
Radar Interferometry Example

Standard Radar Image Interference fringes follow
the topography

One cycle of color represents 1/2 wavelength of path difference



Interferometry Applications
• Mapping/Cartography

– Radar Interferometry from airborne platforms is routinely used to produce 
topographic maps as digital elevation models (DEMs).

• 2-5 meter circular position accuracy
• 5-10 m post spacing and resolution
• 10 km by 80 km DEMs produced in 1 hr on mini-supercomputer

– Radar imagery is automatically geocoded, becoming easily combined with 
other (multispectral) data sets.

– Applications of topography enabled by interferometric rapid mapping
• Land use management, classification, hazard assessment, intelligence, urban 

planning, short and long time scale geology, hydrology

• Deformation Mapping and Change Detection
– Repeat Pass Radar Interferometry from spaceborne platforms is routinely 

used to produce topographic change maps as digital displacement models 
(DDMs).

• 0.3-1 centimeter relative displacement accuracy
• 10-100 m post spacing and resolution
• 100 km by 100 km DDMs produced rapidly once data is available

– Applications include
• Earthquake and volcano monitoring and modeling, landslides and subsidence
• Glacier and ice sheet dynamics
• Deforestation, change detection, disaster monitoring 



Interferometry for Topography
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Height Reconstruction
• Interferometric height reconstruction is the determination of a target’s 

position vector from known platform ephemeris information, baseline 
information, and the interferometric phase. 

platform position vector
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BASIC EQUATION

•  Interferometry provides a means of determining   ̂ l .
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Interferometric Geometry
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2-D Height Reconstruction - Flat Earth
• Before considering the general 3-D height reconstruction it is 

instructive to first solve the two dimensional problem.

Assume that b << ρ  and let 
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Taking a first order 
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the interferometric phase can be approximated as 

Taylor’s expansion of
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2-D Height Reconstruction - Flat Earth II 
• Let     = (yo , h) be the platform position vector, then 

  
r 
P 

  
r 
T =

r 
P +ρ ˆ l 

= (yo ,h) + ρ (sin(θ ),− cos(θ))

= (yo +ρ sin θ( ),h− ρ cos(θ ))

θ

h

y
o

ρ

  
r 
T 

  
r 
P 

• Solving for θ in terms of the 
   interferometric phase, φ, yields

θ = sin−1 −λφ
2π pb
 
 
 

 
 
 + α

  ̂ l 



3-D Height Reconstruction
• The full three dimensional height reconstruction is based on the 

observation that the target location is the intersection locus of 
three surfaces

• range sphere

• Doppler cone

• phase cone* 
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Doppler and phase
cones give two angles
defining spherical 
coordinate system

•   The cone angles are defined relative to the generating axes determined by
                                  - velocity vector         Doppler cone
                                  - baseline vector         phase cone

*  Actually the phase surface is a hyperboloid, however for most applications
    where the phase equation above is valid, the hyperboloid degenerates to a cone.



Height Reconstruction Geometry
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Sensitivity of Height with Respect to Phase
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