherences

Error on volume coherence

Error on ground coherence

Error on volume coherence after ground phase compensation

- Pair-wise
- Joint
- Preconditioned Joint
Conclusions

Single-baseline case: assuming Coherence Linearity is equivalent to assuming 2 KPs

Multi-baseline: assuming 2KPs entails more algebraic constraints than assuming coherence linearity

- More accurate estimation of low-valued ground and volume coherence
- Simplifies the coherence identification problem to a single choice
- High ground coherence are underestimated if few looks (say < 50) are employed
- Underestimation is mitigated by pre-conditioning the problem

Estimators operating through L2 norm minimization \Leftrightarrow fast but not optimal

The need for a pre-conditioning operator suggests that significant improvements could be achieved from the investigation of a statistically optimal multi-baseline estimator for the 2KP model