Improving SAR tomography performance using efficient antenna configuration

Laurent Ferro-Famil(1,2), D. Cristallini(3), D. Pastina(3), P. Lombardo(3)

(1)IETR, University of Rennes 1, France
(2)University of Tromso, Dpt. Of Physics and Technology, Norway
(3)University of Rome “La sapienza”, INFOCOM Dpt, Italy
Outline

Multistatic radar constellation for improved range resolution

Extension to Multi-Baseline SAR tomography

Assessment from real data and need for MIMO acquisitions
Principle using monostatic sensors

Single acquisition

- Ground range resolution
 \[r_{gr} = \frac{c}{2B \sin(\theta_1)} \]
- Equivalent beam aperture
 \[\Delta \theta_1^{eq} = \frac{\lambda B \tan(\theta_1)}{c} \]

Two acquisitions

- Max diversity for contiguous apertures
 \[\Delta \theta_{max} = \frac{|\theta_1^{eq} + \theta_2^{eq}|}{2} = \frac{\lambda B}{c} \tan(\theta_0) \]
- Combined range resolution
 \[r_{max}^{eq} = 2r \]
MIMO acquisition

- 2 Tx-Rx sensors
- Orthogonal signals
- 3rd equivalent sensor
- Max resolution

\[r_{eq}^{max} = 3r > N_s r \]
Outline

Multistatic radar constellation for improved range resolution

Extension to Multi-Baseline SAR tomography

Assessment from real data and need for MIMO acquisitions
Monostatic inSAR configuration

Monostatic acquisition

\[\phi_{21} = \phi_2 - \phi_1 = k_{z2} z \]

\[k_{z2} = \frac{2\pi}{\lambda} \frac{\partial(2r_2 - 2r_1)}{\partial z} \]

MIMO acquisition: additional equivalent sensor

\[k'_{z2} = \frac{2\pi}{\lambda} \frac{\partial(2r_2 - (r_1 + r_2))}{\partial z} = \frac{k_{z2}}{2} \]

\[B'_{\perp2} = \frac{B_{\perp2}}{2} \]
MIMO TOMSAR geometrical configuration

\[k'_z = \frac{k_{z_i} + k_{z_j}}{2} \]
MIMO TOMSAR geometrical configuration

\[\delta k_z \propto \frac{1}{\Delta k_z} \]

\[\hat{z}_{amb} \propto \frac{1}{\delta k_z} \]
Improved resolution x 2 Improved ambiguity x 2

Coherent scatterer: arbitrary improvement factor
For a randomly rough surface \(|\gamma_{surf}(k_z)| = \frac{W_{y_{com}}}{W_{y_{tot}}} = \text{tri} \left(\frac{k_z}{k_{zc}} \right) \)
Tomographic response: distributed scatterer

\[\gamma(k_z) = \gamma_z(k_z) \text{tri} \left(\frac{k_z}{k_{zc}} \right) \]

\[\gamma(k_z) = \int f(z) e^{i k_z z} \, dz \Leftrightarrow f(z) = \int \gamma(k_z) e^{-i k_z z} \, dk_z \]

\[f(z) = f_z(z) \odot \text{sinc}^2 \left(\frac{2\pi \Delta k}{\cos \theta} z \right) \]

Spread

See: Tebaldini and Rocca, IGARSS 2010
Tomographic response: high res system

Improved resolution x 2 Improved ambiguity x 2

$max_i(|k_{z_i}|) \ll k_{zc}$
Tomographic response: high res system

\[\max_i (|k_{z_i}|) \ll k_{z_c} \]

Unchanged high resolution Improved ambiguity x 2
Tomographic response: medium res system

SLIGHTLY Improved resolution x 2
Improved ambiguity x 2

\[k_{zc} = 6 \max_i (|k_{zi}|) \]
Tomographic response: medium res system

\[k_{zc} = 6 \max_i (|k_{zi}|) \]

CAPON

Unchanged high resolution Improved ambiguity x 2
Outline

Multistatic radar constellation for improved range resolution

Extension to Multi-Baseline SAR tomography

Assessment from real data and need for MIMO acquisitions
Application to real data

- TROPISAR Campaign over French Guyana
- ONERA/SETHI MB-POLinSAR data at P band
- Resolutions: $\delta r = 1m, \delta az = 1.245m$
- $M = 6$ images
Application to real data

Full resolution

75% resolution

75% sampling
Need for MIMO acquisitions: GB-TOMSAR

Tomographic measurements of a snow pack at X and Ku band
Need for MIMO acquisitions: GB-TOMSAR
Need for MIMO acquisitions: GB-TOMSAR

- resolution + ambiguity: 8-10 images
- near range measurements: az sampling

Hours of acquisition
4-port system \rightarrow time / 5