

Radar Interferometry Example

Standard Radar Image

Interference fringes follow the topography

One cycle of color represents 1/2 wavelength of path difference

Interferometry Applications

- Mapping/Cartography
 - Radar Interferometry from airborne platforms is routinely used to produce topographic maps as digital elevation models (DEMs).
 - 2-5 meter circular position accuracy
 - 5-10 m post spacing and resolution
 - 10 km by 80 km DEMs produced in 1 hr on mini-supercomputer
 - Radar imagery is automatically geocoded, becoming easily combined with other (multispectral) data sets.
 - Applications of topography enabled by interferometric rapid mapping
 - Land use management, classification, hazard assessment, intelligence, urban planning, short and long time scale geology, hydrology
- Deformation Mapping and Change Detection
 - Repeat Pass Radar Interferometry from spaceborne platforms is routinely used to produce topographic *change* maps as digital displacement models (DDMs).

Interferometry for Topography

Measured phase difference: $\phi = -\frac{2\pi}{\lambda}\delta\rho$

Triangulation:

$$\sin(\theta - \alpha) = \frac{(\rho + \delta\rho)^2 - \rho^2 - B^2}{2\rho B}$$

 $z = n - \rho \cos \theta$

Critical Interferometer Knowledge:

- Baseline,(B, α),to mm's
- System phase differences, to deg's

Height Reconstruction

- Interferometric height reconstruction is the determination of a target's position vector from known platform ephemeris information, baseline information, and the interferometric phase.
 - \vec{P} = platform position vector
 - ρ = range to target
 - $\hat{\ell}$ = unit vector pointing from platform to target
 - \vec{T} = target location vector

BASIC EQUATION

$$\vec{T} = \vec{P} + \rho \,\hat{\ell}$$

• Interferometry provides a means of determining $\hat{\ell}$

Interferometric Geometry

 $\phi = \frac{2\pi p}{\lambda} (\rho_2 - \rho_1) = \frac{2\pi p}{\lambda} (|\vec{\ell}_2| - |\vec{\ell}_1|)$ $=\frac{2\pi p}{\lambda}\left(\left\langle \vec{\ell}_{2},\vec{\ell}_{2}\right\rangle ^{\frac{1}{2}}-\rho_{1}\right)$ $=\frac{2\pi p}{\lambda}\left(\left\langle \vec{\ell}_{1}-\vec{b},\vec{\ell}_{1}-\vec{b}\right\rangle^{\frac{1}{2}}-\rho_{1}\right)$ $= \frac{2\pi p}{\lambda} \left(\left(\rho_1^2 - 2\left\langle \vec{\ell}_1, \vec{b} \right\rangle + b^2 \right)^{\frac{1}{2}} - \rho_1 \right)$ $(,) \rightarrow$ $2 \cdot \frac{1}{2}$

$$= \frac{2\pi p}{\lambda} \rho_1 \left[\left(1 - \frac{2\langle \hat{\ell}_1, b \rangle}{\rho_1} + \left(\frac{b}{\rho_1} \right)^2 \right)^2 - 1 \right]$$

• p equals 1 or 2 depending on system

2-D Height Reconstruction - Flat Earth

b.

• Before considering the general 3-D height reconstruction it is instructive to first solve the two dimensional problem.

Assume that
$$b << \rho$$
 and let $\hat{\ell}_1 = \frac{\bar{\ell}_1}{|\bar{\ell}_1|} = \frac{\bar{\ell}_1}{\rho}$. Taking a first order
Taylor's expansion of
 $\Phi = \frac{2\pi p}{\lambda} \rho_1 \left[\left(1 - \frac{2\langle \hat{\ell}_1, \vec{b} \rangle}{\rho_1} + \left(\frac{b}{\rho_1} \right)^2 \right)^{\frac{1}{2}} - 1 \right]$

the interferometric phase can be approximated as

$$\phi \approx -\frac{2\pi p}{\lambda} \langle \hat{\ell}_1, \vec{b} \rangle$$

With $\vec{b} = (b\cos(\alpha), b\sin(\alpha))$ and $\hat{\ell} = (\sin(\theta), -\cos(\theta))$ then

$$\phi = -\frac{2\pi p}{\lambda} b \sin(\theta - \alpha)$$

2-D Height Reconstruction - Flat Earth II

• Let $= (y_o, h)$ be the platform position vector, then \vec{P}

$$\vec{T} = \vec{P} + \rho \hat{\ell}$$

= $(y_o, h) + \rho (\sin(\theta), -\cos(\theta))$
= $(y_o + \rho \sin(\theta), h - \rho \cos(\theta))$

Solving for θ in terms of the interferometric phase, φ, yields

$$\theta = \sin^{-1} \left(\frac{-\lambda \phi}{2 \pi \, p \, b} \right) + \alpha$$

3-D Height Reconstruction

The full three dimensional height reconstruction is based on the ٠ observation that the target location is the intersection locus of three surfaces

 $\left| \vec{P} - \vec{T} \right| = \rho$

- range sphere
- Doppler cone $f = \frac{2}{\lambda} \langle \vec{v}, \hat{\ell} \rangle$ Doppler and phase • phase cone* $\phi = -\frac{2\pi p}{\lambda} \langle \vec{b}, \hat{\ell} \rangle$ cones give two and defining spherical

cones give two angles coordinate system

The cone angles are defined relative to the generating axes determined by

- velocity vector Doppler cone - baseline vector phase cone
- Actually the phase surface is a hyperboloid, however for most applications where the phase equation above is valid, the hyperboloid degenerates to a cone.

Height Reconstruction Geometry

Sensitivity of Height with Respect to Phase

• Observe that $\frac{\partial \vec{T}}{\partial \phi}$ is parallel to $\hat{\ell} \times \hat{v}$.